The Mathematics of Smart Cities

Kostas Margellos

University of Oxford

Disclaimer

- System's engineer by education and my research looks like this

1) Naive Result: For any collection of agents' scenarios, it clearly holds that $d_{i, N} \leq d$ for all $i=1, \ldots, m$, for any scenario set. Thus, for each $i=1, \ldots, m$, Theorem 2 can be applied conditionally to the scenarios of all other agents to obtain a local, in the sense that it holds only for the constraints of agent i, feasibility characterization. Fix $\beta_{i} \in(0,1)$ and let

$$
\begin{equation*}
\tilde{\varepsilon}_{i}=1-\sqrt[N_{i}-d]{\frac{\beta_{i}}{\binom{N_{i}}{d}}} \tag{13}
\end{equation*}
$$

We then have that

$$
\begin{equation*}
\mathbb{P}^{N}\left\{S \in \Delta^{N}: \mathbb{P}\left\{\delta \in \Delta: x_{N}^{*} \notin X_{i}(\delta)\right\} \leq \widetilde{\varepsilon}_{i}\right\} \geq 1-\beta_{i} \tag{14}
\end{equation*}
$$

By the subadditivity of \mathbb{P}^{N} and \mathbb{P}, (14) can be used to quantify the probabilistic feasibility of x_{N}^{*} with respect to the global constraint $\bigcap_{i=1}^{m} X_{i}(\delta)$. Following the proof of [54, Corollary 1], where a similar argument is provided, we have that
$\mathbb{P}^{N}\left\{S \in \Delta^{N}: \mathbb{P}\left\{\delta \in \Delta: x_{N}^{*} \notin \bigcap_{i=1}^{m} X_{i}(\delta)\right\} \leq \sum_{i=1}^{m} \widetilde{\varepsilon}_{i}\right\}$
$=\mathbb{P}^{N}\left\{S \in \Delta^{N}: \mathbb{P}\left\{\delta \in \Delta: \exists i \in\{1, \ldots, m\}, x_{N}^{*} \notin X_{i}(\delta)\right\}\right.$
$\left.\leq \sum_{i=1}^{m} \widetilde{\varepsilon}_{i}\right\}$

$$
\begin{align*}
& =\mathbb{P}^{N}\left\{S \in \Delta^{N}: \mathbb{P}\left\{\bigcup_{i=1}^{m}\left\{\delta \in \Delta: x_{N}^{*} \notin X_{i}(\delta)\right\}\right\} \leq \sum_{i=1}^{m} \widetilde{\varepsilon}_{i}\right\} \\
& \geq \mathbb{P}^{N}\left\{S \in \Delta^{N}: \sum_{i=1}^{m} \mathbb{P}\left\{\delta \in \Delta: x_{N}^{*} \notin X_{i}(\delta)\right\} \leq \sum_{i=1}^{m} \widetilde{\varepsilon}_{i}\right\} \\
& \geq \mathbb{P}^{N}\left\{\bigcap_{i=1}^{m}\left\{S \in \Delta^{N}: \mathbb{P}\left\{\delta \in \Delta: x_{N}^{*} \notin X_{i}(\delta)\right\} \leq \widetilde{\varepsilon}_{i}\right\}\right\} \\
& \geq 1-\sum_{i=1}^{m} \mathbb{P}^{N}\left\{S \in \Delta^{N}: \mathbb{P}\left\{\delta \in \Delta: x_{N}^{*} \notin X_{i}(\delta)\right\}>\widetilde{\varepsilon}_{i}\right\} \\
& \geq 1-\sum_{i=1}^{m} \beta_{i} \tag{15}
\end{align*}
$$

which leads to the following proposition.
Proposition 1: Fix $\beta \in(0,1)$ and choose $\beta_{i}, i=1, \ldots, m$, such that $\sum_{i=1}^{m} \beta_{i}=\beta$. For each $i=1, \ldots, m$, let $\widetilde{\varepsilon}_{i}$ be as in (13) and $\operatorname{set} \widetilde{\varepsilon}=\sum_{i=1}^{m} \widetilde{\varepsilon}_{i}$. We then have that
$\mathbb{P}^{N}\left\{S \in \Delta^{N}: \mathbb{P}\left\{\delta \in \Delta: x_{N}^{*} \notin \bigcap_{i=1}^{m} X_{i}(\delta)\right\} \leq \bar{\varepsilon}\right\} \geq 1-\beta$.

- ... but
- will not show any equation
- will give a systems' perspective to smart cities

What makes a city smart?

- (my) Definition: A city is smart if "it"
- exploits technology to advance operations and services
- Goals: safety, efficiency and sustainability

Figure taken from https://newsroom.cisco.com/

What makes a city smart?

- To achieve the goals of the future smart cities combine
- Information and communication technology (ICT)
- Data collection from citizens, devices, buildings ... and processing
- Connectedness: vehicles + services + users

Smart city: key urban market verticals

UK's industry in the smart cities arena

(1) Transportation management
(2) Energy management
(3) Water management
(1) Waste management
(6) Assisted living

- Estimated global market of $>\$ 400$ Billion in 2020^{1}
- Catapult Connected Places: UK's innovation accelerator for cities, transport \& place leadership ${ }^{2}$

[^0]
Transportation management

- Connected transportation: informed user choices of how and when they access transport, reduced congestion, ...
- Shift to sustainable transportation: limits carbon emissions and waste, uses renewable resources
- Shared mobility systems: reduce urban density

Energy management: Electricity, heating \& cooling

- Building energy management: monitoring and control of heating, ventilation \& air conditioning, lighting ...
- Consumption savings through smart meters and efficient appliances
- Consumers become prosumers

A systems' perspective

- Smart city: plant/process
- Data: output, sensors' measurements
- Schedule: input, actuation

A systems' perspective

- Smart city: plant/process
- Data: output, sensors' measurements
- Schedule: input, actuation
- How to achieve schedule from seeing data? Feedback!
... but there are major challenges!

Math tools

- Networks: Increased levels of connectedness
- Game theory: Strategic behaviour and selfishness
- Learning: Randomness due to uncertainty but availability of data

Game theory

Learning

Hybrid electric vehicle scheduling game

Mani players: Hybrid electric vehicles

- Find optimal schedule but rational
- Price responsive
- Keep local preferences/ limits private

Hybrid electric vehicle scheduling game

Mani players: Hybrid electric vehicles

- Find optimal schedule but rational
- Price responsive
- Keep local preferences/ limits private

Main players: Aggregator

- Aggregates (sums) total demand
- Sets price
- Broadcasts price to vehicles

Hybrid electric vehicle scheduling game

Mani players: Hybrid electric vehicles

- Find optimal schedule but rational
- Price responsive
- Keep local preferences/ limits private

Main players: Aggregator

- Aggregates (sums) total demand
- Sets price
- Broadcasts price to vehicles

Game rules: Price-demand curve

- Increase in demand leads to a higher price
- Elastic demand

Equilibrium seeking algorithm

Step 1: Local computation

Each vehicle computes in a best-response fashion a tentative charging schedule

aggregator

Equilibrium seeking algorithm

Step 2: Communication - from vehicles to aggregator

Electric vehicles broadcast their charging schedules to aggregator

Equilibrium seeking algorithm

Step 3: Communication - from aggregator to vehicles

Equilibrium seeking algorithm

Step 4: GO TO Step 1 and REPEAT

> Vehicles compute charging schedules on the basis of price received

Do we reach an equilibrium? What does this mean?

Main result - Such an iteration:

- Converges to an equilibrium charging schedule; no vehicle has incentive to deviate
- Respects privacy requirements
- Is "valley-filling"

A fully distributed set-up

- No aggregator!
- Communication only with neighboring vehicles
- Maintain a local price estimate at the vehicle level

A fully distributed set-up

- No aggregator!
- Communication only with neighboring vehicles
- Maintain a local price estimate at the vehicle level

A fully distributed set-up

- No aggregator!
- Communication only with neighboring vehicles
- Maintain a local price estimate at the vehicle level

A fully distributed set-up

- No aggregator!
- Communication only with neighboring vehicles
- Maintain a local price estimate at the vehicle level

Price estimates reach consensus!

Equilibrium efficiency or else ... price of anarchy

- Motivation from fish or birds
- Many individuals acting selfishly but the population could do something meaningful - the social welfare!
- Price of anarchy: "distance" between individuality and social welfare
- Price of anarchy in the limit, i.e. in large populations?

Equilibrium efficiency or else ... price of anarchy

- Social welfare: Optimum for population if all vehicles cooperate
- Equilibrium: No incentives for vehicles to change their schedule
- As number of vehicles increases, price of anarchy tends to zero!

Equilibrium efficiency or else ... price of anarchy

- Social welfare: Optimum for population if all vehicles cooperate
- Equilibrium: No incentives for vehicles to change their schedule
- As number of vehicles increases, price of anarchy tends to zero!

$$
\text { equilibrium } \xrightarrow{\text { \#vehicles } \uparrow} \text { social welfare }
$$

Uncertain environment and data

- Smart cities affected by endogenous and/or exogenous uncertainty

Uncertain environment and data

- Smart cities affected by endogenous and/or exogenous uncertainty
- ... but we have data!

- Schedule depends on data \Longrightarrow random!
- Learning decisions from data!

Uncertain environment and data

- Smart cities affected by endogenous and/or exogenous uncertainty
- ... but we have data!

- Schedule depends on data \Longrightarrow random!
- Learning decisions from data!

Uncertain environment and data

- Smart cities affected by endogenous and/or exogenous uncertainty
- ... but we have data!

- Schedule depends on data \Longrightarrow random!
- Learning decisions from data!

Learning with guarantees

- What does a good schedule mean?
- How well it performs when it comes to new data
- How likely is it to make good schedules for all data-bags?
- Not possible, but we can guarantee this for most of the data-bags, i.e. in probability
- A priori quantified confidence on the learned schedule!

Summary

- Moving to a smart-city paradigm exhibits several challenges that call for math tools

- Other key factors: Socio-political issues; poverty levels; ethical issues \& interaction with humans

The book of nature is written in the language of mathematics.

- Galileo Galilei, 1564 - 1642

Gallico QallleL

Thank you for your attention!

Contact at:
kostas.margellos@eng.ox.ac.uk

Source of images: the internet, unless-stated otherwise

[^0]: ${ }^{1}$ Report Ove Arup \& Partners Ltd, Dept for Business Innovation \& Skills
 ${ }^{2}$ https://cp.catapult.org.uk/

