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B15 Lab 2

Coupled Tanks Experiment

Instructions

• Read these instructions, carry out the preparatory work (Questions 1-7)

writing your answers in the answer sheet, and upload these to the prepara-

tion submission page on Canvas before you start the lab. Your attendance

will not be registered unless the lab demonstrator is satisfied that you have

completed the preparatory work.

• The experimental part of the lab should take no more than about 5 hours

in total. Demonstrators will be available 11:00-17:00 on the day of your

scheduled lab session. Register for a lab session using the lab signup page.

Students are expected to work in pairs.

• During the lab, answer the remaining questions, namely, Questions 8-30

by filling in the answer sheet and submit the completed answer sheet to

the report submission page on Canvas. A lab demonstrator will discuss

your work with you and assign you a mark for the lab. Each student must

provide a complete set of answers.

Overview of Experiment

The laboratory exercises explore the design of controllers for water levels in a

pair of connected tanks using a pump and level sensor measurements. The lab

makes use of the analysis techniques and design tools introduced in the B15

Linear Dynamic Systems course (linearisation, controllability, observability) and

the B15 Optimal Control course (linear-quadratic regulation, integral action,

state estimation). You may find it helpful to refer to the B15 lecture notes

while you work through the exercises.

The experiment consists of three phases:

https://canvas.ox.ac.uk/courses/273462/modules/items/2881367
https://canvas.ox.ac.uk/courses/273462/modules/items/2881368
https://canvas.ox.ac.uk/courses/273462/modules/items/2881368
https://canvas.ox.ac.uk/courses/273462/external_tools/14735
https://canvas.ox.ac.uk/courses/273462/modules/items/2881367
https://canvas.ox.ac.uk/courses/273462/modules/items/2881369


3

1. Preparatory work (which must be completed before the lab): develop a

linear model of the process and relate its parameters to system properties.

2. Familiarisation with the experiment: perform tests to identify the param-

eters of a state space model of the coupled tanks system.

3. Design and implement controllers: linear-quadratic optimal control; im-

plementation of integral action; state observer design and implementation.

Safety

The laboratory equipment uses a pump to transfer water into two tanks. Before

you begin, please ensure that all connecting pipes are secured to the apparatus

(ask a demonstrator if you need help), and familiarise yourself with the equip-

ment, including the location of the kill switch for the pump. Please also ensure

that all electrical equipment (power supply, amplifier, computer) is kept free

of water during the lab. A risk assessment is available in the laboratory.

Learning Outcomes

1. Ability to create a linearised state space model of a nonlinear system.

2. Identify the parameters of the model and validate these using the response

of the experimental apparatus.

3. Design and implement a linear-quadratic optimal controller.

4. Understand controller limitations and the significance of cost weights.

5. Design and implement a linear-quadratic optimal controller with integral

action to eliminate steady state error.

6. Design a state observer.

7. Design and implement a linear-quadratic optimal output feedback con-

troller using a state observer
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1 Introduction

The coupled tanks experiment is shown schematically in Figure 1. A voltage v

drives an electric motor which pumps water from a reservoir into Tank 1. The

flow rate through the pump is qin, and this can be assumed to be proportional

to v. Water from Tank 1 flows into Tank 2 through an orifice, then returns to

the reservoir via a second orifice.

Pump

Tank 1

Tank 2

v

qin

h1

h2

q1

q2

Figure 1: Schematic of coupled tanks experiment

The objective is to control the water level in Tank 2 to a specified target level

(reference value or setpoint). This is analogous to the operation of holding

tanks in a processing plant, which are used to ensure a consistent and reliable

flow of material between the individual stages of a multi-stage process.

In order to implement feedback control on the system, a pair of level sensors

provide voltages which are proportional to the tank levels h1 and h2. These

signals are filtered to reduce high frequency noise and converted to give the

values of the water levels in cm. The setpoint for h2 is assumed to be subject
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to arbitrary step changes determined by a human operator, but otherwise is

assumed to be constant.

For analysis purposes it is convenient to make the following assumptions:

1. Sensor and actuator dynamics can be ignored, i.e. they are much faster

than the coupled tank system dynamics;

2. The sampling rate is sufficiently high that continuous time system models

and continuous time control design techniques can be used, i.e. the control

action as perceived by the coupled tanks system is effectively the same

as that provided by a continuous-time controller.

2 Preparatory Work: Modelling

Assume that the pump flow rate qin depends linearly on the pump voltage v:

qin = kpv

for some fixed gain kp. The equations for (volumetric) flow-rates q1 and q2 out

of tanks 1 and 2 are

q1 = σ1a1
√
2gh1 (2.1)

q2 = σ2a2
√
2gh2 (2.2)

where the levels h1 and h2 are measured relative to the bottoms of tank 1 and

tank 2, respectively, σ1, σ2 are orifice constants, a1, a2 are cross-sectional areas

of the orifices, and g is the acceleration due to gravity. If the cross-sectional

area of each tank is A, then the differential equations relating the heights of

the water in the two tanks to the flow rates are:

A ḣ1 = kpv − q1 (2.3)

A ḣ2 = q1 − q2 (2.4)

where ḣi(t) = dhi/dt is the derivative of hi(t) with respect to time, t. These

equations are nonlinear due to the square roots appearing in the expressions

for q1 and q2 but they can be linearised about an equilibrium point.
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Question 1. Provide expressions for the equilibrium values, h01, h02, of the levels,

h1, h2, in the tanks when the pump voltage v is held at v = v0, where v0

is a constant.

Question 2. Let h1 = h01 + x1 and h2 = h02 + x2, where x1 and x2 are small

deviations from the equilibrium levels h01, h02, respectively. Find the Taylor

series expansions of q1 in (2.1) about h1 = h01 and q2 in (2.2) about

h2 = h02, truncated after the linear terms in x1 = h1−h01 and x2 = h2−h02.

[Hint: An easier way to linearize the system is by exploiting the Taylor expan-

sion (1 + xi)
1/2 = 1 + 1

2xi −
1
8x

2
i + · · · , for i = 1, 2. For each i = 1, 2, the

resulting approximations will be of the form qi ≈ αi + βixi for constants αi,

βi to be determined.]

Now let v = v0 + u, where u is a small deviation from the equilibrium pump

voltage v0. Use equations (2.3)-(2.4) and the linearised flow-rate expressions

in Question 2 to create the linearised state-space model[
ẋ1

ẋ2

]
=

[
−1/T1 0

1/T1 −1/T2

][
x1

x2

]
+

[
b1

b2

]
u, (2.5)

y =
[
0 1

] [x1
x2

]
, (2.6)

where the output y is the deviation of h2, the height of the fluid in the second

tank, from h02.

Question 3. Provide expressions for the model parameters T1, T2, b1 and b2.

Hence show that

T1 =
2Ah01
kpv0

, T2 =
2Ah02
kpv0

. (2.7)

Question 4. Use the state space model (2.5)-(2.6) to determine the transfer

functions from U(s) to X1(s) and from U(s) to X2(s).

Question 5. Write down expressions for the dc gain and time-constant of

G1(s).
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Question 6. Write down expressions for the dc gain, the undamped natural

frequency and the damping ratio of G2(s).

Question 7. Determine the 2% settling times of the step responses of G1(s)

and G2(s), i.e. the time taken for the step responses of G1(s) and G2(s)

to reach 2% of their steady state values.

[Hint: For a first order system with time constant T the 2% settling time is

Ts1 ≈ 4T,

since e−4 ≈ 0.02. For a second order system with damping ratio ζ < 1 and

undamped natural frequency ω0 the 2% settling time is

Ts2 ≈ 4/ζω0,

since the time constant of the exponentially decaying oscillation in the step

response is 1/ζω0. Note that for our system it turns out that ζ ≈ 1; however,

using the same approximation would still give a reasonable estimate for the

settling time.]
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3 Experiment

The modelling and controller design parts of this laboratory will be performed

using Matlab with controllers implemented using Simulink. The Matlab Coder

is used to automatically generate code from Simulink models. This provides

the necessary instructions to read in data from the water level sensors, compute

the control action and output control signals to the pump.

Matlab should be running on the laboratory PC when you begin the exercise,

but if it is not, or if you need to restart the computer, log in using

username: lab5 password: access

The files for the lab are in the folder C:\work\CONTROL\B15lab. You can

change these files as you work through the exercises (they will be erased before

the next lab session). You will find it helpful to write Matlab scripts to solve

the controller design problems and answer the questions below.

• To start the first part of the experiment click on b15 lab a.slx or type

b15 lab a at the Matlab prompt to open the window shown in Figure 2.

Note that it usually takes a few seconds to load the model.

• Build and run the Simulink model (i.e. generate the code, compile it and

run it) by clicking the green “Run” button on the toolbar indicated in

Figure 2. Note that it will take a few seconds to build the model.

• Change the voltage input to the pump by opening the Controller sub-

system, clicking on the box labelled “Manual pump demand, v0” and

changing the value the gain from the default value of 7.

• Open the scopes h1 response and h2 response; these provide plots of

the water levels h1 and h2 in cm.

3.1 Parameter Identification

For most of the experiment the set-point for h2 will be around 14-16 cm. It is

therefore reasonable to consider the linearization you have obtained for (2.3)-
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Run

Figure 2: Simulink model b15 lab a

(2.4) about an equilibrium level of h02 ≈ 15 cm. This is typically obtained with

a pump voltage v0 of about 7-8V. Choose a suitable value for v0 and record

the corresponding steady state values, h01 and h02. Note that h02 does not need

to be exactly equal to 15 cm, we just need 14 ≤ h02 ≤ 16, and that takes

several minutes to reach steady state.

Each of the tanks is cylindrical with internal diameter 4.4 cm and the pump

gain is kp = 3.3 cm3 s−1 V−1.

Question 8. Determine numerical values for b1, b2, T1 and T2 using h01, h02, v0

and (2.7).

Question 9. Use the expressions derived in Section 2 and your values for b1,

b2, T1 and T2 to determine the d.c. gain and time constant of G1(s)
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Question 10. Determine the d.c. gain, the undamped natural frequency ω0 and

the damping ratio ζ of G2(s)

Question 11. Estimate the 2% settling times of the step responses of G1(s)

and G2(s).

3.2 Model Validation

Apply a small change (e.g. ±0.2V) to v to generate a new equilibrium point

for h1 and h2 in the range 14-16 cm.

Question 12. Record the new value of v and new steady state levels in tanks

1 and 2 and use these together with your values for v0, h01 and h02, to

estimate experimental values for the d.c. gains of G1(s) and G2(s).

Now change the value of v back to v0 and record the resulting open loop

step responses. This can be done by copying the plots shown in the scopes

(e.g. using “Copy to Clipboard”) and pasting into a Word document.

Question 13. Estimate the settling times of the responses of the levels in tanks

1 and 2 from the open loop step responses.

Question 14. Compare the experimental values for the d.c. gains of G1(s) and

G2(s) with the values that you predicted in Section 3.1.

3.3 Linear Quadratic Regulator (LQR)

The state space model of the linearised system (2.5)-(2.6) can be expressed

ẋ(t) = Ax(t) +Bu(t), (3.1)

y(t) = Cx(t), (3.2)

where x(t) =

[
x1(t)

x2(t)

]
, A =

[
−1/T1 0

1/T1 −1/T2

]
, B =

[
b1

b2

]
and C =

[
0 1

]
.

We consider an infinite horizon linear quadratic regulation (LQR) optimal con-
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trol problem, where the control law u(t) that minimizes the cost function:∫ ∞
0

[
x>(t)Qx(t) + u>(t)Ru(t)

]
dt,

evaluated for the model (3.1)-(3.2) and for given weighting matrices Q, R, is

u(t) = −Kx(t), where K =
[
k1 k2

]
,

where K is the optimal LQR feedback gain matrix. This set of gains will

be determined here numerically by solving the associated steady-state Riccati

equation (see B15 lectures) in Matlab, via the command

K = lqr(A,B,Q,R).

In this experiment we are interested in controlling the level in tank 2, and we

therefore wish to penalize the output y(t) = x2(t) in the cost. This is achieved

by choosing Q = C>C so that x(t)>Qx(t) = y2(t).

For R = 0.1, 0.05, 0.01, compute:

• the optimal gain matrix K;

• the closed loop poles pcl (i.e. the eigenvalues of A−BK);

• their undamped natural frequency ω0 and damping ratio ζ;

• the 2% settling time, Ts, of the step response.

Question 15. Record the values of R, K, pcl, ω0, ζ and Ts in a table.

Question 16. Describe the effects of increasing R and explain why R < 0.01

is likely to result in poor performance.

Question 17. Choose a suitable value for R using your answer to Question 16.

Open the Simulink model b15 lab b.slx shown in Figure 3, open the block

marked Controller and insert the value of v0 (from Section 3.1) and the

gains k1 and k2 corresponding to the chosen R. Run the controller and test

the step response of the closed loop system by changing the setpoint h2,set

between the values of 14 cm and 16 cm.



B15 Lab 12

Figure 3: LQ optimal controller implementation in Simulink model b15 lab b

Question 18. Record the step responses and comment on the accuracy of the

predictions of ζ and Ts.

Question 19. Explain what causes the steady state errors in h2 and h1.

3.4 LQR with Integral Action

To force the controller to include a term that depends on the integral of the

error in h2, we augment the system model so that the integral of the error

between h2 and its setpoint appears as a state. To this end, denote the
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integral of this error as

x3(t) =

∫ t

0

y(τ)dτ =

∫ t

0

x2(τ)dτ =⇒ ẋ3(t) = y(t) = x2(t).

Notice that the tracking error y = x2 = h2 − h02, where h02 is taken to be

the setpoint of h2. We can incorporate this new differential equation in the

state space system description of the previous section. We will this obtain

an augmented state vector x>a(t) =
[
x1(t) x2(t) x3(t)

]
and the associated

augmented state space description

ẋa(t) = Aaxa(t) +Bau(t), (3.3)

y(t) = Caxa(t), (3.4)

where Aa =

−1/T1 0 0

1/T1 −1/T2 0

0 1 0

, Ba =

b1b2
0

, Ca =
[
0 1 0

]
.

The infinite horizon LQR problem for the augmented system takes the form∫ ∞
0

[
x>a(t)Qaxa(t) + u>(t)Ru(t)

]
dt, where Qa =

[
C>C 0

0 q

]
, q > 0.

Here xa(t)
>Qaxa(t) = y2(t) + qx23(t), so the weight q allows the designer to

specify the penalty on the integral of the tracking error, which now appears in

the cost due to the term qx23(t). Notice that the optimal LQR controller now

takes the form

u(t) = −Kaxa(t),

= −
[
ka,1 ka,2

]
x(t)− ka,3

∫ t

0

y(τ)dτ,

where Ka =
[
ka,1 ka,2 ka,3

]
. It now becomes prominent that the controller

includes an integral action.

With the value of R that was chosen in question 17, use the Matlab function

lqr to compute the optimal controller Ka for q = 0.1, 0.05, 0.01. In each

case, compute
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• the optimal gain matrix Ka;

• the closed loop poles pcl (i.e. the eigenvalues of Aa −BaKa);

• the undamped natural frequency ω0 and damping ratio ζ of any complex

poles;

• the 2% settling time, Ts corresponding to the slowest closed loop pole.

Question 20. Record q, Ka, pcl, ω0, ζ, Ts in a table.

Question 21. Describe the effects of increasing the weight q and explain why

q > 0.1 is likely to give poor performance.

Question 22. Choose a suitable value for q.

Open the Simulink model b15 lab c.slx. Open the Controller block and

insert the value of v0 (from Section 3.1) and the gains ka,1, ka,2 and ka,3 that

are obtained with your chosen value of q. Run the controller and test the step

response of the closed loop system for step changes in h2,set between 14 cm

and 16 cm.

Question 23. Record the step response and compare the step response obtained

in Question 18.

3.5 State Estimation

The feedback laws designed in Sections 3.3 and 3.4 were computed assuming

that the full state of the system can be measured. This section assumes that

only the level of tank 2, y(t), can be measured, and is hence the only state

that can be used for control. To this end, an observer is used to estimate the

level of tank 1 (as shown in Fig. 4) for use in a feedback control law. Defining

the state estimate constructed by a linear observer by x̂(t) =
[
x̂1(t) x̂2(t)

]>
.

Its evolution is governed by the differential equation

˙̂x(t) = (A− LC)x̂(t) +Bu(t) + Ly(t). (3.5)
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where the observer gain, L, is to be chosen by the designer. Recalling that

ẋ(t) = Ax(t) + Bu(t) and y(t) = Cx(t), we can construct the estimation

error e(t) = x(t)− x̂(t). Its evolution is given by

ė(t) = (A− LC)e(t). (3.6)

The observer gain L can be computed so that the estimation error converges

to zero (in magnitude). This can be achieves by appropriately placing the

eigenvalues of A− LC using the Matlab function place:

L = place(A′, C ′, pobs)
′,

where pobs =
[
pobs,1 pobs,2

]
, and pobs,1, pobs,2 are the desired eigenvalue/pole

locations.

Question 24. Explain why pobs,1, pobs,2 must have negative real parts.

The level sensor for h2 is subject to noise at frequencies above 3 rad s−1.

Question 25. Explain why it is desirable to make |Re[pobs]| an order of magni-

tude less than 3. By | · | we mean the absolute value of its argument.

Question 26. By referring to the closed loop poles pcl computed in Section 3.4,

suggest a lower bound on the value of |Re[pobs]|. [Hint: Consider what

determines the dominant poles of the closed loop system.]

Question 27. Choose suitable locations for pobs and compute the gain L.

Open the Simulink model b15 lab d.slx shown in Figure 4. Open the block

marked Observer and enter the values of v0, h01 and h02 in the required boxes

(alternatively, just ensure that v0, h01 and h02 are correctly defined in the Matlab

workspace). Ensure that that the correct model is entered in the block marked

State-Space (the easiest way to do this is to define A, B, L, C in the Matlab

workspace). Insert the gains computed in Section 3.4 with the chosen values

for R and q into the Controller block, run the controller and test the step

response of the closed loop system for changes in h2,set between 14 cm and

16 cm.
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Figure 4: LQ optimal controller with state estimation using an observer in

Simulink model b15 lab d

Question 28. Record the step response and comment on the effects of using

an observer to estimate h1.

Question 29. Comment on the accuracy of the estimates of h1 and h2.

A simplified block diagram of the closed loop system, including sensor noise, n,

is shown in Fig. 5. Here we consider the augmented system where we account

for the integral of the tracking error.
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Observer

Controller Plant
x̂1

u
y

n
+

+

Figure 5: Closed loop system block diagram

Question 30. Record the Bode diagrams for the transfer functions from N(s)

to Y (s) and from N(s) to X̂1(s). Does the chosen value of L satisfy the

requirements that were used to determine upper and lower bounds on the

observer poles pobs?

[Hint: Since now the output is affected by a noise signal n, we need to replace

all terms that depend on y with y + n in the equations of the augmented

system and the observer. To this end, consider (3.3) and (3.5) (we drop the

dependency of the variables on t for simplicity); upon this replacement they

can be written as

ẋa = Aaxa +Bau+Bnn, (3.7)

˙̂x = (A− LC)x̂+Bu+ L(y(t) + n), (3.8)

where Bn =
[
0 0 1

]>
. The term Bnn appears in (3.7) since the last

component of the augmented state will now involve the integral of y + n (as

the output is affected by noise). This is the third state in xa, hence the third

entry of Bn is one.

Recall now that Ka =
[
ka,1 ka,2 ka,3

]
. Let K(1) =

[
ka,1 0

]
and K(2) =[

0 ka,2 ka,3
]
. The control law including the sensor noise signal n can be then

expressed as

u = −K(1)x̂−K(2)xa − ka,2n, (3.9)

where we made explicit the dependency on the state xa, the estimated state x̂,

and the noise signal n. Notice that K(1)x̂ = ka1x̂1, as we employ the observer
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to use an estimate for the state we do not measure directly. Moreover, we

have the term involving n as the control gain ka,2 would be multiplied with the

second state that is available via the output as sensor measurement. Since the

output is affected by noise, we apply this gain on x2 + n = y + n instead.

By combining equations (3.7), (3.7), and (3.9), the closed loop system model

becomes[
ẋa

˙̂x

]
=

[
Aa −BaK

(2) −BaK
(1)

LCa −BK(2) A− LC −BK(1)

][
xa

x̂

]
+

[
Bn −Baka,2

L−Bka,2

]
n,[

y

x̂1

]
=

[
0 1 0 0 0

0 0 0 1 0

][
xa

x̂

]
.

Notice that x̂1 constitutes a virtual output as we employ for control and is not

available in the actual output (sensor measurement). The Bode plot of the

transfer function (matrix)

Y (s)

U(s)
= C(sI − A)−1B +D

of a system defined by ẋ = Ax+Bu and y = Cx+Du can be obtained using

the Matlab commands sys = ss(A,B,C,D) and bode(sys).]
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