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5 Introduction to linear systems and state space form

1 Introduction to linear systems and state space form

Optimal control involves regulating and improving — as far as a particular perfor-
mance criterion is concerned — the behaviour of a given plant. To this end, we
typically exploit information from sensors (measurements) to design intelligent ac-
tuator commands. To achieve this a model of the underlying plant needs to be
developed, which is then employed for control design purposes. Such a model cap-
tures the physics governing the behaviour of the plant, e.g., equations of motion for
ground or aerial vehicles, Kirchhoff’s current and voltage laws for electric circuits,
etc. High fidelity models, which usually involve non-linear differential equations,
capture accurately the physical description and evolution of the system, however,
impose difficulties when it comes to designing controllers. We thus very often ab-
stract the behaviour of such systems to simpler ones, facilitating the control design
procedure. In these notes we will first consider linear systems in continuous time
as a modelling abstraction of the actual plant dynamics, and then provide optimal

control methodologies to regulate their behaviour.

In this realm, the main objectives of the notes are as follows.

1. Linear systems (Chapters 1-4): We aim at introducing linear systems and
analyze them in a rigorous mathematical manner in the time domain. As such,
our analysis complements traditional control design methodologies based on
transfer functions, that are typically performed in the frequency domain. In
particular, we will represent linear systems in the so called state-space form,
which comprises a linear ordinary differential equation and an algebraic output
equation, and we will answer existence and uniqueness questions for solutions
to these equations. We will show how to construct solutions to a certain
class of linear systems in closed form, and study their properties as far as
stability is concerned. We will also analyze structural properties that pertain
their behaviour, termed controllability and observability. Such properties allow
us to decide whether it is possible to design controllers to steer the system
trajectories to a desired location of the space, and whether it is possible to

infer their initial condition by inspecting/measuring the output of the system.

2. Optimal control (Chapters 5-8): We will build on the linear systems analysis to
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design controllers for such systems. We will introduce different design method-
ologies that are optimal with respect to a given criterion. In particular, we will
discuss minimum energy controllers that are open loop, however, correspond
to the minimum effort controller to steer the system to a given location. We
will then move to feedback controllers, and provide a systematic way of de-
signing the feedback control gains so that we achieve a prescribed closed loop
performance. Finally, we will focus on designing feedback controllers while
optimizing a certain criterion. We will pose this as a general optimal control

problem and characterize its solution.

Beyond their importance in engineering and optimal control, linear systems have
particularly appealing properties from a mathematical point of view. Understanding
their behaviour requires a wide range of mathematical tools from linear algebra and
analysis, however, they are simple enough to derive their properties in closed form,
and as such serve as an introduction to mathematical proofs and formal logic. To
render the notes self-contained, we provide a condensed summary of selected topics

from linear algebra and analysis in Chapter 9.

Basic notation: We will be using R and C to denote the set of real and complex
numbers, respectively. We denote by R" the set of n-dimensional vectors, and by
R™*™ (C™*™) the set of m x n matrices with real (complex) entries (for arbitrary m
and n)*. We will use ¢ € R for the continuous time variable. By f(-) : R" — R™

we denote a function that takes as input a vector in R” and returns a vector in R™.

1.1 Modelling examples

We first consider a couple of examples and detail their physical description. Our

analysis will be entirely in continuous time.

1.1.1 Pendulum motion

Consider the pendulum illustrated in Figure 1, i.e., a mass m is hanging from a

weightless spring with length [. Initially the pendulum creates an angle with the

*It should be noted that we will assume throughout that all linear spaces involved are finite dimensional;
a more general treatment involving infinite dimensional spaces (spaces of functions) is outside the scope

of these notes.
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vertical axis and has some angular velocity. If it is released from its initial position

this angle will change as a function of time; we will denote it by 0(t).

mg

Figure 1: Pendulum with mass m.

We would like to describe the physics that govern the motion of the pendulum,
or in other words the evolution of 0(t). To this end, note that the pendulum
performs a rotational motion with 6(t) being its angular, and 18(t) its linear velocity.
The pendulum mass experiences its weight mg, as well as a friction force dlf(t)
(proportional to the linear velocity) with direction opposing its motion, with d being

the friction dissipation constant. By Newton's law of motion we have that
mlf(t) = —dlf(t) — mgsin 6(t),

where 6(t) is the angular acceleration, and mgsin(A(t)) denotes the gravity force
component along the direction of motion. This is a second order ordinary differential
equation (ODE) with respect to 0(t). We assume that we can only measure the

angular position of the pendulum, hence have access to a measurement equation

For every time instance ¢ the motion of the pendulum is captured by its angular

position and velocity; we can thus set

:m(t)} ) F(t)

S e R,
0(t)
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and notice that i(t) = 0(t) = x5(t) and @y(t) = —Lyo(t) — 4sinay(t). Under
these variable assignments, we are able to represent the second order ODE and the

measurement equation more compactly as

21 (t) { o (1) ]
(1) —Lao(t) — Isinmy(t) ’

y(t) =1 0 {xl(t)] = [1 0] ().

.’L’Q(t)

Notice that the first equation is now a first order ODE but for a “lifted” system that
involves a two-dimensional vector x(t), while the output equation is an algebraic
equation that involves multiplying x(t) with a matrix (row vector in this case) that

“selects” the component that can be measured.

The ODE together with the algebraic equation capture the behaviour of the pendu-
lum as they model the underlying physics (ODE) and encode the information that
is available to us by means of measurements (algebraic equation). In the consid-
ered example this is a nonlinear system due to the presence of the trigonometric
function, and it is also unforced/autonomous, as no external force is applied to the

pendulum.

1.1.2 Electric circuit

Consider the electric circuit of Figure 2, that involves a resistance R in series with
an inductor L and a capacitor C. An external voltage u(t) is applied to the system.
We would like to determine an ODE that captures the behaviour of the voltage
ve(t) across the capacitor and the current iy (t) along the inductor. We assume
that both v (t) and iz (t) can be measured.

The voltage across the inductor is given by vy, (t) = Ldié—t(t), while the current across
the inductor equals the current across the capacitor, leading to iy (t) = Cdvgt(t).

Therefore, the voltage across the inductor is given by vy (t) = LC’d2Z§;(t). Denoting

by vg(t) = Rir(t) the voltage across the resistance (iz(¢) flows through R), by

Kirchhoff's voltage law we have that

d2vc(t) dv(j(t)
dt? RO dt

vp(t) + vr(t) + ve(t) = u(t) = LC +oe(t) = u(t).
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Figure 2: RLC circuit with external input voltage u(t).

This is a second order ordinary differential equation (ODE) with respect to vc(t).
We assume that we can measure both the voltage across C' and the current across

L, hence we have access to a measurement equation

Uc(t)
ir(t) |

y(t) =

The fact that we can measure both v (t) and ir(t) — notice that both these quan-

tities are related to the system’s energy — suggests setting

x1(t) ve(t)
332(75) Z'L(t)

Moreover, vz (t) = —vg(t) — vo(t) +u(t) = LU = —Ri (1) — ve(t) + u(t).

Using this fact, under our choice for x(t) we have that

€ R?.

(t) = {

ir(t) = cdvst(t) = iy(t) = éxg(t),
Ldthft) —RiL(t) — ve(t) + ult) = da(t) = —]:_l;xl(t) _ szg(t) + iu(t).

Under these variable assignments, we are able to represent the second order ODE

and the measurement equation as

o Jaw] o 3 0
i(t) = _@(t)] = {i —C]f z(t) + . u(t),
o = || = E f] () + | (o).

Similarly to the pendulum example, we have transformed a second order ODE

to a first order one but for a “lifted” system. Moreover, the resulting ODE and
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the algebraic equation capture the behaviour of the capacitor's voltage and the
inductor’s current (ODE), and indicate the quantities we can measure (algebraic
equation). However, in contrast to the pendulum’s compact description, the one
obtained here is linear with respect to x(t) (and u(t)), and is not autonomous due

to the presence of the external input u(t).

1.2 State space representation

The two preceding examples illustrate that despite the differences between the
underlying physical system (pendulum vs. electric circuit), we are able to capture
the system’s behaviour by means of a similar mathematical representation. To make
this precise we denote by u(t) € R™ the input and by y(t) € R? the output of a

given system, while we refer to x(¢) € R" as the state of the system.

We say that a nonlinear, time-varying system is in state space form if it can

be represented by

where f and h are nonlinear functions of z(t), u(t) and (possibly) the time t.

We refer to the dimension of the state n as the order of the system.

The function f is often referred to as dynamics or vector field. The interpretation
of u(t) and y(t) is straightforward: they capture the actuation commands and
the sensor measurements, respectively. The role of the state z(t), however, might
be less obvious. It should be thought of as an “internal” vector, whose elements
correspond to physical quantities that change over time, hence their evolution is
described by means of ODEs. With reference to the pendulum example, we may
not be able to access all these variables in the output of the system, but possibly

only a subset of them. In that case, y(t) contains some of the elements of ().

If it happens that the vector field f does not depend explicitly on time, we say
that the system is time-invariant. If in addition, it depends neither on ¢, nor on

u(t), we say that the system is autonomous. The pendulum example involved a
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nonlinear, autonomous system. If the vector field f and the output function h are
linear with respect to x(t) and wu(t), then we say that the underlying system is

linear. In particular we consider the following two classes of linear systems.

Linear, time-varying systems:

#(t) = A)x(t) + B(t)u(t),
y(t) = C)x(t) + D(t)u(t),

where A(t), B(t),C(t), D(t), are matrices whose entries may depend on time.

Linear, time-invariant systems (LTI):

where matrices A, B, C, D, are independent of time.

The electric circuit example involved an LTI system. It was non-autonomous, due to
the presence of the external input u(t). For illustration purposes, a block diagram

of an LTI system is shown in Figure 3.

O

u(t) B +_ (1) / x(t) C +y y(?)
+

A

A

Figure 3: Block diagram of an LTI system.

Deriving the state space form from the physical description of a system requires
experience. To make this process more systematic, we provide a sequence of steps

that could provide further insight.
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1.

Determine the input variables wu(¢). This could include external forces for

mechanical systems or voltage/current sources for electrical ones.

. Determine the output variables y(¢). To this end, consider sensor output

signals that we can measure.
Select the state variables x(¢). These are typically variables that:

e Capture the past and together with inputs give information about the

future evolution of the system, namely, &(t).

e For mechanical systems these are typically position and velocity compo-

nents, while for electrical systems these contain voltages and currents.

e The state variables are often related to storing energy.

Describe the physical evolution of the system (ODE) @(t) = f(x(t),u(t),t).
This involves taking derivatives of the state variables and exploiting physi-
cal laws, like Newton's laws for mechanical systems, and Kirchhoff's laws for

electrical ones.

Specify the output equation y(t) = h(x(t), u(t),t). This refers to determining
the quantities we can measure: either a subset of the state variables, or some

of the inputs, or a combination of them.

Not all systems can be written in state space form. As an example, consider a

system with delay, with output equation given by y(t) = u(t — t4) where t; denotes

the delay. To determine the output of the system at time instances after ¢ we need

information about the entire input history over the time interval (t — ¢4, t] rather

than a pointwise estimate. Therefore, the output function i would need to admit as

input a functional rather than a vector; such systems are called infinite dimensional.

1.3 Linearization

Often the underlying physical system is nonlinear, as with the pendulum example.

Designing controllers for nonlinear systems is in general a difficult task; here we

will do so for linear systems only. We show how to abstract/approximate nonlinear
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systems (locally) with linear ones. To this end, consider a nonlinear vector field

Sila(t), u(t))
fa(t),u(t)) = : :

Sul@(t),u(t))
where f; is assumed to be sufficiently differentiable and for simplicity we have
assumed that it does not depend on time explicitly. Further assume that we
have access to a nominal state-input trajectory (z*(-),u*(:)) such that i*(t) =
f(x*(t),u*(t)); notice that this entails a state and an input as functions of time
and not just a point. Access to such a trajectory could result from the application
of an optimal, albeit open loop controller. As such, when applying u*(¢) to the
real system due to model mismatch and the presence of disturbances, the resulting
state trajectory may drift away from x*(¢). Designing directly a controller that
would involve feedback (thus depending on the system state) would alleviate this

issue, but is a difficult task for generic nonlinear systems.

We will do this indirectly. To this end, consider a perturbation u,(t) superimposed
to u*(t), resulting in a controller u(t) = w*(t) + uy(t). Under the input wu(?),
the state becomes x(t) = 2*(t) + x,(t), where z,(t) = x(t) — 2*(t) encodes the

perturbation from the nominal state trajectory. As such we have
x(t) = x*(t) + xp(t) and w(t) = u™(t) + uy(t).

We suppose that the perturbations z,(t), u,(t) are small enough. We will employ
u,(t) to ensure that if we start with z,(0) small (close to the nominal initial state),
x,(t) remains small, or in other words the state trajectory track the nominal one. In
particular, we will show that i,(t) is (approximately) a linear function of x,(¢) and
up(t), i.e., the perturbations form a linear system. Employing tools from control of
linear systems developed in subsequent chapters we would be able to design w,(t)
as a function of x,(t) = x(t) — 2*(¢) (thus the input will depend on the system
state) to “regulate” the perturbation system. However, the validity of this design

will only be local, as we have assumed the perturbations are small enough.

To achieve this, by the Taylor series expansion around (z*(t),u*(t)) we have that

#(t) = fx(t), u(t)) = f(2"(t), u*(t))

T gi(x*(t)’ w’(t)) @p(t) + (;]:(l’*(t)a u*(t)) uy(t) + higher order terms,
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where recall that x,(t) = z(t) — 2*(t) and w,(t) = u(t) — u*(t). Neglecting the
higher order terms as the perturbations have been assumed to be small enough,
and since f(x*(t),u*(t)) = #*(t), we have that

(1) — #(6) ~ 0 (a*(0), 0 () mpl6) + 00 (1), (1) (1),

U
. 8 * * 8f * *
& dp(t) = 5 (27(1), (1)) 2p(t) + o (27(2), " (1)) up(),
where we used the fact that ©,(t) = @(t) — #*(¢). Since f is a vector, the partial

derivatives with respect to x and w are matrices given by

of (L), ur (1) . S (t), ur())

S (a (1), (1) = ; ; e RN,
G (2 (), ur (1) . g (t), ur())

of L@ (), ur (1) . (1), ur(h))

(1), 0 () = ; ; e R™™,
G (2 (), w (1) . (i (1), ur(h))

The resulting perturbation dynamics form a linear time-varying system.

Fact 1 (Linearization). Consider the nonlinear system &(t) = f(x(t),u(t)),
where z(t) € R", u(t) € R™, and the functions comprising f are differentiable.
The linearization of that system around a nominal trajectory (x*(-),u*(-)) is

given by the linear, time-varying system
(1) = A(t)xy(t) + B(t)up(2),

where A(t) = g—i(x*(t),u*(t)) € R™" and B(t) = %(:U*(t),u*(t)) e R,
If we are given a nominal operating point rather than a trajectory, i.e., (z*,u*),

then the linearization around this point is given by the LTI system
Tp(t) = Azp(t) + Buy(?),

where A = IL(2* u*) € R™™ and B = %L(z*,u*) € R™™ have now time

independent entries.

For an autonomous system the linearization implies that locally, in the vicinity of a
nominal trajectory or point, the nonlinear system can be approximated by a linear

one. The following example highlights this point.
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& Example 1. Consider the state space representation of the pendulum in
Figure 1. Linearize the system around the nominal operating points (notice

that this is an autonomous system so no input appears)

N 0
T =
0

Solution: By the state space representation of the pendulum we obtain that

fl(x)]
fa(z)

The linearization of the system around a nominal operating point x* = [x7 x5

and x* = r
0

- |

—%@ — Isinzy
I
is given by ©,(t) = A x,(t) (there are no inputs so no B matrix computation),
where
06 () (o) d

g * _d
o S COS T]

8.132

m

It turns out that the linearized system depends only on x7; for the two different

values of x according to the operating points we obtain

0 1
g d
l

m

;=0 = A= p

0 1
}and x{z%éA:{ ]

—r

m

Since the only nonlinearity in this case was the trigonometric function sin x4,
the outcome of the linearization could have been anticipated by performing a

small angle approximation.

1.4 Summary

This chapter introduced the so called state space modelling formalism. In particular,
we discussed and illustrated by means of examples the following three main state
space descriptions, where x(t) € R" denotes the state, u(t) € R™ the input, and
y(t) € RP the output of the system.
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1. Nonlinear, time-varying systems:

where f and h are nonlinear functions of x(t¢), u(t) and (possibly) the time.
2. Linear, time-varying systems:
&(t) = A(t)x(t) + B(t)u(t),
y(t) = C)x(t) + D(t)u(t),
where A(t), B(t), C(t), D(t), are matrices whose entries may depend on time.

3. Linear, time-invariant systems (LTI):

where matrices A, B, C, D, are independent of time.

We have also detailed a procedure called linearization (see Fact 1) that allows
approximating locally the behaviour of the system around a nominal trajectory
(*(+),u*(-)) by a time-varying linear system. If rather than a nominal trajectory
we have an operating point (z*, u*), then linearization yields a time-invariant linear

system.
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2 Solutions of linear time invariant systems

Consider the state space description of an LTI system
(t)
y(t)

where z(t) € R" is the state, u(t) € R™ is the input and y(t) € R? is its output.

Given an input trajectory u(-) as a function of time, we are interested in determining

Az (t) + Buf(t), (2.1)
Cx(t) + Du(t), (2.2)

a state solution z(-) : R — R" that satisfies (in a sense that would be made precise
in the sequel) the ODE in (2.1) and an output solution y(-) : R — R? from (2.2).
To perform so, given u(-) as a function of time, and an initial condition (%o, x)

(time-state pair), we need to answer the following questions:

1. Do there always exist solutions of the LTI system for every initial condition?

2. If a solution exists, is it unique?

In this chapter we address these questions and show that LTI systems admit a
unique state and output solution. Moreover, we will show how these solutions can

be computed in closed form.

2.1 Existence and uniqueness of solutions

To address the existence and uniqueness questions, we first focus on a more abstract

description of dynamic equations that are possibly nonlinear and are governed by
the following ODE:

#(t) = fa(t), ult), 1),

where f is a function of the state z(t), the input u(t), and may also depend
explicitly on the time variable ¢. Given f, an input trajectory u(-) and an initial
condition (ty, o), we say that z(-) is a state solution to the ODE if the following

two conditions are satisfied

Zlf(t()) = Xy,
#(t) = f(x(t),u(t),t), for all t € R.
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Notice that we need to check that both the initial condition and the dynamic
equation encoded by f to infer that a given x(-) constitutes a state solution of the
ODE. However, for arbitrary choices of f and u(-) a solution does not always exist,
and if it exists it is not necessarily unique. To get insight about potential issues,

consider the following examples that refer to two autonomous systems.

#* Example 2 (No solutions for some initial conditions). Consider the ODE

—1 ifx(t) > 0;

t(t) = —sgn(x(t)) = { 1 ifz(t) <O0.

Consider the initial condition (ty,x¢) = (0,0). The systems starts at t = 0
and ©(0) = —1; however, by the time x(t) becomes infinitesimally negative,
t(t) becomes positive, bringing it back to zero state. One may be tempted to
say that x(t) = O for all t. However, such a candidate solution satisfies the
initial condition, but leads to i(t) = 0, clearly this is different from &:(t) = —1
which is the ODE branch that includes the case x(t) = 0. In fact, the system
is performing an infinite number of transitions in “zero” time, and the solution

is thus undefined for all t > 0. Such chattering systems are called Zeno.

& Example 3 (Infinite number of solutions). Consider the ODE given by
() = 3x(t)?/3, and an initial condition given by (ty, ) = (0,0). Fora > 0,

consider the following candidate solution

t—a)® ift>a;
x(t): ( a) Irt = a,
0 ift < a.

Note that since a > ty = 0, the initial condition x(0) = 0 is always satisfied.
Moreover, if t < a, x(t) = 0 for all t is a (trivial) solution of the ODE.

Consider now the case where t > a, and notice that
z(t) = 3(t — a)2 = 3x(t)2/3,

where the last equality follows from the definition of x(t) fort > a. Therefore
the candidate x(t) is a solution of the given ODE. However, this is the case

for any a > 0, hence an infinite number of solutions exist.
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The first example highlights the necessity of f to depend continuously on (%),
while the second one shows that continuity is not sufficient as the function tends
to have infinite slope as z(t) tends to zero. Cases like this can be excluded by
introducing a Lipschitz continuity (see Definition 11 in the Appendix) requirement
on the dependency of f with respect to x(¢). The following theorem summarizes
the conditions under which we can guarantee existence and uniqueness of solutions
to ODEs.

Theorem 1 (Existence & uniqueness of solutions to ODEs). Let &(t) =
f(x(t),u(t),t), and assume that

1. The input u(-) and f are continuous functions with respect to time t.
2. f is Lipschitz continuous with respect to its first argument x(t).

We then have that for all initial conditions (to,x(), there exists a unique

continuous function x(-) : R — R" such that

l‘(to) = Xy,
z(t) = f(x(t),u(t),t), forallt € R.

Notice that u being a continuous function of time is rarely the case in practice. In
particular, several optimal controllers are “bang-bang”, i.e., they involve switching
between their extreme values. Therefore, it would have been more realistic if u(-)
(and f) are piecewise continuous as functions of time. This would imply that a set
of discontinuity points may exist, however, we could still claim the existence and
uniqueness conclusions of the theorem* if we further assume that i) within every
finite interval of time the number of discontinuity points is finite, ii) left and right
limits at discontinuity points are well defined, and iii) the value of u and f is taken
to be the one of the right limit. The only difference is that the (unique) solution
should satisfy @(t) = f(x(t),u(t),t), for all ¢t except from the finite number of

discontinuity points, i.e., almost everywhere.

*Note that even if we impose a piecewise continuity assumption this would only be a sufficient condition
for existence and uniqueness of solutions. A more relaxed condition would be to consider u and f to be
Lebesgue measurable functions of time, however, such developments would require results from measure

theory and are outside the scope of these notes.
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We will hereafter assume that the input trajectory u(-) is “well-behaved”, i.e., it is
either a continuous function of time, or a piecewise continuous one (based on the
discussion above). We are now ready to return back to the LTI system in (2.1)-(2.2)

and show that it admits a unique state x(-) and a unique output solution y(-).

Theorem 2 (Existence & uniqueness of solutions to LTI systems). The LT/

system

x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

admits a unique continuous state x(-) and output solution y(-).

Proof: To show that the given LTI system admits a unique continuous state
solution x(-), it suffices to invoke Theorem 1, and show that f(x(t),u(t),t) =
Az (t) + Bu(t) is Lipschitz continuous with respect to x(t). By the Lipschitz
continuity definition, considering two different states x and & (we drop the

dependence on t for simplicity) we have that
I(Az + Bu) — (A2 + Bu)||* = |A(z — 2)[* = (z — ) A" A(z - 2),

where the last step follows from the definition of the Euclidean norm. By Fact
16 in the Appendix, we have that AT A < \pax(ATA) I, where \/Amax (AT A)
is the maximum singular value of A. By the definition of a positive semidefinite

matrix this implies that

(z—2) ATA(z — 2) < (2 — 2) Apax(A" A) I(z — %)
= Amax (AT A)(z — 2) " (z — 2)
= Amax(A" A) ||z — 2|,

Overall, we have shown that (taking square root in both sides)

|(Az + Bu) — (AZ + Bu)|| < v Amax(ATA)||z — 2],

which implies that Ax(t)+ Bu(t) is Lipschitz continuous with respect to x(t),
with Lipschitz constant L = \/m , the maximum singular value of A.
The fact that the output solution y(-) is unique and continuous follows directly
from the fact that the output equation is a linear function of x(-), hence a

unique continuous state solution implies a unique continuous output one.
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2.2 Characterization of solutions

Theorem 2 shows that the LTI system in (2.1)-(2.2) admits a unique continuous
state and output solution. Here, we provide a closed form characterization of these
solutions starting at (%o, x¢), where for simplicity we consider from now on t; = 0,
and verify that they indeed satisfy (2.1)-(2.2).

In particular, the state and output solutions are given by

. " zero state transition
zero Input transition

——

()= O(t)rg + [ O(t—7)Bu(r)dr

y(t)= Co(t)ry + [ CB(t—7)Bu(r)dr + Du(t)

—_—————
zero input response

zero state response

where ®(t) € R™" is called the state transition matrix (will be defined below).
Notice that once z(t) is computed, then y(t) is directly calculated by means of
y(t) = Cx(t) + Du(t). The state solution consists of two parts:

e Zero input transition: This is the state solution if the system was autonomous,
i.e., if u(t) = 0 for all ¢. Notice that this is a linear function of the initial state
xo. It also justifies the term state transition matrix for ®(¢), as given z,
®(t)z dictates the state at time t.

e ero state transition: This is a convolution integral, and it is a linear function
of the input u(t). To see this, consider the superposition principle of linearity
(see Definition 9 in the Appendix), and notice that for aj,a; € R and inputs

u1, U, we have that
t
/0 O(t — 7)B(ajui(7) + agus(7T))dT
= ay [ ®(t — 7)Buy(r)dr +az [ D(t — 7) Bu(r)dr.

This was anticipated as the integrand is a linear function of u, and the integral

is the continuous analogue of summation.
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Similar comments pertain to the output solution y(¢) (the system'’s response) which

comprises two terms, namely, the zero input response and the zero state response.

The state transition matrix is defined below and exhibits certain useful properties.

Fact 2 (State transition matrix and properties). The state transition matrix
is defined as a matrix exponential, i.e., by the Taylor series expansion
A?t? AL

It satisfies the following properties:
1. (0) = 1.

2. 49(t) = AD(t).

3. It is invertible and its inverse is ®(—t), i.e., P(t)P(—t) = O(—t)P(t) = .

4. (I)(tl 4 tQ) = (I)(tl)(l)(tg) for any ty,ty € R.

Note that calculating the integral or the derivative of a matrix exponential involves
calculating the integral or the derivative of every entry of the matrix involved.

However, e4!

is not equal to a matrix where each of the entries is raised to the
exponent; we discuss ways to compute it in the next section. Moreover, note that

for arbitrary matrices A and B, we have that

o(A+B)t £ oA eBt’

except if A and B commute, i.e., if AB = BA (see Fact 14 in the Appendix).

We are now ready to show that z(t) = ®(¢)xo+ J¢ ®(t—7)Bu(7)dr is indeed a state
solution of the LTI system. The fact that y(t) = C®(t)xo+ Jt CP(t—7)Bu(r)dr+
Du(t) is the output solution follows then from y(t) = Cx(t) + Du(t). By means

of Theorem 2, these solutions will also have to be unique.

t
Proof that z(t) = ®(t)xy + /0 ®(t — 7)Bu(r)dr is a state solution. We have
assumed that u(+) is “well-behaved” and we have shown in Theorem 2 that Ax(t)+
Bu(t) is Lipschitz continuous with respect to x(t). Therefore, to show that the

candidate expression for x(t) is indeed a solution, it suffices to show that it satisfies
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the initial condition and the ODE:

1. Initial condition satisfaction:
z(0) mo—l—/ 0 — 7)Bu(r)dr = I x9 = 0,

where the second equality is due to the fact that ®(0) = I from Fact 2, and

the fact that the integral vanishes as the integration limits are the same.

2. ODE satisfaction: We will show that the candidate x(t) satisfies () =
Az(t) + Bu(t) for all t. To this end, since the integral in the expression
of x(t) involves t both at the integration limits and at the integrand, we will

employ Leibniz rule below for differentiating integrals:

d [92(t)
— t,7)d
dt /gl(t) p( ’T) g

= bt 20 00(0) = 6 gu(0) Gon ) + [ Sople, )

Setting g1(t) = 0, go(t) =t and p(t,7) = ®(t — 7)Bu(7), we obtain that
, d
(1) = S a(t)m

1 0

+ Pt — t)Bu(t)% — Pt — O)Bu(())% + /Ot C‘;tcp(t — 7)Bu(r)dr,

where given the cancellations shown above and the first two properties of Fact
2 (notice that by the chain rule 4®(t — 7) = A®(t — 7)), we have that

i(t) = AP(t)xg + Bu(t) + A/t (t — 7)Bu(r)dr
t)xo + / (t — 7)Bu(7)dr) + Bu(t)
- Ax( >+ Bu(t).

thus concluding the proof.
#* Example 4 (Solution of an RC circuit). Consider the RC circuit in the

figure below, where u(t) is the input voltage. Derive the unit step response of

the system if the output is taken to be the voltage across the capacitor.
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Solution: The system is described by
e Current that flows through the capacitor: ic(t) = Cd”g—t(t)
e Kirchhoff's voltage law: u(t) = Ric(t) + ve(t).

Substituting the first equation in the second one, we obtain

Svclt) = —vo(t) + moult)
y(t) - UC(t)a

where the second equation corresponds to the output of the system. Take the
state to be x(t) = vc(t), i.e., the voltage across the capacitor, and denote
the initial condition by xy = vc(0). The physical description corresponds then
to an LTI system; however, all quantities are scalar, so with reference to the

general LTI system description,

1 1
A= e B = 0 C=1, D=0, [all scalars].
Matrix C' should not be confused with the capacitance symbol. The state
transition matrix (also scalar) is thus given by ®(t) = e = e~&c. For a unit

step response we have u(t) =1 for allt > 0. Hence, the step response of the

system (coincides in this case with the state solution as C' = 1) is given by

1
y(t) =z(t) = e O 3 + 'R RlC'u( T)dT

RC

= e‘ﬁxo + (1 - e_ﬁ).

— ¢ RO +/ e —dr, [u(t) =1 forall T > 0]

If u(t) = 0 (capacitor C' discharging over R), verify that this solution could
be obtained by the solving the first order ODE from first principles.
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2.3 Computation of the state transition matrix

To determine the state and output solutions the state transition matrix ®(¢) needs
to be computed. In the previous example this was straightforward as all quantities
were scalars; in general this is more difficult as its definition involves an infinite
Taylor series expansion of the matrix exponential. In the sequel we show how this

can be performed systematically for diagonalizable and non-diagonalizable matrices.

2.3.1 Diagonalizable matrices

A matrix is called diagonalizable if its eigenvectors are linearly independent (see
Definition 6 in the Appendix). If a matrix A is diagonalizable, it can be decomposed

as (see also Fact 15 in the Appendix)
A=WAW

where T is a matrix whose columns are the eigenvectors of A (invertible since the
eigenvectors are linearly independent), and A is a diagonal matrix whose diagonal
entries correspond to the eigenvalues of A. For diagonalizable matrices the state
transition matrix can be computed in an efficient way that does not involve infinite

series.

Fact 3 (State transition matrix for diagonalizable matrices). Consider an LTI
system with A € R™*" being diagonalizable, admitting a decomposition A =

WAW 1. Its state transition matrix is given by

O(t) =M =Wt w1,

eMt 0 0
” 0 et 0 _ . : :
where e = _ , with \; being the i-th eigenvalue of A.
0 0 ett]

Proof: We first show that for an arbitrary integer k, A¥ = WA¥W 1. We
show this by means of induction:
1. Base case (k = 0): We have that WAW =1 = WW 1 =T = A%, hence

the base case is trivially satisfied.
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2. Induction hypothesis: Assume the statement holds true for an arbitrary
k, ie., AF = WAFW L,

3. Show the claim for the (k + 1)-th case: By the induction hypothesis we
have that A* = WA¥W 1. Hence,

I
AR = AFA = WA AW = WA

We will now show that et = WeMW 1. By the Taylor series expansion of

the matrix exponential we have that

A2t2 Aktk
At
et =T+ At + 5 +...+ X + ...
A2¢? AFgk
:WW‘1+WAtW‘1+W7W‘1+...WTW‘1+...
A?t? Akgh L |
:W<I+At+2! oot S +...>W
:WeAtW_l,

where in the second equality we used the fact that A¥ = WA*W =1 and that
t* is a scalar so it can be moved inside the triple matrix product. The last
equality is due to the fact that term in the parenthesis is the Taylor series

expansion of eM.

We illustrate this fact by means of the following example.

& Example 5. Consider the LTI system corresponding to the RLC circuit
of Figure 2 with R = 3, L = 1 and C = 0.5. Compute the system’s state

transition matrix.

0 2
Solution: Under the given numerical values we have that A = e
Computing the eigenvalues and eigenvectors of A we obtain \y = —1 and

Ao = —2, and

e[ e f o[22
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Notice that the eigenvectors are linearly independent (W is invertible) hence

A is diagonalizable. The state transition matrix can be then computed by

O(t) = et = Wertw !

2 tflet o1 1
-1 -1 [0 e -1 -2

B [2e—t — 2t 9et _ 2621

_eft _|_ e*Qt _eft + 267215

Notice that the matrix exponential e?! is different from the matrix that would

emanate if the entries of A are raised to the exponent.

2.3.2 Non-diagonalizable matrices with particular structure

In this section we consider LTI systems with a matrix A € R™ " which is not

necessarily diagonalizable. In particular, we have that (see also Section 9.1.4)

n distinct eigenvalues = A diagonalizable

<= A non-diagonalizable =- not all eigenvalues are distinct.

The difficulty, however, with non-diagonalizable (or else defective) matrices stems
not from the fact that their eigenvalues are not distinct, but from the fact that the
number of linearly independent eigenvectors is also strictly smaller than n, hence
the matrix of eigenvectors W is no longer invertible. We denote the number of
linearly independent eigenvectors by k£ < n. We define the algebraic multiplicity of
an eigenvalue as the number of times it appears in the spectrum of A, while we
define its geometric multiplicity as the number of linearly independent eigenvectors
corresponding to this eigenvalue. For non-diagonalizable matrices, the geometric

multiplicity of some eigenvalue is strictly less than its algebraic one.

4 Example 6. Consider the matrices

A1 O A1 O
Ai=10 N 1|, Ao=10 X 0|, A=
0 0 A 0 0 A

o O
S > O
> O O
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where X is real. Which of these matrices are diagonalizable? For each case

compute the algebraic and geometric eigenvalue multiplicity.
Solution: By a direct computation (the eigenvalues are the diagonal entries)
it follows that all three matrices have \y = Ay = A3 = \ as a repeated

eigenvalue with algebraic multiplicity equal to 3. The linearly independent

eigenvectors of each matrix are given by

1. Ay has geometric multiplicity 1 = |0|.

2. Ay has geometric multiplicity 2 = |0],

0] o
3. A3 has geometric multiplicity 3 = (0|, |1|, [0].
0 1

Therefore, A3 is a diagonalizable matrix (its algebraic and geometric multi-
plicities coincide), while Ay and A, are non-diagonalizable. Note that As is
diagonalizable, despite the fact that all its eigenvalues are equal. This shows
that the reverse implication of the statement in the beginning of this section
does not hold.

We show that for a particular class of non-diagonalizable matrices the state transi-
tion matrix can still be computed efficiently. We first illustrate this by means of a

couple of examples.

& Example 7. Consider an LTI system with
0 3
0 0|

Compute the state transition matrix ®(t) = e

A=

At
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Solution: Note first that A is non-diagonalizable; it has a repeated eigenvalue
at 0 (algebraic multiplicity = 2), and one linearly independent eigenvector
[10]" (geometric multiplicity = 1). Notice that A* =0 for all k > 2. By the

definition of ®(t) by means of the Taylor series expansion we have that

A%t? Atk

_ At _ 20
Ot) =™ =T+ At+—Z+.. .+ + ...
1 3t
=1+ At = nE

Matrices such that A¥ = 0 for some integer k are called nilpotent. For such
matrices it becomes easy to compute the matrix exponential, as the infinite series

is truncated after a certain term.

#* Example 8. Consider an LTI system with
2 3
0 2|

Compute the state transition matrix ®(t) = e

A=

At

Solution: Note first that A is non-diagonalizable; it has a repeated eigenvalue
at 2 (algebraic multiplicity = 2), and one linearly independent eigenvector
[10]" (geometric multiplicity = 1). Notice that A can be decomposed as the

sum of an identity (modulo a proportionality constant) and a nilpotent matrix,

{ }

1 3t
However, as computed in the previous example et = {O 1], while

namely,
2 0

A=A+ Ay =
1 2 {02

Y

0 €2t

[e% 0

since Ay is diagonal and the exponential of a diagonal matrix is a matrix whose

entries include the diagonal terms raised to the exponent.
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Notice now that A, and Ay, commute, i.e., AjAs = AsA,. Therefore,

e o1 3t] [ 3te
0 %0 1 0 2 |

The preceding example illustrates that even if a matrix is not nilpotent it is some-
times still possible to compute the state transition matrix efficiently if we can de-
compose it as the sum of an identity matrix (modulo a proportionality constant)

and a nilpotent one. It turns out that this decomposition is more general.

Fact 4 (Sum of nilpotent and identity matrices). Consider an LTI system with
A= X1+ N, where X\ is a real scalar, N is a Nilpotent matrix, and I is an
identity matrix of appropriate dimension. The state transition matrix is given

by
(I)(Tf) _ eAt _ e)\lteNt

where eM! js a diagonal matrix with its diagonal entries being equal to e.

Note that Example 8 involved a repeated eigenvalue with algebraic multiplicity of
2, and resulted in a state transition matrix containing a term proportional to t.
For matrices of the same structure but higher dimension, one would expect terms

t,t2,...,t""1, where r denotes the algebraic multiplicity of the repeated eigenvalue.

2.3.3 Non-diagonalizable matrices with generic structure

Here we consider generic non-diagonalizable matrices, that do not necessarily exhibit
the structure of Fact 4. Since there are only £ < n linearly independent eigenvectors,
we define a procedure to append to them n — k additional (linearly independent)
vectors so that we create an invertible matrix. The resulting family of vectors is

termed generalized eigenvectors.
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Procedure to construct generalized eigenvectors.
Fori=1,...,k take w; (the i-th linearly independent eigenvector of A), and

repeat the following steps:
1. Set w} = w;, and let \ be the eigenvalue corresponding to w;.

2. For 7 =1,...,u; construct vectors recursively by

(A — Aw! ™ = w!

1)

i

where p; is such that there is no other vector w with (Al — A)w = w)

that is linearly independent with {w}, w?,... w!}.
Output of the procedure: A set of pu; generalized -eigenvectors
{fwh,w?, ..., wl"} foreachi=1,... k.

It can be shown that the generalized eigenvectors constructed above are linearly
1

independent. Moreover, since w; is an eigenvector of A, we have that Awi1 =

M} & (M — A)w} = 0. By the recursive construction of the generalized

eigenvectors one can show that* (A\J — A)Yw! = 0forall j=1,..., .

Since we have k < n linearly independent eigenvectors the main steps of the pro-
cedure outlined above are repeated for each of those. Each time we get in return a
different set of generalized eigenvectors (possibly also with a different cardinality);

stacking the k vector families as blocks next to each other we obtain

12 g 12 iz 1,2 [k
T—[wl, Wy, -.., Wi, Wy, Wy, ..., WH', ...... , Wy, Wi, ..., wk].

The number of generalized eigenvector blocks corresponding to the same eigenvalue
is equal to the geometric multiplicity of that eigenvalue. It can be shown that T'
is an invertible matrix with % | ; = n, containing the constructed generalized

eigenvectors as its columns.

*Although outside the scope of these notes, based on this property one can show that the subspace
spanned by the generalized eigenvectors exhibits an invariance property under the mapping A, i.e., if
(A[—A)/z = 0 then (A\I—A)’ Az = 0; hence, the particular procedure to construct generalized eigenvectors

not only guarantees that they are linearly independent but has also certain geometric implications.
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¢ Example 9. Consider the non-diagonalizable matrices A; and A, of

Example 6. For each case compute the generalized eigenvectors matrix.

Solution:

Generalized eigenvectors for A;: We have k = 1 linearly independent
eigenvectors so we only have to run the main steps of the generalized eigen-
vectors procedure once. To this end, set wi = [1 0 0]" and notice that this

corresponds to an eigenvalue A\. We have that

0
(M — Aw; =w] = wi=|1|, and (M — A)w;} =w] = w; =
0

_— O O

We thus have 11y = 3 and after the second iteration we can no longer find
a linearly independent eigenvector. Hence, the generalized eigenvectors are

given by T' = {w% w? wi”] and comprises of one block with three vectors.

Generalized eigenvectors for A;: We have k = 2 linearly independent
eigenvectors so we have to repeat the main steps of the generalized eigenvec-
tors procedure twice. To this end, in the first run set w} = [1 0 0]" and notice

that it corresponds to an eigenvalue A\. We have that

()\I—A)w% = w} = w% —

(i =

while after this the first procedure run terminates with 1y = 2 as we cannot

find another linearly independent vector w such that (A] — As)w = w}. To

010 0
see this, notice that this results in the system of equations |0 0 0| w = |1
000 0

which does not admit a solution.

In the second run set wl = [0 0 1]7 (the second linearly independent eigen-
vector of As) and notice that it also corresponds to an eigenvalue A. As we
cannot find another linearly independent vector w with (A — As)w = w] the

procedure terminates with po = 1.
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Hence, the generalized eigenvectors matrix is given by T' = [w% w? wﬂ and

comprises of two blocks, with two and one vectors, respectively.

Fact 5 (State transition matrix for non-diagonalizable matrices — Jordan
canonical form). Consider an LTI system with a possibly non-diagonalizable
matrix A that has k linearly independent eigenvectors. A can be written in
the so called Jordan canonical form A = TJT~, where T is a matrix whose

columns are the generalized eigenvectors, and

' - A 1 0...0 O]
J 0 ... 0
J=1. .2 | eC™", where Ji= |t i | e orrm
P . N
0 0 ... Jp
) ] 00 0 ... 0 A
where for : = 1,...,k, \; is the eigenvalue corresponding to the i-th linearly

independent eigenvector.

The state transition matrix can be then computed by ®(t) = Te/'T~!, where

[ Jut ] [Nt gt B2 N\t it At
e 0O ... 0 e te e S P LS
2
0 e ... 0 | 0 Mt peMt . it
eft=| " | and e’ = (1:=2)!
0 0 ... &M 0 0 0 ... M

Note that .J; can be decomposed as the sum of \;I plus a Nilpotent matrix. Hence,
by means of Fact 4, e”i! can be efficiently computed in closed form as shown above.
Moreover, if it happens that A is diagonalizable, then £ = n, T is equal to the

eigenvector matrix W, and J = A, i.e., Fact 5 reduces to Fact 3.

¢ Example 10. Consider two different LTI systems, whose matrix A is
equal to A, and A,, respectively, as these are defined in Example 6. For each

case compute the state transition matrix.
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Solution:
Matrix Ai: For this case we determined k = 1 linearly independent eigenvec-

tor and one block of generalized eigenvectors with 111 = 3. Hence,

A1 0
J=Ji, where J1 = |0 \ 1
0 0 A\

Since T' is in this case the identity matrix (see computation in previous exam-

ple), the state transition matrix is given by

2
6)\t te)\t %GM

Ot)=Te!' T =e'=|0 M teM
0 0 et

Matrix As: For this case we determined k = 2 linearly independent eigenvec-
tor and two blocks of generalized eigenvectors, one with 111 = 2 and another

one with s = 1. Hence,

and Jo = \.

, where J, =
2

The matrix exponentials corresponding to J, and J, are then given by

At oA
it _ {e te

Jot _ Mt

and e e

0 e)xt

Since T' is the identity matrix, the state transition matrix is given by

€

Py O e)\t te)\t 0
0 e']Qt]

d(t) =Te!'T™ =’ = {

2.4 Summary

This chapter studied the computation of state and output solutions to LTI systems.

The main learning outcomes of the chapter can be summarized as follows:
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Solutions of linear time invariant systems

1. LTI systems admit a unique continuous solution (Theorem 2).

2. The state and output solutions of LTI systems are given by

£(t) = ®(t)xo + [ Bt — 7)Bu(r)dr,
y(t) = CB(t)xo + [ CB(t — 7)Bu(r)dr + Du(t),

where ®(t) = e is the state transition matrix.

3. The state transition matrix, necessary for the computation of the state and

output solutions, can be calculated by means of three different ways according

to the structure of the A matrix.

(a)

A is a diagonalizable matrix, i.e., its eigenvectors are linearly independent.

The state transition matrix can be then computed by means of
eAt _ WGAtW_l,

where W is a matrix whose columns are the eigenvectors of A and A is a

diagonal matrix whose diagonal elements are its eigenvalues (Fact 3).

A is a non-diagonalizable matrix, i.e., its eigenvectors are not all linearly
independent, that can be written as A = A\l + N, where X is a scalar and
N is a non-zero Nilpotent matrix. The state transition matrix can be then
computed by

At _ Mt Nt

e e,

N

where e/ is calculated efficiently by means of the (truncated in this case)

Taylor series expansion of the matrix exponential (Fact 4).
A is a non-diagonalizable matrix with generic structure. The state transi-
tion matrix can be then computed by

eAt — T@JtT_l,

where T' is a matrix whose columns are the so called generalized eigen-
vectors of A and J is a block-diagonal matrix. Such a decomposition is

called Jordan canonical form. (Fact 5).
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3 Stability and connections with transfer functions

3.1 Stability

In the previous chapter we showed how to determine solutions for the state x(¢)
and the output y(t) of LTI systems. These solutions depend on the so called state
transition matrix ®(t), which in turn depends on the eigenvalues and eigenvectors
of the system's A matrix (both for diagonalizable and non-diagonalizable matrices).

This structure imposes the following questions:

1. Can we anticipate the system’s evolution, in particular the “long-run” be-

haviour as t — oo, by looking at its eigenvalues and eigenvectors?

2. If yes, what are the implications on the stability of the system?

)
w2, A2 <0 Lo wi, A1 >0

/
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Figure 4: Schematic diagram showing that for autonomous systems #(¢) = Ax starting on an eigenvector
solutions stay on that eigenvector. The norm of the solution increases or decreases according to the

associated eigenvalue.

To gain some intuition on the qualitative characteristics of the state (similarly for
the output) solution, consider the schematic diagram of Figure 4. This diagram
illustrates a two-state autonomous system governed by #(¢t) = Ax(t). The dashed
lines represent the two eigenvectors w; and ws (assumed to be real for the sake
of this illustration), which correspond to the real eigenvalues \; > 0 and Ay < 0,
respectively. If the initial condition zy happens to be on one of these eigenvectors,

then x(t) will stay on that eigenvector for all . To see this recall that if w; is an
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eigenvector associated to eigenvalue \;, i = 1,2, then if zp = w; (starting on that
eigenvector),
Aw; = w; = 2(0) = Azg = Aw; = \w;,

i.e., the direction #(0) the state will move is aligned with w;, however, it gets
rescaled by ;. Therefore, whether ||z(¢)|| will increase or decrease depends on
the sign of the associated eigenvalue. For the particular example if we start on
eigenvector wy then the system'’s state will tend to the origin (A2 < 0), while if
we start on w; (A > 0) the state will grow towards infinity, thus having certain
implications about stability. However, it still appears unclear how the system will
evolve if we start from an initial condition that is not lying on any of the eigenvectors

(“green” dot in Figure 4).

We will now formally address this question for autonomous LTI systems, i.e., systems
governed by

#(t) = Ax(t),
thus we will analyze the so called zero input transition of the state solution, namely
x(t) = ®(t)xy. We will do this separately for diagonalizable and non-diagonalizable

A matrices.

3.1.1 Diagonalizable matrices

For the developments of this subsection we assume that matrix A of an LTI system
state space description is diagonalizable. We start by illustrating the influence of

eigenvalues and eigenvectors on the state response by means of an example.

¢ Example 11. Consider the numerical values for the RLC circuit given in

Example 5, and the computed state transition matrix and eigenvectors

B et —e 2 9t — 92 ]2 ; |1
() = —et e —et 4 2e7 2|’ e ane 2=

Compute the zero input transition of the solution xz(t), and determine its

behaviour as t — oo, if xg = ajw, + aswy for some scalars ay, as.

Solution: As matrix A is diagonalizable, these eigenvectors are linearly in-
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dependent. Therefore, an arbitrary initial condition xy can always be written
as xg = ajwy + aswo for some scalars ay,as. The state solution (zero input

transition in this case) is then given by
ZL‘(t) = (I)(t)l’o = (I)(t) (a1w1 + CLQUJQ)
= a1 P(t)wy + as®(t)ws
2! e 2
_ o2

i + a
= ale_twl + age_%wg.

—€

Notice that if a; = 0 or if ap = 0 then the solution starts at an eigenvector
and stays on that eigenvector. Taking the limit as t — oo, and since the

eigenvalues are bot negative (—1 and —2), we see that

p )= ).
The previous example suggests that starting at an arbitrary initial condition, the
zero input transition z(t) = ®(t)x( is a linear combination of the eigenvectors
(notice that these are independent as matrix A is diagonalizable). The coefficients
of this linear combination are time-dependent and rely on the eigenvalues, whose
sign indicates the effect on ||z(t)||. In the previous example they gave rise to a
decaying exponential behaviour; however, according to the eigenvalues, different

terms may appear in the solution.

A=0 A=o A= jw A=0+jw
c<0|o>0 0<0,w7$0‘0>0,w7é0

Terms in _ _

_ 1 et sin wt, cos wt e’ sin wt, e’ cos wt
solution
Limit as o

constant 0 00 periodic 0 00

t — o0

Table 1: Classification of the different terms that may appear in the solution of LTI systems with diago-
nalizable A matrix, and their asymptotic behaviour.

Since eigenvalues are in general complex, we denote A = o + jw. Each eigenvalue
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contributes to the state transition matrix ®(¢) by certain terms, and as a result to the
zero input transition as this is a linear combination of the terms that appear in ®(t)
(the coefficients of this combination will depend on the eigenvectors). Recalling
that eM = e("Hw)t = ¢ (coswt + jsinwt), the contribution of each eigenvalue to

the solution according to the different values of o and w is summarized in Table 1.

Investigating the limiting behaviour of these terms allows us to determine the asymp-
totic behaviour of the system as ¢t — oo. In particular, the limiting behaviour of ()
is closely related to the stability properties of systems in the form of &(t) = Ax(t)
where z(t) = 0 is an equilibrium solution as it results in @(t) = 0. We consider the

following notions of stability (we only provide an informal definition):

1. Stability: A system is called stable* if we can stay arbitrarily close enough to

0 if we start sufficiently close to it.

2. Asymptotic stability: A system is called asymptotically stable if it is stable,
and approaches 0 as time tends to infinity, i.e., lim; - ||z(¢)|| = 0. In other

words, not only we stay close to 0, but also converge to it.

We then say that a system that is not stable is unstable. Denote by \; = o; + jw;,
it =1,...,n the eigenvalues of A € R"*". From Table 1 it can be observed that

e If Re()\;) # 0 for all 4, then z(¢) is a linear combination of e, % sin wjt,
e’ cosw;t. As a result limy . ||z(t)|| = 0 if o; < 0 for all i, otherwise

lim;, ||z(t)|| = oo (for some initial conditions) if there exists ¢ with o; > 0.

e If Re(\;) < 0 for all i (we allow eigenvalues to have zero real part), then

t e%itsinw;t, e cosw;t but also

x(t) is a linear combination of terms e
1, sin w;t, cosw;t. The latter terms do not vanish as t — oo, hence the solution

of the system is constant or periodic.

The relationship of these observations to stability are summarized in the fact below.

*Formally, a system is called stable if for all € > 0, there exists 6 > 0 such that if ||z(0)|| <  then
||x(t)]| < e for all ¢t > 0.
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Fact 6 (Stability of @(t) = Axz(t) with diagonalizable A). Consider an au-
tonomous LTI system i(t) = Ax(t) with A € R™" diagonalizable. Let \;,
it =1,...,n, be the eigenvalues of A. We then have that the system is:

e Stable (for all initial conditions) if and only if Re(\;) < 0 for all i =

1,...,n.

e Asymptotically stable (for all initial conditions) if and only if Re()\;) < 0

foralli=1,... n.

e Unstable (for some initial conditions) if and only if there exists i such

that the corresponding eigenvalue has Re()\;) > 0.

Note that if the system is asymptotically stable, then the magnitude of the real part
of the eigenvalues carries information about the rate with which the state decays
towards zero. Figure 5 illustrates some zero input transition solution patterns for
LTI systems with diagonalizable A matrix. The different snapshots correspond to

different eigenvalue locations in the complex plane.

3.1.2 Non-diagonalizable matrices

For the developments of this subsection we assume that matrix A of an LTI system
state space description is non-diagonalizable. Since A is not diagonalizable, its
eigenvectors are no longer linearly independent, and at least one of its eigenvalues

is repeated; say we have one such eigenvalue with algebraic multiplicity » > 1.

A=0 A=o A= jw A=0+ jw
c<0|oc>0 a<0,w7é0‘0>0,w7é0
Terms in || 1,¢,¢2, et tet, sinwt, ..., t" 'sinwt, | e?'sinwt, ..., t" te’ sinwt,
solution | ...,t" 1| ..., t" e | coswt,...,t" Lcoswt | e’ coswt, ..., t" e coswt
Limit as
00 0 00 00 0 00
t — o0

Table 2: Classification of the different terms that may appear in the solution of LTI systems with non-

diagonalizable A matrix that has an eigenvalue repeated r > 1 times, and their asymptotic behaviour.

By inspection of Facts 4 & 5, we can construct the state transition matrix ®(¢) for

non-diagonalizable matrices which, however, may now include terms that involve
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l Re(\)

Figure 5: Zero input transition solution patterns for LTI systems with diagonalizable A matrix.

t,t2,...,t"1. The zero input transition is in turn a linear combination of the terms
appearing in ®(¢); as a result, it may include additional terms with respect to the
case where A is diagonalizable. We list the terms with which each eigenvalue of

the form A = o + jw contributes to the solution in Table 2.

If all eigenvalues have non-zero real part, a similar observation with the diagonaliz-
able case pertains. However, in contrast to the diagonalizable case, if an eigenvalue
has zero real part (A = 0 or if A = jw), then its contribution in the solution is not

necessarily constant or periodic and may include terms
A A and/or tsinwt,tcoswt,... " tsinwt, £ cos wi.

These terms tend to infinity as ¢ — oo, however, their linear combination may
lead to cancellations so in certain occasions the solution may still be bounded. As
this depends on the linear combination coefficients, this is now dictated by the
eigenvectors (and how initial conditions relate to them), which for diagonalizable

matrices did not play a role in assessing the behaviour of the system. To emphasize
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the fact that the individual terms tend to infinity but their linear combination may

still be bounded, we have highlighted the corresponding entries in Table 2.

Fact 7 (Stability of #(t) = Ax(t) with non-diagonalizable A). Consider an
autonomous LTI system &(t) = Ax(t) with A € R"*" non-diagonalizable.
Let \;, i =1,...,n, be the eigenvalues of A (at least one of them would be

repeated). We then have that the system is:

e Asymptotically stable (for all initial conditions) if and only if Re()\;) < 0

foralli=1,...,n.

e Unstable (for some initial conditions) if there exists i such that the cor-

responding eigenvalue has Re()\;) > 0.

The unstable case is no longer “if and only” as in the diagonalizable case, as the
system can potentially be also unstable if all eigenvalues have non-positive real part
but at least one has zero real part. Note that if the repeated eigenvalues of a
non-diagonalizable A matrix do not have zero real part, then the stronger results

of Fact 6 would hold for the non-diagonalizable case as well.

We have analyzed the stability of zero input transitions; in case inputs are present,
then the zero state solution becomes relevant to assess the stability of z(t). Some of
the obtained stability results extend to such cases. As an example, if all eigenvalues
of the A matrix involved have negative real part, then if the input remains bounded

the state z(t) remains bounded as well.

3.2 Connections with transfer functions
Consider the state space description of an LTI system

t(t) = Az(t) + Bu(t),
Cx(t) + Du(t),

<

VS
~

N——
I

and recall that z(t) € R" is the state, u(t) € R™ is the input and y(t) € R? is
the output of the system. We have already discussed that the state x(¢) acts as
an internal variable; we will thus treat the system from an input-output point of

view and investigate connections with transfer functions in the frequency domain.
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To this end, given the complex variable s denote by £{xz(t)} = X(s) the Laplace
transform of z(¢). Similarly, let U(s) and Y(s) denote the Laplace transforms of
u(t) and y(t), respectively.

3.2.1 From state space to transfer functions

Given matrices (A, B,C, D) that encode the state space description of an LTI
Y(s)
U(s)
this, we take the Laplace transform in both sides of the state space equation:

system, we first show how to obtain a transfer function G(s) = . To achieve

sX(s) —xyg=AX(s)+ BU(s)
Y(s) =CX(s)+ DU(s),

where sX(s) — ¢ is the Laplace transform of &(t), with xy denoting the initial
condition of the state. We can solve with respect X (s) in the first equation (note
that all quantities are matrices or vectors so the multiplication order becomes im-
portant) to obtain X (s) = (sI — A) txg + (sI — A)"1BU(s). Substituting it in

the second equation we get
Y(s)=C(sI — A)'xg +C(sI — A)'BU(s) + DU(s).

We will now assume xy = 0. Assuming zero initial conditions stems from our ob-
jective to determine the transfer function of the system, i.e., a relationship between
input and output. In other words it is as if we concentrate only on the zero state
response. Notice that once a transfer function is determined we could take the
inverse Laplace transform to obtain the zero state response; in case of a non-zero
initial condition we could then add to the resulting solution the term corresponding

to the zero input response C'®(t)z( to obtain the system's output solution.

Fact 8 (Transfer function given (A, B,C, D).). Assuming xy = 0, given ma-
trices (A, B,C, D) the transfer function corresponding to an LTI system is
given by

G(s) = = C(sI — A)'B+ D e CP™,

This follows from the expression of Y(s), taking zp = 0 and dividing with U(s).

Notice that the transfer function is rather a transfer matrix, whose elements are
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complex (as they depend on s), and its dimension is p X m, i.e., number of outputs

times number of inputs. We could represent it as

(n11(s)  ni2(s) N1 (8) ]

dii(s) dia(s) "7 dim(s)
G(s)=| : .. |ecrm

npl (S) np2 (5) npm (5)
—dpl(s) dp2(5) o dpm(s)_

The (7, j)-th element is the ratio between two polynomials of s, namely, n;;(s) and

di;(s), and captures the transfer function (scalar) between input j and a particular

output 7. In case p = m = 1, then we only have one input and one output in the

system, and G(s) reduces to transfer function of the scalar case.

¢ Example 12. Consider the LTI system corresponding to the RLC circuit
of Figure 2 with R =3, L =1 and C = 0.5. Compute the transfer function
of the system.

Solution: Under the given numerical values we have

A=Y 2 Y oo and D= "]
1 -3 1 01 0

The system has two outputs and one input, so the transfer function G(s) will

be a column vector with two elements. These elements encode the transfer
function from the input to the first and the second output, respectively. Notice
also that

s =2
1 s+3

1
(s+1)(s+2)

s+3 2
~1 s|

sl — A= = (s - A=

By means of Fact 8, we then have that

G(s)=C(sI —A)'B+D

10
01

s+3 2
-1 s

1
T G+1)(5+2)

2
1 0 (s+1)(s+2)

It should be remarked that, by taking the inverse Laplace transform of Y(s) we
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obtain the output solution y(t) as this is defined in the time domain, i.e.,
y(t) = L7HY (5)} = CLH(s] — A) Yoy + L7HC(sI — A)'BU(s) + DU(s)}
= C®(t)zy + [ CO(t —7)Bu(r)dr + Duft).
By direct comparison between these two expressions we obtain that the state tran-
sition matrix is given by
B(t) = L(sT — A,

which in turn suggests yet another way of computing the state transition matrix,

this time by taking the inverse Laplace transform of (sI — A)~1.

3.2.2 From transfer functions to state space

We now investigate whether we could follow the opposite route and given a transfer
function G(s) obtain a state space description, i.e., matrices (A, B, C, D) such that
G(s) = C(sI—A) !B+ D. It turns out that this is possible, however, the resulting
quadruple of matrices (A, B,C, D) is not unique and multiple choices exist. We
refer to each choice (A, B, C, D) that results in the same transfer function G(s) as

a realization of G(s).

To see that multiple realizations of G(s) may exist, let T € R"*" be any invertible
matrix and consider the following coordinate trnasformation
() =Tx(t) = x(t) =T '2(t).
Under this change of variables we obtain a new LTI system description
2(t) = Ti(t) = TAz(t) + TBu(t) = z(t) = TAT '&(t) + TBul(t),
y(t) = Cx(t) + Du(t) = y(t) = CT '&(t) + Du(t).
The new description has matrices (4, B,C, D) = (TAT ', TB,CT', D). Notice
now that the transfer function G(s) of the new description is given by
G(s)=C(sI — A 'B+D
=COT (sl —-TAT Y)Y 'TB+ D
=CT Y (sTT ' —TAT ) 'TB+ D [by expressing [ = TT ']

:OP*TQM—AYHPTJB+D:G@)
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where in the last equality we used the fact that the inverse of the product of
invertible matrices is the product of the inverses with reverse order. The new
system description has the same transfer function with the original one. As this
holds true for any coordinate transformation 7', we have multiple realizations of

G(s). However, notice that all of them have the same D matrix.

Among those realizations we will provide a specific one for systems with a single
input and a single output (hence the transfer function would be scalar). To this
end, if after any pole-zero cancellations the transfer function is given by (notice
that this corresponds to a system with D = 0 as this is strictly proper)

bis" L4 bys" 24 ...+ b

s+ as" 4.+ a,

then the following system corresponds to a realization of G(s):

0
0
p(t) = 2(t) 4+ || u(t)
0 0 0 o1 0
—Qp —Qp—1 —Qp—32 ... —Q
Y(t) = by bucr buca .. o] 2(0),

This realization is known as controllable canonical form; we will revisit it in the

sequel and the term “controllable” will become clear.

3.2.3 Eigenvalues vs. Poles

By the definition of the matrix inverse in Section 9.1.2, we can equivalently rewrite

the transfer function as

adj(sI — A)
= B+ D
Gls) =C det(sI — A) it

where adj(sI — A) is the adjoint matrix and det(s/ — A) the determinant of s/ — A.
Assuming no pole-zero cancellations, notice that all elements (transfer functions)

in G(s) would have the same denominator, which is in turn equal to det(s/ — A).
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As such, the poles of GG(s) are given by the roots of this determinant when equated

with zero, i.e.,

poles of G(s) : roots of det(s] — A) = 0.

This is clearly related to the characteristic polynomial of A, and as a result poles

are related with the eigenvalues of A. This relation is summarized below.

Fact 9 (Eigenvalues vs. Poles). If there are no pole-zero cancellations, the

poles of G(s) coincide with the eigenvalues of A.

The previous fact suggests that if there are no pole-zero cancellations, eigenvalues
and poles contain the same information about a system. In particular, the estab-
lished stability results hold true, but rather than looking at the eigenvalues of A,
one could inspect the poles of G(s). The distinction between diagonalizability and

non-diaginalizability of A refers to whether the poles are distinct or repeated.

Overall, state space analysis and transfer functions exhibit several similarities but

also differences. Their respective advantages are summarized below:

1. Advantages of transfer functions over state space.

e Lead to algebraic manipulations rather than solving ODEs.
e Same transfer function for all coordinate transformations.

e Easier to compute zero state reposponses (no need to compute a convo-

lution integral).
e We could have transfer functions for systems that do not admit a state
space description (e.g., presence of delays).

2. Advantages of state space over transfer functions.

e Preserves physical intuition about the underlying system.

e Contains information about parts of the system that may be lost in a
transfer function (pole-zero cancellations). These correspond to what we

will refer to as uncontrollable and unobservable parts in the next chapter.
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3.3 Summary

This chapter provided the means to assess the stability of LTI systems and discussed
the connections between state space representations and transfer functions. The

main learning outcomes of the chapter can be summarized as follows:

1. Stability of autonomous LTI systems of the form &(¢) = Ax(t). If matrix A is
diagonalizable, then the system is said to be (see Fact 6)

e Stable if and only if all eigenvalues of A have non-positive real part (we

allow them to be zero).

e Asymptotically stable if and only if all eigenvalues of A have negative real

part.

e Unstable if and only if there exists at least one eigenvalue of A with

positive real part.

If A is non-diagonalizable, then the asymptotic stability condition above re-
mains unaltered, while the instability statement becomes an “if” condition.
The stability result can no longer be claimed: whether the system will be sta-
ble or whether the state will grow to infinity if the system has eigenvalues with

zero real part would depend in this case on the eigenvectors (see Fact 7).
2. Connections between state space and transfer functions.

e from state space to transfer functions. Given an LTI system encoded by
(A, B,C, D), the transfer function (matrix) of the system can be com-
puted by means of (see Fact 8)

Y (s)

U(s)

where the number of rows of G(s) corresponds to the number of outputs,

G(s) = = C(sl — A 'B+ D,

and the number of columns to the number of inputs of the system.

e From transfer functions to state space. Given a transfer function G(s)
there exist multiple realizations (A, B, C, D) of LTI systems that are cap-

tured from an input-output point of view by the same transfer functions.

e Eigenvalues vs. Poles. If there are no pole-zero cancellations, then the

poles of GG(s) coincide with the eigenvalues of A (see Fact 9).
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4 Structural properties of linear systems

In this chapter we address the following two fundamental questions:

1. Does there exist an input so that we can steer the system from an initial state
to any given final one? The answer to this question is related to the notion of

controllability .

2. Could we infer the state of the system if we only have access to the output
(measurements)? The answer to this question is related to the notion of

observability .

In the next sections we analyze the controllability and observability properties for
LTI systems. In particular, we show that the notion of controllability depends on
matrices A and B (that capture the relationship between input and state), while the
notion of observability depends on matrices A and C' (that capture the relationship

between state and output) of the LTI system's state space description.

4.1 Controllability

We consider an LTI system with a state space description governed by matrices
(A, B,C, D). For simplicity we assume again that the initial time is zero, i.e.,

to = 0. We define controllability as stated below.

Definition 1 (Controllability). Consider an arbitrary t. We say that a system
is controllable over the time interval [0,t] if one of the following statements
holds:

1. For any given initial state x( and terminal state x1, there exists an input
function u(-) : [0,t] — R™ such that x(t) = z;.

2. For any given terminal state x,, there exists an input function

u(-) = [0,t] = R™ such that x(t) = x1, starting at xy = 0.

The second statement follows directly from the first one. To see this, notice that the

“only if" part is a direct consequence of the fact that if the system is controllable,
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then by the first statement there exists an input function such that the system can
reach any terminal state x1, from any initial condition x, hence also from an initial
state xp = 0. To show the “if"” part it suffices to show that if there exists an input
to drive the system from x(0) = 0 to any arbitrary terminal state, then we can
also steer the system from xy # 0 to any terminal state x;. Fix any such zy # 0.
If there exists an input to steer the system from x(0) = O to the terminal state

xr1 — ®(t)xg, then the same input would drive the system from z( to .

Definition 1 is natural, however, it cannot be easily checked for arbitrary systems.

To this end, the following fact provides an alternative condition.

Fact 10 (Controllability gramian). A system is controllable over the time

interval [0, t] if and only if the so called controllability gramian
t
W.(t) = /0 e’ BBTeA' dr € RV,

is invertible.

It can be shown that W.(t) = W,(t)" = 0, and also that W,(t) is invertible for
some t > 0 if and only if it is invertible for all £ > 0. This implies that time is not
important as far as controllability is concerned. We will not provide a formal proof
for Fact 10, but an informal one providing some intuition behind the definition of
the gramian W,(t), and the reasons why this is related to controllability. To this

end, fix an arbitrary x € R" and consider the diagram below.

b eAt=") By(1)dr
u(7) iy /OteA(t_T)BBTeAT(t_T):UdT

BTeAT(t—T)x/[ I: [change of variables T+t—7]

x W.(t) x

The controllability gramian W,.(t) can be constructed as the matrix representation

emanating from the composition of two mappings: i) one from x to u, namely,
t

u(t) = BTeA =Tz and, ii) one from u to /OeA(t*T)Bu(T)dT. This composition

can be thus written as

/OteA(t_T)BBTeAT(t_T)xdT = /OteATBBTeATTxdT = We(t)x,
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where the first equality is due to the change of variables 7 <— t — 7, and the second
one follows from the definition of the controllability gramian W.(t). The following

observations are in order:

e By the second part of Definition 1, to assess the controllability of a system,
we can assume without loss of generality that the initial condition is xy = 0.
Therefore, the second mapping in the composition defining W.(t) is the zero
state transition (see 2.2). It follows then that varying = (hence also the control
input as this is generated by the first mapping), W,(¢)x corresponds to the

states that can be reached from zero.

e The system is controllable if we could reach an arbitrary terminal state z; start-
ing from zero. For any fixed x1, if W.(t) is invertible, taking z = W.(t) 'z,
our choice for u (see diagram) would result in steering the system to W, (t)x =

x1. This justifies why invertibility of W.(t) is related to controllability.

e We have seen in the first point above that the set of states that can be reached
(using some control input) is given by W.(t)x, i.e., by the range space of W.(t).

If W,(t) is invertible, we can reach any state, i.e.,

range(W.(t)) = R" < null(W.(t)) = {0}.

The controllability gramian condition is more general, and could be employed for
linear time-varying systems as well. However, despite being useful in identifying the
set of states that can be reached from the origin, the condition of Fact 10 is not
easy to check in general as it involves computation of the matrix exponential and
integration. However, it can be employed to develop an alternative condition for

LTI systems, which is easier to check.

Fact 11 (Controllability matrix). A system is controllable over the time inter-

val [0,t] if and only if the so called controllability matrix
P=|B AB A’B ... A™'B| eR™™,

is full rank, i.e., rank(P) = n (notice that the rank of P is at most equal to
the number of rows n, as it has fewer rows than columns). We equivalently

say that (A, B) is in this case controllable.
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Proof of Fact 11. By Fact 10 the system is controllable if W, (¢) is invertible. We

have already seen (third observation above) that this is equivalent to null(W,(¢)) =

{0}. By the definition of the null space, the latter can also be written as

W.t)x=0 < x=0.

We will show that for the controllability matrix

W.t)r=0 & P'z=0.

This implies then that W,.(t) is invertible if and only if P has rank n, which by Fact

10 establishes that the system is controllable.

To prove the last equivalence, notice first that*

W)z =0 < Bled 72 =0, forall 7 €0,

By the Taylor series expansion around 7 = 0 we obtain that

BTeATT

T T
r=DB"ed Ta:‘ + —BTeA Tm( T+ ...
7=0 =0

Therefore, BTe 7z = 0 is equivalent to

B'e2=0,B"A'2=0,..., BT (A" H T2 =0

BT
BTAT

_BT(An—l)T

r=0 & Plz=0.

Notice that we consider only the first n — 1 terms of the Taylor series expansion to

be identically equal to zero, as by the Cayley-Hamilton theorem (see Theorem 8),

taking the transpose and multiplying from the left with B, we obtain

B'(AY' = —a;B" (A" Y — ... —a, B'"A" —a,B",

*To see this notice that W,(t) = 0 is equivalent to eA" BB ¢4 7z = 0 for all 7 € [0, ], which in turn
implies that BTeA 72 is in the null space of eA7B. As such, it will be orthogonal to the range space of its

transpose (rowspace), i.e., to BTeA g, However, the only way it can happen that a vector is orthogonal

. ey . . T
to itself is if this vector is zero, i.e., BTe? "z = 0.
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where aq, ..., a, are the coefficients of the characteristic polynomial of A. Hence,
if the first n — 1 terms are zero, B'(A")" (and subsequently all higher order terms)
will be zero as well. We have thus shown that W,(t)z = 0 is equivalent to PTx = 0,

which in turn implies that P has to be full rank, thus concluding the proof.

A direct consequence of the proof of Fact 11, is that the set of states we can
reach is given by range(W.(t)) = range(P). Overall, to decide whether a given
LTI system is controllable results in checking the controllability matrix condition of

Fact 11. We illustrate this by means of an example.

¢ Example 13. Consider the LTI system corresponding to the RLC circuit
of Figure 2 with R = 3, L = 1 and C' = 0.5. Check whether the system is
controllable.

Solution: Under the given numerical values we have

A_{O : f].

Since this is a second order system, i.e., n = 2, the controllability matrix is

0 2
1 -3

The rows of P are linearly independent (here P is a square matrix, so we
could equivalently check that det(P) # 0), hence P is a full rank matrix. As
a result, the system is controllable.

and B =

thus given by

P=|B AB|=

4.2 QObservability

We consider again an LTI system with a state space description governed by matrices
(A, B,C, D), and assume that the initial time is zero, i.e., ty = 0. We define
observability as stated below.



4.2 QObservability 54

Definition 2 (Observability). Consider an arbitrary t. We say that a system
is observable over the time interval [0,t] if one of the following statements
holds:

1. Given an input function u(-) : [0,t] — R™, having access to the output
function y(-) : [0,t] — R? allows us to uniquely determine the system
state z(7), for all T € [0, 1].

2. Given an input function u(-) : [0,t] — R™, having access to the output
function y(-) : [0,t] — RP allows us to uniquely determine the initial

state xy.

The second statement follows directly from the first one. To see this, recall that
t

the state of the system is given by z(t) = ®(t)zo + /0 ®(t — 7)Bu(T)dr. It can be

thus observed that given u(-), to infer x(7) for all 7 € [0, ¢], it suffices to infer the

initial condition x.

In a sense dual to controllability, we provide the following two conditions to check
whether the system is observable. As with controllability, the second one is straight-

forward to check once we have access to the system'’s state space description.

Fact 12 (Observability gramian & matrix). A system is observable over the

time interval [0,t] if and only if
1. The so called observability gramian
Wi(t) = [ e 7CTCeMdr e R,
is invertible.

2. The so called observability matrix

C
CA
Q=|CcA | er™m,

_CAnil_
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is full rank, i.e., rank(Q) = n (notice that the rank of () is at most equal
to the number of columns n, as it has fewer columns than rows). We

equivalently say that (A, C') is in this case observable.

We will not provide a formal proof for this fact, but the following interpretations of

the observability matrix condition:

e Assume that under the same input u(-), two different initial conditions x¢ # Z
lead to the same output y(-). Since the initial condition cannot be uniquely
determined from the output, then this implies that the system is unobservable.
By the definition of the output solution (and recalling that ®(¢) = e#) this is

equivalent to

CeTxg + /()TC’eA<T_S)Bu($)dS + Du = Ce"2g + /OTCGA(T_S)BU(S)dS + Du

& Cel(xg — 29) =0, for all 7 € [0,1].

The last statement implies that the system is unobservable (recall we cannot
distinguish between z and ) if and only if null(Ce”™) # {0}. Equivalently
the system is observable if and only if null(Ce4™) = {0}, i.e.,

CeVr=0 & 2=0.

This provides some insight on why the term Ce“” appears in the observ-
ability gramian condition. Moreover, by performing a Taylor series expansion
of CeA7x around 7 = 0 as in the proof of Fact 11, then we obtain that
Crx = CAzx = ... = CA" 'z = 0. Stacking these conditions one under the

other gives rise to the observability matrix condition of Fact 12.

e Consider differentiating the output y(t) = Cx(t) + Du(t), using the fact that
t(t) = Az(t) + Bu(t). This leads to (consider all derivatives well defined)

y(t) = Cx(t) + Du(t)

i(t) = Ci(t) + Du(t) = CAz(t) + CBu(t) + Du(t)
jj(t) = CA%2(t) + CABu(t) + CBu(t) + Dii(t)

... derivatives up to order n — 1.
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Stacking these equations one under the other and setting ¢ = 0 we obtain

yo)y | [ ¢ | D 0 ... 0] w0

(0 CA CB D ... 0 1(0

y( ) - : Lo+ : : - : U(: ) ’
y0)  [CAMY CA"2B CA"'B ... D] [u"(0)]

Y Q M U

where Y, U and M are of appropriate dimension, and () is the observability
matrix. This is a system of linear equations with respect to xy. Therefore, if
we have access to the input and output functions u(-) and y(-) (and hence
also their derivatives), we can infer xy. In particular, this system has more
equations than unknowns, while if we only have one output (p = 1), then @

is a square matrix, hence
zo=Q (Y — MU).

This derivation provides an additional intuition on why the observability matrix
should be full rank for the system to be observable. However, that way of
inferring xy is not practical, as measurements are typically affected by noise,
and taking derivatives of the output (measurements) is likely to amplify that
noise. We will provide efficient ways to construct an estimate of the state

when we will discuss about linear state observers in the sequel.

& Example 14. Consider the the equations of motion of the pendulum of
Figure 1, and its linearization around the origin as this was derived in Example
1. Let g =10,1 =10, d = 1 and m = 1. Check whether the system is

observable.

Solution: Under the given numerical values we have

A{O L and C:{l O].

Since this is a second order system, i.e., n = 2, the observability matrix is

Lot

thus given by
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The columns of Q) are linearly independent (here Q) is the identity matrix),

hence () is a full rank matrix. As a result, the system is observable.

4.3 Summary

This chapter provided the means to decide about certain structural properties of
linear systems, namely controllability and observability. The main learning outcomes

of the chapter can be summarized as follows:

1. Controllability: Informally, controllability refers to the ability to steer the sys-
tem using some input from any initial state to any desired terminal state. For
LTI systems to decide whether the system is controllable it suffices to check

the following condition:

Controllable LTI system if and only if

P=|B AB A’B ... AnlB] e R™™ is full rank.

2. Observability: Informally, observability refers to the ability to infer the state
of the system if we have access to its input and output (measurements). For
LTI systems to decide whether the system is observable it suffices to check the

following condition:

Observable LTI system if and only if

C
CA
Q=1| CA%? | € R™*" js full rank.

_CAnil_
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5 Minimum energy control & Kalman decomposition

5.1 Minimum energy control

We have already seen that if the system is controllable, then there exists a control
input u(-) as a function of time to steer the system from the initial condition
o = 0 (note that due to the second part of Definition 1 this choice is without
loss of generality) to an arbitrary terminal state x;. However, this is an existential

statement. The following questions remain still.

1. Can we construct an input u(-) that can drive the system from zy = 0 to an

arbitrary z7?

2. If yes, can we do this in a minimum effort fashion?

We will show that for controllable systems indeed it is possible to design controllers
that can lead the system to the desired terminal state. The controller that we will
develop in this chapter, however, we will be open loop; we will construct feedback
controllers in the subsequent chapters. The constructed controller will though be
a minimum effort one (in a way that would be made precise below; we will call
such controllers minimum energy controllers — their relationship with energy will be

discussed in the sequel.

5.1.1 Controller design

We consider the energy of an input signal to be given by

t t
energy: /OU(T)TU(T)CZT:/O||u(7')”2d7'.
We first provide a closed form expression of the minimum energy input, and then

provide a couple of interpretations on what we mean by the term “energy”.

Fact 13. Consider an LTI system and assume that it is controllable. The
control input that steers the system from xy = 0 to x(t) = x1, and has the

minimum energy, is given by

w(t) = BT W, (8) ey for all T € [0, 8],
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where W.(t) is the controllability gramian.

Note that W,(t) is invertible, as the system is assumed to be controllable (see Fact

10). We now provide a proof of this fact.

Proof of Fact 13. We first show that the candidate control input can indeed steer
the system from xy = 0 to a given x;. To see this notice that by the schematic

diagram below Fact 10, and since W.(¢) is invertible, we can

reach W.(t)z using u(r) = BTed g

BTeA W () .

< reach T using u(T
x=W,(t)"ta; ! g ( )

The latter is the candidate input, hence we have shown that it is indeed possible to

reach x1 with that input.

We will now show that the candidate input has the minimum energy. To this end,
consider any other input that steers the system from 2y = 0 to x;. Represent such
an input by u(7) 4+ 4(7), i.e., as the sum of the candidate input plus a perturbation

component @(7). By the definition of the solution we have that

t
Ty = eAt%O + /0 AT B(u(t) + a(t))dr
= [[eADBu(t)dr + [ A7) Ba(t)dr,

z

where the first term in the last step is equal to x; as the candidate input u was

also shown to steer the system from xy = 0 to x1. We thus have that

[t Ba()dr = 0.
Denote the energy of the candidate input u by E(t) = /Otu(T)Tu(T)dT, and the
energy of u(7) 4+ () by E(t). Note that this is given by

B(t) = [ (u(r) + a(r) (u(r) + a(7))dr
= [(u(r)Tu(r)dr + [ () Tu(r)dr + [u(r)Ta(r)dr + [ a(r)Ta(r)dr

E(t)
= B(t) + 2 u(r)"a(r)dr + [ a(r)a(r)dr.
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where the last equality is due to the fact u(7)"4(7) is a scalar so it coincides with
its transpose. By substituting the representation of the candidate u, the second

A

term that appears in the right-hand side of the expression for F/(t) becomes (recall
that W.(t) = W.(t)")

[u(r)Ta(r)dr =[] W) A Ba(r)dr = 0,

t
since we have shown that /0 eA=")Ba(t)dr = 0. We then have that

E(t)y = E@) + [ a(r)Ta(r)dr = B(t) > E(1).

>0

This implies that the candidate u results in lower energy from any other controller

that can steer the state to z, hence it is the minimum energy controller.

¢ Example 15. Consider the LTI system corresponding to the RC circuit of
Example 4 with R = 1 and C' = 1. Determine the minimum energy controller

to steer the system from xy = 0 to x; = 0.5 at time t.

Solution: Under the given numerical values notice that

1 1
A= ok —1 and B = 0 1 [scalars].
The matrix exponential is in this case eAT = 77, hence the controllability

gramian W.(t) is given by

Wc(t) = /Ot eATBBTeATTdT
i

ot o, _1—6*2
—/Oe d7—72 )

For any T € [0,t], the minimum energy controller is then given by
w(t) = BTed W (6) ey

1 — e 2\ -1 e
1.t (= ) -
—1-e ) wa——p.

T—1

Notice that the control input tends to infinity as t tends to zero, implying that

we need infinite control effort if we want to steer our system in “zero” time.
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5.1.2 Energy interpretation

Consider first the mathematical expression for the minimum energy E/(t) associated
with the input signal

u(t) = BT e W, (8) ey for all 7 € [0, 4],
that steers the system to x;. This is given by
E(t) = [ u(r) u(r)dr
t
= /O:UITWC(t)_leA(t_T)BBTGAT(t_T)Wc(t)_lxldT
= 2] W,(t) ! [ AT BBTeA dr W(t)

We(t)

= a2 Wo(t) ay.

The following remarks are in order.

e The energy expression is quadratic in x;. This implies that the further away
we want to steer a system (hence the higher ||z1]|), the more energy we need

to expend. This is in line with our intuition.

e The energy expression is also proportional with respect to W.(t)~!, which
reflects how controllable a system is. In particular, if a system is controllable
this is well defined since W,(t) is invertible; however, the further away a system
is from being controllable, the closest W,.(t) is to become singular. This in
turn implies that the closest a system is to be uncontrollable, the more energy
we would need to steer it to a given terminal state x1. In the limiting case we

would need infinite energy.

t
e Very often the quantity E(t) = /OU(T)TU(T)dT is related to physical energy.
For example, if the input u(7) represents voltage across a certain component
in a circuit, then E(t) is related to the energy of the system modulo some

proportionality constant (e.g., related to some resistance).

It should be noted that the minimum energy controller is optimal with respect to
t

a certain performance criterion, namely, the energy /OU(T)TU(T)dT which depends

solely on the input. We will see in Chapter 8 how to construct optimal controllers

for more general performance criteria that involve the state as well.
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5.2 Kalman decomposition

Controllability and observability carry important information about a system. In
fact, we have already seen that controllability can be exploited to design controllers
— minimum energy ones — and we will see alternative control design procedures in
the sequel. Moreover, we will also discuss how observability can be exploited to

design state estimators and infer the state of the system.

However, not all systems are controllable and/or observable. It is thus useful if we
can decompose a systems into subsystems that exhibit these properties. In fact, the
so called Kalman decomposition provides the means to achieve this. We summarize

this below.

Theorem 3 (Kalman decomposition). An LTI system can be brought, by

means of an appropriate coordinate transformation, to the following form

A B
S'Ul(t) AH 0 A13 0 331(75) Bl
Co(t Aoy Ay Agg A t B
$.2( ) _ 21 22 23 24 372( ) I 2 u(t)
Z’g(t) 0 0 A33 0 ZEg(t) 0
_5'64(25)_ i 0 0 A43 A44_ _I4(t>_ i 0 ]
y(t) = |C1 0 Cy 0|x(t) + Du(t),

C

where the state is partitioned into

z1(t)] controllable + observable

o(t) = xo(t)| controllable + unobservable
x3(t)| uncontrollable + observable
w4(t)| uncontrollable + unobservable

Morover, the eigenvalues of the new A matrix are the eigenvalues of the

matrices AH, AQQ, A33, and A44.

Note that under the Kalman decomposition states x1(¢) and x5(t) correspond to a
controllable subsystem, while z1(t) and x3(t) to an observable one. As such, the

corresponding pairs of matrices satisfy the controllability and observability matrix
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condition, respectively.

A O

A21 A22

By

By

An A

A33

9

controllable: {

, observable: { } , {01 03] :

Figure 6 provides a schematic illustration of Kalman decomposition. Note that the
arrows do not represent input-output signals, but show pictorially interdependencies
among the different subsystems. For example, the three arrows entering the second
subsystem imply that the evolution of z5(t) depends on all other three states, each
of them being weighted according to the submatrices Aoy, Aoz and Aoy, Effectively,
the arrows entering a subsystem correspond to the non-zero contribution from other

subsystems in the specific matrix row of the Kalman decomposition.

T (t)
Controllable
t t
u(?) B | + Observable = f: y(?)
A+
All
za(t) z3(t)
By Az Az Cs
Controllable |4 Agg Uncontrollable
| + Unobservable | _ + Observable
A22 < A33
Aoy Ays

Uncontrollable
+ Unobservable

A44

Figure 6: Schematic diagram for Kalman decomposition. Note that the arrows do not represent input-

output signals, but show pictorially interdependencies among the different subsystems.

Notice that some subsystems are uncontrollable and/or unobservable. In this case
we cannot control (steer arbitrarily) or observe (estimate) that part of the state;
however, we would like these parts to be stable. Since stability is dictated by the
eigenvalues of the system, and these correspond to the eigenvalues of the diagonal

blocks, we would like:

1. The eigenvalues of A3 and Ayy (uncontrollable part) to have negative real

part. In this case the system is called stabilizable.
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2. The eigenvalues of Ayy and Ayy (unobservable part) to have negative real part.

In this case the system is called detectable.

Designing a controller for stabilizable systems (or an observer as we will see in the
sequel for detectable ones) will ensure that the overall system is asymptotically
stable as the part that we cannot control is asymptotically stable as well. Finally,
it should be mentioned that the uncontrollable and unobservable parts lead to pole

zero cancellations in the associated transfer function.

# Example 16. Consider an LTI system with x(t) € R?, written in state-

space form as

[1 O] x(t).

Comment on which states are (un)controllable and (un)observable.

y(t)

Solution: Note that the system is already in the Kalman decomposition form.
To see this, consider Theorem 3, and select the subsystem corresponding to
the first and third row and column of the associated state-space matrices.

This results in the sub-matrices

A Az
0 Ass

By

)| and [Cl 03].

Y

By inspecting this subsystem, and setting
A11 = —1, Alg = 1, A33 = 1, Bl = 1, 01 = 1, andC'g = 0,

we observe that the given system has state-space matrices that exhibit this
form. In particular, the two states of the given system correspond to states
x1(t) and xo(t) in Theorem 3. As such, the first state is controllable and
observable, while the second state is observable but uncontrollable.

Notice that this is expected as the second state is not affected by the input
directly, nor indirectly through the other state, and evolves autonomously. In

fact, the system is not even stabilizable as A3z is non-negative. The fact
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that the system is uncontrollable implies that there would be some pole-zero

cancellation in the associated transfer function. To verify this, notice that

G(s) = C(sI — A)'B + B’O

s—1 1

1
eEVEEnIS OH 0 s+l

0

=1 1
s+ 1)[(s—1] s+1°

5.3 Summary

This chapter showed how minimum energy controllers can be designed for con-
trollable systems, and discussed Kalman decomposition as a state partitioning to
(un)controllable and (un)observable subsystems. The main learning outcomes of

the chapter can be summarized as follows:

e Minimum energy control. Minimum energy controllers are designed for control-
lable systems, and are able to steer the system from xy = 0 to an arbitrary ter-

t
minal state 1, while minimizing the energy (or control effort) /Ou(T)Tu(T)dT.

Such controllers and their energy are given by

control input: u(T) = BTeAT(t*T)WC(t)’lxl for all 7 € [0, ],
energy: E(t) =z, W.(t)™*

Minimum energy controllers are related to energy: the further away a system
is from being controllable, the closest the controllability gramian W.(t) is
to become singular. This in turn implies that controller’'s energy will grow,

implying that we need more energy/effort to steer the system to x;.

e Kalman decomposition. It shows that through an appropriate coordinate trans-

formation a system can be decomposed into four subsystems, namely,

1. xl(t): controllable + observable;
xo(t): controllable + unobservable;
x3(t): uncontrollable 4 observable;

4. x4(t): uncontrollable + unobservable.
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6 State feedback control

In the previous chapter we considered a minimum effort control design, however, the
resulting controller was open loop. Here we introduce a feedback control design
for the case where the entire state is available in the form of measurements in
the system output, i.e., when y = x. Therefore, for the results of this chapter
the output equation becomes irrelevant. In this setting, the following questions

naturally arise:

1. Is it possible design a state feedback control input so that we steer an LTI

system to a desired state?

2. If yes, how do we construct such a state feedback controller?

The first of these questions is related to controllability. We have already seen that
if the system is controllable then we can design minimum energy controllers; here,
we will show that controllability is equivalent to the existence of a state feedback
controller. In particular, we will show that such a state feedback controller can be
constructed by means of a methodology called pole placement, hence it is possible
for controllable systems to select the feedback control gains appropriately so that

the resulting closed loop system is driven to a desired state.

6.1 Closed loop system

We consider an LTI system in state space form, i.e.,
(1)
y(t)

Note that under a full state feedback regime y(t) = x(t), which implies that C' = I

Ax(t) + Bu(t)
Cx(t) + Du(t).

and D = 0. With reference to the state feedback control architecture schematically

shown in Figure 7, we have that
u(t) = Kx(t) + r(t),

where r(t) € R™ is an external input vector that we consider to be fixed, while

K € R™" is the feedback gain matrix whose elements are the control gains that
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we need to tune. Note that K is a matrix, as we may have multiple inputs and
outputs (in this setting outputs coincide with states). In the single input, single

output case, the resulting gain would be a scalar.

Under this state feedback controller, the ODE governing the behaviour of the LTI
system, i.e., @(t) = Ax(t) + Bu(t), becomes

t(t) = (A+ BK)z(t) + Br(t).

Such a system is referred to as closed loop system as its evolution does not depend
on the input u(t), but only on the state x(¢) and some fixed, external input 7(%).

Matrix A + BK will be hereafter referred to as closed loop matrix.

\/

A

D
0 o] [l oiof [l o] s
A

K

Figure 7: Block diagram for the state feedback controller.

We aim at designing the feedback gain matrix K so that the closed loop system
evolves in a prescribed manner. In particular, we will show that deciding on whether
a given LTI system is controllable is related to the ability of placing the eigenvalues
of A4+ BK at any desired location, and we will provide a procedure to do so referred
to as pole placement. Due to the relationship between poles and eigenvalues this

is also known as eigenvalue placement or eigenvalue assignment.
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6.2 Pole placement
6.2.1 Single input systems

We first consider LTI systems with a single input, i.e., u(t) € R (m = 1), and

hence
K=k ... k)eR>

is a row vector. We aim at designing K so that we steer the system at a desired
state; naturally, this is related to controllability (see Definition 1). To build some
intuition, the most practically relevant situation is the case where this desired state
is finite and we would like to converge to it asymptotically (possibly also sufficiently
fast), hence the closed loop system exhibits a stable behaviour. However, we have
already seen that stability depends on the eigenvalues of the A matrix that appears
in the state space system representation. For the closed loop system to be stable,
we are thus interested in the eigenvalues of A + BK. To this end, informally we

aim at building the following equivalence:
Controllability < Setting the eigenvalues of A+ BK to any {\1,..., \,},

where {A1,..., A\, } is a target set of n (possibly complex) eigenvalues. It is to
be understood that if one of the eigenvalues in the target set is complex, then its
complex conjugate will have to be in that set as well, as complex eigenvalues appear

in conjugate pairs.

Changing the target set of eigenvalues we thus change the evolution of the closed
loop system. In fact, if we are able to select K so that we move the eigenvalues
(and hence the closed loop system) at any desired target set then we make sure that
through feedback our system can be driven to any state, hence it is controllable.

We formalize this in the following theorem.

Theorem 4 (Controllability & eigenvalues of A+ BK). A single input LTI sys-

tem is controllable if and only if for any target set of eigenvalues {\1, ..., A\, },

there exists K such that: eigenvalues of A+ BK = {\,..., A\, }.

The previous theorem provides a link between the ability to place the eigenvalues
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of A+ BK and controllability, hence it answers the first question set forth at the
beginning of the chapter. However, it does not state how we can design such a K.
The design procedure for K to achieve this eigenvalue placement is most commonly

referred to as pole placement, and we will detail it below.

To this end, let {\,..., \,} be any target set of eigenvalues for the closed loop
matrix A + BK. These eigenvalues will then be the roots of the characteristic
polynomial of A + BK, i.e.,

target characteristic polynomial:
det(M — (A+BK))=A=XA1) - (A=)
=N+ N+ d N+ dy,

where dy, ..., d, are real coefficients, uniquely determined by the particular choice

of the target set of eigenvalues.

At the same time, it can be shown that if a system is controllable then there exists
an invertible matrix 7" (in fact this is an "if and only if” condition) such that the
coordinate transformation #(t) = T'z(t) brings the system in controllable canonical
form *, i.e., #(t) = AZ(t) + Bu(t), where

0 1 0 .. 0
0 0 1 .. 0
A=TAT ' = : : : .. | andB=TB=|:],
0 0 0 oo 1 0
—ay —Qp_1 —Ap_9 ... —a1
where a4, ..., a, are the coefficients of the characteristic polynomial of A, which is

given by X" +a; A" '+ .. . +a,_1A+a,. Inthe new coordinates, the state feedback
control input can be written as
u(t) = Ko(t) +r(t) = KT7'2(t) + r(t)
= K&(t) +r(t),

*Note that we have already introduced the controllable canonical form in Section 3.2.2, as one possible
realization of the system’s transfer function. The term “controllable” shall now be clear due to the fact
that any controllable system admits such a representation via an appropriate coordinate transformation 7.
In fact, even though we will not provide this in these notes, it can be shown that for single input systems
T~ involves the controllability matrix (will be a square matrix in the case of a single input). Note that an

observable canonical form also exists.
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A

where K = KT ! = {l:;l kn} is a row vector including the new control gains.
Application of this feedback controller results in the following closed loop system

in the new coordinates:

#(t) = (A+ BK)z(t) + Br(t)

0 1 0
0 0
= . T(t) + || r(t),
0 0 0 1 0
ki —an ky—apy k3 —apo ... ky—a

where this particular form emanates from the structure of A and B that are in
controllable canonical form. The closed loop system is thus still in controllable
canonical form, hence the entries in the last row correspond to the coefficients of

the characteristic polynomial of A+ BK,ie.,

characteristic polynomial in new coordinates:
det(\ — (A 4+ BK))
=\ — (ki — a)N" ' = o= (ko — an—)X — (k1 — an).

The eigenvalues remain unaffected by a coordinate transformation (since A+BK =
T(A+ BK)T'), hence A+ BK and A + BK have the same eigenvalues. As
a result, the target characteristic polynomial and the characteristic polynomial in
new coordinates should coincide. This implies that their coefficients should be the

same, or in other words,

target characteristic polynomial = characteristic polynomial in new coordinates
= k :an—dn, kgzan_l—dn_l, ey k‘n:al—dl.

A

Therefore, we can construct K = {an —d, ... ay— dl} so that we place the

eigenvalues of A + BEK to the target set of eigenvalues. Equivalently, since K =
KT 1 through K = KT we can construct the control input

u(t) = KTx(t) +r(t) = Kz(t) +r(t),

so that the eigenvalues of the closed loop matrix A+ BK in the original coordinates

are also equal to the target set.
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Effectively, the derivation above constitutes a proof for the “only if " part of Theorem
4, providing a constructive way to place the eigenvalues of A+ BK, thus answering
the second question set forth at the beginning of the chapter. However, to design
K we used a transformation in the so called controllable canonical form. In practice
this is not necessary, and we can achieve pole placement by means of the following

procedure.

Pole placement procedure. Determine K = [kl kn] by means of the

following steps:
Step 1: Select a target set of eigenvalues {\q,..., A\, }.

Step 2: Construct the target characteristic polynomial
A=) A=) = XN"+d A"+ 4 dy )+ d.
Step 3: Construct the characteristic polynomial of A + BK, i.e.,
det(A] — (A + BK)).

The coefficients will be linear functions of the gains in K, namely, k1, ..., k,.

Step 4: Equate coefficients between the polynomials of Step 2 and Step 3,

= Solve a system of n equations with n unknowns, namely, ki, ..., k,.

Therefore, designing a state feedback controller involves implementing the pole
placement procedure outlined above, which results in solving a linear system of
equations with an equal number of unknowns. To solve that system of equations

we distinguish the following cases:

1. The system is controllable. Then the system of equations admits a unique
solution; in fact, existence of a solution for controllable systems is guaranteed
by means of Theorem 4. Naturally, if we have a controllable system, we would
like the closed loop system to be asymptotically stable (see Chapter 3). Hence

the target eigenvalues should all have negative real part.
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2. The system is uncontrollable and at least one eigenvalue corresponding to the
uncontrollable part has positive real part. By Theorem 3 this will be one of
the eigenvalues of A33 and Ay, if Kalman decomposition is performed. In that
case the system of equations does not have a solution. This corresponds to a
case where the system is unstable, and the unstable part is uncontrollable, so

we can not achieve a stable closed loop system by means of state feedback.

3. The system is uncontrollable but all eigenvalues corresponding to the uncon-
trollable part have negative real part. In that case the system of equations
admits a solution as long as we include the eigenvalues of the uncontrollable
part in the target set of eigenvalues. However, the solution might not necessar-
ily be unique. This corresponds to the case of an uncontrollable but stabilizable

system.

We illustrate the pole placement procedure by means of an example.

# Example 17. Consider an LTI system with matrices

A{O : g].

-1 -1
Design a state feedback controller so that the closed loop system has

and B =

eigenvalues at —1 and —2.

Solution: The system is of order n = 2, so we seek a control gain matrix of

the form K = [k:l kg}. The closed loop matrix is thus given by

0 1
—1+k —1+k

A+ BK =

To determine ky and ko so that the closed loop system has eigenvalues at —1

and —2, we apply the pole placement procedure. We thus have:

Step 1. The target set of eigenvalues is provided in this case, and we denote
it as {/\1, )\2} = {—1, —2}
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Step 2. The target characteristic polynomial is given by
A=2)A=X) = A+ 1A +2) =2 +31+2.

Step 3. The characteristic polynomial of A+ BK is given by
det(M — (A+ BK)) = A2+ (1 — ko)A + (1 — ky).

Step 4. Equating the coefficients of the polynomials of Step 2 and Step 3 we

obtain

1—-k1=2 = k=-1
1—ky=3 = ky=-2.

The resulting system of equations admitted a unique solution, as the given sys-
tem was controllable. This can be verified by checking that the controllability

matrix is full rank, i.e.,

0 1
rank([B AB]) = rank( L 1] ) — 2.

6.2.2 Multiple input systems

Up to this point the analysis refers to single input systems. In fact this is only
used when resorting to the controllable canonical form which refers to single input
systems. Even if the system has multiple inputs (m > 1) though, we could still
extend the result of Theorem 4 and place the eigenvalues of the closed loop system
at target locations following the pole placement procedure. However, for multiple
input systems, the system of equations in the last step of the pole placement
procedure will involve n equations with nm unknowns. Hence, we will have more
unknowns than equations, implying that the system will not admit a unique solution
even if the original LTI system is controllable. As a result, there will be multiple

choices of K that will lead to the same eigenvalues for the closed loop system (in
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fact, the admissible choices for K will lie on a subspace with dimension n(m —1))*.

To obtain a unique K from the resulting system of equations, we could either
impose additional considerations, e.g., choose a K that not only results in a target
set of eigenvalues but at the same time minimizes a certain performance criterion,
or force a certain number of elements of K to be zero. This would lead to a sparse
feedback gain matrix, thus simplifying some computations, leading to a feedback

structure which is easier to implement in practice.

6.3 Summary

This chapter discussed state feedback control, or in other words, it provided a
procedure to design feedback gains if the entire state is available. The main learning

outcomes of the chapter can be summarized as follows:

e (Closed loop matrix. We showed that under state feedback the evolution of the

closed loop system is captured by the matrix A + BK.
e Single input systems.

1. Controllability and eigenvalues of A + BK: Theorem 4 shows that an
LTI system is controllable if and only if for any target set of eigenvalues,
there exists a choice for the gain matrix K such that the eigenvalues of

the closed loop matrix A + BK become equal to this target set.

2. Pole placement: The important implication of Theorem 4 is that control-
lability ensures the existence of a state feedback controller. Pole place-
ment is a procedure to construct such a controller. It involves equating
the coefficients of the target characteristic polynomial, with those of the

characteristic polynomial of A 4+ BK, i.e.,

*To build some intuition on why multiple solutions exist, note that similarly to the way the controllable
canonical form was employed for single input systems, for multiple input systems the so called Brunowski
normal form can be used. However, this form is not unique as it involves a coordinate transformation where
we select n columns of the controllability matrix which is now of dimension n x nm, and there are several

permutations of the selected columns.
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target characteristic polynomial

= characteristic polynomial of A 4+ BK = det(\] — (A + BK)).

Note that the coefficients of det(Al — (A + BK)) are linear functions
of the entries of K, hence the equality above results in a system of n
equations with n unknowns. [f the original LTI system is controllable,

then this system admits a unique solution for the gains in K.

e Multiple input systems. Pole placement is also applicable, however, the result-
ing set of equations will involve more unknowns than equations. As a result
the solution is not unique even if the system is controllable, hence, there will
be multiple choices of K that will lead to the same eigenvalues for the closed

loop system.
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The pole placement procedure outlined in the previous chapter provides an efficient
methodology to design a state feedback controller. However, having access to the
entire system state is often unrealistic in practice, as typically only some of the
states are available via measurements. Therefore, it would be more practical if an
output feedback control design methodology were available, where the feedback

was only a function of the current and past outputs of the system.

In this chapter we will address this problem, and provide an output feedback control

design methodology. In particular, we will:

e Exploit the state feedback control design procedure, and construct a control
input that is not feedback of the actual system state (which is not available),
but rather feedback of an estimate of the state. A procedure that generates
an estimate of the state using past and present inputs and outputs is known

as state observer or else state estimator.

e Design a controller which is feedback of the state estimated by means of the
observer. This is implicitly an output feedback controller, as it will depend on
the estimated state, which in turn depends on the system'’s output and not on
the state.

A block diagram summary of the output feedback controller including an observer
is provided in Figure 8. We will be referring to this figure when introducing its
various elements in the sequel.
7.1 Linear state observers

7.1.1 Observer estimation error

Analogously to the state feedback control design analysis, we will assume that we

have an LTI system (see upper shaded block in Figure 8) with a single output
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Figure 8: Block diagram for the output feedback controller, including a linear state observer.

where C' € RY>™ and D € R1*™ are row vectors. We will discuss at the end of the

section the necessary modifications in case of multiple outputs.

It turns out that for linear systems a linear observer is sufficient to construct an
estimate of the state. In particular, for any time instance ¢, the observer will
produce an estimate Z(t) for the actual state x(¢), using only current and past
inputs and outputs (information available through measurements), i.e., u(7) and

y(1) for 7 € [0,t]. To achieve this, the observer is yet another LTI system, which
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acts as a replica of the actual system (in the sense that we employ the state space
matrices (A, B, C, D)) described by

Linear state observer:

At time t, the observer uses only its current state and output estimates Z(¢) and
y(t), respectively, the input u(t) and the actual output y(¢) that is available by
means of measurements to update its state estimate. Notice that the actual state
x(t) is not used anywhere in the observer’s equations. The derivative of the state
estimate Z(t) will thus depend on the current input and output of the actual system,
while Z(t) depends implicitly (see the solution form for LTI systems) on past inputs
and outputs as well. See the lower shaded block of Figure 8 for a block diagram

representation of a linear observer.

The linear term L(y(t) —¢(t)) acts as a correction proxy, introducing an estimate of
the difference between the actual and the estimated output, which we would ideally
like to steer to zero. The matrix (column vector in single output systems) L € R"
is called the observer gain matrix. We would like to select the entries of L so that
the observer generates a “good” estimate #(t) of x(t). To quantify this, we study

the evolution of the so called estimation error e(t) = x(t) — z(t), i.e.,

) — a(t)

(t) + Buff) — Ai(t) — Bu(t) — L(y(t) — (1))

= A(z(t) — £(t)) — L(Cx(t) + Duft) — C2(t) — Duft))
A— LO)(x(t) — &(t))

é(t)

Nl
S
8 =

where in the third equation we replaced y(¢) and () with the output equation
of the corresponding LTI description. Therefore, the evolution of the estimation
error is an autonomous LTI system. It will be asymptotically stable, hence Z(¢) will
converge to z(t), if and only if all eigenvalues of A — LC' have negative real part.

Otherwise, if the system is stable, given an inaccurate initial estimate, Z(t) will
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remain at some “distance” from the actual estimate, while if the system is unstable
then that distance will grow towards infinity, implying that our estimate diverges.
Note that matrix B does not influence the behaviour of the error estimate, similarly

to the way C' does not appear in the state feedback design procedure.

7.1.2 Observer gain selection

It turns out that to design an efficient observer whose estimate will converge to the
actual state we need to have the ability to place the eigenvalues of the observer
gain matrix A — LC' at desired locations, and in particular select the gains in L so

that these target eigenvalues have negative real part.

The ability of placing the eigenvalues of A — LC' at a target set of eigenvalues is
related to observability. This is in some sense dual to the fact that the eigenvalues
of A+ BK were related to controllability in Theorem 4.

Theorem 5 (Observability & eigenvalues of A— LC'). A single output LTI sys-

tem is observable if and only if for any target set of eigenvalues {\1, ..., \,},

there exists L such that: eigenvalues of A — LC = {\,..., A\, }.

Theorem 5 shows that for observable systems there always exists a choice for L so
that we place the eigenvalues of A — LC' at any desired set of target locations. Due
to the structural similarity between A — LC and A+ BK, to construct the observer
gain matrix L so that we place the eigenvalues of A — LC, we can follow exactly
the same steps with the pole placement procedure of Chapter 6 with A — LC' in
place of A+ BK. This results in equating the coefficients of the target polynomial
with the characteristic polynomial of A — LC), i.e.,

target characteristic polynomial: X" + d;\" ' + ...+ d,_1 ) + d,
= det(A — (A — LC)).

For single output systems this results in solving a linear system of equations with

an equal number of unknowns. To solve that system of equations we distinguish
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the following cases:

1. The system is observable. Then the system of equations admits a unique
solution; in fact, existence of a solution for observable systems is guaranteed
by means of Theorem 5. If the target eigenvalues all have negative real part,
then we can guarantee that the observer estimation error converges to zero, so
asymptotically we tend to construct the entire system state, even if this was

unavailable via measurements.

2. The system is unobservable and at least one eigenvalue corresponding to the
unobservable part has positive real part. By Theorem 3 this will be one of
the eigenvalues of Ay and Ay if Kalman decomposition is performed. In that
case the system of equations does not have a solution. This corresponds to a
case where the system is unstable, and the unstable part is unobservable, so

we can not achieve a stable observer estimation error.

3. The system is unobservable but all eigenvalues corresponding to the unob-
servable part have negative real part. The system of equations admits then
a solution as long as we include the eigenvalues of the unobservable part in
the target set. However, the solution might not necessarily be unique. This

corresponds to the case of an unobservable but detectable system.

For systems with multiple outputs (p > 1) the previous statements remain valid,
however, equating the polynomial coefficients leads to a system of n equations
with np unknowns. Hence, we will have more unknowns than equations, implying
that the system will not admit a unique solution even if the original LTI system is
observable. Note that all these conclusions are in complete symmetry with respect

to the ones obtained in the previous chapter for state feedback control design.

¢ Example 18. Consider the LTI system of Example 14, with matrices

A:{O 1] and C =1 0|.

Design a linear state observer so that the estimation error system has

eigenvalues at —1 and —2.
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Solution: The system is of order n = 2 and has a single output as C' is a

14
row vector. We thus seek a control gain matrix of the form L = !

2

. The

estimation error system involves the matrix

A—LC = —h L
11—t —1

To determine (1 and (5 so that the eigenvalues of the estimation error
system (hence of A — LC') become —1 and —2, we apply the pole place-
ment procedure of Chapter 6 with A— LC' in place of A+ BK. We thus have:

Step 1. The target set of eigenvalues is provided in this case, and we denote
it as {\1, \2} ={—1, —2}.
Step 2. The target characteristic polynomial is given by
A=A =X)=A+1DA+2) =27 +31+2.
Step 3. The characteristic polynomial of A — LC' is given by
det(A\] — (A= LO)) = X2 + (L + €)X + (1 + 41 + £).

Step 4. Equating the coefficients of the polynomials of Step 2 and Step 3 we

obtain

1+46,=3 = (1 =2
14+04+0,=2 = ¥l =—1.

The resulting system of equations admitted a unique solution, as the given

system was single output and it was shown in Example 14 to be observable.

7.2 QOutput feedback control
7.2.1 Closed loop system

We have already seen that if the state is fully known, then a state feedback controller

can be designed. We have also shown that if the state is not fully known then a
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linear state observer with gain matrix L can be designed. Combining these designs
we come up with the architecture of Figure 8, which serves as a straightforward
implementation of output feedback. To see this, notice that it involves feedback of
the estimated state Z(¢) with a feedback gain matrix K. The estimated state is the
output of the observer, which in turn depends on the output of the actual system

y(t). This introduces in an implicit manner output feedback.

However, we still need to show that putting the design of the observer gain matrix
L together with that of the (estimated) state feedback gain matrix K leads to
the desired closed loop performance. In particular, we would like to ensure that
the transient estimation error in the observer will not interfere with the state feed-
back controller leading to a destabilizing behaviour, which in turn may increase the

estimation error and eventually result in an unstable closed loop system.

To address this issue, we will study the behaviour of the closed loop system of
Figure 8, and in particular we will compute its eigenvalues. To this end, we have

that

— LTI system

u(t) = Kz(t) + r(t) — (estimated) state feedback

F(1) = A#(t) + Bu(t) + L(y(t) — §(t))
§(t) = Ci(t) + Du(t).

— state observer

Substituting one equation into the other so that we eliminate §(t) and u(t), we

obtain the following closed loop system description:

i(t) = Ax(t) + BKz(t) + Br(t)

z(t) = LCOz(t) + (A + BK — LC)Z(t) + Br(t)
Cz(t) + DKz(t) + Dr(t).

<

—
<+~

~—
I

z(t)
2(t
(both the actual and the estimated state), an input vector r(¢t) € R™, and an

The closed loop system is itself an LTI system with a state vector c R*"
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output vector y(t) € RP. We can write it in state space form as

0] _[ 4 BK 0], [8],
z(t) LC A+ BK — LC| |Z(t) B
y(t) = |C DK]| tg + Dr(t).

7.2.2 Separation principle

The state space representation above captures the evolution of the actual and the
estimated state. However, we are mainly concerned about the evolution of the
actual state z(t) and the estimation error e(t) = x(t) — Z(t). To this end, replacing

z(t) = x(t) — e(t), or else considering the (invertible) coordinate transformation

{x(t)} { (t) } {1 0] a:(t)]
e(t) z(t) — 2(t) I -1 ’

2(t)
we can render e(t) as one of the states, resulting in the following equivalent state

space description of the closed loop system:

F(t)] _|A+BK -BK | [a(t)] , |B )
é(t) 0 A—LC| |e(t) 0
y(t) = [C + DK —DK} t((;) + Dr(t).

The new state space representation has the advantage that not only it involves
the state estimation error as one of the system states, but it also involves a block

triangular system matrix. However, the determinant of a block triangular matrix

Separation principle:

det (

coincides with the product of the determinants of the associated blocks. We thus
M — (A+ BK) BK

have that
M —(A-LC) )

= det(M — (A+ BK)) det(A — (A — LC)).
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This property of the closed loop system is known as the separation principle, as
the 2n eigenvalues of the closed loop system coincide with the n eigenvalues of the
system if full state feedback were available (roots of det(A\ — (A+ BK))), and the
n eigenvalues of the state estimation error system (roots of det(A] — (A — L())).
Its consequence is that to design output feedback controllers for linear systems, it
is sufficient to design the feedback gain matrix K and the observer gain matrix L
separately, and then put them them together, while having guarantees about the
closed loop system performance. It should be noted that the separation principle

does not directly extend to systems that are not linear.

Therefore, if an LTI system is both controllable and observable, Theorems 4 and
5 together with the separation principle imply that the eigenvalues of the closed
loop system can be arbitrarily placed by selecting the target eigenvalues of A+ BK
and A — LC' to have a sufficiently negative real part, thus resulting in an arbitrarily
fast, asymptotically stable performance. However, the LTI system is typically only
an abstraction of the actual system which may exhibit nonlinearities, actuation
saturations, etc. Hence, selecting the eigenvalues to have arbitrarily negative real
parts may lead to high control gains that in turn may be clipped by input saturations,
leading to erroneous closed loop performance. To this end, the choice of the
eigenvalues of the closed loop system (and hence the gains of the controller and the
observer) usually involves a trade-off between a fast and stable response and other
performance considerations. We will investigate an optimal control methodology to

achieve such a trade-off in the next chapter.

7.3 Summary

This chapter discussed output feedback control, or in other words, it provided
a procedure to design feedback gains if only some components of the state are
available in the output of the system in the form of measurements. To construct an
estimate of the entire state vector a linear state observer was designed. The main

learning outcomes of the chapter can be summarized as follows:

e [inear state observer. We showed that linear state observers can be designed

to construct an estimate of the actual state (see lower shaded block in Figure
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8). In particular, the important implication of Theorem 5 is that observability
ensures the existence of an observer such that the state estimation error is
under control. Using again the pole placement procedure we can construct such
an observer. It involves equating the coefficients of the target characteristic

polynomial, with those of the characteristic polynomial of A — LC, i.e.,

target characteristic polynomial

= characteristic polynomial of A — LC' = det(A — (A — LC)).

Note that the coefficients of det(Al — (A — L(C')) are linear functions of the
entries of L, hence for single output systems the equality above results in a sys-
tem of n equations with n unknowns. [f the original LTI system is observable,

then this system admits a unique solution for the gains in L.

Output feedback. A feedback controller was designed closing the loop via
the estimated state. That state was in turn dependent on the output of the
system (through the observer equations), thus resulting in an output feedback
implementation (see feedback interconnection between the upper and lower

blocks in Figure 8, using a feedback gain matrix K).

Separation principle. The so called separation principle is a property of linear

systems, which shows that

eigenvalues of closed loop system

= eigenvalues of A + BK and eigenvalues of A — LC.

As a result, we can select K and L separately, each of them by means of
pole placement for A+ BK and A — LC, respectively. For controllable and
observable systems, putting them together in the closed loop architecture of
Figure 8 can result in a stable performance and a convergent state estimation

error.
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8 Linear Quadratic Regulator (LQR)

We have seen that minimum energy controllers are optimal in the sense of mini-
mizing the control effort, however, they are open loop. At the same time state and
output feedback controllers introduce feedback, however, they are not optimal with

respect to a given performance criterion. The following question thus pertains:

e Is it possible to design feedback controllers that are at the same time optimal
with respect to a given criterion that involves (possibly) both the state and

the input of the system?

It turns out that this is indeed possible. We will assume that the entire state is
available by means of measurements, and design a state feedback controller that
will optimize a quadratic function of the state and the input. Such a controller is
known as Linear Quadratic Regulator (LQR) and is within the realm of optimization

based control.

8.1 Finite horizon optimal control problem
8.1.1 Problem statement

Consider a system whose state starts from x(0) = x( and evolves according to
@(t) = Ax(t) + Buf(t).

We also consider a finite horizon problem with horizon length 7', and aim at de-
signing a control input trajectory u(-) that is optimal with respect to a certain
cost criterion over the time interval [0, 7], while resulting in a state trajectory that
satisfies the ODE above and the initial condition. We take the cost criterion to be
a cummulative penalty over the time horizon on the state and the control input,

namely,

Jw) = | g (2()TQu(t) + u(®)” Ru(t) )dt + (1) Qra(T),

terminal cost

running cost
where the integral acts like the continuous analogue of summation, accumulating

penalty terms corresponding to the different time instances within our horizon.
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Overall, the cost function is the sum of a running cost, which penalizes the state
and the input, and a terminal cost, which penalizes the state at the end of the

horizon. We can further distinguish three terms:

1. Running state penalty: x(¢)" Qx(t). This is a quadratic penalty on the state
x(t) at any ¢ within the given horizon, with Q@ = Q" = 0 (symmetric and
positive semidefinite).

2. Running input penalty: u(t)" Ru(t). This is a quadratic penalty on the state
u(t) at any t within the given horizon, with R = R" = 0 (symmetric and
positive definite).

3. Terminal state penalty: x(T)'Q7x(T). This is a quadratic penalty on the
state (T at the end of the horizon, with Q7 = Qf = 0 (symmetric and

positive semidefinite).

Notice that if ()7 = 0 then we only have a running but no terminal cost, while if
@ = Qr =0and R =1, then we just penalize the input in the cost function, as in
the case of minimum energy controllers. It should be noted that the cost function
J depends on the control input u that we seek to determine, as well as on the
initial state x( and the length of the time horizon T" (even though the dependency
on these parameters is not made explicit). J does not depend on the state z(t), as
this is an “internal” variable, and as the ODE evolves then states can be written
as functions of the initial condition and past inputs (as also witnessed by the state

solution of an LTI system).

The problem of seeking a control input trajectory that is optimal with respect to
this quadratic cost, while being compatible with the linear ODE, is called finite

horizon Linear Quadratic Regulator (LQR) problem. It can be written as

Finite horizon LQR problem: Find u(-) : [0,7] — R™ such that we

minimize J(u) = [ (2(t)Qx(t) + u(t)” Ru(t))dt + 2(T) Qrax(T)
subject to #(t) = Ax(t) + Bu(t), for all t € [0,T],
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8.1.2 Riccati equation and optimal controller

The controller that solves the optimal control problem, or in other words the LQR
controller, admits a closed form expression. This is provided in following theorem

which establishes the LQR solution and the associated optimal cost.

Theorem 6 (finite horizon LQR controller). The finite horizon LQR problem

can be solved by means of the following steps:
1. Solve the so called Riccati differential equation
—P(t)=Pt)A+A"P(t)+Q — P(t)BR'B' P(t)
with P(T) = Qr,

and denote its (unique) solution by P(t) € R™"™. For any t, P(t) is

symmetric and positive semidefinite.

2. The finite horizon optimal LQR controller can be then constructed as
w(t) = K(t)x(t) = —R BT P(t)x(t),
where P(t) is the solution of the Riccati differential equation over [0, T].

3. The associated optimal LQR cost is given by

J(u*) = x4 P(0)xo.

It should be remarked that:

e To compute P(t) as a function of time we need to solve the Riccati differential
equation. This is a differential equation that involves a matrix, so we have as
many ODEs as the number of entries of P(t). Existence and uniqueness of
solutions to the Riccati equation relies on the fact that P(¢) (and hence also

the cost) can be shown to remain bounded over finite time horizons.

e The Riccati differential equation is solved backwards in time, as we are given
a terminal condition P(T) = @, and seek the solution for ¢t € [0,T]. This
implies that for a given horizon 7" we first need to solve the Riccati equation

over [0, 77, and then construct the optimal controller.
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e The finite horizon LQR controller is state feedback, however, the feedback
gain matrix is no longer time invariant, but depends on time through P(t).
The state feedback gain matrix is then given by K (t) = —R™'BT P(t), where

R~!is well defined since R is positive definite.

e The optimal cost depends only the initial state zy and the initial value of the

solution to the Riccati equation P(0).

We first illustrate Theorem 6 by means of an example for a single state system, and
then state its proof.

¢ Example 19. Let T be a given finite horizon length, and consider an
LTI system whose evolves according to &(t) = u(t), starting from z(0) = xy.

Design a state feedback control input that minimizes the cost

T
| (@@ +u(t)’)dt.
Solution: By the given ODE we infer that A =0 and B = 1, both scalars as

the system has n = 1 state. From the cost function description we have that
Q=1 R=1, and Qr=0. [all scalars]
As a result, P(t) is a scalar that needs to satisfy the Riccati equation, which
under the numerical values above becomes:
—P(t)=Pt)A+ A"P(t)+Q — P() BR'B"P(¢t)
=1-P(®)"
with P(T') = 0. We solve this ODE by separation of variables. We have that

(P(t) # £1 as this would not be compatible with the terminal condition)
1 1

1— P? 1— P?

[using partial fraction expansion]

dP:—dt:>/ dP:—/dt

& /(;1_1P+;lip>dP:—t+constant

1 1
= — §ln(|1 — P|) + 511’1(\1 + P|) = —t + constant
[using P(T) = 0 = constant = T]

1+ P
1-P

< In

e2(T—t) _ 1
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Notice that P(t) > 0 for all t € [0,T] (we used \HP' = 1L as the other case

is not compatible with the terminal condition). The optimal LQR controller is

e2(T—7,‘) —1

uw*(t) = —R'BTP(t)x(t) = —eQ(T_—t)H:c(t),

resulting in an optimal cost J(u*) = xj P(0)xq = ez;;%x%

Proof of Theorem 6. There are several approaches to obtain the LQR controller
description, e.g., by means of dynamic programming or via the calculus of variations.
Here, we will do this by means of the so called “completing the square” approach;
its name will be clear in the sequel. It should be noted that we will not show that
the Riccati equation admits a unique solution; we will accept this as a fact and

denote this solution by P(t).
The cost criterion that we seek to minimize can be written as
J(w) = [ («(t) Qu(t) +u(t) Ru(t))dt +=(T) Qra(T)
[adding and subtracting zy P(0)xy and since Qr = P(T)]
= /O (x(t)"Qu(t) + ult )TRu(t))dt
+a(T)" P(T)2(T) — x4 P(0)zo + 29 P(0)zy
[since z(T)" P(T)xz(T) — z P(0)x /OT (jt( ()" P(t)z(t))dt]
= [ (#()) Qx(t) + u(t) Ru(t) + ;i«x(tfP(t)x(t)))dt + 25 P(0)a

Differentiating the quadratic expression we obtain that

jt(x(t)TP(t)x(t))dt

= x(t) " P()a(t) + @ (t) " P(t)x(t) + () P(t)x(t)

= x(t) " P(t)(Ax(t) + Bu(t)) + (Ax(t) + Bu(t)) " P(t)a(t) + x(t) T P(t)x(t)

= ()" (P()A+ ATP(t) + P(t) )a(t) + 2() P(t)Bu(t) + u(t) BT P(t)(t)
= 2(t)T (P()BR'BTP(t) - Q)a(t) + x(t) P(t) Bu(t) + u(t) BT P(t)x(2),

where the second equality is due to the fact that #(¢) = Az(t)+ Bu(t), and the last

one is due to the fact that “blue” terms are equal since P(t) satisfies the Riccati
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differential equation. Substituting this derivative within the worked out expression

for J(u) (notice that the terms involving ) cancel out) we obtain that
J(w)= [ [#(t) P()BR™' BT P(t)a(t) + u(t) Ru(?)
+2(t) P()Bu(t) + u(t) BT P(t)x(t)|dt + zg P(0)xo

= ["(ut) + RBTP(t)x(®) R (u(t) + R BTP()2())dt
+ x4 P(0) .

The last step can be shown by direct calculation and using the fact that P(%) is
symmetric (to see this expand the product in the second equality and notice that
it is identical to the sum in the square brackets in the first equality). The resulting
expression involves a quadratic integrand, thus justifying the fact that this procedure
is termed “completion of the square”. Only the first term in that expression depends
on u and, since R > 0, this quantity is minimized if the integrand is zero. This
leads to

u*(t) = =R 'BTP(t)x(t),

while the optimal cost becomes J(u*) = x] P(0)xy, thus concluding the proof.

8.2 Infinite horizon optimal control problem

We consider now an optimal control problem with an infinite time horizon. To this
end, there is no longer a terminal cost and we let 7' — oo, leading to the following

infinite horizon LQR problem.

Infinite horizon LQR problem: Find u(-) such that we

minimize J(u) = [~ (2(t) Qu(t) + u(t)” Ru(t) )t
subject to #(t) = Ax(t) + Bu(t), for all ¢,

z(0) = xo.

Notice that the difference with the finite horizon LQR problem is that the cost

criterion is now the cumulative penalty over an infinite time horizon. We can
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obtain the optimal solution to this problem as established in the following theorem,
by taking the limit as 7" — oo of the associated finite horizon problem with zero

terminal cost.

Theorem 7 (infinite horizon LQR controller). Assume that (A, B) is con-
trollable. The infinite horizon LQR problem can be solved by means of the

following steps:

1. For an arbitrary T let Q7 = 0 and solve the Riccati differential equation
introduced in the finite horizon case. Denote its solution by P(t), note
that P(t) depends on T, and compute

P = lim P(t).

T—o00

Notice that the limit is with respect to T' and not t. It turns out that the
limit exists and P € R™" will be a symmetric constant matrix, indepen-
dent of t, and in particular, it will be a positive semidefinite solution to

the algebraic Riccati equation

PA+A'"P+Q—-PBR'B"P=0.

2. The infinite horizon optimal LQR controller can be then constructed as

uw*(t) = Kz(t) = =R 'B' Px(t).

3. The optimal LQR cost is given by

J(u*) = x Pxy.
It should be remarked that:

e Unlike the finite horizon case, the cost may no longer be bounded. To ensure
that the cost does not escape to infinity we impose the assumption that (A, B)
is controllable. In fact, we could allow for systems that are not necessary

controllable, but stabilizable.

e We will not show formally that P is a constant matrix, i.e., independent of t.

This relies on the fact that the system under consideration is time invariant.
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Moreover, P is guaranteed to be a solution of the algebraic Riccati equation
(notice that this follows from the differential one as P(t) vanishes for constant
matrices), however, it is not necessarily a unique one, and other solutions
(possibly negative definite) may also exist (see Example 20). For the other

solutions, the resulting controller is not guaranteed to be optimal.

The optimal controller is again state feedback, however, this time the feedback
gain matrix K = —R'BT P is time invariant. As in the finite horizon case,

the optimal cost depends only on the initial state z.

The constructed optimal controller is not guaranteed to result in a stable closed
loop system. This is illustrated in Example 21 below. This example provides
insight on the underlying issues for such an undesirable behaviour. We will
then discuss which additional property our system needs to exhibit so that we

overcome this and achieve a stable closed loop performance.

Example 20. Consider the infinite horizon counterpart of Example

19. Determine the optimal infinite horizon LQR controller, and specify all

solutions of the algebraic Riccati equation.

Solution: By Example 19 (notice that Qr = 0) we have that

2(T—t) __ 1 B
€ = P = lim P(t) =1,

P(t) = e2(T'—t) 1 1 T=00

i.e., taking the limit as T" — oo we obtain P as the limit of the solution of the
Riccati differential equation. The infinite horizon LQR controller is then given
by u*(t) = —ax(t), which results in the closed loop system i(t) = —ux(t),
which is asymptotically stable (scalar state, eigenvalue equals to —1). The

optimal LQR cost is J(u*) = z} Py = 2.

For the particular system and cost function matrices (all scalars in this case) —

see Example 19 for numerical values) — the algebraic Riccati equation becomes

PA+A'"P+Q—-PBR'B'"P=0
= 1-P*=0
= P=1orP=-1.
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We thus observe that the algebraic Riccati equation admits multiple solutions,

with P being one of them.

¢ Example 21. Consider an LTI system whose state evolves according to
©(t) = x(t) + u(t), starting from x(0) = xo. Design a state feedback control

input that minimizes the cost

| eyt

Moreover, specify all solutions of the algebraic Riccati equation.

Solution: The integrand of the cost function depends only on the input, and
in fact it is quadratic in u(t). Therefore, for this case there is no need to
determine the solution of the Riccati differential equation; it suffices to notice
that the cost is minimized if u*(t) = 0, which is thus the optimal controller

resulting in zero cost. The closed loop system becomes then

For the given system and cost function we have that A= B =1, () =0 and

R =1 (all scalars). The algebraic Riccati equation becomes then

PA+A'"P+Q—-PBR'B"P=0
= 2P -P?=0 = P(2-P)=0
= P=0or P =2.

We thus observe again that the algebraic Riccati equation admits multiple

solutions, both of them in this case being positive semidefinite.

Example 21 illustrates that the infinite horizon LQR controller does not necessarily
lead to a stable closed loop system. To see this notice that the solution of the
closed loop system @(t) = x(t) escapes to infinity. The reason for this is that
the original system when no input is applied is unstable (scalar state, eigenvalue is
equal to 1), however, controllable as the controllability matrix in this case would be
P=B=1 (A= B =1, all of them being scalars). However, the (unstable but
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controllable) state is not penalized in the LQR cost that involves only the input.
As a result an increase of the system state (as this escapes to infinity) does not
result in an increase in the cost function we seek to minimize, hence the resulting

controller does not attempt to prevent this increase.

It turns out, that to avoid such cases we need to “see” the unstable parts of the
system in the LQR cost. Formally, this can be achieved if matrix () that penalizes
the state in the cost can be written as CTQC, where Q is some positive definite
matrix, and the pair (A, C') is observable. In fact, the system does not necessarily

need to be observable, but detectable.

Overall, combining this with Theorem 7, if () admits a representation as outlined
above, and the pairs (A, B) and (A, C) are controllable and observable, respectively,
then the infinite horizon LQR controller results in a stable (in fact asymptotically
stable) closed loop performance. Moreover, in this case P is the unique positive
semidefinite solution of the algebraic Riccati equation. This suggests that rather
than solving the differential Riccati equation and letting T — oo to construct P,
we can directly solve the algebraic Riccati equation and keep its (unique this time)
positive semidefinite solution. Notice that this can be verified in Example 20 (taking
the output to be equal to the single state, i.e., C' = 1), where a unique positive
semidefinite solution exists (the other one is negative definite), while it is not the

case in Example 21, as () is zero thus not admitting the desired representation.

Remark. We provide some further discussion on the assumptions required for an
asymptotically stable behaviour of the closed loop system, when the optimal infinite
horizon LQR controller is applied. To this end, let the output of the system be in
the form y(t) = Cz(t). The following arguments can be thought of as a sketch of
the proof for asymptotic stability of the closed loop system.

1. (A, B) controllable: Under u(t) = Kuxz(t) the closed loop system becomes
t(t) = (A+ BK)xz(t). Since (A, B) is controllable, gain choices exist so
that the eigenvalues of A + BK have negative real part. The closed loop
state solution z(t) = e+B5)z; (and hence u(t) = Kx(t)) is then bounded
by decaying exponentials, converging to zero. Under such a gain, the infinite

horizon cost would be finite (as the integral of a decaying exponential). To see
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this, notice that under such a gain K, we have that z(t) < pe *xj, where
A > 0 is real, indicating the magnitude of the smallest real part among the
eigenvalues of A + BK, and i > 0 is some positive constant. The infinite

horizon cost under such a controller can be expressed as
T T T T
J(u) = Jim [ (=()TQu(t) + u(®) Ru(t) )dt

— lim [ 2(0)7(Q + KT RK)z(t)dt

T—o0 J0

T —
= lim A s (CL‘J(Q + KTRK):C())e_z’\tdt,

T—o00
where the first equality is due to the choice of u(t), and the second one is due
to z(t) being bounded by a decaying exponential. Since Q + KT RK = 0,
notice that ¢ = 2 (:cJ(Q + KTRK)ZC()) > (0. We then have that

T —
J(u) = lim [ ce”Mdt

T—o0 J0
= lim —(1—e 7)== < oo,
T 2 2\

where the inequality is since ¢ < oo as the initial state x is arbitrary but finite.

This shows that the infinite horizon cost is finite if (A, B) is controllable.

Since under controllability we have shown that there exist gain choices for
which the cost is finite, the gain K obtained via Theorem 7 would necessarily
be one of those, as otherwise we would get an infinite and hence higher cost

(recall that we seek to minimize the cost).
2. Q =CTQC with Q > 0: Under Q = CTQC, we have
J) = [~ (=) CTQC(t) +u(t) Ru(t) )dt
= [, (w0 Qu(t) + u(t) Ru(r) ).

The fact that Q > 0 implies that we “see” the output in the cost. Therefore, to
keep the cost for the optimal input u*(¢) computed as in Theorem 7 finite, and
since the output is present in the cost, we must have lim; , ||y*(¢)|| = 0 and
lim; o ||u*(t)]] = 0, where y*(t) = Ca*(t) is the output along the optimal
trajectory (the cost is evaluates at the optimal input-output).

Notice that if the limiting behaviour of the output and the input was different
(recall that x*, and hence y*, u* as linear functions of x*, is in given by a linear

combinations of (complex) exponentials) the cost would be infinite.
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. (A, C) observable: Under observability of (A, C'), it becomes possible to infer

that lim;_, ||2*(¢)|| = O (and hence that the closed loop system is asymptoti-
cally stable), from the fact that lim;_, ||y*(¢)|| = 0 and limy;_, |[u*(¢)]| = 0.
One way to see this is to notice that if (A, C') is observable, then there exists
some gain matrix L such that the eigenvalues of A — LC have negative real

part. We then have
T*(t) = Ax*(t) + Bu*(t)
= (A — LC)z*(t) + Ly*(t) + Bu*(t),

where the second equality follows from adding and subtracting LC'z*(t), and
using y*(t) = Cz*(t). The “input” of that system Ly*(t) + Bu*(t) vanishes
as time tends to infinity (since lim; . [|y*(¢)|| = 0 and lim; ., [|[u*(¢)] = 0),
while A — LC has eigenvalues with negative real part. As a result, we have
that lim;_, ||2*(t)|| = 0, thus implying that the closed loop system (under

the optimal infinite horizon LQR controller) is asymptotically stable.

Alternatively, we could follow the derivation of p. 56, however, evaluating the
stacked vectors at ¢ — oo instead of t = 0. Thisleadsto Y = U = 0 as
limy o0 ||y () || = limy oo [[u*(2)]] = 0. Setting x%, = lim;_,o 2*(t) we have

Qur, =0< x5 =0, as Q (the observability matrix as in p. 56) is full rank.

8.3 Summary

This chapter introduced the so called Linear Quadratic Regulator (LQR) both for

finite and infinite horizon optimal control problems, and showed that the LQR

controller minimizes a cost function which is quadratic with respect to the state

and input vector subject to the linear dynamics. The main learning outcomes of

the chapter can be summarized as follows:

e Finite horizon LQR controller:

The finite horizon LQR problem is time varying and is given by
uw*(t) = =R 'BTP(t)x(t),

where P(t) is symmetric and is the unique positive semidefinite solution
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of the Riccati differential equation

—P(t)=Pt)A+A"P(t)+Q — P(t)BR'B" P(t)

e Infinite horizon LQR controller:

If (A, B) is controllable or stablizable, the infinite horizon LQR problem

is time invariant and is given by

u*(t) = —R'B' Px(t),

where P = limp_,o, P(t) is a symmetric constant matrix that results as
the limit of the solution P(t) of the Riccati differential equation with
Qr = 0. It turns out that P is a positive semidefinite solution (not

necessarily unique) of the algebraic Riccati equation
PA+A'"P+Q—-PBR'B"P=0.

If in addition @ = CTQC with @ being positive definite, and (4, C)
is observable or detectable, then P is the unique positive semidefinite
solution of the algebraic Riccati equation and the resulting LQR controller

renders the closed loop system (asymptotically) stable.



99 Appendix

9 Appendix

In this chapter we list some basic results from linear algebra and analysis that
are used throughout the notes. The statements are provided without proofs; they
constitute a condensed summary and should not be treated as a detailed exposition

of the topic.

9.1 Selected results from linear algebra

9.1.1 Vectors and independence

Definition 3 (Linear independence). A set of vectors x1,...,x, € R" is said to
be linearly independent if for scalars a, . .., a,,
ari+...+apr, =0&5a1=...=a, =0.

Otherwise, they are called linearly dependent.

9.1.2 Matrix properties

Fact 14 (Matrix product). For given matrices with arbitrary but appropriate

dimensions the matrix product satisfies the following properties:
1. Associative: (AB)C = A(BC).
2. Distributive with respect to addition: A(B + C) = AB + AC.
3. Non-commutative (in general): AB # BA.
4. Transpose: (AB)T = BTA".

Notice that despite the fact that matrices in general do not commute, there still

exist matrices such that AB = BA. As an example, consider the following case:

o1l o)~ ol o 1]

01
00
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Definition 4 (Range & null space). The range and null space associated with a

matrix A € R"™ " are given by

range(A) = {y € R™: Jx € R" such that Ax = y},
null(A) = {z € R" such that Az = 0}.

Recall that a square matrix A € R"*" is invertible if and only if range(A) = R", or
equivalently if and only if null(A) = {0}. For an invertible matrix A € R™*", we

can directly compute its inverse by

adj(A)

-1
AT = det(A)’

where det(A) denotes the determinant of A, and adj(A) is the so called adjoint ma-
trix, given by the transpose of a matrix whose (i, j)-th entry is given by (—1)"*/ M,
where M is the determinant of the (n — 1) x (n — 1) matrix that emanates if the

i-th row and j-th column of A are removed.

9.1.3 Matrix eigenvalues and eigenvectors

Definition 5 (Eigenvalues & eigenvectors). A nonzero vector w € C is called an

eigenvector of a matrix A € R™*", if there exists A\ € C such that
Aw = \w.

We then call A an eigenvalue of A.

Recall that even if the entries of A are real, the eigenvalues and eigenvectors could
be complex. The eigenvalues of a matrix A € R"*" can be determined as the n

roots of the so called characteristic polynomial, i.e.,
detOM —A) = N"+a "+ .. 4 a,_1A+a, =0,

where [ is an identity matrix with appropriate dimensions. Parameters a, ..., a,

are the coefficients of this n-th order polynomial.
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Theorem 8 (Cayley-Hamilton theorem). A matrix A € R"™ " satisfies its

characteristic polynomial, i.e.,

A"+ A+ +a, 1A+ a,l =0.

9.1.4 Matrix decomposition and positive definiteness

Definition 6 (Diagonalizable matrices). A matrix A € R™" s said to be diago-

nalizable if its eigenvectors are linearly independent.

We then have the following sufficient conditions for a matrix to be diagonalizable,

i.e., to have linearly independent eigenvectors:

1. If a matrix A € R™ " has distinct eigenvalues (i.e., A\; # A; for all i # 7), then

its eigenvectors are linearly independent.

2. If a matrix is symmetric (A = AT € R™ "), then i) its eigenvalues are real; ii)

its eigenvectors are orthonormal.

Diagonalizable matrices admit the following decomposition.

Fact 15 (Decomposition of diagonalizable matrices). If A € R"*" is a diag-
onalizable matrix, then
A=WAW 1,

where W € C™*" js a matrix whose columns are the eigenvectors of A, and
A € C™™ is a diagonal matrix whose diagonal entries correspond to the
eigenvalues of A.

If A is also symmetric (and hence diagonalizable), i.e., A= A", then

A=WAW".

Note that even if W and A could in general have complex entries, W AW ! (this
is just A) always has real entries. Intuitively this occurs since complex eigenvalues
appear in conjugate pairs and cancellations of the imaginary parts occur when

multiplying them together.
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Definition 7 (Positive definiteness). A symmetric matrix (A = AT € R™") js
positive definite and we write A = 0 if x' Az > 0 for all z # 0. It is positive
semidefinite and we write A = 0 if x " Az > 0 for all x £ 0.

Notice that A < B (inequality in the positive semidefinite sense) is equivalent to
B—A =0, orin other words x" (B — A)z > 0 all for z # 0. A consequence of this
result is that if A is symmetric, then A < max;—1 , A\i(A) [ = A\pax(A) I, where
Ai(A) denotes the i-th eigenvalue of A, A\yax(A) the largest eigenvalue of A, and

I is the identity matrix of appropriate dimension.

Fact 16 (Maximum singular value dominance). For AT A (notice it is sym-

metric even if A is not, or if A € R™*"), we have that
ATA < )\maX(ATA) I,

where \/Anax (AT A) is the maximum singular value of A.

It should be noted that the eigenvalues of A" A are non-negative so the square root

is always well defined.

9.2 Selected results from analysis
9.2.1 Norms
Definition 8 (Norm). A norm on R" is a function || - || : R" — R such that

1. Triangle inequality: ||x + z|| < ||z|| + ||Z||, for all x,Z € R™.

2. Scalar multiplication: ||ax| = |a| ||z||, for all z € R", a € R.

3. Zero element: ||z|| = 0 < x = 0 (zero vector in R").

There are many norms; in these notes we will be using the Euclidean norm

(2-norm), i.e., for any x = [x1...1,]" € R",

n
el =y 2 fl.
i=1
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Notice that for simplicity we indicate it by ||-||, without introducing a subscript. Note
that ||z|| = V& Tz, while for a matrix A € R"*" we have that ||Az| = VaTAT Az

(we used the property of the matrix product transpose).

There also exist several matrix norms, as well as induced norms. Induced norms
(as the name suggests) are induced by the application of a matrix A € R™*" on a
vector x € R", or in other words by the mapping Ax, and depend on the choice of
norm for R" (where x takes values from) and R™ (where Az takes values from).

Here, in the occasions where a matrix norm will be used, we will imply

|A|l = VAmax(ATA),  [maximum singular value],
where \/Aax(ATA) is the maximum singular value of A.

Notice that we use both || - || both for the Euclidean norm and the induced norm
above, however, the distinction should always be clear from whether the argument

is a vector or a matrix, respectively.

9.2.2 Linearity and continuity

Definition 9 (Linearity). A function f(-) : R" — R™ (possibly vector-valued) is
called linear if for any x,& € R" and scalars a1, as € R,

flarx + as®) = a1 f(x) + ao f (Z).
Definition 10 (Continuity). Consider any & € R". A function f(-) : R" — R™ is

said to be continuous at & € R"™ if for all ¢ > 0, there exists 6 > 0, such that

for any x € R" with ||z — Z|| <0 = | f(x) — f(2)] <e

Intuitively, this implies that we can always pick z close enough to a given & (0-
close), if we would like f(x) to remain close to f(Z) (e-close). A stronger property
than continuity is the so called Lipschitz continuity condition, that encompasses a

certain function growth property.

Definition 11 (Lipschitz continuity). A function f(-) : R"™ — R™ s Lipschitz

continuous if there exists a (finite) scalar L. > O such that for all z, & € R",

If(z) = F@)]] < L]z = 2.
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L is then called the Lipschitz constant of f.

Note that the Lipschitz continuity definition provided above is often referred to as
global Lipschitz continuity, as the same Lipschitz constant exists for all points z, .
Intuitively, Lipschitz continuity implies that a function cannot grow infinitely steep
(think of 22 as x tends to infinity). Lipschitz continuous functions are continuous
but not vice versa (for instance, f(x) = y/x is continuous but not Lipschitz con-
tinuous). Moreover, a function f does not need to be differentiable to be Lipschitz

continuous.

& Example 22. Show that the absolute value function f(x) = |x|

(non-differentiable at zero) is Lipschitz continuous with Lipschitz constant
L=1.

Solution: To show this we start by expanding the left-hand side in the Lip-
schitz continuity definition (note that the norm in the scalar case is just the
absolute value). We distinguish different cases according to the sign of x, .
Consider first the case where x,Z > 0. We then have that |x| = = and
|Z| = Z. Hence,

o] = 12| = |= - 4.

Consider now the case where v > 0 and & < 0. We then have that |x| = x

and || = —&, which implies that
2] — 12l = |z + 2] < |2 — 2],

where the last inequality is due to the fact that & < 0. Reversing the roles

of x and I covers the remaining cases. Therefore, in all cases we obtain

“az\ — |.%|’ < |x — |, thus showing that the absolute value is a Lipschitz

continuous function with Lipschitz constant equal to 1.

However, if a function is differentiable with bounded derivatives, then it is also

Lipschitz continuous. In general, the following implications hold:

Continuity < Lipschitz continuity <« Differentiability with bounded derivatives.



