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Questions

1. Consider an LTI system whose state evolves according to

ẋ1(t) = x2(t)

ẋ2(t) = x1(t)− 2x2(t) + u(t).

(a) Verify that it is controllable.

(b) Design a state feedback controller that places the eigenvalues of the

closed loop system at −2 and −4.

2. Consider the following LTI system:

ẋ(t) = Ax(t) +Bu(t)

=

0 0 2

1 0 0

0 2 1

x(t) +
30
0

u(t),
y(t) = Cx(t) =

[
0 0 2

]
x(t).

(a) Verify that the system is controllable.

(b) Determine K such that the state feedback u(t) = Kx(t) results in a

closed loop system with three eigenvalues at −2.

3. Consider the LTI system of Question 2.

(a) Verify that the system is observable.
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(b) If x̂(t) denotes the state estimated by means of a linear state observer

with gain matrix L, determine the dynamics of the estimation error

e(t) = x(t)− x̂(t).

(c) Determine L such that the dynamics of the estimation error have

three eigenvalues at −3.

4. Consider the transfer function

G(s) =
ω2
0

s2 + ω0s+ ω2
0

.

(a) Determine the poles of G(s) and specify their damping ratio.

(b) Determine a realization (A,B,C,D) of G(s).

(c) Compute the gains of a state feedback controller as a function of

ω0 so that the closed loop system has a complex conjugate pair of

eigenvalues with damping ratio 1√
2
.

(d) What was the purpose of this controller?

Hint: Recall that the general description of a complex conjugate pole

(eigenvalue) pair is given by −ζω0 ± jω0

√
1− ζ2, where ζ denotes the

damping ratio.

5. Consider the transfer function G(s) of Question 4, and the realization

computed in part (b). Compute the gains of a linear state observer as a

function of ω0 so that the estimation error dynamics are 10 times faster

(with the same damping ratio) than the dynamics of the closed loop

system computed in Question 4.

6. Let T be a given time horizon length, and consider the following finite
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horizon optimal control problem:

minimize

∫ T

0

u(t)2dt+ x(T )2

subject to ẋ(t) = x(t) + u(t), for all t ∈ [0, T ],

x(0) = 1.

(a) Determine matrices A and B corresponding to the state space de-

scription of the system’s dynamics. Determine matrices Q, R and

QT so that the cost criterion can be written in the form∫ T

0

(
x(t)>Qx(t) + u(t)>Ru(t)

)
dt+ x(T )>QTx(T ).

(b) State and solve the Riccati differential equation associated with this

finite horizon linear quadratic regulation (LQR) problem.

(c) Compute the optimal LQR controller and the associated optimal cost.

7. Consider the following infinite horizon optimal control problem:

minimize
1

2

∫ ∞
0

(
x1(t)

2 +
1

8
u(t)2

)
dt

subject to ẋ1(t) = x2(t), ẋ2(t) = −x1(t) + u(t), for all t,

x1(0), x2(0) : given.

Let y(t) = x1(t) denote the output of the underlying LTI system.

(a) Determine matrices A, B and C corresponding to the state space

description of the system’s dynamics. Determine matrices Q, R and

QT so that the cost criterion can be written in the form∫ ∞
0

(
x(t)>Qx(t) + u(t)>Ru(t)

)
dt.

(b) State and solve the algebraic Riccati equation associated with this

infinite horizon linear quadratic regulation (LQR) problem.

(c) Does the algebraic Riccati equation admit a unique positive semidef-

inite solution? If yes, justify whether this is anticipated.
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(d) Compute the optimal LQR controller and the associated optimal cost.

8. Consider the following LQR problem with µ > 0:

minimize

∫ ∞
0

(
µ2x(t)2 + u(t)2

)
dt

subject to ẋ(t) = u(t), for all t,

x(0) = x0.

Let y(t) = x(t) denote the output of the underlying LTI system.

(a) Compute the optimal LQR controller.

(b) Comment on the effect of the choice of µ on the behaviour of the

closed loop system state x(t).

Hint: For part (a) adapt the solution of the Riccati equation computed in

Examples 18 & 19 in the notes to account for the presence of parameter

µ in the cost function.

9. OPTIONAL: Consider an (open loop) LTI system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

with n states, a single input and a single output. Assume that a state

feedback controller u(t) = Kx(t)+ r(t) is designed with K ∈ R1×n. The

closed loop system is then given by

ẋ(t) = (A+BK)x(t) +Br(t),

y(t) = (C +DK)x(t) +Dr(t).

(a) Show that if the open loop system is controllable, then the closed

loop system is controllable as well.

(b) Use your answer in Question 1 to construct a counterexample of an

open loop system that is observable, while the closed loop is not.

Note: The condition of part (a) is in fact an “if and only if” one.


