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Logistics

Who: Kostas Margellos, Control Group, IEB 50.16
contact : kostas.margellos@eng.ox.ac.uk

When: 4 lectures,
weeks 5 & 6 – Thu, Fri @4pm

Where: LR2

Other info :
� 2 example classes (week 7) : Wed 3-5pm (LR2) – Fri 9-11am (LR3)
� Lecture slides & handwritten notes available on Canvas
� Teaching style : Mix of slides and whiteboard !
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Motivation

Networks (Power, Social, etc.)

taken from AJGpr.com

taken from cooperindustries.com taken from wikipedia.org

� Large scale infrastructures
� Multi-agent – Multiple interacting entities/users
� Heterogeneous – Different physical or technological constraints per

agent ; different objectives per agent

Challenge : Optimizing the performance of a network ...
� Computation : Problem size too big !
� Communication : Not all communication links at place ; link failures
� Information privacy : Agents may not want to share information with

everyone (e.g. facebook)
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Why go decentralized/distributed ?

1 Scalable methodology
� Communication :

Decentralized : With some central authority
Distributed : Only between neighbours

� Computation : Only local ; in parallel for all agents

2 Information privacy
� Agents do not reveal information about their preferences (encoded by

objective and constraint functions) to each other

3 Resilience to communication failures

4 Numerous applications
� Wireless networks
� Optimal power flow
� Electric vehicle charging control
� Energy management in building networks
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Decentralized vs. Distributed

1 Decentralized : All agents with a central authority/coordinator
price broadcast

electric vehicle 
tentative action

Decentralized vs. Centralized : Agents “broadcast” only tentative
information not everything

2 Distributed : Only with some agents, termed neighbours
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Multi-agent problem classes

Motivating example : Electric vehicle charging
price broadcast

electric vehicle 
tentative action

Charging rate of each vehicle : xi (in units of power)
Electric vehicles are like batteries : Xi encodes limits on charging rate

Price depends on everybody’s consumption

minimize �
i

xi
�p(�

i

xi) [price function p(⋅)]
subject to : xi ∈ Xi , for all i [limitations on the charging rate]
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Multi-agent problem classes

Cost coupled problems

minimize F (x1, . . . , xm)
subject to

xi ∈ Xi , ∀i = 1, . . . ,m

Agents have separate decisions : xi for agent i
Agents have separate constraint sets : Xi for agent i
Agents aim at minimizing a single objective function F that couples
their decisions
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Multi-agent problem classes

Decision coupled problems

minimize
m�
i=1 fi(x)

subject to
x ∈ Xi , ∀i = 1, . . . ,m

Agents have a common decision : x for all agents
Agents have separate constraint sets : Xi for agent i
Agents have separate objective functions : fi for agent i
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Multi-agent problem classes

Constraint coupled problems : Electric vehicle charging
price broadcast

electric vehicle 
tentative action

Charging rate of each vehicle : xi (in units of power)
Electric vehicles are like batteries : Xi encodes limits on charging rate

Price independent of others consumption

minimize �
i

c�i xi [charging cost]

subject to : xi ∈ Xi , for all i [limitations on the charging rate]

�
i

�Aixi − b

m
� ≤ 0 [power grid constraint]
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Multi-agent problem classes

Constraint coupled problems (cont’d)

minimize
m�
i=1 fi(xi)

subject to
xi ∈ Xi , ∀i = 1, . . . ,m
m�
i=1gi(xi) ≤ 0

Agents have separate decisions : xi for agent i
Agents have separate constraint sets : Xi for agent i
Agents have a common constraint that couples their decisions, i.e.∑i gi(xi) ≤ 0
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Can we transform one problem class to another ?
From decision coupled to constraint coupled problems

minimize �
i

fi(xi)
subject to

xi ∈ Xi , ∀i = 1, . . . ,m
xi = x , ∀i = 1, . . . ,m

Introduce m new decision vectors, as many as the agents :
xi , i = 1, . . . ,m
Introduce consistency constraints : make sure all those auxiliary
decisions are the same, i.e. xi = x for all i = 1, . . . ,m
Price to pay : Number of constraints grows with the number of agents
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Can we transform one problem class to another ?
From cost coupled to constraint coupled problems

minimize � =�
i

�

m

subject to
xi ∈ Xi , ∀i = 1, . . . ,m
F (x1, . . . , xm) ≤ �

Introduce an additional scalar epigraphic variable �

Move coupling to the constraints, i.e. F (xi , . . . , xm) ≤ �
Price to pay : Coupling can not be split among several functions, each
of them depending only on xi , i.e. not in the form ∑i gi(xi) ≤ 0
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Can we transform one problem class to another ?
From decision coupled to cost coupled problems

minimize F (x1, . . . , xm) =�
i

fi(x) + IXi (x)
subject to : no constraints

Lift the constraints in the objective function via characteristic
functions, i.e., for each i ,

IXi (x) = � 0 if x ∈ Xi ;+∞ otherwise.

New problem does not have any constraints
Price to pay : The new objective function is not differentiable, even if
each fi is differentiable
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Can we transform one problem class to another ?

Yes, but ...

We can transform from some problem classes to others

Often those reformulations are useful

However, they come with drawbacks :
� may increase number of decision variables,
� or lead to non-separable constraints,
� or non-differentiable objective functions

So necessary to develop algorithms tailored to each problem class
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Part I : Decentralized algorithms
Cost coupled problems

Cost coupled problems 1

minimize F (x1, . . . , xm)
subject to

xi ∈ Xi , ∀i = 1, . . . ,m

Denote by x� a minimizer of the cost coupled problem

Denote by F � its minimum value

1. Throughout we assume that all functions and sets are convex
Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 16 / 26



Mathematical prelims : Lipschitz & Contraction mappings

Let T ∶ X → X . We call T a Lipschitz mapping if there exists ↵ > 0
such that

�T (x) −T (y)� ≤ ↵�x − y�, for all x , y ∈ X
We call a Lipschitz mapping T contraction mapping if ↵ ∈ [0,1)
Parameter ↵ ∈ [0,1) is called the modulus of contraction of T

We should always specify the norm

Convergence of contractive iterations
Assume T is a contraction with modulus ↵ ∈ [0,1) and X is a closed set.

1 T has a unique fixed-point T (x�) = x�
2 The Picard-Banach iteration x(k + 1) = T�x(k)� converges to x�

geometrically, i.e.

�x(k) − x�� ≤ ↵k�x(0) − x��, for all k ≥ 0
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Mathematical prelims : Convexity vs strong convexity

f (x + (1 - )y)

f (x) + (1 - )f (y)

z

f (z)

x y

f (x) + f (x)T(y - x)

y

f (y)

x

Strong convexity is “stronger” than convexity – uniqueness of optimum
& lower bound on growth

f (y) ≥ f (x) +∇f (x)�(y − x) + ��y − x�2, where � > 0

We can fit a quadratic function between the “true” function and its
linear approximation
For quadratic functions strong is the same with strict convexity
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The Jacobi algorithm

Iterative algorithm

Initialize: Select (arbitrarily) xi(0) ∈ Xi , for all i = 1, . . . ,m

For each iteration k = 1, . . .

1 Collect x(k) = �x1(k), . . . , xm(k)� from central authority
2 Agents update their local decision in parallel, i.e. for all

i = 1, . . . ,m

xi(k + 1) = arg min
xi∈Xi

F�x1(k), . . . , xi−1(k), xi , xi+1(k), . . . , xm(k)�
end for
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The Jacobi algorithm

Agents coupled via a single objective function

minimize F (x1, . . . , xm)
subject to : xi ∈ Xi , ∀i = 1, . . . ,m

1 Collect x(k) = �x1(k), . . . , xm(k)� from central authority

2 Agents update their local decision in parallel

xi(k + 1) = arg min
xi∈Xi

F�x1(k), . . . , xi−1(k), xi , xi+1(k), . . . , xm(k)�

Block coordinate descent method ; agents act in best response

Parallelizable method : Agent i uses the k-th updates of all agents
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Jacobi algorithm : Convergence

Theorem : Convergence of Jacobi algorithm
If F is differentiable and there exists small enough � such that

T (x) = x − �∇F (x)
is a contraction mapping (modulus in [0,1)), then there exists a minimizer
x� of the cost coupled problem such that

lim
k→∞ �x(k) − x�� = 0

Best response but a gradient step appears in convergence

A sufficient condition for T to be a contractive map is F to be a
strongly convex function

Can we relax this condition ?
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The regularized Jacobi algorithm

1 Collect x(k) = �x1(k), . . . , xm(k)� from central authority

2 Agents update their local decision in parallel

xi(k + 1) = arg min
xi∈Xi

F�x1(k), . . . , xi−1(k), xi ,xi+1(k), . . . , xm(k)�
+ c�xi − xi(k)�22

Jacobi algorithm + regularization term

Penalty term acts like “inertia” from previous tentative solution of
agent i

New objective function is strongly convex due to regularization
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Regularized Jacobi algorithm : Convergence

Theorem : Convergence of regularized Jacobi algorithm
Assume that F is convex and ∇F is Lipschitz continuous with constant L.
Assume also that

c > m − 1
2m − 1

√
mL

We then have that limk→∞ �F (x(k)) − F �� = 0

Algorithm convergences in value, not necessarily in iterates, i.e. not
necessarily limk→∞ �x(k) − x�� = 0

Penalty term c increases as m →∞
The more agents the “slower” the overall process
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The Gauss-Seidel algorithm

1 Collect x(k) = �x1(k + 1), . . . , xi−1(k + 1), xi(k), . . . , xm(k)�
2 Agent i updates

xi(k + 1)
= arg min

xi∈Xi

F�x1(k + 1), . . . , xi−1(k + 1), xi , xi+1(k), . . . , xm(k)�

Block coordinate descent method ; agents act in best response

Sequential : Agent i uses the (k + 1)-th updates of preceding agents

Similar convergence results with Jacobi algorithm : If F is
strongly convex (strict convexity is sufficient) with respect to each
individual argument, then limk→∞ �F (x(k)) − F �� = 0
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Summary

Decentralized algorithms for cost coupled problems

minimize F (x1, . . . , xm)
subject to xi ∈ Xi , ∀i = 1, . . . ,m

The Jacobi algorithm : parallel updates
F differentiable and strongly convex

The regularized Jacobi algorithm : parallel updates
F differentiable and just convex

The Gauss-Seidel algorithm : sequential updates
F differentiable and strongly convex per agent’s decision
⇒ For quadratic functions x�Qx :

– convex if Q � 0 ; strongly convex if Q � 0
– Strong convexity = strict convexity
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Thank you for your attention !
Questions ?

Contact at :
kostas.margellos@eng.ox.ac.uk
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C20 Distributed Systems
Lecture 2

Kostas Margellos

University of Oxford
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Recap

Decentralized algorithms for cost coupled problems

minimize F (x1, . . . , xm)
subject to xi ∈ Xi , ∀i = 1, . . . ,m

The Jacobi algorithm : parallel updates
F differentiable and strongly convex

The regularized Jacobi algorithm : parallel updates
F differentiable and just convex

The Gauss-Seidel algorithm : sequential updates
F differentiable and strongly convex per agent’s decision
⇒ For quadratic functions x�Qx :

– convex if Q � 0 ; strongly convex if Q � 0
– Strong convexity = strict convexity
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Part I : Decentralized algorithms
Decision coupled problems

Decision coupled problems – The primal

minimize �
i

fi(x)
subject to

x ∈ Xi , ∀i = 1, . . . .m
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Part I : Decentralized algorithms
Decision coupled problems

Decentralized solution roadmap

1 The main algorithm for this is the Alternating Direction Method of
Multipliers (ADMM)

2 The predecessor of ADMM is the Augmented Lagrangian algorithm

3 The Augmented Lagrangian is in turn based on the Proximal algorithm

Proximal �⇒ Augmented Lagrangian �⇒ ADMM
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The proximal minimization algorithm

Consider a differentiable function F . The following problems are
equivalent

Standard minimization program

minimize F (x)
subject to : x ∈ X

Proximal minimization program

minimize F (x) + 1
2c
�x − y�2

subject to : x ∈ X , y ∈ Rn

The proximal problem has an objective function which is differentiable
and strongly convex (for any fixed y)

We can solve it iteratively via the Gauss-Seidel algorithm ;
converges for any c > 0 (see Lecture 1)

Alternate between minimizing x and y
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The proximal minimization algorithm

The following problems are equivalent

Standard minimization program

minimize F (x)
subject to : x ∈ X

Proximal minimization program

minimize F (x) + 1
2c
�x − y�2

subject to : x ∈ X , y ∈ Rn

Proximal algorithm :
1 x(k + 1) = argminx∈X F (x) + 1

2c �x − y(k)�2
2 y(k + 1) = x(k + 1)

... or
1 x(k + 1) = argminx∈X F (x) + 1

2c �x − x(k)�2
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The proximal minimization algorithm
Geometric interpretation

Let �c(y) = minF (x) + 1

2c �x − y�2 achieved at x = x(y , c)
Hence, �c(y) = F (x(y ,c)) + 1

2c �x(y ,c) − y�2 ≤ F (x) + 1

2c �x − y�2
⇒ �c(y) − 1

2c
�x − y�2 ≤ F (x), with equality at x = x(y , c)
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The proximal minimization algorithm
Geometric interpretation

Effect of large and small values of c
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The proximal minimization algorithm
Geometric interpretation

Effect of the growth of F (flat and steep functions)
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The augmented Lagrangian algorithm

Consider the following problems

Standard program

minimizex∈X F (x)
subject to : Ax = b

Augmented program

minimizex∈X F (x) + c

2
�Ax − b�2

subject to : Ax = b
Trivially equivalent problems : For any feasible x , the “proxy” term
becomes zero

Resembles the structure of the proximal algorithm

Ax = b models complicating constraints :
if F (x) = ∑i fi(xi) and X = X1 × . . . ×Xm, then Ax = b models
coupling among agents’ decisions
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The augmented Lagrangian algorithm

Construct the Lagrangian of the augmented program

Lc(x ,�) = F (x) + ��(Ax − b) + c

2
�Ax − b�2

Augmented Lagrangian algorithm :
1 x(k + 1) = argminx∈X F (x) + �(k)�(Ax − b) + c

2
�Ax − b�2

2 �(k + 1) = �(k) + c�Ax(k + 1) − b�
For simplicity we assumed a unique minimum for the primal variables ;
this depends on A

Apply a primal-dual scheme : minimization for primal followed by
gradient ascent for dual
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The augmented Lagrangian algorithm

Augmented Lagrangian algorithm :
1 x(k + 1) = argminx∈X F (x) + �(k)�(Ax − b) + c

2
�Ax − b�2

2 �(k + 1) = �(k) + c�Ax(k + 1) − b�
Theorem : Convergence of Augmented Lagrangian algorithm
For any c > 0, we have that :

1 there exists an optimal dual solution �� such that

lim
k→∞ ��(k) − ��� = 0

2 primal iterates converge to the optimal value F �, i.e.

lim
k→∞ �F (x(k)) − F �� = 0
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Proof

Augmented Lagrangian algorithm :
1 x(k + 1) = argminx∈X F (x) + �(k)�(Ax − b) + c

2
�Ax − b�2

2 �(k + 1) = �(k) + c�Ax(k + 1) − b�
Notice that the dual function of the original problem is given by

q(y) = min
x∈X F (x) + y�(Ax − b)

where y contains the dual variables associated with Ax ≤ b
Step 1 : Equivalently write the primal minimization step as

min
x∈X F (x) + �(k)�(Ax − b) + c

2
�Ax − b�2

= min
x∈X , z, Ax−b=z F (x) + �(k)�z + c

2
�z�2

The minimizers are denoted by x(k + 1) and z(k + 1)
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Proof (cont’d)

Step 2 :
Dualize the coupling constraint in Step 1 using multipliers y and
consider the optimum of the dual problem

y� = argmax
y
�min

x∈X �F (x) + y�(Ax − b)� +min
z
�(�(k) − y)�z + c

2
�z�2��

Using the definition of the q(y) this is equivalent to

y� = argmax
y
�q(y) +min

z
�(�(k) − y)�z + c

2
�z�2��

The inner minimization is an unconstrained quadratic program ;
calculate its minimizer by setting the objective’s gradient equal to zero

z̄ = y − �(k)
c

and hence z(k + 1) = y� − �(k)
c
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Proof (cont’d)

Step 3 :
Substituting back the value of z̄

y� = argmax
y
�q(y) +min

z
�(�(k) − y)�z + c

2
�z�2��

= argmax
y
�q(y) − 1

2c
�y − �(k)�2�

At the same time, due to the equality constraint in Step 1,
z(k + 1) = Ax(k + 1) − b, hence

�(k + 1) = �(k) + c�Ax(k + 1) − b� �⇒ �(k + 1) = y�
which in turn implies that

�(k + 1) = argmax
y

q(y) − 1
2c
�y − �(k)�2
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Proof (cont’d)

Step 4 : Putting everything together ...
The augmented Lagrangian primal dual scheme

1 x(k + 1) = argminx∈X F (x) + �(k)�(Ax − b) + c
2
�Ax − b�2

2 �(k + 1) = �(k) + c�Ax(k + 1) − b�
... is equivalent to

1 �(k + 1) = argmaxy q(y) − 1

2c �y − �(k)�2
Proximal algorithm for the dual function q(y) !
It converges for any c as q(y) is the dual function thus always
concave, i.e. limk→∞ ��(k) − ��� = 0 for some optimal ��
For the primal variables we can only show something slightly weaker :
they asymptotically achieve the optimal value F �
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Back to decision coupled problems

Recall the equivalence between decision and constraint coupled problems

Decision coupled problem

minimize �
i

fi(x)
subject to : x ∈ Xi , ∀i

Constraint coupled problem

minimize �
i

fi(xi)
subject to : xi ∈ Xi , ∀i

xi = z , ∀i
We will show that this constraint coupled problem is in the form of

minimizex∈X F (x)
subject to : Ax = b
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Decision coupled problems

Consider the following asignements :
Decision vector

x ← (x1, . . . , xm, z)
Constraint sets

X ← X1 × . . . ×Xm ×Rn

Objective function
F (x1, . . . , xm, z)←�

i

fi(xi)
Matrices A and b :

Ax = b ⇔
���������

−1 0 . . . 0 1
0 −1 . . . 0 1⋮ ⋮ ⋮
0 0 . . . −1 1

���������

���������

x1⋮
xm
z

���������
= 0

Dual variable : �← (�1, . . . , �m)
�(k)�(Ax − b) =�

i

��i (k)(z − xi) and �Ax − b�2 =�
i

�z − xi�2
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Decision coupled problems

Augmented Lagrangian for the reformulated constraint coupled problem

1 Primal update

�x1(k + 1), . . . , xm(k + 1), z(k + 1)�
= arg min

x1∈X1,...,xm∈Xm,z
�
i

fi(xi) + ��i (k)(z − xi) + c

2
�z − xi�2

2 Dual update

�i(k + 1) = �i(k) + c(z(k + 1) − xi(k + 1))
Primal update in the form cost coupled problems via a single function∑i fi(xi) + �i(k)�(z − xi) + c

2
�z − xi�2

Can solve via Gauss-Seidel algorithm, alternating between minimizing
with respect to (x1, . . . , xm) and z
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Decision coupled problems

Primal update : Can solve via Gauss-Seidel algorithm, alternating between
minimizing with respect to (x1, . . . , xm) and z

�x1(k + 1), . . . , xm(k + 1), x(k + 1)�
= arg min

x1∈X1,...,xm∈Xm,z
�
i

fi(xi) + ��i (k)(z − xi) + c

2
�z − xi�2

Update of z : Unconstrained quadratic minimization with respect to
z . Take the derivative and set it equal to zero leads to

z = 1
m
�
i

xi − 1
mc
�
i

�i(k)
Update of x1, . . . , xm : For fixed z problem is separable across agents
(no longer coupled in the cost). Hence for all i ,

xi = arg min
xi∈Xi

fi(xi) − �i(k)�xi + c

2
�z − xi�2
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Decision coupled problems

begin loop
1 Primal update for z information from central authority

z = 1
m
�
i

xi − 1
mc
�
i

�i(k)
2 Primal update for xi in parallel for all agents

xi = arg min
xi∈Xi

fi(xi) − �i(k)�xi + c

2
�z − xi�2

end loop
3 Dual update in parallel for all agents

�i(k + 1) = �i(k) + c(z(k + 1) − xi(k + 1))
Nested iteration with Gauss-Seidel inner loop – Can we do any better ?
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Decision coupled problems

What if we only do one Gauss-Seidel pass ?

1 Primal update for z information from central authority

z(k + 1) = 1
m
�
i

xi(k) − 1
mc
�
i

�i(k)
2 Primal update for xi in parallel for all agents

xi(k + 1) = arg min
xi∈Xi

fi(xi) − �i(k)�xi + c

2
�z(k + 1) − xi�2

3 Dual update in parallel for all agents

�i(k + 1) = �i(k) + c(z(k + 1) − xi(k + 1))
Does this scheme converge ? ADMM provides the answer ! Lecture 3
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Summary

Decision coupled problems

minimize �
i

fi(x)
subject to

x ∈ Xi , ∀i = 1, . . . .m

Intriduced three different algorithms
Proximal minimization algorithm
Augmented Lagrangian algorithm
Augmented Lagrangian with one pass of the inner loop = ADMM

Proximal �⇒ Augmented Lagrangian �⇒ ADMM
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Thank you for your attention !
Questions ?

Contact at :
kostas.margellos@eng.ox.ac.uk
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C20 Distributed Systems
Lecture 3

Kostas Margellos

University of Oxford
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Recap

Decision coupled problems

minimize �
i

fi(x)

subject to
x ∈ Xi , ∀i = 1, . . . .m

Intriduced three different algorithms
Proximal minimization algorithm
Augmented Lagrangian algorithm
Augmented Lagrangian with one pass of the inner loop = ADMM

Proximal �⇒ Augmented Lagrangian �⇒ ADMM
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Recap : Augmented Lagrangian algorithm

Inner lopp : Gauss-Seidel algorithm !

begin loop
1 Primal update for z information from central authority

z = 1
m
�
i

xi −
1

mc
�
i

�i(k)

2 Primal update for xi in parallel for all agents

xi = arg min
xi∈Xi

fi(xi) − �i(k)�xi +
c

2
�z − xi�2

end loop
3 Dual update in parallel for all agents

�i(k + 1) = �i(k) + c(z(k + 1) − xi(k + 1))
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Example

Feasibility problem – part of Question 4, Example Paper
Find a point x� at the intersection (assumed to be non-empty) of two
(possibly different) convex sets X1 and X2, i.e.

minimize 0 [any constant would work]
subject to x ∈ X1 and x ∈ X2

Apply Augmented Lagrangian algorithm initializing at �1(0) = �2(0) = 0.

Example

Feasibility problem
Find a point x at the intersection (assumed to be non-empty) of two
convex sets X1 and X2, i.e.

minimize 0 [any constant would work]
subject to x ∈ X1 and x ∈ X2

x1(0) x2(0) x1(1) x2(1) z(1) x� z(2)

Constraint coupled problems

X1 X2 x Question 6, Example paper : Solve the z-minimization analytically
Quadratic objective subject to affine equality constraint
Find unconstraint minimizer and project on ∑i zi = 0
Notice that �1(k) = . . . = �m(k) for all k ≥ 1
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Example (cont’d)

Decision coupled problem with 2 agents ; notice that f1(x) = f2(x) = 0
Consider k = 0 and focus at the inner loop of the Augmented
Lagrangian algorithm
Recall that �1(0) = �2(0) = 0

Outer loop at k = 0 ; main steps of inner loop
1 z = x1+x2

2 − �1(0)+�2(0)
2c = x1+x2

2

2 x1 ← argminx1∈X1 −�1(0)x1 + c
2�z − x1�2 = argminx1∈X1

c
2�z − x1�2

x2 ← argminx2∈X2 −�2(0)x2 + c
2�z − x2�2 = argminx2∈X2

c
2�z − x2�2

Second step exhibits a nice structure and geometric interpretation
Solve the unconstrained quadratic program and project on the
constraint set (X1 and X2, respectively)
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Example (cont’d)

Denote by ⇧Xi �z� the projection of z on the set Xi

Inner loop becomes then ...

Outer loop at k = 0 ; main steps of inner loop
1 z = x1+x2

2

2 x1 ← argminx1∈X1
c
2�z − x1�2 = ⇧X1�z�

x2 ← argminx2∈X2
c
2�z − x2�2 = ⇧X2�z�

This is just the Gauss-Seidel to solve the problem

minimizez,x1∈X1,x2∈X2

c

2 �i=1,2
�z − xi�2

Hence it converges to the minimum, which occurs when x1 = x2 = z
Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 6 / 28



Example (cont’d)

Since upon convergence of the inner loop x1 = x2 = z , then the outer
loop update becomes

�i(1) = �i(0) + c(z(1) − xi(1)) = 0, for i = 1,2

Similarly, �i(k) = 0 for all k ≥ 0

Effectively we only have one loop !

Simplified single-loop algorithm
1 Averaging step : z(k + 1) = x1(k)+x2(k)

2

2 Parallel projections :
x1(k + 1) = ⇧X1�z(k + 1)� and x2(k + 1) = ⇧X2�z(k + 1)�
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Example (cont’d)

Simplified single-loop algorithm
1 Averaging step : z(k + 1) = x1(k)+x2(k)

2

2 Parallel projections :
x1(k + 1) = ⇧X1�z(k + 1)� and x2(k + 1) = ⇧X2�z(k + 1)�

Schematic illustration of the single-loop iterations
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For decision coupled problems ...

Augmented Lagrangian with one Gauss-Seidel pass = ADMM

1 Primal update for z information from central authority

z(k + 1) = 1
m
�
i

xi(k) −
1

mc
�
i

�i(k)

2 Primal update for xi in parallel for all agents

xi(k + 1) = arg min
xi∈Xi

fi(xi) − �i(k)�xi +
c

2
�z(k + 1) − xi�2

3 Dual update

�i(k + 1) = �i(k) + c(z(k + 1) − xi(k + 1))
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For decision coupled problems ...

Equivalent notation in line with ADMM literature (the roles of x and z are
reversed) – only notational change !

1 Primal update for x information from central authority

x(k + 1) = 1
m
�
i

zi(k) −
1

mc
�
i

�i(k)

2 Primal update for zi in parallel for all agents

zi(k + 1) = arg min
zi∈Xi

fi(zi) − �i(k)�zi +
c

2
�x(k + 1) − zi�2

3 Dual update

�i(k + 1) = �i(k) + c(x(k + 1) − zi(k + 1))
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The Alternating Direction Method of Multipliers (ADMM)

ADMM even more general than decision coupled problems
Splitting algorithm : decouples optimization across groups of variables

Group variables

minimize F1(x) + F2(Ax)
subject to : x ∈ C1, Ax ∈ C2

Equivalent reformulation

minimize F1(x) + F2(z)
subject to : x ∈ C1, z ∈ C2

Ax = z
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ADMM algorithm

Effectively Augmented Lagrangian with one Gauss-Seidel pass

1 x(k + 1) = argminx∈C1 F1(x) + �(k)�Ax + c
2�Ax − z(k)�2

2 z(k + 1) = argminz∈C2 F2(z) − �(k)�z + c
2�Ax(k + 1) − z�2

3 �(k + 1) = �(k) + c�Ax(k + 1) − z(k + 1)�

Theorem : Convergence of ADMM
Assume that the set of optimizers is non-empty, and either C1 is bounded
or A�A is invertible. We then have that

1 �(k) converges to an optimal dual variable.
2 �x(k), z(k)� achieves the optimal value

If A�A invertible then it converges to an optimal primal pair
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Decision coupled problems as a special case again

Original problem

minimize �
i

fi(x)

subject to : x ∈ Xi , ∀i

ADMM set-up

minimize F1(x) + F2(z)
subject to : x ∈ C1, z ∈ C2

Ax = z

Can be obtained as a special case of the ADMM set-up

To see this, let z = (z1, . . . , zm) and define A =
�������

I
⋮
I

�������
(stack of identity

matrices), hence Ax =
�������

x
⋮
x

�������
and Ax = z ⇔

�������

x
⋮
x

�������
=
�������

z1
⋮

zm

�������
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Decision coupled problems (cont’d)

Perform also the following assignments

F1(x) = 0, C1 = Rn

F2(z) =�
i

fi(zi), C2 = X1 × . . . ×Xm

For each block constraint, i.e. x = zi assign the dual vector �i ,
and let � = (�1, . . . ,�m)
The three ADMM steps become then

1 x(k + 1) = argminx∈Rn �(k)�Ax + c
2�Ax − z(k)�2

2 z(k + 1) = argminz1∈X1,...,zm∈Xm ∑i fi(zi)−�(k)�z + c
2�Ax(k + 1)− z�2

3 �(k + 1) = �(k) + c�Ax(k + 1) − z(k + 1)�
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Decision coupled problems (cont’d)

... or equivalently (compare with slide 5 !)
1 x(k + 1) = argminx∈Rn ∑i �i(k)�x + c

2 ∑i �x − zi(k)�2
� Unconstrained quadratic optimization

� Setting the gradient with respect to x equal to zero we obtain

�
i

�i(k) + c�
i

(x(k + 1) − zi(k)) = 0

⇒ x(k + 1) = 1

m
�
i

zi(k) −
1

mc
�
i

�i(k)

2 z(k + 1) = argminz1∈X1,...,zm∈Xm ∑i �fi(zi)−�i(k)�zi+ c
2�x(k + 1)−zi�2�

� Since x(k + 1) is fixed, fully separable across i . Minimizing the “sum” is

equivalent to minimizing each individual component. Hence, for all i ,

zi(k + 1) = arg min
zi∈Xi

fi(zi) − �i(k)�zi +
c

2
�x(k + 1) − zi�2

3 �i(k + 1) = �i(k)+ c�x(k + 1)− zi(k + 1)� (due to the structure of A)
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Constraint coupled problems

Affine coupling :

minimize �
i

fi(xi)

subject to : xi ∈ Xi , ∀i
�
i

xi = 0

Affine coupling constraint : equality with zero for simplicity

We could have general coupling constraints Ax = b ; see Example 4.4,
Chapter 3 in [Bertsekas & Tsitsiklis 1989]

We can still treat as an ADMM example
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Constraint coupled problems

Original problem

minimize �
i

fi(xi)

subject to : xi ∈ Xi , ∀i
�
i

xi = 0

ADMM set-up

minimize F1(x) + F2(z)
subject to : x ∈ C1, z ∈ C2

Ax = z

To see this, let x = (x1, . . . , xm), z = (z1, . . . , zm) and
A = identity matrix

Separate complicated objective from complicated constraints

F1(x) =�
i

fi(xi), C1 = X1 × . . . ×Xm

F2(z) = 0, C2 = {z � �
i

zi = 0}
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Constraint coupled problems

ADMM algorithm for constraint coupled problems

1 Primal update for xi in parallel for all agents

xi(k + 1) = arg min
xi∈Xi

fi(xi) + ��i (k)xi +
c

2
�xi − zi(k)�2

2 Primal update for z information from central authority

z(k + 1) = arg min
{z ∶∑i zi=0}

−�
i

��i (k)zi +
c

2�i
�xi(k + 1) − zi�2

3 Dual update �i(k + 1) = �i(k) + c�xi(k + 1) − zi(k + 1)�

Question 6, Example paper : Solve the z-minimization analytically
Find unconstraint minimizer and project on ∑i zi = 0
Notice that �1(k) = . . . = �m(k) for all k ≥ 1

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 18 / 28



Part II : Distributed algorithms

Decision coupled problems

minimize �
i

fi(x)

subject to
x ∈ Xi , ∀i = 1, . . . ,m
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Recall electric vehicle charging control problem

vehicle

Decision coupled problem

minimize �
i

fi(x)
subject to

x ∈ Xi , ∀i = 1, . . . ,m
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Distributed proximal minimization

General architecture

Step 1 : Local problem of agent i

minimize fi(xi) + gi(xi , zi)
subject to

xi ∈ Xi

�������⇒ x∗i (zi)

xi : “copy” of x maintained by agent i NOT an element of x

Xi : local constraint set of agent i

zi : information vector – constructed based on the info of agent’s i neighbors

Objective function

fi(xi) : local cost/utility of agent i
gi(xi , zi) : Proxy term, penalizing disagreement with other agents

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 21 / 28

Distributed proximal minimization
General architecture
Step 1 : Local problem of agent i

minimize fi(xi) + gi(xi , zi)
subject to

xi ∈ Xi

�������⇒ x∗i (zi)

Step 2a : Broadcast x∗i (zi) to neighbors Step 2b : Receive neighbors’ solutions

Step 3 : Update zi on the basis of information received

Go to Step 1
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Distributed proximal minimization

Local problem of agent i

minimize fi(xi) + gi(xi , zi)
subject to

xi ∈ Xi

�������⇒ x∗i (zi)

We need to specify
� Information vector zi
� Proxy term term gi(xi , zi)

Note that these terms change across algorithm iterations
� We need to make this dependency explicit
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Distributed proximal minimization

Local problem of agent i at iteration k + 1

zi(k) =�
j

ai
j(k)xj(k)

xi(k + 1) = argmin
xi ∈Xi

fi(xi) + 1

2c(k)�xi − zi(k)�2

Information vector
� zi(k) = ∑j a

i
j(k)xj(k)

� ai
j(k) : how agent i weights info of agent j

Proxy term
� 1

2c(k)�xi − zi(k)�2 : deviation from (weighted) average

� c(k) : trade-off between optimality and agents’ disagreement
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Proximal minimization algorithm

Proximal minimization algorithm

1 Averaging step in parallel for all agents

zi(k) =�
j

ai
j(k)xj(k)

2 Primal update for xi in parallel for all agents

xi(k + 1) = arg min
xi∈Xi

fi(xi) +
1

2c(k)
�xi − zi(k)�2

No dual variables introduced – primal only method

All steps can be parallelized across agents – no central authority !
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Contrast with the ADMM algorithm

ADMM algorithm

1 Primal update for z information from central authority

z(k + 1) = 1
m
�
i

xi(k) −
1

mc
�
i

�i(k)

2 Primal update for xi in parallel for all agents

xi(k + 1) = arg min
xi∈Xi

fi(xi) − �i(k)�xi +
c

2
�z(k + 1) − xi�2

3 Dual update in parallel for all agents

�i(k + 1) = �i(k) + c(z(k + 1) − xi(k + 1))
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Distributed proximal minimization

1 Averaging step in parallel for all agents

zi(k) =�
j

ai
j(k)xj(k)

2 Primal update for xi in parallel for all agents

xi(k + 1) = arg min
xi∈Xi

fi(xi) +
1

2c(k)
�xi − zi(k)�2

Does this algorithm converge ?

If yes, does it provide the same solution with the centralized problem
(had we been able to solve it) ?
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Summary

ADMM algorithm
Convergence theorem

Decision coupled problems come as an example

Distributed algorithms
... for decision coupled problems

Step-size (proxy term) is now iteration varying

Connectivity requirements become important

When does it converge ? Lecture 4
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Thank you for your attention !
Questions ?

Contact at :
kostas.margellos@eng.ox.ac.uk
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Lecture 4

Kostas Margellos

University of Oxford
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Recap : Distributed algorithms

Decision coupled problems

minimize �
i

fi(x)
subject to

x ∈ Xi , ∀i = 1, . . . ,m

vehicle
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Proximal minimization algorithm

Proximal minimization algorithm

1 Averaging step in parallel for all agents

zi(k) =�
j

aij(k)xj(k)
2 Primal update for xi in parallel for all agents

xi(k + 1) = arg min
xi∈Xi

fi(xi) + 1

2c(k)�xi − zi(k)�2

No dual variables introduced – primal only method

All steps can be parallelized across agents – no central authority !
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Distributed proximal minimization

1 Averaging step in parallel for all agents

zi(k) =�
j

aij(k)xj(k)
2 Primal update for xi in parallel for all agents

xi(k + 1) = arg min
xi∈Xi

fi(xi) + 1

2c(k)�xi − zi(k)�2

Does this algorithm converge ?

If yes, does it provide the same solution with the centralized problem

(had we been able to solve it if we had access to fi ’s and Xi ’s) ?
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Algorithm analysis : Assumptions

1 Convexity and compactness

� fi(⋅) : convex for all i
� Xi : compact, convex, non-empty interior for all i
⇒ There exists a Slater point, i.e. ∃ Ball(x̄ ,⇢) ⊂ �i Xi

2 Information mix

� Weights aij(k) : non-zero lower bound if link between i − j present
⇒ Info mixing at a non-diminishing rate

� Weights aij(k) : form a doubly stochastic matrix (sum of rows and
columns equals one)
⇒ Agents influence each other equally in the long run

�
j

aij(k) = 1, ∀i
�
i

aij(k) = 1, ∀j
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Algorithm analysis : Assumptions

3 Choice of the proxy term

� �c(k)�
k

: non-increasing
� Should not decrease too fast

�
k

c(k) =∞ [to approach set of optimizers]

�
k

c(k)2 <∞ [to achieve convergence]

� E.g., harmonic series

c(k) = ↵

k + 1
, where ↵ is any constant

Notice that limk→∞ c(k) = 0, i.e. as iterations increase we penalize

“disagreement” more
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Algorithm analysis : Assumptions

3 Network connectivity – All information flows (eventually)

Connectivity

Let (V ,Ek) be a directed graph, where V : nodes/agents, and

Ek = �(j , i) ∶ aij(k) > 0� : edges Let

E∞ = �(j , i) ∶ (j , i) ∈ Ek for infinitely many k�.
(V ,E∞) is strongly connected and (kind of) periodic, i.e., for any two

nodes there exists a path of directed edges that connects.

– Any pair of agents communicates infinitely often,

– Intercommunication time is bounded
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Convergence & optimality

Theorem : Convergence of distributed proximal minimization
Under the structural + network assumptions, the proposed proximal

algorithm converges to some minimizer x� of the centralized problem, i.e.,

lim
k→∞ �xi(k) − x�� = 0, for all i

Asymptotic agreement and optimality

Rate no faster than c(k) – “slow enough” to trade among the two

objective terms, namely, agreement/consensus and optimality

There are ways to speed things up : Average gradient tracking

methods, i.e. instead of exchanging their tentative decisions, agents

exchange their tentative gradients.
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Example

Two-agent problem
Let ↵ > 0 and 1 <M <∞, and consider the problem :

minimizex∈R ↵(x + 1)2 + ↵(x − 1)2
subject to x ∈ [−M,M]

1 What is the optimal solution ?

2 Compute it by means of the distributed proximal minimization

algorithm using

– Time-invariant mixing weights aij(k) = 1
2 for all iterations k

– Take c(k) = 1
k+1

– Initialize with x1(0) = −1 and x2(0) = 1

Treat this as a two-agent decision coupled problem
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Example (cont’d)

Two-agent problem equivalent reformulation
Let ↵ > 0 and 1 <M <∞, s1 = 1, s2 = −1, and consider

min
x∈R �

i=1,2↵(x + si)
2

subject to x ∈ [−M,M]
Agents’ objective functions : fi(x) = ↵(x + si)2, for i = 1,2

Objective function becomes : 2↵x2 + 2↵. Since ↵ > 0 its minimum is

achieved at x� = 0
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Example (cont’d)

Main distributed proximal minimization updates
1 Information mixing for i = 1,2 (under our choice for mixing weights) :

zi(k) = x1(k) + x2(k)
2

2 Local computation for i = 1,2 :

xi(k + 1) = arg min
xi∈[−M,M] ↵(xi + si)2 +

1

2c(k)�xi − zi(k)�2

Information mixing is the same for all agents : z1(k) = z2(k)
Local computation : Find unconstrained minimizer and project it on[−M,M]
Unconstrained minimizer :

zi(k) − si2↵c(k)
2↵c(k) + 1

Verify by taking the derivative with respect to xi and setting it to zero
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Example (cont’d)

Main distributed proximal minimization updates
1 Information mixing for i = 1,2 (under our choice for mixing weights) :

zi(k) = x1(k) + x2(k)
2

2 Local computation for i = 1,2 :

xi(k + 1) = ⇧[−M,M] �zi(k) − si2↵c(k)
2↵c(k) + 1

�
=
���������
min � zi(k)−si2↵c(k)

2↵c(k)+1 ,M�, if
zi(k)−si2↵c(k)

2↵c(k)+1 ≥ 0

max � zi(k)−si2↵c(k)
2↵c(k)+1 ,−M�, otherwise,

What happens to zi(k) under our initialization choice ?
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Example (cont’d)

We will show by means of induction that z1(k) = z2(k) = 0

1 Step 1 : For k = 0, and since x1(0) = −1 and x2(0) = 1, we have that

zi(0) = x1(0) + x2(0)
2

= 0, for i = 1,2

2 Step 2 : Induction hypothesis z1(k) = z2(k) = 0

3 Step 3 : Show that zi(k + 1) = 0

xi(k + 1) =
���������
min �−si2↵c(k)

2↵c(k)+1 ,M�, if
−si2↵c(k)
2↵c(k)+1 ≥ 0

max �−si2↵c(k)
2↵c(k)+1 ,−M�, otherwise,

= −si 2↵c(k)
2↵c(k) + 1

,

where the first equality is due to the induction hypothesis, and the

second is due to the fact that �−si2↵c(k)
2↵c(k)+1 � < 1 and M > 1, so the

argument is never “clipped” to ±M
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Example (cont’d)

We will show by means of induction that z1(k) = z2(k) = 0

1 Step 1 : For k = 0, and since x1(0) = −1 and x2(0) = 1, we have that

zi(0) = x1(0) + x2(0)
2

= 0, for i = 1,2

2 Step 2 : Induction hypothesis z1(k) = z2(k) = 0

3 Step 3 : Show that zi(k + 1) = 0

xi(k + 1) =
���������
min �−si2↵c(k)

2↵c(k)+1 ,M�, if
−si2↵c(k)
2↵c(k)+1 ≥ 0

max �−si2↵c(k)
2↵c(k)+1 ,−M�, otherwise,

= −si 2↵c(k)
2↵c(k) + 1

Since s1 + s2 = 0 we then have that

zi(k + 1) = x1(k + 1) + x2(k + 1)
2

= − ↵c(k)
2↵c(k) + 1

(s1 + s2) = 0
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Example (cont’d)

Since zi(k) = 0 for all k , the x-update steps become

x-update steps for i = 1,2,

xi(k + 1) = −si 2↵c(k)
2↵c(k) + 1

= −si 2↵

2↵ + k + 1

As iterations increase, i.e. k →∞ we obtain that

lim
k→∞ xi(k + 1) = 0 = x�

In other words, the distributed proximal minimization algorithm

converges to the minimum of the decision coupled problem
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Distributed projected gradient algorithm

Main update steps :

1 Averaging step in parallel for all agents

zi(k) =�
j

aij(k)xj(k)
2 Primal update for xi in parallel for all agents (projection step)

xi(k + 1) = ⇧Xi
�zi(k) − c(k)∇fi(zi(k))�

Looks similar with the distributed proximal minimization

∇fi(zi(k) denotes the gradient of fi evaluated at zi(k)
The x-update is no longer “best response” but is replaced by the

gradient step

zi(k) − c(k)∇fi(zi(k)
projected on the set Xi
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Distributed projected gradient algorithm

Main update steps :

1 Averaging step in parallel for all agents

zi(k) =�
j

aij(k)xj(k)
2 Primal update for xi in parallel for all agents (projection step)

xi(k + 1) = ⇧Xi
�zi(k) − c(k)∇fi(zi(k))�

The proxy term c(k) plays the role of the (diminishing) step-size

along the gradient direction

Convergence to the optimum under the same assumptions with

distributed proximal minimization algorithm
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Distributed projected gradient algorithm
Relationship with distributed proximal minimization

Proximal algorithms can be equivalently written as a gradient step

xi(k + 1) = arg min
xi∈Xi

fi(xi) + 1

2c(k)�xi − zi(k)�2
⇔ xi(k + 1) = ⇧Xi

�zi(k) − c(k)∇fi(xi(k + 1))�
Notice that this is no a recursion but an identity satisfied by xi(k + 1)
as this appears on both sides of the last equality

What happens if we replace in the right-hand side the most updated

information available to agent i at iteration k , i.e. zi(k) ?
xi(k + 1) = ⇧Xi

�zi(k) − c(k)∇fi(zi(k))�
... we obtain the distributed projected gradient algorithm !
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Summary

Distributed algorithms for decision coupled problems

Distributed proximal minimization

� Step-size (proxy term) is now iteration varying
� Convergence under assumptions on step-size, mixing weights and

network connectivity

Distributed projected gradient

� Rather than “best response” performs projected gradient step
� Same convergence assumptions with proximal minimization
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True optimization is the revolutionary contribution of modern research to
decision processes.

– George Dantzig, November 8, 1914 – May 13, 2005
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Thank you for your attention !
Questions ?

Contact at :

kostas.margellos@eng.ox.ac.uk
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Condensed overview of main algorithms

Decentralized & Distributed algorithms
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Part I : Decentralized algorithms
Cost coupled problems

Cost coupled problems

minimize F (x1, . . . , xm)
subject to

xi ∈ Xi , ∀i = 1, . . . ,m
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The Jacobi algorithm

Main update steps :

1 Collect x(k) = �x1(k), . . . , xm(k)� from central authority

2 Agents update their local decision in parallel

xi(k + 1) = arg min
xi∈Xi

F�x1(k), . . . , xi−1(k), xi , xi+1(k), . . . , xm(k)�

Convergence :
F strongly convex and differentiable

Xi ’s are all convex
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The regularized Jacobi algorithm

Main update steps :

1 Collect x(k) = �x1(k), . . . , xm(k)� from central authority

2 Agents update their local decision in parallel

xi(k + 1) = arg min
xi∈Xi

F�x1(k), . . . , xi−1(k), xi ,xi+1(k), . . . , xm(k)�
+ c�xi − xi(k)�22

Convergence :
F convex and differentiable and c big enough

Xi ’s are all convex
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The Gauss-Seidel algorithm

Main update steps (sequential algorithm) :

1 Collect x(k) = �x1(k + 1), . . . , xi−1(k + 1), xi(k), . . . , xm(k)�
2 Agent i updates

xi(k + 1)
= arg min

xi∈Xi

F�x1(k + 1), . . . , xi−1(k + 1), xi , xi+1(k), . . . , xm(k)�

Convergence :
F is strongly convex with respect to each individual argument, and
differentiable

Xi ’s are all convex
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Part I : Decentralized algorithms
Decision coupled problems

Decision coupled problems

minimize �
i

fi(x)
subject to

x ∈ Xi , ∀i = 1, . . . .m
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The Alternating Direction Method of Multipliers (ADMM)

Main update steps :

1 Primal update for z information from central authority

z(k + 1) = 1
m
�
i

xi(k) − 1
mc
�
i

�i(k)
2 Primal update for xi in parallel for all agents

xi(k + 1) = arg min
xi∈Xi

fi(xi) − �i(k)�xi + c

2
�z(k + 1) − xi�2

3 Dual update in parallel for all agents

�i(k + 1) = �i(k) + c(z(k + 1) − xi(k + 1))
Augmented Lagrangian with one Gauss-Seidel pass of the inner loop
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ADMM algorithm (more general form)

Applicable to problems with two groups of variables :

minimize F1(x) + F2(z)
subject to : x ∈ C1, z ∈ C2

Ax = z
Main update steps :

1 x(k + 1) = argminx∈C1 F1(x) + �(k)�Ax + c
2
�Ax − z(k)�2

2 z(k + 1) = argminz∈C2 F2(z) − �(k)�z + c
2
�Ax(k + 1) − z�2

3 �(k + 1) = �(k) + c�Ax(k + 1) − z(k + 1)�
Convergence :

All functions and sets are convex, and A�A is invertible
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Part II : Distributed algorithms
Decision coupled problems

Decision coupled problems

minimize �
i

fi(x)
subject to

x ∈ Xi , ∀i = 1, . . . ,m
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Distributed proximal minimization

Main update steps :

1 Averaging step in parallel for all agents

zi(k) =�
j

aij(k)xj(k)
2 Primal update for xi in parallel for all agents

xi(k + 1) = arg min
xi∈Xi

fi(xi) + 1
2c(k)�xi − zi(k)�2

Convergence :
Convexity of all functions and sets + Network connectivity (slide 7)

Mixing weights sum up to one, forming a doubly stochastic matrix

Step-size choice : c(k) = ↵
k+1 , ↵ > 0
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Distributed projected gradient algorithm

Main update steps :

1 Averaging step in parallel for all agents

zi(k) =�
j

aij(k)xj(k)
2 Primal update for xi in parallel for all agents (projection step)

xi(k + 1) = ⇧Xi
�zi(k) − c(k)∇fi(zi(k))�

Convergence :
Same assumptions with distributed proximal minimization algorithm
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Thank you for your attention !
Questions ?

Contact at :
kostas.margellos@eng.ox.ac.uk
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