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Logistics

@ Who: Kostas Margellos, Control Group, IEB 50.16
contact : kostas.margellos@eng.ox.ac.uk

@ When: 4 lectures,
weeks 5 & 6 — Thu, Fri @4pm

@ Where: LR2

@ Other info :
» 2 example classes (week 7) : Wed 3-5pm (LR2) — Fri 9-11am (LR3)

» Lecture slides & handwritten notes available on Canvas

» Teaching style : Mix of slides and whiteboard !
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Motivation

o Networks (Power, Social, etc.)
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» Large scale infrastructures

» Multi-agent — Multiple interacting entities/users

» Heterogeneous — Different physical or technological constraints per
agent ; different objectives per agent

o Challenge : Optimizing the performance of a network ...
> Computation : Problem size too big!
» Communication : Not all communication links at place; link failures
» Information privacy : Agents may not want to share information with
everyone (e.g. facebook)
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Why go decentralized /distributed ? Decentralized vs. Distributed

@ Decentralized : All agents with a central authority/coordinator
@ Scalable methodology g y
» Communication : price broadeast
Decentralized : With some central authority . = i
Distributed : Only between neighbours clectric vehicle  ,#77 >\_ |
» Computation : Only local; in parallel for all agents tentative actiogs™ s N !
// 1 \\ :
., / N i
. . . ’ ~ i
@ Information privacy g / Sy ;
-y -y Ay ‘___I
» Agents do not reveal information about their preferences (encoded by 4 ia‘ 4 ia‘ °* 1.‘%\
objective and constraint functions) to each other Decentralized vs. Centralized : Agents “broadcast” only tentative
information not everything
Q Resilience to communication failures @ Distributed : Only with some agents, termed neighbours

@ Numerous applications
» Wireless networks
» Optimal power flow
» Electric vehicle charging control
» Energy management in building networks
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Multi-agent problem classes Multi-agent problem classes

Motivating example : Electric vehicle charging
) price broadeast
Y5 = Cost coupled problems

.

electric vehicle 7 /I ~
. P

tentative action~ ’ ~

. . minimize F(x1,...,Xm)

kﬂ R e R subject to

o Charging rate of each vehicle : x; (in units of power)

X,'EX,', Vi=1,...,m

@ Electric vehicles are like batteries : X; encodes limits on charging rate

@ Agents have separate decisions : x; for agent i
Price depends on everybody's consumption . .
@ Agents have separate constraint sets : X; for agent i

@ Agents aim at minimizing a single objective function F that couples

minimize Y x;"p(>. x;) [price function p(-)] their decisions
7 7

subject to : x; € X;, for all i [limitations on the charging rate]
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Multi-agent problem classes

Decision coupled problems

7

m
minimize Y fi(x)

i1
subject to

xeX;, Vi=1,....,m

o Agents have a common decision : x for all agents
@ Agents have separate constraint sets : X; for agent i

o Agents have separate objective functions : f; for agent i
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Multi-agent problem classes

Constraint coupled problems (cont'd)

r

9/26

m
minimize Y fi(x;)

i=1
subject to

X,'EX,', Vizl,...,m

Zg,-(x,-) <0
i=1

@ Agents have separate decisions : x; for agent i

o Agents have separate constraint sets : X; for agent i

@ Agents have a common constraint that couples their decisions, i.e.

Yigi(x)<0
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Multi-agent problem classes

Constraint coupled problems : Electric vehicle charging

& price broadcast
25

PN
electric vehicle i l’ ~
. P
tentative action~ ’ s
.

- ’ ~
- / N

R
o Charging rate of each vehicle : x; (in units of power)
o Electric vehicles are like batteries : X; encodes limits on charging rate

Price independent of others consumption

minimize ) ¢/ x; [charging cost]
i
subject to : x; € Xj, for all i [limitations on the charging rate]

Z (A,-x; - 2) <0 [power grid constraint]
m

1

v
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Can we transform one problem class to another ?

From decision coupled to constraint coupled problems

minimize Y f(x;)
i

subject to
X,'EX,‘, Vizl,...,m

xi=x, Vi=1,...,m

@ Introduce m new decision vectors, as many as the agents :
Xi, i:1,...,m

@ Introduce consistency constraints : make sure all those auxiliary
decisions are the same, i.e. x;=xforall i=1,....m

@ Price to pay : Number of constraints grows with the number of agents
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Can we transform one problem class to another ?

From cost coupled to constraint coupled problems

O Y
minimize vy = Z —
im

subject to
X,'E)(,‘7 Vi=1,...

F(xt,. ., Xm) <7

,m

@ Introduce an additional scalar epigraphic variable ~
@ Move coupling to the constraints, i.e. F(x;,...,Xm) <7

@ Price to pay : Coupling can not be split among several functions, each
of them depending only on x;, i.e. not in the form ¥, g;(x;) <0
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Can we transform one problem class to another?

Yes, but ...
@ We can transform from some problem classes to others

o Often those reformulations are useful

@ However, they come with drawbacks :
» may increase number of decision variables,
» or lead to non-separable constraints,
» or non-differentiable objective functions

So necessary to develop algorithms tailored to each problem class
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Can we transform one problem class to another ?

From decision coupled to cost coupled problems

minimize F(xq,...,Xxm) = > fi(x) + Ix;(x)

subject to : no constraints

@ Lift the constraints in the objective function via characteristic
functions, i.e., for each i,

0 if x e X;;
+00 otherwise.

IX,'(X) = {

@ New problem does not have any constraints

@ Price to pay : The new objective function is not differentiable, even if
each f; is differentiable
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Part | : Decentralized algorithms
Cost coupled problems

Cost coupled problems?

minimize F(x1,...,Xmn)
subject to
X,'E)(,'7 ViZl,... m

7

@ Denote by x* a minimizer of the cost coupled problem

@ Denote by F* its minimum value

1. Throughout we assume that all functions and sets are convex
Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 16 /26



Mathematical prelims : Lipschitz & Contraction mappings

@ Let T: X —» X. We call T a Lipschitz mapping if there exists o> 0
such that

ITC) =Ty <alx-yl, forall x,y e X
@ We call a Lipschitz mapping T contraction mapping if a. € [0,1)

@ Parameter a € [0,1) is called the modulus of contraction of T

@ We should always specify the norm

Convergence of contractive iterations
Assume T is a contraction with modulus « € [0,1) and X is a closed set.
© T has a unique fixed-point T(x*) = x*

@ The Picard-Banach iteration x(k + 1) = T(x(k)) converges to x*
geometrically, i.e.

|x(k) = x*| < &¥[|x(0) = x*|, for all k>0

v
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The Jacobi algorithm

o lterative algorithm

Initialize: Select (arbitrarily) x;(0) € X;, forall i=1,...,m

For each iteration k=1,...

O Collect x(k) = (x1(k), ..., xm(k)) from central authority

@ Agents update their local decision in parallel, i.e. for all
i=1,...,m

xi(k +1) = arg min F(xl(k), i (k) xi, xia1 (K, ,xm(k))
Xi€EA;

end for
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Mathematical prelims : Convexity vs strong convexity

f(2) f(v)

= |

70 + V(9 (v - %)

5 y
@ Strong convexity is “stronger’ than convexity — uniqueness of optimum
& lower bound on growth
F(y) 2 f(x) + VF(x)"(y =x) + oy = x|, where 0> 0

@ We can fit a quadratic function between the “true” function and its
linear approximation

@ For quadratic functions strong is the same with strict convexity

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 18 /26

The Jacobi algorithm

@ Agents coupled via a single objective function

minimize F(x1,...,Xm)

subjectto: x;€ X;, Vi=1,...,m

O Collect x(k) = (x1(k),... 7Xm(k)) from central authority

© Agents update their local decision in parallel

xj(k +1) = arg min F(Xl(k), oo Xic1 (k) iy xiv (k) - 7Xm(k))

@ Block coordinate descent method ; agents act in best response

o Parallelizable method : Agent i uses the k-th updates of all agents
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Jacobi algorithm : Convergence

Theorem : Convergence of Jacobi algorithm
If F is differentiable and there exists small enough ~ such that

T(x)=x-vVF(x)

is a contraction mapping (modulus in [0,1)), then there exists a minimizer
x* of the cost coupled problem such that

Jim fx(k) =7 =0

@ Best response but a gradient step appears in convergence

o A sufficient condition for T to be a contractive map is F to be a
strongly convex function

@ Can we relax this condition ?
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Regularized Jacobi algorithm : Convergence

Theorem : Convergence of regularized Jacobi algorithm

Assume that F is convex and VF is Lipschitz continuous with constant L.
Assume also that

m-1

L
2m—1\/m

We then have that limg_o |F(x(k)) - F*||=0

Cc>

@ Algorithm convergences in value, not necessarily in iterates, i.e. not
necessarily limy o | x(k) —x*|| =0

@ Penalty term c increases as m — oo

@ The more agents the “slower” the overall process
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The regularized Jacobi algorithm

@ Agents update their local decision in parallel

O Collect x(k) = (x1(k),... 7Xm(k)) from central authority

xj(k +1) = arg min F(Xl(k), oo Xi1 (k) Xioxiv1 (k) - 7Xm(k))

+ cllx; = xi(k)I13

@ Jacobi algorithm + regularization term

@ Penalty term acts like “inertia” from previous tentative solution of

agent |

@ New objective function is strongly convex due to regularization
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The Gauss-Seidel algorithm

November 9, 2024

22/26

@ Agent / updates

X,'(k + 1)

O Collect x(k) = (xu(k+1),....xi-1(k + 1), x;(k), ..., xm(k))

= arg mi)r<1 F(xl(k +1), . xo1(k+ 1), x5, xi41(K), - .,Xm(k))
Xi€Xj

@ Block coordinate descent method ; agents act in best response

@ Sequential : Agent i uses the (k + 1)-th updates of preceding agents

@ Similar convergence results with Jacobi algorithm : If F is

strongly convex (strict convexity is sufficient) with respect to each

individual argument, then limy_, [|[F(x(k)) - F*| =0
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Summary

Decentralized algorithms for cost coupled problems

minimize F(xq,...,Xm)

subject to x; € X;, Vi=1,...,m

@ The Jacobi algorithm : parallel updates
F differentiable and strongly convex

@ The regularized Jacobi algorithm : parallel updates
F differentiable and just convex

@ The Gauss-Seidel algorithm : sequential updates
F differentiable and strongly convex per agent's decision

= For quadratic functions x" Qx :
— convex if Q@ >0; strongly convex if @ >0
— Strong convexity = strict convexity

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 25 /26

C20 Distributed Systems
Lecture 2

Kostas Margellos

University of Oxford

UNIVERSITY OF

(0),€42(0)28D)

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 1/24

Thank you for your attention !
Questions ?

Contact at :
kostas.margellos@eng.ox.ac.uk
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Recap

Decentralized algorithms for cost coupled problems

26 /26

minimize F(x1,...,Xm)

subject to x; € X;, Vi=1,...,m

@ The Jacobi algorithm : parallel updates
F differentiable and strongly convex

@ The regularized Jacobi algorithm : parallel updates
F differentiable and just convex

@ The Gauss-Seidel algorithm : sequential updates
F differentiable and strongly convex per agent's decision
= For quadratic functions x" Qx :
— convex if @ = 0; strongly convex if @ >0
— Strong convexity = strict convexity
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Part | : Decentralized algorithms

Decision coupled problems

Decision coupled problems — The primal

e N\

minimize Y fi(x)

subject to
xeX;, Vi=1,....m
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The proximal minimization algorithm
o Consider a differentiable F1. The following problems are equivalent
Standard minimization program Proximal minimization program

o 1
minimize F(x) minimize F(x) + o Ix = y|?

subject to : x € X subject to : x€ X, y e R"

@ The proximal problem has an objective function which is differentiable
and strongly convex (for any fixed y)

@ We can solve it iteratively via the Gauss-Seidel algorithm ;
converges for any ¢ > 0 (see Lecture 1)

o Alternate between minimizing x and y

1. The proximal algorithm converges even without the differentiability assumption; see
function at slide 8. We impose it here to show convergence:via the Gauss-Seidel scheme
Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 5/24

Part | : Decentralized algorithms

Decision coupled problems

@ Decentralized solution roadmap

@ The main algorithm for this is the Alternating Direction Method of
Multipliers (ADMM)

@ The predecessor of ADMM is the Augmented Lagrangian algorithm

© The Augmented Lagrangian is in turn based on the Proximal algorithm

Proximal = Augmented Lagrangian =— ADMM

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 4/24

The proximal minimization algorithm
@ The following problems are equivalent
Standard minimization program Proximal minimization program

s 1
minimize F(x) minimize F(x) + > Ix -yl

subject to : x € X subject to : x e X, y e R"

Proximal algorithm :
O x(k+1)=argminyx F(x)+ %Hx —y(k)|?
Q y(k+1)=x(k+1)

... or
O x(k+1)=argminyx F(x)+ iHX —x(/<)||2
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The proximal minimization algorithm
Geometric interpretation

o Let d.(y) =minF(x)+ %Hx—y“2 achieved at x = x(y, ¢)
o Hence, ®c(y) = F(x(y,0) * 2¢lx(y) =¥ I < F () + 5llx =y 2

1
= O (y)- ZHx—sz < F(x), with equality at x = x(y, ¢)

@, (y) =min {Flx) +35tllx =y 112}

)~ lx—y 12
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The proximal minimization algorithm

Geometric interpretation

o Effect of the growth of F (flat and steep functions)

Flx)
|
[
I !
o
—% :
0 X0 x! x2? x
Flx)
|
/| ‘
|
| |
I [
| [
Iy L4
0 x0 x! x2 x
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The proximal minimization algorithm
Geometric interpretation

o Effect of large and small values of ¢

@, (x°) = llx —x° 112 —_|

Large Value of ¢

o) — L jIx —x°1I2
#ob)—glle x|

Small Value of ¢

X0 x1 x2 X x
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The augmented Lagrangian algorithm

@ Consider the following problems

Standard program Augmented program

minimizeyex F(x)

subject to : Ax=b

minimizeyex F(x) + %HAX - b|?

subject to : Ax=b

@ Trivially equivalent problems : For any feasible x, the “proxy” term
becomes zero

@ Resembles the structure of the proximal algorithm

@ Ax = b models complicating constraints :
if F(x)=Y;fi(x;) and X = Xy x ... x Xy, then Ax = b models
coupling among agents’ decisions

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 10/24



The augmented Lagrangian algorithm

@ Construct the Lagrangian of the augmented program

Le(x,A) = F(x) + AT(Ax = b) + g||Ax ~b|?

Augmented Lagrangian algorithm :
Q x(k+1)=argminyex F(x) +A(k)T(Ax = b) + §| Ax — b|?
@ A(k+1)=\(k)+c(Ax(k+1)-b)

@ For simplicity we assumed a unique minimum for the primal variables;
this depends on A

@ Apply a primal-dual scheme : minimization for primal followed by
gradient ascent for dual

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 11/24

Proof

Augmented Lagrangian algorithm :
Q x(k+1)=argminyex F(x) +A(k)T(Ax = b) + §| Ax — b|?
@ A(k+1)=\(k)+c(Ax(k+1)-b)

@ Notice that the dual function of the original problem is given by
q(y) =min F(x) + y"(Ax - b)
xeX

where y contains the dual variables associated with Ax < b

Step 1 : Equivalently write the primal minimization step as

min F(x)+/\(k)T(Ax—b)+§||Ax—b\|2
XE
- in F K)Tz+ =z
ex, i () +A(k) 2+ S |z]

The minimizers are denoted by x(k +1) and z(k +1)
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The augmented Lagrangian algorithm

Augmented Lagrangian algorithm :
Q x(k+1)=argminyex F(x) +A(k)"(Ax - b) + 5| Ax — b2
@ A(k+1)=\(k)+c(Ax(k+1)-b)

Theorem : Convergence of Augmented Lagrangian algorithm
For any ¢ > 0, we have that :

@ there exists an optimal dual solution \* such that
lim ||A(k) =X =0
k—oo

@ primal iterates converge to the optimal value F*, i.e.

Jim [F(x(k)) - F"[ =0

y
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Proof (cont'd)

Step 2 :

@ Dualize the coupling constraint in Step 1 using multipliers y and
consider the optimum of the dual problem

y* = arg max{mi)rg (F(x) +y"(Ax = b)) + min (A(k) - y)Tz + §||z\|2)}
y XE€ z
@ Using the definition of the g(y) this is equivalent to
* . T C 2
y* =argmax{a(y) +min (A(K) )"z + 5 ]12|)

@ The inner minimization is an unconstrained quadratic program ;
calculate its minimizer by setting the objective’s gradient equal to zero

y=Mk) and hence z(k+1)= y' = Mk)
c c

Z=

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 14 /24



Proof (cont'd)

Step 3:
@ Substituting back the value of Z

y* = argmax{q(y) +min (A(k) ~y)"z + - |2[*)

~argmax{q(y) - 5y - (0P}

@ At the same time, due to the equality constraint in Step 1,
z(k+1)=Ax(k+1) - b, hence

Ak +1) =A(k) +c(Ax(k+1)-b) = A(k+1)=y"

which in turn implies that
1 2
A(k+1) =argmaxq(y) - |y = A(k)]|
y 2c
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Back to decision coupled problems

Recall the equivalence between decision and constraint coupled problems

- Constraint coupled problem
Decision coupled problem

minimize fi(x;
minimize Zf,-(x) Z,: i)
' subject to : x; € X;, Vi

subject to : x € X;, Vi )
Xj=2z, Vi

@ We will show that this constraint coupled problem is in the form of

minimizeyex F(x)

subject to: Ax=b
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Proof (cont'd)

Step 4 : Putting everything together ...
@ The augmented Lagrangian primal dual scheme

Q x(k+1)=argminyex F(x) +A(k)"(Ax - b) + §| Ax - b|?
@ A(k+1)=\(k)+c(Ax(k+1)-b)

. is equivalent to

O M k+1)=argmax, q(y) - %=y - A(k)|?

@ Proximal algorithm for the dual function g(y)!

@ It converges for any ¢ as g(y) is the dual function thus always
concave, i.e. limg_ o [A(k) = A*|| = 0 for some optimal \*

@ For the primal variables we can only show something slightly weaker :
they asymptotically achieve the optimal value F*

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 16 /24

Decision coupled problems

Consider the following asignements :

@ Decision vector
X < (le' ..,Xm,Z)

@ Constraint sets
X+ Xy x...x XpxR"

@ Objective function

F(x1,. o Xm,2) < Zf,‘(x,')

@ Matrices A and b :

-1 0 ... 0 1][x
Ax=b < O -1 o 0 1 S =0

: : ] Xm

o o0 ... -1 1]| =z

@ Dual variable : A < (A1,..., Am)
A(K)T(Ax = b) = S AT (k) (2 - x) and |Ax - bJ? = 3 |z - |2
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Decision coupled problems

Augmented Lagrangian for the reformulated constraint coupled problem

@ Primal update

(xa(k+1),...,xm(k+1),z(k+1))
—arg _min . S F0a) + AT (K)(z-x) + gHz — x|

X1€X1,5ee s Xm€Xm,z
@ Dual update

Ailk+1)=Xi(k)+c(z(k+1) - x;(k+1))

@ Primal update in the form cost coupled problems via a single function
Xifi(xi) + Xi(k)T(z =) + 5]z = xi?
2

@ Can solve via Gauss-Seidel algorithm, alternating between minimizing
with respect to (x1,...,Xm) and z
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Decision coupled problems

e Y

begin loop

@ Primal update for z information from central authority
1 1
= = 2: L 2 : \:(k
T m - X e - i(k)

@ Primal update for x; in parallel for all agents

. C
xj = arg min fi(x;) - Ai(k) i + Slz- xi[)?

end loop
© Dual update in parallel for all agents

Ailk+1) =X j(k) +c(z(k+1) = xj(k+1))

L J

o Nested iteration with Gauss-Seidel inner loop — Can we do any better ?
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Decision coupled problems

Primal update : Can solve via Gauss-Seidel algorithm, alternating between
minimizing with respect to (x1,...,xn) and z

(xl(k +1), .. xm(k+ 1), x(k + 1))
sarg min S A(q) + A (K) (2 x) + %Hz ~ x|

x1€X1 ,..‘,XmGXm,

e Update of z : Unconstrained quadratic minimization with respect to
z. Take the derivative and set it equal to zero leads to

1 1
Z:E;Xi_m_cz’-:/\i(k)

o Update of xi,...,xy, : For fixed z problem is separable across agents
(no longer coupled in the cost). Hence for all i,

. c
X; = arg min fi(xi) = Xi(k)Tx; + EHZ - xi|?
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Decision coupled problems

What if we only do one Gauss-Seidel pass?

e ~

@ Primal update for z information from central authority

1 1
k+1)=— S xi(k) - — S Ni(k
2+ 1) = - Bk~ o TAK)
@ Primal update for x; in parallel for all agents
xj(k+1) = arg min £:(x;) = A (k) xi + 20k + 1) = xi|P
Xi€X|

© Dual update in parallel for all agents

)\,’(k + 1) = )\,(k) + C(Z(k + 1) —X,‘(k + 1))

@ Does this scheme converge ? ADMM provides the answer ! Lecture 3
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Summary

Decision coupled problems

’

minimize ) fi(x)

subject to
xeX, Vi=1,....m

\

Intriduced three different algorithms
@ Proximal minimization algorithm
o Augmented Lagrangian algorithm

o Augmented Lagrangian with one pass of the inner loop = ADMM

Proximal = Augmented Lagrangian — ADMM
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Thank you for your attention !
Questions ?

Contact at :
kostas.margellos@eng.ox.ac.uk
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Recap

Decision coupled problems

7

minimize Y fi(x)

subject to
xeXp, Vi=1,....m

\

Intriduced three different algorithms
@ Proximal minimization algorithm
@ Augmented Lagrangian algorithm

@ Augmented Lagrangian with one pass of the inner loop = ADMM

Proximal =— Augmented Lagrangian — ADMM
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Recap : Augmented Lagrangian algorithm

Example
Inner lopp : Gauss-Seidel algorithm! Feasibility problem — part of Question 4, Example Paper
begin loop Find a point x* at the intersection (assumed to be non-empty) of two
) . . . (possibly different) convex sets X1 and X3, i.e.
@ Primal update for z information from central authority
1 1 minimize 0 [any constant would work]
Z:EZX"_EZ)‘/(/() subject to x € X7 and x € X,
1 1
@ Primal update for x; in parallel for all agents Apply Augmented Lagrangian algorithm initializing at A\1(0) = A2(0) = 0. )
c
xi =argmin £i(x;) = \i (k)" x; + =] z = x[|?
X,'EX,' 2
end loop
© Dual update in parallel for all agents
Ailk+1) = i(k) +c(z(k+1) = x;(k+1))
L J Xl X2
Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 3/29 Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 4/29

Example (cont'd) Example (cont'd)

@ Decision coupled problem with 2 agents; notice that f;(x) = f(x) =0 o Denote by [y, [Z] the projection of z on the set X;

@ Consider k =0 and focus at the inner loop of the Augmented
Lagrangian algorithm

@ Recall that A1(0) = X2(0) =0

@ Inner loop becomes then ...

Outer loop at k = 0; main steps of inner loop

Q z=x%
Outer loop at k =0; main steps of inner loop
0 »- xute _ MQ(0) _ xix @ x1 < argminyex, 5z - x[? =Mx, [Z]
2 2¢ 2 _ )
@ x1 <« argmingex, ~M(0)x + 5[z - x| = arg miny, o, 52 - a2 2 argmingox, 1z —xal? =M 7]
X2 < argminy,ex, —A2(0)x2 + 5]z - x3|? = arg Minex, 52 - x2|?

@ This is just the Gauss-Seidel to solve the problem
. . . . o c )
@ Second step exhibits a nice structure and geometric interpretation S Sz -x]
@ Solve the unconstrained quadratic program and project on the i=1,2
constraint set (X1 and X3, respectivel . . .
! (X1 2, respectively) @ Hence it converges to the minimum, which occurs when x; = xp = z

Michaelmas Term 2024 C20 Distributed Systems Michaelmas Term 2024 C20 Distributed Systems
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Example (cont'd)

@ Since upon convergence of the inner loop x; = xp = z, then the outer
loop update becomes

Ai(1) =X(0) + c(2z(1) = x;(1)) =0, for i=1,2
o Similarly, A\j(k) =0 forall k>0
o Effectively we only have one loop!

Simplified single-loop algorithm

@ Averaging step : z(k+1) = M

@ Parallel projections :
xa(k+1) = My [z(k+1)] and ok +1) = My [2(k +1)]

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 7/29

For decision coupled problems ...

Augmented Lagrangian with one Gauss-Seidel pass = ADMM

@ Primal update for z information from central authority
(k+1) = = (k) = == 3 Ai(k)
z =— > Xxi(k) - — ;
m&<" mc 5"
@ Primal update for x; in parallel for all agents
xi(k +1) =arg min f;(x;) = \j(k)"x; + E||z(l< +1) - x|
X,'EX,' 2

© Dual update

Ak +1) = Ai(k) + c(z(k +1) = x;(k +1))

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 9/29

Example (cont'd)

Simplified single-loop algorithm

@ Averaging step : z(k+1) = M

@ Parallel projections :
xa(k+1) = Mg [2(k+ 1)] and sk +1) = Mg [2(k +1)]

Schematic illustration of the single-loop iterations
x1(0) z(1)

N x2(0)
\®

X1 X5
Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 8/29
For decision coupled problems ...

Equivalent notation in line with ADMM literature (the roles of x and z are
reversed) — only notational change!

@ Primal update for x information from central authority
(k+1)= = N zi(k) - — ¥ x(K)
X =—2,zi(K) —— i
m = mc 5
@ Primal update for z; in parallel for all agents
zi(k +1) = arg min £(z) - Xi(k) 2+ Z|x(k+ 1) -z
ZjeXi

© Dual update

Ailk+1) = j(k) +c(x(k+1)-z(k+1))

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 10/29



The Alternating Direction Method of Multipliers (ADMM)

o ADMM even more general than decision coupled problems

o Splitting algorithm : decouples optimization across groups of variables

Group variables

minimize Fi(x) + F2(Ax)

subject to : x € C;, Axe &

Equivalent reformulation

minimize Fi(x) + F2(2)
subject to : x€ G, ze G

Ax =z

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 11/29

Decision coupled problems as a special case again

Equivalent problem
Original problem i o

minimize fi(z;
minimize Y fi(x) 2 fi(z)
: subject to : z; € X;, Vi

subject to : x € X;, Vi .
zi=x, Vi

o Let z,...,z, be copies of x

@ Original (decision coupled problem) becomes equivalent to a
constrained coupled one

@ Show then that the equivalent problem is in the format for which
ADMM is applicable

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 13/29

ADMM algorithm

Effectively Augmented Lagrangian with one Gauss-Seidel pass

Q@ x(k+1)=argmin,cc, F1(x)+ A(k)TAx + 5| Ax - z(k)|?
Q@ z(k+1)=argminyec, F2(z) - A(k)Tz+ 5| Ax(k + 1) - 2|2
© A(k+1)=\(k)+c(Ax(k+1)-z(k+1))

Theorem : Convergence of ADMM

Assume that the set of optimizers is non-empty, and either C; is bounded
or ATA is invertible. We then have that

@ \(k) converges to an optimal dual variable.

(2] (x(k),z(k)) achieves the optimal value
If ATA invertible then it converges to an optimal primal pair

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 12 /29

Decision coupled problems as a special case again

Equivalent problem ADMM set-up

minimize Y f(z;)

]

minimize Fi(x) + F2(2)

subject to : zj € X;, Vi subject to : xe€ C1, ze G

zi=x, Vi Ax =z
v
"
@ To see this, let z = (z1,...,2zy,) and define A =|: | (stack of identity

/

% x| [z

matrices), hence Ax=|[:|and Ax=z < |:|=]:
X x| |zm

o Notice that ATA =/, hence invertible (algorithm expected to converge)

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 14 /29



Decision coupled problems (cont'd)

@ Perform also the following assignments

F1(X)=0, Cl :Rn
FQ(Z)ZZﬁ(Z,'), C2=X1><...><Xm

@ For each block constraint, i.e. x = z; assign the dual vector \;,
and let A= (A1,...,Am)
@ The three ADMM steps become then

Q x(k+1) =argminyerr A(k)TAx + $|Ax — z(k)|?
Q z(k+1)=argmingex,, . znexm i fi(2i) = A(K) 2+ S| Ax(k + 1) - 2|
© Ak+1)=A(k)+c(Ax(k+1)-z(k+1))

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 15 /29

Constraint coupled problems

Affine coupling :

minimize Z fi(x;)
i

subject to : x; € X, Vi

ZX,'=O

o Affine coupling constraint : equality with zero for simplicity

@ We could have general coupling constraints Ax = b; see Example 4.4,
Chapter 3 in [Bertsekas & Tsitsiklis 1989]

@ We can still treat as an ADMM example

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 17 /29

Decision coupled problems (cont'd)

... or equivalently (compare with slide 51!)

. 2
Q x(k+1)=argmin,cpn 3; A\i(k) x+ 5% |x = zi(k)|
» Unconstrained quadratic optimization
» Setting the gradient with respect to x equal to zero we obtain

Z)\,-(k) + CZ(X(k +1)-2z(k))=0
= x(k+1)= %Zzi(k) - iz)\i(k)

@ z(k+1)=argmingcx,  zex, i (fi(2)-Xi(k) zi+ [ x(k + 1)~ z[?)

» Since x(k + 1) is fixed, fully separable across i. Minimizing the “sum” is
equivalent to minimizing each individual component. Hence, for all i,

zi(k + 1) = argmin fi(z) - Ai(K) 2+ S x(k+ 1) - 2P

© Ni(k+1)=Xi(k)+c(x(k+1)-z(k+1)) (due to the structure of A)

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 16 /29

Constraint coupled problems

iginal probl
Original problem ADMM set-up

minimize Y f(x;)
i
subject to : x; € X;, Vi subject to : x€ Gy, z€ G

ZX,'=0 Ax =2z

V.

minimize Fi(x) + F2(2)

@ To see this, let x = (x1,...,xm), z=(z1,...,2m) and
A = identity matrix

@ Separate complicated objective from complicated constraints
Fl(X) = Zf,-(x,-), C1 :Xl X ... X Xm

F2(Z) :0, C2 = {Z | ZZ,' :0}

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 18 /29



Constraint coupled problems

ADMM algorithm for constraint coupled problems

7

@ Primal update for x; in parallel for all agents

xi(k +1) = arg min () + A (k)x; + 3 = zi(K)

r

Part Il : Distributed algorithms

Decision coupled problems

@ Primal update for z information from central authority

z(k+1)=ar min - )\Tkz,-+E xi(k+1 —z,-2
(k+1)=arg min | =N (K)z+5 % bk +1) =z

minimize ) fi(x)

subject to
XEX,', ViZI,...

© Dual update Aj(k + 1) = Xj(k) + c(xi(k+1) - zi(k + 1)) )

\.

Question 6, Example paper : Solve the z-minimization analytically

@ Find unconstraint minimizer and project on ¥;z; =0

Michaelmas Term 2024

C20 Distributed Systems November 9, 2024

Distributed proximal minimization

General architecture

Step 1 : Local problem of agent /

minimize f(x) + gi(xi, zi)
subject to

} = x; (z)
Xj € X,'

: “copy” of x maintained by agent i NOT an element of x

@ X; : local constraint set of agent i

information vector — constructed based on the info of agent’s i neighbors

@ Objective function
fi(xi) : local cost/utility of agent i
gi(xi,z) : Proxy term, penalizing disagreement with other agents

20/29

o Notice that A1(k) =...=Ap(k) forall k>1
Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 19 /29
Recall electric vehicle charging control problem
Decision coupled problem o
minimize Y. fi(x)
7 @ z:
subject to
xeX, Vi=1,....m
Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 21/29
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Distributed proximal minimization

General architecture

Step 1 : Local problem of agent i

minimize f(x) + gi(xi, zi)
subject to
Xi € X,‘

} = x; (z)

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 23/29
Distributed proximal minimization
General architecture
Step 1 : Local problem of agent i
minimize f(x;) + gi(xi, z)
subject to } = x(z)
Xi € X,‘
.
Step 2a : Broadcast x;" (z) to neighbors Step 2b : Receive neighbors' solutions
V.
Step 3 : Update z on the basis of information received
Go to Step 1
.
Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 23/29

Distributed proximal minimization

General architecture

Step 1 : Local problem of agent i

minimize fi(x;) + gi(xi, zi)
subject to = x; (z)
X; € X,'
o’
Step 2a : Broadcast x; (z;) to neighbors Step 2b : Receive neighbors’ solutions
v
Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 23/29

Distributed proximal minimization

Local problem of agent i

minimize f(x;) + gi(xi, zi)
subject to

} = x; (z)
X; € X,'

o We need to specify

» Information vector z;
» Proxy term term g;(x;, z;)

@ Note that these terms change across algorithm iterations
» We need to make this dependency explicit

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024
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Distributed proximal minimization

Local problem of agent i at iteration k + 1

2i(k) = ¥ (k) (k)

xi(k+1) —argmln fi(xi) + —— T (k)

lIxi

- z(k)|?

o Information vector

- 2i(k) = 559k (k)

> a;(k) : how agent / weights info of agent j
@ Proxy term

. ﬁ\\x,- — zi(k)|? : deviation from (weighted) average
» c(k) : trade-off between optimality and agents' disagreement

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024

Contrast with the ADMM algorithm

ADMM algorithm

24 /29

@ Primal update for z information from central authority
(k+1) = = (k) = == 3 Ai(k)
z =— > Xxi(k) - — ;
m&<" mc 5"
@ Primal update for x; in parallel for all agents
xi(k +1) =arg min f;(x;) = \j(k)"x; + E||z(l< +1) - x|
X,'EX,' 2

© Dual update in parallel for all agents

Ak +1) = Ai(k) + c(z(k +1) = x;(k +1))

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024
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Proximal minimization algorithm

Proximal minimization algorithm

’

@ Averaging step in parallel for all agents
2(k) = Lk (k)
J
@ Primal update for x; in parallel for all agents

xi(k+1)=arg m|)r<1 fi(x;) + e tk) HXi—Zi(k)||2

@ No dual variables introduced — primal only method
@ All steps can be parallelized across agents — no central authority !
Michaelmas Term 2024
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Distributed proximal minimization

© Averaging step in parallel for all agents
2(k) = a5 (k)
J
@ Primal update for x; in parallel for all agents

xi(k +1) = arg mip f,-(x,-)+2 Ll

@ Does this algorithm converge?

@ If yes, does it provide the same solution with the centralized problem
(had we been able to solve it) 7

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 27 /29



Summary

ADMM algorithm

@ Convergence theorem

Questions ?
@ Decision coupled problems come as an example

Distributed algorithms

o ... for decision coupled problems

Contact at :
@ Step-size (proxy term) is now iteration varying

o Connectivity requirements become important

@ When does it converge 7 Lecture 4

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 28 /29

Michaelmas Term 2024 C20 Distributed Systems

Recap : Distributed algorithms

Decision coupled problems

r

Thank you for your attention !

kostas.margellos@eng.ox.ac.uk

November 9, 2024
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Lecture 4 ’

subject to
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xeX;, Vi=1,...

University of Oxford
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Proximal minimization algorithm

Proximal minimization algorithm

7

@ Averaging step in parallel for all agents

2i(k) = 32l (K)x (k)
J
@ Primal update for x; in parallel for all agents

xi(k+1)=arg m|)r<1 fi(x;) + 5 ik) Ixi — zi(k)|?

@ No dual variables introduced — primal only method

@ All steps can be parallelized across agents — no central authority !

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024

Algorithm analysis : Assumptions

@ Convexity and compactness
» fi(+) : convex for all i
» X; : compact, convex, non-empty interior for all
= There exists a Slater point, i.e. 3 Ball(x,p) cN; X;

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024
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Distributed proximal minimization

@ Averaging step in parallel for all agents
2(k) = Y ai(k)x (k)
J
@ Primal update for x; in parallel for all agents

I = zi (k)|

xi(k+1) = arggli)lgf fi(xi) + —— oF (k)

@ Does this algorithm converge ?

o If yes, does it provide the same solution with the centralized problem
(had we been able to solve it if we had access to f;'s and Xj's)?

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 4/21

Algorithm analysis : Assumptions

@ Convexity and compactness
» fi(+) : convex for all i
» X; : compact, convex, non-empty interior for all
= There exists a Slater point, i.e. 3 Ball(x,p) cN; X;
@ Information mix
» Weights aj’:(k) : non-zero lower bound if link between i/ —j present
= Info mixing at a non-diminishing rate

» Weights aj’:(k) : form a doubly stochastic matrix (sum of rows and
columns equals one)

= Agents influence each other equally in the long run
Y ai(k)=1, Vi
j
Z aj'-(k) =1,V
1
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Algorithm analysis : Assumptions

@ Choice of the proxy term

- {c(k)}k : non-increasing

» Should not decrease too fast
Y c(k) =00 [to approach set of optimizers]
K

S c(k)®> < oo [to achieve convergence]
K

» E.g., harmonic series

c(k) = %, where « is any constant

Notice that limk_, c(k) =0, i.e. as iterations increase we penalize
“disagreement” more

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 6/21

Algorithm analysis : Assumptions

© Network connectivity — All information flows (eventually)

Connectivity

Let (V/, Ex) be a directed graph, where V : nodes/agents, and
Ex = {(j, i): aj(k)> 0} : edges Let

Ey = {(_/, i): (j, i) € Eg for infinitely many k}.

(V, Es) is strongly connected and (kind of) periodic, i.e., for any two
nodes there exists a path of directed edges that connects.

— Any pair of agents communicates infinitely often,
— Intercommunication time is bounded

'
=
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Algorithm analysis : Assumptions

© Network connectivity — All information flows (eventually)

Connectivity

Let (V, Ex) be a directed graph, where V : nodes/agents, and
Ex = {(jvi) : aJ’-(k) > O} . edges Let

(e = {(/, i): (j, 1) € Eg for infinitely many k}.

(V, Ex) is strongly connected and (kind of) periodic, i.e., for any two
nodes there exists a path of directed edges that connects.

— Any pair of agents communicates infinitely often,
— Intercommunication time is bounded

= R TR~

~

B
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Algorithm analysis : Assumptions

© Network connectivity — All information flows (eventually)

Connectivity

Let (V/, Ex) be a directed graph, where V' : nodes/agents, and
Ex = {(jv i): aj(k)> 0} : edges Let

Ey = {(J, i): (j, i) € Eg for infinitely many k}.

(V, Es) is strongly connected and (kind of) periodic, i.e., for any two
nodes there exists a path of directed edges that connects.

7/21

— Any pair of agents communicates infinitely often,
— Intercommunication time is bounded

& [oon S

N

< .
N .
N .
\ ﬁ/
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Algorithm analysis : Assumptions

© Network connectivity — All information flows (eventually)

Connectivity

Let (V/, Ex) be a directed graph, where V : nodes/agents, and
Ex = {(.j7 i): aj(k) > 0} : edges Let

Ew = {(j, i): (j, 1) € Eg for infinitely many k}.

(V, Es) is strongly connected and (kind of) periodic, i.e., for any two
nodes there exists a path of directed edges that connects.

— Any pair of agents communicates infinitely often,
— Intercommunication time is bounded

=N
=
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Convergence & optimality

Theorem : Convergence of distributed proximal minimization

Under the structural + network assumptions, the proposed proximal
algorithm converges to some minimizer x* of the centralized problem, i.e.,

[xi(k) —x*| =0, forall i

lim
k—>oo

o Asymptotic agreement and optimality

@ Rate no faster than c(k) — “slow enough” to trade among the two
objective terms, namely, agreement/consensus and optimality

@ There are ways to speed things up : Average gradient tracking

methods, i.e. instead of exchanging their tentative decisions, agents
exchange their tentative gradients.

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 8/21

Algorithm analysis : Assumptions

© Network connectivity — All information flows (eventually)

Connectivity

Let (V, Ex) be a directed graph, where V : nodes/agents, and
Ex = {(jvi) : aJ’-(k) > O} . edges Let

(e = {(/, i): (j, 1) € Eg for infinitely many k}.

(V, Ex) is strongly connected and (kind of) periodic, i.e., for any two
nodes there exists a path of directed edges that connects.

— Any pair of agents communicates infinitely often,
— Intercommunication time is bounded

=
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Example

Two-agent problem

Let @ >0 and 1 < M < oo, and consider the problem :

minimizeyer a(x +1)%+a(x —1)?

subject to x € [-M, M]

© What is the optimal solution ?

@ Compute it by means of the distributed proximal minimization
algorithm using
— Time-invariant mixing weights aJ’:(k) = % for all iterations k

— Take c(k) = ﬁ

— Initialize with x;(0) = -1 and x2(0) =1

@ Treat this as a two-agent decision coupled problem
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Example (cont'd)

Two-agent problem equivalent reformulation

Let a>0and 1 <M< oo, s1=1,5 =-1, and consider

min 3 a(x +s)?

xeR i=1,2
subject to x e [-M, M]

@ Agents’ objective functions : f;(x) = a(x + 5;)?, for i = 1,2

o Objective function becomes : 2ax? + 2c. Since > 0 its minimum is
achieved at x* =0

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 10/21

Example (cont'd)

Main distributed proximal minimization updates

@ Information mixing for i = 1,2 (under our choice for mixing weights) :

Xl(k) +X2(k)

zi(k) = 5

@ Local computation for i=1,2 :

xi(k+1) = N_py,m [Zi(k) _ szac(k)]

2ae(k) +1
- [ zi(k)=si2ac(k) o zi(K)-si2ac(k)
_ mm(W,M), 'fWZO
max(%v —M), otherwise,

@ What happens to z;(k) under our initialization choice ?

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 12/21

Example (cont'd)
Main distributed proximal minimization updates
@ Information mixing for i = 1,2 (under our choice for mixing weights) :

x1(k) +x2(k)

zi(k) = 5

@ Local computation for i =1,2 :

I = zi(k) |

1
xi(k+1)= argle [r?,':/r’tM] a(xi+s))2+ 0

@ Information mixing is the same for all agents : z; (k) = z (k)
@ Local computation : Find unconstrained minimizer and project it on
[_M> M]
@ Unconstrained minimizer :
Z,'(k) - s,-2ac(k)
2cc(k) +1

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 11/21

Example (cont'd)

We will show by means of induction that z; (k) = z»(k) =0
@ Step 1 : For k=0, and since x;(0) = -1 and x2(0) = 1, we have that

_ X1(0) +X2(0)
z(0) = —————

@ Step 2 : Induction hypothesis z; (k) = z2(k) =0
© Step 3 : Show that z;(k+1) =0

min(—‘sfzac(") M), if i2acl) 5

=0, fori=1,2

) _ 2occ(k)+17 2ac(k)+1 =
xilk+1)= max (M —/\/I) otherwise
2acc(k)+17 ) )
- 2ac(k)
- 2ac(k)+1’

where the first equality is due to the induction hypothesis, and the

%kc)(fl) <1land M>1, so the

argument is never “clipped” to +M

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 13/21

second is due to the fact that




Example (cont'd)

We will show by means of induction that z (k) = zo(k) =0

© Step 1 : For k=0, and since x1(0) = -1 and x2(0) = 1, we have that

2(0) = 210+ () ;Xz(o) =0, fori=1,2

@ Step 2 : Induction hypothesis z; (k) = zo(k) =0
© Step 3 : Show that z;(k+1)=0

- =si2ac(k)
min ( 2Zc(kc)+1 g )’

—s;2ac(k .
max(zzl%f)&l),—/w), otherwise,

e 2aee(k)
"2ac(k) +1
@ Since s; + 5, = 0 we then have that
xi(k+1)+x(k+1)
2 " 2ac(k) +1

- —si2ac(k)
f 2Zc(kc)+1 >0

X,'(/( + 1) =

Z,'(k + 1) =

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024

Distributed projected gradient algorithm

Main update steps :

14 /21

© Averaging step in parallel for all agents

7i(K) = Y &k (k)

J
@ Primal update for x; in parallel for all agents (projection step)

xi(k +1) = Mx[zi(k) - c(k)Vfi(zi(k))]

@ Looks similar with the distributed proximal minimization

@ Vfi(zi(k) denotes the gradient of f; evaluated at z;(k)

@ The x-update is no longer “best response” but is replaced by the
gradient step

zi(k) = c(k)Vfi(zi(k)
projected on the set X;

Michaelmas Term 2024 November 9, 2024
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Example (cont'd)

Since z;(k) =0 for all k, the x-update steps become

x-update steps for i = 1,2,

e 2ac(k)
"2ac(k) +1

_ 2x

- _Si2a +k+1

X,'(k + 1) =

@ As iterations increase, i.e. k — oo we obtain that
lim xj(k+1)=0=x"
k—>oo

@ In other words, the distributed proximal minimization algorithm
converges to the minimum of the decision coupled problem

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024

Distributed projected gradient algorithm

Main update steps :

15 /21

© Averaging step in parallel for all agents

zi(k) = 3 3 (k)x; (k)

@ Primal update for x; in parallel for all agents (projection step)

X,'(k + 1) = HX;[Zi(k) = C(k)Vf,(Z,(k))]

@ The proxy term c(k) plays the role of the (diminishing) step-size
along the gradient direction

@ Convergence to the optimum under the same assumptions with
distributed proximal minimization algorithm
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Distributed projected gradient algorithm

Relationship with distributed proximal minimization

@ Proximal algorithms can be equivalently written as a gradient step
1
2¢c(k)
< x(k+1)=Nx[z(k) - c(k)VFi(xi(k+1))]

xi(k+1) :arggli)rg fi(x;) + Ixi = zi(k)|?

o Notice that this is no a recursion but an identity satisfied by x;(k + 1)
as this appears on both sides of the last equality

o What happens if we replace in the right-hand side the most updated
information available to agent i at iteration k, i.e. zj(k)?

xi(k +1) = Nx[z(k) - c(k)Vfi(zi(k))]

@ ... we obtain the distributed projected gradient algorithm !
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True optimization is the revolutionary contribution of modern research to
decision processes.
— George Dantzig, November 8, 1914 — May 13, 2005
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Summary

Distributed algorithms for decision coupled problems

@ Distributed proximal minimization

» Step-size (proxy term) is now iteration varying

» Convergence under assumptions on step-size, mixing weights and
network connectivity

o Distributed projected gradient

» Rather than “best response” performs projected gradient step

» Same convergence assumptions with proximal minimization
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Thank you for your attention !
Questions 7

Contact at :
kostas.margellos@eng.ox.ac.uk
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