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Logistics

@ Who: Kostas Margellos, Control Group, IEB 50.16
contact : kostas.margellos@eng.ox.ac.uk

@ When: 4 lectures,
weeks 5 & 6 — Thu, Fri @4pm

@ Where: LR2

@ Other info :
» 2 example classes (week 7) : Wed 3-5pm (LR2) — Fri 9-11am (LR3)

» Lecture slides & handwritten notes available on Canvas
» Teaching style : Mix of slides and whiteboard !

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024

Motivation

@ Networks (Power, Social, etc.)

» Large scale infrastructures

» Multi-agent — Multiple interacting entities/users

» Heterogeneous — Different physical or technological constraints per
agent ; different objectives per agent

@ Challenge : Optimizing the performance of a network ...

» Computation : Problem size too big!
» Communication : Not all communication links at place; link failures

2/26

» Information privacy : Agents may not want to share information with

everyone (e.g. facebook)
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Why go decentralized /distributed ? Decentralized vs. Distributed

@ Decentralized : All agents with a central authority/coordinator
@ Scalable methodology g y
» Communication : qzy price broadeast
Decentralized : With some central authority 4 = i
Distributed : Only between neighbours electric vehicle 77 S |
» Computation : Only local; in parallel for all agents tentative actiops= 1 IR |
e ! AN !
s / S 1
. . -, ’ ~ i
@ Information privacy i . hN ;
¥y ¥y L ‘___I
» Agents do not reveal information about their preferences (encoded by -~ - i
objective and constraint functions) to each other Decentralized vs. Centralized : Agents “broadcast” only tentative
information not everything
© Resilience to communication failures @ Distributed : Only with some agents, termed neighbours

@ Numerous applications
» Wireless networks
» Optimal power flow
» Electric vehicle charging control
» Energy management in building networks
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Multi-agent problem classes Multi-agent problem classes

Motivating example : Electric vehicle charging

& price broadcast
25

Cost coupled problems

i
i

. . ’ 1
electric vehicle ,’I’ N !
tentative actions” / s i
. 1 |

i

i

i

i

i

. N
s ! ~

minimize F(xi,...,Xm)

- / N

*.é = - " subject to

o Charging rate of each vehicle : x; (in units of power) 7G 82y WIS Lyoos 5

o Electric vehicles are like batteries : X; encodes limits on charging rate

@ Agents have separate decisions : x; for agent i
Price depends on everybody's consumption . .
@ Agents have separate constraint sets : X; for agent /

@ Agents aim at minimizing a single objective function F that couples

minimize Y x;"p(>. x;) [price function p(:)] their decisions
i i

subject to : x; € X;, for all i [limitations on the charging rate]
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Multi-agent problem classes

Decision coupled problems

.

m
minimize Y fi(x)
i-1
subject to
xeX;, Vi=1,...

@ Agents have a common decision : x for all agents
@ Agents have separate constraint sets : X; for agent i

@ Agents have separate objective functions : f; for agent /
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Multi-agent problem classes

Constraint coupled problems (cont'd)

7
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m
minimize Y f(x;)

i=1
subject to

X,'EX,'7 ViZl,...

m
Zg,-(x,-) <0
i=1

,m

@ Agents have separate decisions : x; for agent i

o Agents have separate constraint sets : X; for agent i

@ Agents have a common constraint that couples their decisions, i.e.

Yi&i(x) <0
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Multi-agent problem classes

Constraint coupled problems : Electric vehicle charging

& price broadcast
25

. . ?, ~
electric vehicle 7 /I N

. N
tentative action~ ’ ~

.

- S G- e
o Charging rate of each vehicle : x; (in units of power)
o Electric vehicles are like batteries : X; encodes limits on charging rate

Price independent of others consumption

minimize ZC,TX,-
f

subject to : x; € X;, for all i [limitations on the charging rate]

Z(A,‘X,‘—%) <0

[charging cost]

[power grid constraint]

1
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Can we transform one problem class to another ?
From decision coupled to constraint coupled problems

minimize Y fi(x;)
i

subject to
X,'E)(,‘7 Vi=1,...,m

xi=x, Yi=1,...,m

@ Introduce m new decision vectors, as many as the agents :
Xj, i=1,...,m

@ Introduce consistency constraints : make sure all those auxiliary
decisions are the same, i.e. x;=x forall i=1,...,m

@ Price to pay : Number of constraints grows with the number of agents
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Can we transform one problem class to another?

From cost coupled to constraint coupled problems

x

minimize 7y = Z
~m

1

subject to
X,'EX,', Vizl,...,m
F(xt,-yXm) <y

@ Introduce an additional scalar epigraphic variable ~
@ Move coupling to the constraints, i.e. F(Xj,...,Xm) <7

@ Price to pay : Coupling can not be split among several functions, each
of them depending only on Xx;, i.e. not in the form ¥, gi(x;) <0
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Can we transform one problem class to another?

Yes, but ...

@ We can transform from some problem classes to others
@ Often those reformulations are useful

@ However, they come with drawbacks :
» may increase number of decision variables,
» or lead to non-separable constraints,

» or non-differentiable objective functions

So necessary to develop algorithms tailored to each problem class
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Can we transform one problem class to another?

From decision coupled to cost coupled problems

minimize F(x,...,xm) = Y. fi(x) +Ix(x)

subject to : no constraints

@ Lift the constraints in the objective function via characteristic
functions, i.e., for each 1,

0 if xeXj;
+o0o otherwise.

IXi(X) = {

@ New problem does not have any constraints

@ Price to pay : The new objective function is not differentiable, even if
each f; is differentiable
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Part | : Decentralized algorithms
Cost coupled problems

Cost coupled problems?!

minimize F(x1,...,Xm)
subject to

X,'EX,', Vi=1,...,m

@ Denote by x* a minimizer of the cost coupled problem

@ Denote by F* its minimum value

1. Throughout we assume that all functions and sets are convex
Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 16 / 26



Mathematical prelims : Lipschitz & Contraction mappings

@ Let T: X —» X. We call T a Lipschitz mapping if there exists « > 0
such that

ITC) =Ty <alx—yl, forall x,yeX
@ We call a Lipschitz mapping T contraction mapping if o€ [0,1)
o Parameter o € [0,1) is called the modulus of contraction of T

o We should always specify the norm

Convergence of contractive iterations
Assume T is a contraction with modulus « € [0,1) and X is a closed set.
@ T has a unique fixed-point T(x*) = x*
@ The Picard-Banach iteration x(k +1) = T(x(k)) converges to x*
geometrically, i.e.

Ix(k) = x*|| < &¥[x(0) = x*|, for all k>0

4
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The Jacobi algorithm

o lterative algorithm

Initialize: Select (arbitrarily) x;(0) € Xj, forall i=1,....m

For each iteration k=1,...

@ Collect x(k) = (xl(k)7 e ,xm(k)) from central authority

@ Agents update their local decision in parallel, i.e. for all
i=1,...,m

xi(k +1) = arg min F(3a(K), - xi1 (), i, X1 (K), - - () )

end for
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Mathematical prelims : Convexity vs strong convexity

M(2) ()

M) + (1- MF0)

|
| ~ |
|
|

f()\x + (1 _ )\)y) f(X) + Vf(X)T(y’ X)

4

|

| |

| |

l !
y X 14

“h-----

@ Strong convexity is “stronger” than convexity — uniqueness of optimum
& lower bound on growth

f(y) > f(x)+VF(x)(y - x) + oy - x|?, where 0 >0

@ We can fit a quadratic function between the “true” function and its
linear approximation

@ For quadratic functions strong is the same with strict convexity
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The Jacobi algorithm

@ Agents coupled via a single objective function

minimize F(x1,...,Xm)

subjectto: x; € X;, Vi=1,...,m

@ Collect x(k) = (xl(k), . ,xm(k)) from central authority

@ Agents update their local decision in parallel

xj(k +1) = arg min F(Xl(k)a ey Xi-1(k)y X0, Xis1(K), - - 7Xm(k))
Xi€EX|

@ Block coordinate descent method ; agents act in best response

o Parallelizable method : Agent i uses the k-th updates of all agents
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Jacobi algorithm : Convergence

Theorem : Convergence of Jacobi algorithm

If F is differentiable and there exists small enough ~ such that
T(x)=x-~vVF(x)

is a contraction mapping (modulus in [0,1)), then there exists a minimizer
x* of the cost coupled problem such that

klim [x(k)—x*| =0

@ Best response but a gradient step appears in convergence

o A sufficient condition for T to be a contractive map is F to be a
strongly convex function

@ Can we relax this condition ?
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Regularized Jacobi algorithm : Convergence

Theorem : Convergence of regularized Jacobi algorithm
Assume that F is convex and VF is Lipschitz continuous with constant L.
Assume also that

m-1

2m -1

Cc>

vmlL

We then have that limy_,., |F(x(k)) - F*|| =0

@ Algorithm convergences in value, not necessarily in iterates, i.e. not
necessarily limy_ o [x(k) =x*| =0

@ Penalty term c increases as m — oo

@ The more agents the “slower” the overall process
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The regularized Jacobi algorithm

@ Collect x(k) = (xl(k), . ,xm(k)) from central authority

@ Agents update their local decision in parallel

Xi(k+ 1) =arg m|)r<1 F(Xl(k)a"'aXi—l(k)7Xf7Xi+1(k)a'"7Xm(k))
Xi€EX|

+ cllx; = xi(k) |3

@ Jacobi algorithm + regularization term

@ Penalty term acts like “inertia” from previous tentative solution of
agent i

@ New objective function is strongly convex due to regularization
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The Gauss-Seidel algorithm

Q Collect x(k) = (xa(k+1),...,xi-1(k + 1), x;(k), ..., xm(k))
@ Agent j updates
X,'(k+ 1)

=arg m|)r<1 F(Xl(k + 1)? 000 7Xi71(k + l)aXI'aXHl(k)v 000 7Xm(k))

@ Block coordinate descent method ; agents act in best response
@ Sequential : Agent i uses the (k + 1)-th updates of preceding agents

o Similar convergence results with Jacobi algorithm : If F is
strongly convex (strict convexity is sufficient) with respect to each
individual argument, then limy_.o |F(x(k)) - F*| =0
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Summary

Decentralized algorithms for cost coupled problems

minimize F(xq,...,Xm)

subject to x; € X;, Vi=1,...,m

@ The Jacobi algorithm : parallel updates
F differentiable and strongly convex

@ The regularized Jacobi algorithm : parallel updates
F differentiable and just convex

@ The Gauss-Seidel algorithm : sequential updates
F differentiable and strongly convex per agent’s decision
= For quadratic functions x" Qx :
— convex if @ = 0; strongly convex if @ >0
— Strong convexity = strict convexity

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024
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Thank you for your attention !
Questions 7

Contact at :
kostas.margellos@eng.ox.ac.uk
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Recap

Decentralized algorithms for cost coupled problems

26 /26

minimize F(xi,...,Xm)

subject to x; € X;, Vi=1,....m

@ The Jacobi algorithm : parallel updates
F differentiable and strongly convex

@ The regularized Jacobi algorithm : parallel updates
F differentiable and just convex

@ The Gauss-Seidel algorithm : sequential updates
F differentiable and strongly convex per agent’s decision
= For quadratic functions x" Qx :
— convex if @ = 0; strongly convex if @ >0
— Strong convexity = strict convexity
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Part | : Decentralized algorithms

Decision coupled problems

Decision coupled problems — The primal

e D

minimize Y fi(x)

subject to
xeX;, Yi=1,....m

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 3/24

The proximal minimization algorithm

@ Consider a differentiable function F. The following problems are

equivalent
Standard minimization program Proximal minimization program
o o 1 )
minimize F(x) minimize F(x) + oE [x -y

subject to : x € X subject to : x € X, y e R"

@ The proximal problem has an objective function which is differentiable
and strongly convex (for any fixed y)

@ We can solve it iteratively via the Gauss-Seidel algorithm ;
converges for any ¢ > 0 (see Lecture 1)

o Alternate between minimizing x and y

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 5/24

Part | : Decentralized algorithms

Decision coupled problems

@ Decentralized solution roadmap

@ The main algorithm for this is the Alternating Direction Method of
Multipliers (ADMM)

@ The predecessor of ADMM is the Augmented Lagrangian algorithm

© The Augmented Lagrangian is in turn based on the Proximal algorithm

Proximal — Augmented Lagrangian —> ADMM
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The proximal minimization algorithm

@ The following problems are equivalent

Standard minimization program Proximal minimization program

S 1
minimize F(x) minimize F(x) + = Ix - y?

subject to : x € X subject to : x e X, y e R"

Proximal algorithm :
QO x(k+1) =argmineex F(x) + 5= [x - y(k)|?
Q y(k+1)=x(k+1)

... or
O x(k+1) =argmineex F(x) + 5= |x - x(k)|?
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The proximal minimization algorithm

Geometric interpretation

o Let ®.(y)=minF(x)+ %Hx — y|? achieved at x = x(y, ¢)
o Hence, dc(y) = Fx(y.0) + e X(v.c) =¥I? < FO) + 5elx -y

1
= d.(y)- ZHx—sz < F(x), with equality at x = x(y, ¢)

@, (y) =min {Fix)+5-lx—yliZ}

1
) Ll —y 2

—lx—=yl2
2cllx yliZ
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The proximal minimization algorithm

Geometric interpretation

o Effect of the growth of F (flat and steep functions)

Fix)
I
| |
| : |
[
oo
0 X0 x1 x? x
F(x)
|
d |
|
| |
| I
I [
s 4
0 X0 x! x2 x
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The proximal minimization algorithm

Geometric interpretation

o Effect of large and small values of ¢

Fix)
@, (%) — g llx —x° 112 —_|
Large Value of ¢
0 M 2 X X
Fix)
oy _1 o
gl —gelx—xI3—| [ 4
Small Value of ¢ ‘
0 Xé x" ;{2 x* x
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The augmented Lagrangian algorithm

o Consider the following problems

Standard program Augmented program

L c
minimizeyex F(x) minimize,ex F(x) + 5 [Ax - b||2

subject to : Ax=b subject to : Ax=b

@ Trivially equivalent problems : For any feasible x, the “proxy” term
becomes zero

@ Resembles the structure of the proximal algorithm

o Ax = b models complicating constraints :
if F(x)=3%;fi(x;) and X = X1 x...x Xy, then Ax = b models
coupling among agents' decisions
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The augmented Lagrangian algorithm

@ Construct the Lagrangian of the augmented program

Le(x,A) = F(x) + AT (Ax - b) + gHAx — b|?

Augmented Lagrangian algorithm :
Q x(k+1)=argminyex F(x)+A(k)"(Ax - b) + £| Ax — b]?
@ A(k+1)=\(k)+c(Ax(k+1)-b)

@ For simplicity we assumed a unique minimum for the primal variables ;
this depends on A

@ Apply a primal-dual scheme : minimization for primal followed by
gradient ascent for dual

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 11/24

Proof

Augmented Lagrangian algorithm :
Q x(k+1)=argminyx F(x) + A(k)"(Ax - b) + §| Ax - b]?
@ A(k+1)=\(k)+c(Ax(k+1)-b)

@ Notice that the dual function of the original problem is given by
q(y) =min F(x) +y" (Ax - b)

where y contains the dual variables associated with Ax < b
Step 1 : Equivalently write the primal minimization step as

min F(x) + A(k) (Ax = b) + gHAx — b|?
XE€

= min F(x)+AK)z+ guz\ﬁ

xeX, z, Ax—b=z

The minimizers are denoted by x(k +1) and z(k +1)
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The augmented Lagrangian algorithm

Augmented Lagrangian algorithm :
Q x(k+1)=argminyx F(x) + A(k)"(Ax - b) + 5| Ax - b]?
@ A(k+1)=\(k)+c(Ax(k+1)-b)

Theorem : Convergence of Augmented Lagrangian algorithm

For any ¢ > 0, we have that :

@ there exists an optimal dual solution A* such that
lim |[A(k)=A"[=0
k—>o<>

@ primal iterates converge to the optimal value F*, i.e.

Jim [F(x(k)) - F7] =0

v
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Proof (cont'd)

Step 2 :

@ Dualize the coupling constraint in Step 1 using multipliers y and
consider the optimum of the dual problem

y* =arg max{ mi)r<1 (F(x)+y"(Ax=b)) +min((A(k) - y)Tz+ gHZHZ)}
y X€ z
@ Using the definition of the g(y) this is equivalent to
y* =argmax{q(y) +min (A(K) - y) "z + = |z|)}
y z 2

@ The inner minimization is an unconstrained quadratic program ;
calculate its minimizer by setting the objective's gradient equal to zero

y = Ak)

and hence z(k+1)= 24
c

2:

"= AK)
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Proof (cont'd)

Step 3 :
@ Substituting back the value of z

y* =argmax {q(y) + min (A(k) - )"z + - |2/)}

=arg mfx{Q(Y) - %Hy - )\(k)H2}

@ At the same time, due to the equality constraint in Step 1,
z(k+1)=Ax(k+1)-b, hence

AMk+1)=A(k) +c(Ax(k+1)-b) = A(k+1)=y"

which in turn implies that

1
A(k+1) =argmaxq(y) - =y = AKk)|?
y 2c
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Back to decision coupled problems

Recall the equivalence between decision and constraint coupled problems

. Constraint coupled problem
Decision coupled problem

L filx:
et Z () minimize Z/: (xi)
1

i . subject to : x; € X;, Vi
subject to : x € X;, Vi

xi=2z, Vi

@ We will show that this constraint coupled problem is in the form of

minimizeyex F(x)
subject to : Ax=b
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Proof (cont'd)

Step 4 : Putting everything together ...
@ The augmented Lagrangian primal dual scheme

@ x(k+1)=argminex F(x)+ A(k)T(Ax = b) + 5| Ax - b|?
@ A(k+1)=\(k)+c(Ax(k+1)-b)

.. is equivalent to

O M k+1)=argmax, q(y) — =y - AM(k)|?

@ Proximal algorithm for the dual function g(y)!

@ |t converges for any c as q(y) is the dual function thus always
concave, i.e. limg_ o [|[A(k) = A*| = 0 for some optimal \*

@ For the primal variables we can only show something slightly weaker :
they asymptotically achieve the optimal value F*
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Decision coupled problems

Consider the following asignements :

@ Decision vector
X< (Xt,-.0y Xm, 2)

Constraint sets

X<« Xy x...xXpmxR"

Objective function
F(Xl,...,Xm,Z) - Zf,(X,)
i

@ Matrices A and b :
-1 0 0 1 X1
Ax=b < |0 7L 0L g
: : : Xm
O 0 ... -1 1|z

@ Dual variable : A < (A1,..., Apm)
A(K)T(Ax = b) = 2" A (k)(z - x;) and [Ax - b|? = 3" |z - x|
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Decision coupled problems

Augmented Lagrangian for the reformulated constraint coupled problem

© Primal update

(xl(k +1),.. . xm(k+1),z(k + 1))
=arg min Zf;(x;)+)\,-T(k)(z—x,-)+gHZ—X,-H2

X1€X1,...,Xm€Xm,Z i

@ Dual update

Ak +1) = Mi(k) +c(z(k +1) - xi(k +1))

@ Primal update in the form cost coupled problems via a single function
¥ fi(xi) + Ai(k)T(z = x) + §]z = xi?

o Can solve via Gauss-Seidel algorithm, alternating between minimizing
with respect to (x1,...,xn) and z
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Decision coupled problems

~ a

begin loop

@ Primal update for z information from central authority
1 1
z=—) xi—— > Ai(k
S T
@ Primal update for x; in parallel for all agents

. c
Xj = arg min f(x;) = Ai(k)Tx; + §||z —x,-||2

end loop
© Dual update in parallel for all agents

Ailk+1)=Xi(k) +c(z(k+1)-x;(k+1))

\. J

@ Nested iteration with Gauss-Seidel inner loop — Can we do any better ?
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Decision coupled problems

Primal update : Can solve via Gauss-Seidel algorithm, alternating between
minimizing with respect to (x1,...,xmy) and z

(X]_(k +1), .., xm(k+ 1), x(k + 1))
—arg  min SO+ A (K)(z ) + 5z il

x1€X1,e e, Xm€Xm,Z 7

@ Update of z : Unconstrained quadratic minimization with respect to
z. Take the derivative and set it equal to zero leads to

1 1
Z—EZ:X,'—EZI.:)\;(/()

e Update of xi,...,x,, : For fixed z problem is separable across agents

(no longer coupled in the cost). Hence for all i,
c

xi = argmin £;(x;) = \i (k)X + = |z = xi|?
X,'EX,‘ 2
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Decision coupled problems

What if we only do one Gauss-Seidel pass?

@ Primal update for z information from central authority
(k+1)= = Txi(k) - — T xi(K)
z =— ) Xi(k) - — i
m < mc
@ Primal update for x; in parallel for all agents
xi(k+1) = arg min £,(x) = Xi(k) T + = |z(k + 1) = [
Xi€EA|

© Dual update in parallel for all agents

Ailk+1)=Xi(k) +c(z(k+1)-x(k+1))

@ Does this scheme converge? ADMM provides the answer ! Lecture 3
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Summary

Decision coupled problems

~ ~

minimize Y fi(x)
i

subject to
xeX;, Yi=1,....m

Intriduced three different algorithms
@ Proximal minimization algorithm
@ Augmented Lagrangian algorithm

@ Augmented Lagrangian with one pass of the inner loop = ADMM

Proximal — Augmented Lagrangian —> ADMM
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Thank you for your attention !
Questions 7

Contact at :
kostas.margellos@eng.ox.ac.uk
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Recap

Decision coupled problems

minimize Y fi(x)
i

subject to
xeX;, Vi=1,....m

Intriduced three different algorithms
@ Proximal minimization algorithm
@ Augmented Lagrangian algorithm

@ Augmented Lagrangian with one pass of the inner loop = ADMM

Proximal — Augmented Lagrangian — ADMM
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Recap : Augmented Lagrangian algorithm

Example
Inner lopp : Gauss-Seidel algorithm ! Feasibility problem — part of Question 4, Example Paper
begin loop Find a point x* at the intersection (assumed to be non-empty) of two
) . . . (possibly different) convex sets Xi and X, i.e.
@ Primal update for z information from central authority
1 1 minimize 0 [any constant would work]
Z:;ZXi_m_CZ)‘i(k) subject to x € X1 and x € X,
1 1
@ Primal update for x; in parallel for all agents Apply Augmented Lagrangian algorithm initializing at A\1(0) = A2(0) = 0. |
xi = arg min fi(x;) - Ai(k)x; + =z = x|
X;EX,' 2
end loop
© Dual update in parallel for all agents
Ailk+1)=Xi(k)+c(z(k+1)—xi(k+1))
L J Xl X5
Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 3/28

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 4/28

Example (cont'd) Example (cont'd)

@ Decision coupled problem with 2 agents; notice that f;(x) = f2(x) =0 o Denote by Iy, [Z] the projection of z on the set X;

@ Consider k = 0 and focus at the inner loop of the Augmented
Lagrangian algorithm

@ Recall that A1(0) = X2(0) =0

@ Inner loop becomes then ...

Outer loop at k = 0; main steps of inner loop

Q - X142'X2
Outer loop at k = 0; main steps of inner loop

Q =X _ A1(0)+22(0) _ x1+x0 Q x1 < argminX1€X1 %HZ - X1 “2 = rle [Z]
==z 2c T2
. @ _ 2 _
Q x1 < argminygex, ~A1(0)x1 + 5[z - x |2 = arg min,, cx, slz—x 12 X < argMingex, 312 = x| = Nx, [Z]

Xp < arg Miny,ex, —A2(0)x2 + 5[z = x2[? = arg miny,ex, 5[z - x|

@ This is just the Gauss-Seidel to solve the problem
@ Second step exhibits a nice structure and geometric interpretation minimize, o oo 5 Z Iz - Xi||2
@ Solve the unconstrained quadratic program and project on the i=1,2
constraint set (X; and Xs, respectivel . .. .
Xy 2 P ) @ Hence it converges to the minimum, which occurs when x; = xp = z

Michaelmas Term 2024 C20 Distributed Systems Michaelmas Term 2024 C20 Distributed Systems
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Example (cont'd)

@ Since upon convergence of the inner loop x; = x = z, then the outer

loop update becomes

Ai(1) =X;(0) + c(z(1) = x;(1)) =0, for i=1,2
e Similarly, \j(k) =0 forall k>0
o Effectively we only have one loop!
Simplified single-loop algorithm
@ Averaging step : z(k+1) = M

@ Parallel projections :

xi(k+1) =Ty [z(k + 1)] and xo(k +1) = I'Ixz[z(k + 1)]

Michaelmas Term 2024 C20 Distributed Systems
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Augmented Lagrangian with one Gauss-Seidel pass = ADMM
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© Primal update for z information from central authority
(k+1) = = T xi(k) - — 3 ni(k)
V4 = — i — — i
m < mc 5
@ Primal update for x; in parallel for all agents
xi(k + 1) = arg min £i(x) = A (k) + %Hz(k +1) - x|?
X;EX|

© Dual update

Ailk+1)=Xi(k) +c(z(k+1)-xi(k+1))

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024
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Example (cont'd)
Simplified single-loop algorithm
© Averaging step : z(k+1) = M

@ Parallel projections :

xa(k+1) =My [2(k+1)] and xo(k+ 1) = My, [2(k + 1)]

Schematic illustration of the single-loop iterations

x1(0) z(1) )
= N X2
\>

Xl Xo

Michaelmas Term 2024 C20 Distributed Systems
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Equivalent notation in line with ADMM literature (the roles of x and z are

reversed) — only notational change !

-~

@ Primal update for x information from central authority
x(k+1) = = 3 zi(K) - — ¥ xi(K)
m % mc <
@ Primal update for z in parallel for all agents
zi(k +1) = arg min fi(z)) = Xi(k) 2 + §||x(/< +1) - 7|2

© Dual update

Ailk+1) =Xi(k) +c(x(k+1)-zi(k+1))

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024
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The Alternating Direction Method of Multipliers (ADMM)

@ ADMM even more general than decision coupled problems

o Splitting algorithm : decouples optimization across groups of variables

Group variables

minimize F;(x) + F2(Ax)
subject to : x € Gy, Axe G

Equivalent reformulation

minimize Fi(x) + F2(z2)
subject to: xe Gy, ze G

Ax =z

v

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 11/28

Decision coupled problems as a special case again

Original problem ADMM set-up

minimize Y f;(x) minimize F1(x) + F2(z)
i subject to : xe€ G, ze &
subject to : x e X;, Vi Ax = 7

o Can be obtained as a special case of the ADMM set-up

/
@ To see this, let z=(z,...,2y) and define A=:| (stack of identity
I
X X [ 2,
matrices), hence Ax=|:|and Ax=z < [:|=]:
X X | Zm

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 13/28

ADMM algorithm

Effectively Augmented Lagrangian with one Gauss-Seidel pass

Q@ x(k+1)=argminc, F1(x)+A(k)TAx + SIAx - z(k)H2
Q z(k+1)=argminsc, F2(z) = A(k) 'z + §|Ax(k + 1) - z|?
© A(k+1)=A(k)+c(Ax(k+1)-z(k+1))

Theorem : Convergence of ADMM
Assume that the set of optimizers is non-empty, and either C; is bounded
or ATA is invertible. We then have that

@ (k) converges to an optimal dual variable.

@ (x(k).z(k)) achieves the optimal value
If ATA invertible then it converges to an optimal primal pair

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 12 /28

Decision coupled problems (cont'd)

@ Perform also the following assignments

Fl(X)=0, C1=Rn
F2(Z)=Zf,-(z,-), GCo=X1x...x Xy

@ For each block constraint, i.e. x = z assign the dual vector \;,
and let A= (A1,...,Am)
@ The three ADMM steps become then

O x(k+1) =argminygs A(k)TAx + S| Ax - z(k)|?
Q z(k+1)=argmingex,, . zmexm 2 fi(2i) = A(k) Tz + 5| Ax(k + 1) - z|?

© A k+1)=A(k)+c(Ax(k+1)-z(k+1))
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Decision coupled problems (cont'd)

... or equivalently (compare with slide 5!)

Q x(k+1)=argmingpn ¥ Ai(k) ' x+ 5%, [x - z(k)|?
» Unconstrained quadratic optimization
» Setting the gradient with respect to x equal to zero we obtain

SA(k) + € Y (x(k +1) = z(k)) = 0
o x(k+1) = %Zz,-(k) - mic S (k)

Q z(k+1)=argmingex, .. zmeXp i (ﬁ(zi)—/\i(k)TZi+§||X(k + 1)—21'”2)

» Since x(k + 1) is fixed, fully separable across i. Minimizing the “sum” is
equivalent to minimizing each individual component. Hence, for all 7,

zi(k+1) = arg min f(z) - \i(K) 'z + Z|x(k+ 1) - P
zieX;

O Ni(k+1)=Xi(k)+ c(x(k +1)—zi(k+ 1)) (due to the structure of A)

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 15/28

Constraint coupled problems

iginal probl
Original problem ADMM set-up

minimize fi(x; ..
Zi: (xi) minimize Fi(x) + F2(z2)

subject to : x; € X;, Vi subject to: xe Gy, z€ G
ZX,-zO Ax=1z
I' v
o To see this, let x = (x1,...,Xm), z=(z1,...,2m) and

A = identity matrix

@ Separate complicated objective from complicated constraints
Fl(X) = Zf,‘(X,'), Cl = Xl X ... X Xm
i

F2(Z) 20, C2 = {Z | ZZ,' :0}

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 17 /28

Constraint coupled problems

Affine coupling :

minimize Y fi(x;)
i

subject to : x; € X;, Vi

ZX,'ZO
i

o Affine coupling constraint : equality with zero for simplicity

@ We could have general coupling constraints Ax = b; see Example 4.4,

Chapter 3 in [Bertsekas & Tsitsiklis 1989]

@ We can still treat as an ADMM example

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 16 /28
Constraint coupled problems
ADMM algorithm for constraint coupled problems
@ Primal update for x; in parallel for all agents
. c
xi(k +1) =argmin fi(x;) + N[ (k)x; + =||x; - zi(k)|?
X,*EX,‘ 2
@ Primal update for z information from central authority
. c
z(k+1)=arg min =S A (K)z+= > |x(k+1)-z|?
{zXiz=0} 5 25
© Dual update A\;(k+1) = X;(k)+ c(x,-(k +1)—zi(k+ 1))
Question 6, Example paper : Solve the z-minimization analytically
@ Find unconstraint minimizer and project on Y ;z; =0
o Notice that A\1(k) =...=Ap(k) forall k>1
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Part Il : Distributed algorithms

Decision coupled problems

minimize Y fi(x)
i

subject to
xeX;, YVi=1,....m

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 19 /28

Distributed proximal minimization

General architecture
Step 1 : Local problem of agent i
minimize f;(x;) + gi(xi, zi)

subject to } = x (z)
Xj € X,‘

x; : “copy” of x maintained by agent i NOT an element of x
X; : local constraint set of agent i

z; : information vector — constructed based on the info of agent’s i neighbors

Objective function
fi(xi) : local cost/utility of agent i
8i(xi, z) : Proxy term, penalizing disagreement with other agents

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 21/28

Recall electric vehicle charging control problem

Decision coupled problem

minimize Y f(x)

subject to
XEX,', Vi=1,4..,m

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 20 /28

Distributed proximal minimization

General architecture

Step 1 : Local problem of agent i

minimize f;'(X,') ar g,'(X,‘, Z,‘)
subject to = X (z)
Xj € X,‘
Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 22/28



Distributed proximal minimization

General architecture

Step 1 : Local problem of agent /

subject to

minimize f;(x;) + gi(xi, zi)
} = X' (z)
Xj € X,‘

Step 2a : Broadcast x;*(z;) to neighbors Step 2b : Receive neighbors’ solutions

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 22/28

Distributed proximal minimization

Local problem of agent i

minimize f;(x;) + gi(xi, zi)
subject to } = x; (zi)
Xj € X,‘

@ We need to specify

» Information vector z;
» Proxy term term gi(x;, z)

o Note that these terms change across algorithm iterations
» We need to make this dependency explicit

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 22/28

Distributed proximal minimization

General architecture

Step 1 : Local problem of agent /

subject to

minimize f;(x;) + gi(xi, zi)
} = X' (z)
Xj € X,‘

Step 2a : Broadcast x;'(z;) to neighbors Step 2b : Receive neighbors’ solutions

Step 3 : Update z on the basis of information received
Go to Step 1

y
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Distributed proximal minimization

Local problem of agent / at iteration k + 1

zi(k) = 3 aj(k)xi(k)

il 1) = ey f’(X’)+2c(k) Ixi = zi (k)|

@ Information vector
> z,-.(k) =% aj’:(k))g(k)
» aj(k) : how agent i weights info of agent j
@ Proxy term
. ﬁ“x,- — zi(k)[? : deviation from (weighted) average
» c(k) : trade-off between optimality and agents’ disagreement
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Proximal minimization algorithm

Proximal minimization algorithm

e

© Averaging step in parallel for all agents
zi(k) = X aj(k)x (k)
J

@ Primal update for x; in parallel for all agents

1

xi(k+1)= arggli)rgi fi(x;) + 2e(k)

Ix; ~ zi (k)|

@ No dual variables introduced — primal only method

o All steps can be parallelized across agents — no central authority !

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024

Distributed proximal minimization
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@ Averaging step in parallel for all agents
7(k) = 222k (K)
J

@ Primal update for x; in parallel for all agents

1

ROl

xi(k+1)=arg mi)rg fi(x;) +

@ Does this algorithm converge 7

o If yes, does it provide the same solution with the centralized problem

(had we been able to solve it) ?

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024
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Contrast with the ADMM algorithm

ADMM algorithm

@ Primal update for z information from central authority
(k+1) =~ (k) - — S Ai(K)
z =— > xi(k)- — ;
m&<"! mc <"
@ Primal update for x; in parallel for all agents
xi(k+1) = arg min £:(x;) = Ai(k)Txi + = |2(k + 1) - x|
X,'EX,‘ 2

© Dual update in parallel for all agents

Ailk+1)=Xi(k) +c(z(k+1)-xi(k+1))

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024

Summary

ADMM algorithm

o Convergence theorem

@ Decision coupled problems come as an example

Distributed algorithms
@ ... for decision coupled problems
@ Step-size (proxy term) is now iteration varying
@ Connectivity requirements become important

@ When does it converge? Lecture 4

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024
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Thank you for your attention !
Questions 7

Contact at :
kostas.margellos@eng.ox.ac.uk
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Recap : Distributed algorithms

Decision coupled problems

minimize Y fi(x)
i

subject to

xeX;, Yi=1,...,m

Michaelmas Term 2024

C20 Distributed Systems
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C20 Distributed Systems
Lecture 4

Kostas Margellos

University of Oxford

F

%5 OXFORD

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 1/21

Proximal minimization algorithm

Proximal minimization algorithm

~

@ Averaging step in parallel for all agents
zi(k) = 3 aj(k)x;i(k)
J
@ Primal update for x; in parallel for all agents

1

xi(k+1)= arg)r(:lixrl fi(x;) + 2¢(k) [ xi = z,-(k)||2

@ No dual variables introduced — primal only method
@ All steps can be parallelized across agents — no central authority !
Michaelmas Term 2024
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Distributed proximal minimization

© Averaging step in parallel for all agents
zi(k) = Y al (k) (k)
J

@ Primal update for x; in parallel for all agents
1

RO OLE

xi(k+1)=argmin fi(x;) +
X,'GX,‘

@ Does this algorithm converge ?

o If yes, does it provide the same solution with the centralized problem
(had we been able to solve it if we had access to f;'s and X;'s)?
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Algorithm analysis : Assumptions

@ Convexity and compactness
» f:(+) : convex for all
» X; : compact, convex, non-empty interior for all i
= There exists a Slater point, i.e. 3 Ball(x, p) c N; X;

@ Information mix
» Weights aJ’:(k) : non-zero lower bound if link between i — j present
= Info mixing at a non-diminishing rate

» Weights aj(k) : form a doubly stochastic matrix (sum of rows and
columns equals one)

= Agents influence each other equally in the long run

> ai(k)=1, Vi

J

Yai(k) =1, Vj

1
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Algorithm analysis : Assumptions

@ Convexity and compactness

» f;(+) : convex for all i

» X; : compact, convex, non-empty interior for all i

= There exists a Slater point, i.e. 3 Ball(x,p) c N; X;
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Algorithm analysis : Assumptions

© Choice of the proxy term
> {c(k)}k . non-increasing

» Should not decrease too fast

Zc(k) =00
k

November 9, 2024

[to approach set of optimizers]

> c(k)®> < oo [to achieve convergence]

k

» E.g., harmonic series

c(k) =

Notice that limy_.. c(k) =0, i.e. as iterations increase we penalize

“ . "
disagreement” more

Michaelmas Term 2024
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where « is any constant
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Algorithm analysis : Assumptions

© Network connectivity — All information flows (eventually)
Connectivity

Let (V, Ex) be'a directed graph, where V : nodes/agents, and
Ex = {(Jv i): aj’-(k) > 0} . edges Let

(s = {(j, i): (J,i) € E for infinitely many k}.

(V,Es) is strongly connected and (kind of) periodic, i.e., for any two

nodes there exists a path of directed edges that connects.

— Any pair of agents communicates infinitely often,
— Intercommunication time is bounded

=]
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Algorithm analysis : Assumptions

© Network connectivity — All information flows (eventually)
Connectivity

Let (V, Ex) be a directed graph, where V' : nodes/agents, and
Ee={G,i): aj(k) > 0} : edges Let

(s = {(j, i): (J,i) € Eg for infinitely many k}.
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Algorithm analysis : Assumptions

© Network connectivity — All information flows (eventually)

Connectivity
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— Any pair of agents communicates infinitely often,
— Intercommunication time is bounded

=
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Algorithm analysis : Assumptions

© Network connectivity — All information flows (eventually)
Connectivity
Let (V, Ex) be'a directed graph, where V : nodes/agents, and
Ex = {(J, i): aj(k)> 0} : edges Let
(s = {(j, i): (J,i) € E for infinitely many k}.

(V,Es) is strongly connected and (kind of) periodic, i.e., for any two
nodes there exists a path of directed edges that connects.

— Any pair of agents communicates infinitely often,
— Intercommunication time is bounded

=

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 7/21

Example

Two-agent problem

Let >0 and 1 < M < oo, and consider the problem :

minimizeyer a(x +1)2 +a(x - 1)?
subject to x € [-M, M]

© What is the optimal solution ?
@ Compute it by means of the distributed proximal minimization
algorithm using
— Time-invariant mixing weights aj’:(k) = % for all iterations k
— Take c(k) = ﬁ
— Initialize with x1(0) = -1 and x2(0) =1

@ Treat this as a two-agent decision coupled problem

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 9/21

Convergence & optimality

Theorem : Convergence of distributed proximal minimization

Under the structural + network assumptions, the proposed proximal
algorithm converges to some minimizer x* of the centralized problem, i.e.,

klim |xi(k) = x*| =0, forall i

o Asymptotic agreement and optimality

@ Rate no faster than c(k) — “slow enough” to trade among the two
objective terms, namely, agreement/consensus and optimality

@ There are ways to speed things up : Average gradient tracking
methods, i.e. instead of exchanging their tentative decisions, agents
exchange their tentative gradients.

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 8/21

Example (cont'd)

Two-agent problem equivalent reformulation
Let «>0and 1< M < oo, 51 =1,5 =1, and consider

min 3 alx +s)?

SR i=1,2

subject to  x e [-M, M]

o Agents’ objective functions : f;(x) = a(x +s;)?, for i = 1,2

@ Objective function becomes : 2ax? + 2. Since a > 0 its minimum is
achieved at x* =0
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Example (cont'd)

Main distributed proximal minimization updates
@ Information mixing for i = 1,2 (under our choice for mixing weights) :

k k
Z,'(k) _ Xl( )+X2( )
2

@ Local computation for i=1,2:

1
xi(k+1)=arg min  a(x;+5)>+ ——|x - z(k)|?
Xi€[—

M,M] 2¢(k)

@ Information mixing is the same for all agents : z (k) = z(k)
@ Local computation : Find unconstrained minimizer and project it on
[_Mv M]
@ Unconstrained minimizer :
Z,'(k) - S,'20éC(k)
2ac(k) +1

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 11/21

Example (cont'd)

We will show by means of induction that z; (k) = z(k) =0
@ Step 1 : For k=0, and since x1(0) = -1 and x>(0) = 1, we have that

_x1(0) +x2(0)
w0 =75

@ Step 2 : Induction hypothesis z; (k) = z2(k) =0
© Step 3 : Show that z;(k+1)=0
in (75,-2ac(k) ) if —s;2ac(k) >0

=0, fori=1,2

2a0c(k)+1” 2cc(k)+1 =

—S,'2 c(k )
ﬁk)&-l)a_l\/,), otherwise,

e 2ac(k)

-~ 2ac(k)+1’

where the first equality is due to the induction hypothesis, and the
second is due to the fact that 523?:)(51) <1and M >1, so the
argument is never “clipped” to +M

xi(k+1)= max(

Michaelmas Term 2024 C20 Distributed Systems November 9, 2024 13/21

Example (cont'd)

Main distributed proximal minimization updates

@ Information mixing for i = 1,2 (under our choice for mixing weights) :

Xl(k) +X2(k)

zi(k) = >

@ Local computation for i=1,2:

xi(k+1) = Mi_pg,m1 [Zi(k) - 5"20‘C(k)]

2ac(k) +1
. V4 k)— ,‘2 k - Zj k)— ,'2 k
_ m'”( (Z(lc?k)ofl( )’M)v if (22vc?k)a+cl( 220
max(%,—M), otherwise,

o What happens to z; (k) under our initialization choice ?
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Example (cont'd)

We will show by means of induction that z; (k) = z(k) =0
© Step 1 : For k=0, and since x1(0) = -1 and x2(0) = 1, we have that

~x1(0) +x2(0)
z(0) = —

@ Step 2 : Induction hypothesis z; (k) = zo(k) =0
© Step 3 : Show that z;(k+1)=0
in (75,-2o¢c(k) ) if —s;2ac(k) >0

=0, fori=1,2

ey« T O M) T
max (W, —I\/I), otherwise,
e 2ac(k)
- T2ac(k)+1
@ Since s1 + 5o = 0 we then have that
xi(k+1)+x(k+1) ac(k)
i k+1)= = — + = O
zi(k+1) 2 2ac(k) +10 %)
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Example (cont'd)

Since z;(k) =0 for all k, the x-update steps become

x-update steps for i = 1,2,

2ac(k)
2ac(k) +1
2a
=] _SI—
20+ k + 1

xi(k+1)=-s

@ As iterations increase, i.e. k — oo we obtain that
lim xj(k+1)=0=x"
k—>0<)

@ In other words, the distributed proximal minimization algorithm
converges to the minimum of the decision coupled problem
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Distributed projected gradient algorithm

Main update steps :

~

@ Averaging step in parallel for all agents
2(k) = 2 2k (k)
J

@ Primal update for x; in parallel for all agents (projection step)

xi(k +1) = Nx[zi(k) - c(k)Vi(zi(k))]

@ The proxy term c(k) plays the role of the (diminishing) step-size
along the gradient direction

@ Convergence to the optimum under the same assumptions with
distributed proximal minimization algorithm
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Distributed projected gradient algorithm

Main update steps :

r

@ Averaging step in parallel for all agents
2,(k) = X (k) (k)
J
@ Primal update for x; in parallel for all agents (projection step)

xi(k+1) =Mx,[zi(k) - c(k)VFi(zi(k))]

D

o Looks similar with the distributed proximal minimization

@ Vfi(zi(k) denotes the gradient of f; evaluated at z (k)

@ The x-update is no longer “best response” but is replaced by the
gradient step

zi(k) = c(k)Vfi(zi(k)
projected on the set X;
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istributed projected gradient algorithm

Relationship with distributed proximal minimization

@ Proximal algorithms can be equivalently written as a gradient step

xi(k+1)= argg’n_eixri fi(x;) + rtkﬂx,- - zi(k)|?

< xi(k+1) =Nx[z(k) - c(k)Vi(xi(k+1))]
@ Notice that this is no a recursion but an identity satisfied by x;(k + 1)
as this appears on both sides of the last equality

@ What happens if we replace in the right-hand side the most updated
information available to agent / at iteration k, i.e. z;(k)?

xi(k+1) =Nx[z(k) - c(k)VFi(z(k))]

@ ... we obtain the distributed projected gradient algorithm !
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Summary

Distributed algorithms for decision coupled problems

@ Distributed proximal minimization
» Step-size (proxy term) is now iteration varying

» Convergence under assumptions on step-size, mixing weights and
network connectivity

@ Distributed projected gradient

» Rather than "best response” performs projected gradient step

» Same convergence assumptions with proximal minimization
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Thank you for your attention !
Questions 7

Contact at :
kostas.margellos@eng.ox.ac.uk
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True optimization is the revolutionary contribution of modern research to
decision processes.
— George Dantzig, November 8, 1914 — May 13, 2005
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Condensed overview of main algorithms Part | : Decentralized algorithms

Cost coupled problems

Cost coupled problems

Decentralized & Distributed algorithms o
minimize F(xi,...,Xm)

subject to
X,'EX,', Vi=1,...,m
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The Jacobi algorithm The regularized Jacobi algorithm

. Main update steps :
Main update steps : P P

~

O Collect x(k) = (x1(k), ..., xm(k)) from central authority © Collect x(k) = (xa(k), .., xm(k}) from central authority
@ Agents update their local decision in parallel GG IR T LR el
xi(k+1) = arg)r(‘nei)rg_ F(xl(k), oy Xic1 (k) xiy xiv1 (K), - 7xm(k)) xi(k+1) = argglixll F(X1(k), oo Xiz1 (k) xi i1 (k), .. ,xm(k))
L - J + cllxi = xi(K)13
Convergence : ) ’
@ F strongly convex and differentiable Convergence :

y @ F convex and differentiable and ¢ big enough
@ X;'s are all convex

@ X;'s are all convex
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The Gauss-Seidel algorithm

Main update steps (sequential algorithm) :

O Collect x(k) = (Xl(k +1),...,xi1(k+ 1), x;(k), ... ,Xm(k))
@ Agent j updates
X,'(k+ 1)
= argmin F(xa(k+1),.., %10k + 1), %551(K), ... xm(K))

X[EX,'

\.

Convergence :
@ F is strongly convex with respect to each individual argument, and
differentiable

@ X;'s are all convex
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The Alternating Direction Method of Multipliers (ADMM)

Main update steps :

© Primal update for z information from central authority
(k+1) = = T xi(k) ~ — T Ai(k)
z =— ) Xi(k) - — i
m % mc
@ Primal update for x; in parallel for all agents
xi(k+1) = arg min £,(x) = Xi(k) T + = |z(k + 1) = [
Xi€EX|

© Dual update in parallel for all agents

Ailk+1)=Xi(k) +c(z(k+1)-x(k+1))

@ Augmented Lagrangian with one Gauss-Seidel pass of the inner loop
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Part | : Decentralized algorithms

Decision coupled problems

Decision coupled problems

minimize Y fi(x)
i

subject to
xeX;, Yi=1,....m
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ADMM algorithm (more general form)
Applicable to problems with two groups of variables :
minimize F1(x) + F2(z2)
subject to : x € Gy, ze G
Ax =2z
Main update steps :
Q x(k+1) =argminec, F1(x) + A(k)TAx + 5| Ax - z(k)|?
Q z(k+1)=argminzec, F2(z) = A(k)Tz + 5||Ax(k + 1) - z|?
© A(k+1)=A(k)+c(Ax(k+1)-z(k+1))
Convergence :
o All functions and sets are convex, and ATA is invertible
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Part Il : Distributed algorithms

Decision coupled problems

Decision coupled problems

minimize Y fi(x)
i

subject to
xeX;, Vi=1,....m
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Distributed projected gradient algorithm

Main update steps :
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© Averaging step in parallel for all agents

2i(k) = 3 al(k)x(k)
J

@ Primal update for x; in parallel for all agents (projection step)

xi(k +1) = Nx[zi(k) - c(k)Vi(zi(k))]

Convergence :

@ Same assumptions with distributed proximal minimization algorithm
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Distributed proximal minimization

Main update steps :

@ Averaging step in parallel for all agents
zi(k) = Za}(k)Xj(k)
J

@ Primal update for x; in parallel for all agents

1
2¢(k)

xi(k+1) =arg mi)rg fi(xi) + =——|xi — z (k)|
Xi€Xj

Convergence :

e Convexity of all functions and sets + Network connectivity (slide 7)

@ Mixing weights sum up to one, forming a doubly stochastic matrix

o Step-size choice : c(k) = 57, a >0
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Thank you for your attention !

Questions 7

Contact at :

kostas.margellos@eng.ox.ac.uk
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