C20 Distributed Systems
 Example Paper

Kostas Margellos
Hilary Term 2022
kostas.margellos@eng.ox.ac.uk

Problems

1. Consider the function

$$
F\left(x_{1}, x_{2}\right)=\max \left\{\left(x_{1}-1\right)^{2}+\left(x_{2}+1\right)^{2},\left(x_{1}+1\right)^{2}+\left(x_{2}-1\right)^{2}\right\}
$$

where x_{1}, x_{2} are scalars.
(a) Show that F is strictly convex and its minimum is achieved at $\left(x_{1}^{\star}, x_{2}^{\star}\right)=$ $(0,0)$.
(b) Provide the main iterations of the Jacobi algorithm applied to the unconstrained minimization problem

$$
\min _{x_{1}, x_{2} \in \mathbb{R}} F\left(x_{1}, x_{2}\right)
$$

(c) Show that if the Jacobi algorithm is initialized at $\left(x_{1}(0), x_{2}(0)\right)=$ $(1,1)$ then it does not converge to the minimum $(0,0)$, but the generated iterates remain at $(1,1)$.
Which assumption is violated so that the Jacobi algorithm does not converge to $(0,0)$ from any initial condition?
2. Consider the proximal minimization algorithm. For a given step-size $c \in \mathbb{R}$ let

$$
\Phi_{c}(y)=\min _{x \in X} F(x)+\frac{1}{2 c}\|x-y\|^{2}
$$

be the mapping that achieves the minimum value in the main step of the algorithm. If F is a convex function with respect to x, show that $\Phi_{c}(y)$ is a convex function with respect to y.

Hint: Recall that the Euclidean norm is a convex function.
3. Suppose that the sets $X_{1}, \ldots, X_{m} \subset \mathbb{R}^{n}$ have a non-empty intersection. Consider then the minimization problem

$$
\begin{aligned}
\min _{x_{1}, \ldots, x_{m}, z} & \frac{1}{2} \sum_{i=1}^{m}\left\|x_{i}-z\right\|^{2} \\
\text { subject to } & z \in \mathbb{R}^{n} \\
& x_{i} \in X_{i}, \text { for all } i=1, \ldots, m .
\end{aligned}
$$

(a) Applying the Gauss-Seidel algorithm to this problem show that it is equivalent to the following main iterations

$$
\begin{aligned}
z(k+1) & =\frac{1}{m} \sum_{i=1}^{m} x_{i}(k) \\
x_{i}(k+1) & =\Pi_{X_{i}}[z(k+1)], i=1, \ldots, m,
\end{aligned}
$$

where $\Pi_{X_{i}}[\cdot]$ denotes the projection of its argument on the set X_{i}, i.e., $\Pi_{X_{i}}[z(k+1)]=\arg \min _{x_{i} \in X_{i}}\left\|x_{i}-z(k+1)\right\|$.
(b) Show that the Augmented Lagrangian algorithm applied to this problem leads to the same update steps.
(c) Provide a geometric interpretation for this minimization problem.
4. Consider the main iterations in part (a) of Problem 3, and replace the first one by

$$
z(k+1)=\sum_{i=1}^{m} \lambda_{i} x_{i}(k),
$$

where $\lambda_{1}, \ldots, \lambda_{m}$ are positive scalars such that $\sum_{i=1}^{m} \lambda_{i}=1$. Show that the modified iterations converge.
5. Consider the unconstrained minimization problem

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|A x-b\|_{2}^{2}+\rho\|x\|_{1},
$$

where $A \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^{p}$ and $\rho>0$ are given. By $\|\cdot\|_{2}$ and $\|\cdot\|_{1}$ we denote the Euclidean and first norm, respectively.
(a) Introducing an auxiliary decision vector $z \in \mathbb{R}^{n}$ as appropriate, show that the main iterations of the Alternating Direction Method of Multipliers (ADMM) applied to this problem take the form

$$
\begin{aligned}
& x(k+1)=\arg \min _{x} \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda(k)^{\top} x+\frac{c}{2}\|x-z(k)\|_{2}^{2} \\
& z(k+1)=\arg \min _{z} \rho\|z\|_{1}-\lambda(k)^{\top} z+\frac{c}{2}\|x(k+1)-z\|_{2}^{2} \\
& \lambda(k+1)=\lambda(k)+c(x(k+1)-z(k+1))
\end{aligned}
$$

(b) Show that the first ADMM update step admits the closed form expression

$$
x(k+1)=\left(A^{\top} A+c I\right)^{-1}\left(A^{\top} b+c z(k)-\lambda(k)\right)
$$

where I is an $n \times n$ identity matrix.
(c) Show that for each element $j=1, \ldots, n$ of $z(k+1)$, the second ADMM update step admits the closed form expression

$$
z_{j}(k+1)= \begin{cases}x_{j}(k+1)+\frac{1}{c} \lambda_{j}(k)-\frac{\rho}{c} & \text { if } x_{j}(k+1)+\frac{1}{c} \lambda_{j}(k)>\frac{\rho}{c} \\ 0 & \text { if }\left|x_{j}(k+1)+\frac{1}{c} \lambda_{j}(k)\right| \leq \frac{\rho}{c} \\ x_{j}(k+1)+\frac{1}{c} \lambda_{j}(k)+\frac{\rho}{c} & \text { if } x_{j}(k+1)+\frac{1}{c} \lambda_{j}(k)<-\frac{\rho}{c}\end{cases}
$$

Hint: Distinguish between the case where $z_{j}>0$ and $z_{j}<0$ to perform the minimization in the second ADMM update step.
6. Consider the problem equivalence

$$
\begin{aligned}
& \min _{x_{1}, \ldots, x_{m} \in \mathbb{R}} \sum_{i=1}^{m} f_{i}\left(x_{i}\right) \Leftrightarrow \min _{\substack{x_{1}, \ldots, x_{m} \in \mathbb{R} \\
z_{1}, \ldots, z_{m} \in \mathbb{R}}} \sum_{i=1}^{m} f_{i}\left(x_{i}\right) \\
& \text { subject to } \sum_{i=1}^{m} x_{i}=0 \quad \text { subject to } \sum_{i=1}^{m} z_{i}=0 \\
& x_{i}=z_{i}, \text { for all } i=1, \ldots, m .
\end{aligned}
$$

(a) Using the "grouping" in x - and z-variables suggested above, provide the main iterations of the ADMM algorithm applied to this problem.
(b) The projection of a vector $\zeta=\left(\zeta_{1}, \ldots, \zeta_{m}\right)$ on the plane $\sum_{i=1}^{m} z_{i}=0$ is given by

$$
\Pi_{\left\{\sum_{i=1}^{m} z_{i}=0\right\}}[\zeta]=\zeta-\frac{1}{m}\left(\left[\begin{array}{lll}
1 & \ldots & 1
\end{array}\right] \cdot \zeta\right)\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]
$$

where $\left[\begin{array}{lll}1 & \ldots & 1\end{array}\right] \cdot \zeta$ is the "dot" product between a $1 \times m$ row-vector and ζ. Use this fact to show that the ADMM iterations determined in part (a) take the form

$$
\begin{aligned}
x_{i}(k+1) & =\arg \min _{x_{i}} f_{i}\left(x_{i}\right)+\lambda(k) x_{i}+\frac{c}{2}\left\|x_{i}-\left(x_{i}(k)-\bar{x}(k)\right)\right\|^{2} \\
\lambda(k+1) & =\lambda(k)+c \bar{x}(k+1),
\end{aligned}
$$

where $\bar{x}(k)=\frac{1}{m} \sum_{i=1}^{m} x_{i}(k)$.
7. Consider the minimization problem

$$
\begin{array}{cl}
\min _{x \in \mathbb{R}} & \alpha(x+1)^{2}+\alpha(x-1)^{2} \\
\text { subject to } & x \in[-M, M],
\end{array}
$$

where $\alpha>0$ and $1<M<\infty$. Treat this program as a two-agent problem with $f_{1}(x)=\alpha(x+1)^{2}, f_{2}(x)=\alpha(x-1)^{2}$, and $X_{1}=X_{2}=$ $[-M, M]$.
(a) Provide the main iterations of the distributed projected gradient algorithm applied to this problem. You may assume that for all iterations $k=1, \ldots$, the "mixing" weights are given by $a_{j}^{i}(k)=\frac{1}{2}$, for all $i, j=1,2$.
(b) If the algorithm is initialized at $x_{1}(0)=-1$ and $x_{2}(0)=1$, provide a closed form expression for the updates $x_{i}(k), i=1,2$.
(c) Compare these updates with the ones of the distributed proximal minimization algorithm derived in Lecture 4 of your notes. Which of the two algorithms converges faster to the minimizer $x^{\star}=0$?

