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Logistics

Who: Kostas Margellos, Control Group, IEB 50.16
contact: kostas.margellos@eng.ox.ac.uk

When: 4 lectures,
weeks 7 & 8 – Thu, Fri @4pm

Where: LR2

Other info:

� 2 example classes: early Hilary Term; date to be announced

� Lecture slides available on Canvas

� Teaching style: Mix of slides and whiteboard writing

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 2 / 27

References

Campi & Garatti (2019)

Introduction to the Scenario Approach

SIAM (some figures are taken from that book).

Margellos, Prandini & Lygeros (2015)

On the Connection Between Compression Learning and Scenario Based

Single-Stage and Cascading Optimization Problems,

IEEE Transactions on Automatic Control, 60(10), 2716-2721.

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 3 / 27

Motivation

taken from AJGpr.com

Social networks

Robotic networks

taken from cooperindustries.com

Power networks

taken from wikipedia.org

Biological networks
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I believe we do not know anything for certain, but everything probably.

– Christiaan Huygens, 1629 – 1695
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Objectives of the second part of this class

Big picture
� Decision making in the presence of uncertainty

� Related to: Randomized/stochastic and robust optimization

� Convex optimization ... and a bit of Statistical Learning Theory

What it is actually about

1 Introduce data based optimization

2 Make decisions under uncertainty and accompany them with
performance certificates

3 New toolkit: easy implementation – di�culty comes in the math
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How to deal with uncertainty?

There are many ways

� Deterministic: Just stick with the forecasts
Simple but agnostic!

� Robust: Consider the worst-case
O↵ers immunization but conservative!

Let the DATA speak
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Motivation - The doctor’s problem
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Motivation - The doctor’s problem
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Probably Approximately Correct Learning

Introduction to a particular notion of “learnability”

Quantification of the notion of “generalization”

Strong links with statistical learning theory
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Terminology by means of an example

1 Consider the most popular random experiment: coin tossing

� Random variable � ∈ {Head, Tail}
� Toss a fair coin 100 times, multi-sample: �1, . . . , �100
multi-extraction, independent instances of our random variable

� Calculate the frequency of getting a head (empirical head probability)

P̂(�1,...,�100) = # Heads

# coin tosses

2 Repeat it the experiment 50 times

� You will get 50 di↵erent P̂(�1,...,�100): 0.55,0.47,0.53, . . .
� P̂(�1,...,�100) is itself random!

� How likely it is that �P̂(�1,...,�100) − 0.5� is very small?

Learning & Generalization question

How many times shall you toss the coin initially so that the empirical
head probability is very close to 0.5 for most of the 50 trials?
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Learning

Target set T
� T is not known, but we are given samples �1, . . . , �m contained in T

� All samples throughout: independent and identically distributed (i.i.d.)
� Example: Consider T to be an axis-aligned rectangle

Hypothesis Hm (also a set)
� Depends on multi-sample �1, . . . , �m
� Provides an approximation of T
� Example: Smallest axis-aligned rectangle that contains the samples
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Generalization – Probably Approximately Correct Learning

Approximately: T and Hm very close
� How likely is it that Hm does not contain another sample �
(extracted according to P)?

� Depends on the “distance” P�� ∈ T �Hm�
� , if P�� ∈ T �Hm� ≤ ✏ (shaded region)

Probably: T and Hm very close for most of the multi-samples
� Hm is itself random as it depends on the samples
� What is the probability that P�� ∈ T �Hm� ≤ ✏?
� In other words, for “how many” of the multi-samples is this the case?
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Generalization

In the doctor’s problem: Doctor would be satisfied if ...
� Medicine cures patients with probability at least 1 − ✏
... or, probability that a new patient � is not cured, is at most ✏

� If this holds with probability at least 1 − q(m, ✏) with respect to
the �1, . . . , �m trial patients

Problem

Find conditions for the existence of some q(m, ✏) such that

Pm��1, . . . , �m ∶ P�� ∈ T �Hm� ≤ ✏� ≥ 1 − q(m, ✏)
and limm→∞ q(m, ✏) = 0.

Probability T and Hm being di↵erent at most ✏, occurs with
confidence at least 1-q(m, ✏)
We have implicitly assumed that T ⊇ Hm; this is for simplicity,

otherwise we should use P�� ∈ (T �Hm) ∪ (Hm �T )�
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Generalization

Problem

Find conditions for the existence of some q(m, ✏) such that

Pm��1, . . . , �m ∶ P�� ∈ T �Hm� ≤ ✏� ≥ 1 − q(m, ✏)
and limm→∞ q(m, ✏) = 0.

Probability of a “new” �: P

Probability of an m multisample �1, . . . , �m: P × . . . × P = Pm

product probability as all samples are independent from each other

Confidence 1 − q(m, ✏). It depends on the number of samples m and
the violation level ✏, The more samples we are provided, the closer it
is to 1, i.e. limm→∞ q(m, ✏) = 0
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Generalization - su�cient condition

Observation
� For any m multi-sample often only a subset of them matters

Axis-aligned rectangle example
� The hypothesis Hm is determined only by the samples on the facets

� Di↵erent multi-samples, but always 4 are needed to determine the
hypothesis (but for degenerate cases)!
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Generalization - su�cient condition

Fix d < m
Denote by Cd ⊂ {�1, . . . , �m} a subset of the multi-sample with
cardinality d , i.e. �Cd � = d
Let Hd bet the hypothesis constructed using only the samples in Cd

Compression set

Assume that for any m multi-sample there exists Cd with �Cd � = d < m
such that

Hd = Hm

where for any m, Hm “agrees” (in the sense of the same labelling) with T

on all samples. Cd is then called a compression set.

Hypothesis Hd based on samples in Cd is the same with the
hypothesis Hm, that would have been obtained with all samples
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Generalization - su�cient condition

Compression set

Assume that for any m multi-sample there exists Cd with �Cd � = d < m
such that

Hd = Hm

where for any m, Hm “agrees” (in the sense of the same labelling) with T

on all samples. Cd is then called a compression set.

Learning

Algorithm
<latexit sha1_base64="UFXio84UE+c8JPn2c9bpoKAKtec=">AAACDnicbVC7SgNBFJ31bXxFLW0Gg2IVdlXQMmpjYaFgHpBdwuzkJhmcnV1m7oph2S+w8VdsLBSxtbbzb5wkW/g6cOFwzr1czgkTKQy67qczNT0zOze/sFhaWl5ZXSuvbzRMnGoOdR7LWLdCZkAKBXUUKKGVaGBRKKEZ3pyN/OYtaCNidY3DBIKI9ZXoCc7QSp3yzq6PcIfZBTCthOrn1PdpoZ3IfqwFDqK8U664VXcM+pd4BamQAped8offjXkagUIumTFtz00wyJhGwSXkJT81kDB+w/rQtlSxCEyQjePkdMcqXdqLtR2FdKx+v8hYZMwwCu1mxHBgfnsj8T+vnWLvOMiESlIExSePeqmkGNNRN7QrNHCUQ0sYt8kFp3zANONoGyzZErzfkf+Sxn7VO6juXx1WaqdFHQtki2yTPeKRI1Ij5+SS1Akn9+SRPJMX58F5cl6dt8nqlFPcbJIfcN6/AIpRnG4=</latexit>

samples in Cd
<latexit sha1_base64="rT7dxpCzqLuUm8X+NWT+QWLFLow=">AAACEXicbVBNS8NAEN3Ur1q/oh69LBbBU0mqoMdiLx4rWBXaUDbbqV262YTdiVhC/oIX/4oXD4p49ebNf+M25uDXg4HHezM7Oy9MpDDoeR9OZW5+YXGpulxbWV1b33A3ty5MnGoOXR7LWF+FzIAUCrooUMJVooFFoYTLcNKe+Zc3oI2I1TlOEwgidq3ESHCGVhq4+32EW8wMixIJhgpFc1pIxdNZKFPIs/ZgmA/cutfwCtC/xC9JnZToDNz3/jDmaQQKuWTG9HwvwSBjGgWXkNf6qYGE8Qm7hp6likVggqxYm9M9qwzpKNa2FNJC/T6RsciYaRTazojh2Pz2ZuJ/Xi/F0XGQCZWkCIp/LRqlkmJMZ/HQodDAUU4tYVwL+1fKx0wzjjbEmg3B/33yX3LRbPgHjebZYb11UsZRJTtkl+wTnxyRFjklHdIlnNyRB/JEnp1759F5cV6/WitOObNNfsB5+wQAhp5i</latexit>

...
<latexit sha1_base64="hx9vrypjtBJpcEsh1w05CZs9G34=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtGpV/6Jau7+s1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB8y9j0Y=</latexit>

...
<latexit sha1_base64="hx9vrypjtBJpcEsh1w05CZs9G34=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtGpV/6Jau7+s1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB8y9j0Y=</latexit>

Learning

Algorithm
<latexit sha1_base64="UFXio84UE+c8JPn2c9bpoKAKtec=">AAACDnicbVC7SgNBFJ31bXxFLW0Gg2IVdlXQMmpjYaFgHpBdwuzkJhmcnV1m7oph2S+w8VdsLBSxtbbzb5wkW/g6cOFwzr1czgkTKQy67qczNT0zOze/sFhaWl5ZXSuvbzRMnGoOdR7LWLdCZkAKBXUUKKGVaGBRKKEZ3pyN/OYtaCNidY3DBIKI9ZXoCc7QSp3yzq6PcIfZBTCthOrn1PdpoZ3IfqwFDqK8U664VXcM+pd4BamQAped8offjXkagUIumTFtz00wyJhGwSXkJT81kDB+w/rQtlSxCEyQjePkdMcqXdqLtR2FdKx+v8hYZMwwCu1mxHBgfnsj8T+vnWLvOMiESlIExSePeqmkGNNRN7QrNHCUQ0sYt8kFp3zANONoGyzZErzfkf+Sxn7VO6juXx1WaqdFHQtki2yTPeKRI1Ij5+SS1Akn9+SRPJMX58F5cl6dt8nqlFPcbJIfcN6/AIpRnG4=</latexit>

�1
<latexit sha1_base64="C+gwiyOnqnQXOhlFdeSHSKm6F6o=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWw2m3bpZhN3J0Ip/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEph0HW/ncLa+sbmVnG7tLO7t39QPjxqmSTTjDdZIhPdCajhUijeRIGSd1LNaRxI3g5GtzO//cS1EYl6wHHK/ZgOlIgEo2ilTi/kEmnf65crbtWdg6wSLycVyNHol796YcKymCtkkhrT9dwU/QnVKJjk01IvMzylbEQHvGupojE3/mR+75ScWSUkUaJtKSRz9ffEhMbGjOPAdsYUh2bZm4n/ed0Mo2t/IlSaIVdssSjKJMGEzJ4nodCcoRxbQpkW9lbChlRThjaikg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8we8Mo/E</latexit>

�2
<latexit sha1_base64="fldWOC7F5GDRFgiYN+n1jRnyMnk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWw2k3bpZhN3N0Ip/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAqujet+O4W19Y3NreJ2aWd3b/+gfHjU0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC28Hodua3n1BpnsgHM07Rj+lA8ogzaqzU6YUoDO3X+uWKW3XnIKvEy0kFcjT65a9emLAsRmmYoFp3PTc1/oQqw5nAaamXaUwpG9EBdi2VNEbtT+b3TsmZVUISJcqWNGSu/p6Y0FjrcRzYzpiaoV72ZuJ/Xjcz0bU/4TLNDEq2WBRlgpiEzJ4nIVfIjBhbQpni9lbChlRRZmxEJRuCt/zyKmnVqt5FtXZ/Wanf5HEU4QRO4Rw8uII63EEDmsBAwDO8wpvz6Lw4787HorXg5DPH8AfO5w+9to/F</latexit>

�m
<latexit sha1_base64="4OQKqEgS9HffFDOesAnh/nxb1zE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWw2m3bpZhN3J0Ip/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEph0HW/ncLa+sbmVnG7tLO7t39QPjxqmSTTjDdZIhPdCajhUijeRIGSd1LNaRxI3g5GtzO//cS1EYl6wHHK/ZgOlIgEo2ilTi/kEmk/7pcrbtWdg6wSLycVyNHol796YcKymCtkkhrT9dwU/QnVKJjk01IvMzylbEQHvGupojE3/mR+75ScWSUkUaJtKSRz9ffEhMbGjOPAdsYUh2bZm4n/ed0Mo2t/IlSaIVdssSjKJMGEzJ4nodCcoRxbQpkW9lbChlRThjaikg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wcXMZAA</latexit>

Hd = Hm
<latexit sha1_base64="k7RfbTu2zv5D3g2XAThJ+0tJVkk=">AAACBHicbVC7SgNBFJ31GeNr1TLNYBCswm4UtBGCNikjmAckyzI7uUmGzD6YuSuGJYWNv2JjoYitH2Hn3zh5FJp44MLhnHvnzj1BIoVGx/m2VlbX1jc2c1v57Z3dvX374LCh41RxqPNYxqoVMA1SRFBHgRJaiQIWBhKawfBm4jfvQWkRR3c4SsALWT8SPcEZGsm3Cx2EB5y+kwUyhXFW9btjekWrfujbRafkTEGXiTsnRTJHzbe/Ot2YpyFEyCXTuu06CXoZUyi4hHG+k2pIGB+yPrQNjVgI2sumy8f0xChd2ouVqQjpVP09kbFQ61EYmM6Q4UAvehPxP6+dYu/Sy0SUpAgRny3qpZJiTCeJ0K5QwFGODGFcCfNXygdMMY4mt7wJwV08eZk0yiX3rFS+PS9Wrudx5EiBHJNT4pILUiFVUiN1wskjeSav5M16sl6sd+tj1rpizWeOyB9Ynz/Wzpgx</latexit>
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Generalization - su�cient condition

Compression set (equivalent definition)

Assume that for any m multi-sample there exists Cd with �Cd � = d < m
such that

Hd = Hm ⇐⇒ Hd
(�i) = T (�i), for all i = 1, . . . ,m,

where for any m, Hm “agrees” (in the sense of the same labelling) with T

on all samples. Cd is then called a compression set.

Hypothesis Hd agrees with the target T on all samples, i.e.
existence of a compression set ⇔ Empirical generalization

Indicator function

T (�) = � 1 if � ∈ T
0 otherwise
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Generalization - su�cient condition

Compression set (equivalent definition)

Assume that for any m multi-sample there exists Cd with �Cd � = d < m
such that

Hd = Hm ⇐⇒ Hd
(�i) = T (�i), for all i = 1, . . . ,m,

where for any m, Hm “agrees” (in the sense of the same labelling) with T

on all samples. Cd is then called a compression set.

Existence of a compression set ⇔ Empirical generalization
� We approximate T with Hd using only d samples

� This hypothesis agrees with T on all other samples as well,
i.e. approximation error on the samples is zero

� We do not need to know Cd ; we only care that such a set exists
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Recall our problem ...

Problem

Find conditions for the existence of some q(m, ✏) such that

Pm��1, . . . , �m ∶ P�� ∈ T �Hm� ≤ ✏� ≥ 1 − q(m, ✏)
and limm→∞ q(m, ✏) = 0.
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Generalization

Theorem
If a compression set Cd with cardinality d exists, then

Pm��1, . . . , �m ∶ P�� ∈ T �Hm� ≤ ✏� ≥ 1 − q(m, ✏)
with q(m, ✏) = �m

d
�(1 − ✏�m−d .

Hypothesis probably approximately correct (PAC) learns target
We do not care about Cd but only about d
It holds limm→∞ q(m, ✏) = 0

lim
m→∞q(m, ✏) = lim

m→∞�md �(1 − ✏�m−d
≤ lim

m→∞�me

d
�d(1 − ✏)m−d = 0

First term increases polynomially; second term tends to zero
exponentially fast (dominant)
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Generalization

Theorem
If a compression set Cd with cardinality d exists, then

Pm��1, . . . , �m ∶ P�� ∈ T �Hm� ≤ ✏� ≥ 1 − q(m, ✏)
with q(m, ✏) = �m

d
�(1 − ✏�m−d .

Does the cardinality d of the compression set matter?
Assume we were allowing the trivial case d = m

lim
d→m

1 − q(m, ✏) = 1 − lim
d→m

�m
d
�(1 − ✏�m−d = 0

As the compression “increases” the confidence 1 − q(m, ✏) tends to 0⇒ result trivial (not useful) as we claim that Hm is an ✏-good
approximation of T with non-negative probability!

The smaller the compression the more useful the result!
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Generalization – Stronger statement

Theorem
If there exists a unique compression set Cd with cardinality d , then

Pm��1, . . . , �m ∶ P�� ∈ T �Hm� ≤ ✏� ≥ 1 − q(m, ✏)
with q(m, ✏) = ∑d−1

k=0 �mk �✏k(1 − ✏�m−k .
Stronger assumption �⇒ stronger statement

For the same m and ✏ ∈ (0,1),
d−1�
k=0
�m
k
�✏k(1 − ✏�m−k < �m

d
�(1 − ✏�m−d ,

i.e. we can claim the probabilistic result with higher confidence
1 − q(m, ✏)
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Generalization – Stronger statement

Minimum width strip vs. minimum radius disk (assume continuous
distribution) – figures taken from [Campi & Garatti, 2008]
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y = x∗
2u + x∗

3

x∗
1

Fig. 2. Strip of smaller vertical width.

x∗
2, x

∗
3

x∗
1

Fig. 3. Disk of smaller radius.

convex program

PN : min
x1,x2,x3∈R3

x1

subject to:
√

(u(i) − x2)2 + (y(i) − x3)2 ≤ x1, i = 1, . . . , N,

where (x2, x3) is the center of the disk and x1 is its radius, and again we can claim
with confidence 1 − 10−5 that the constructed disk will contain at least 99% of the
probability mass. In this disk case, the figure 1 − 10−5 is a lower bound since the
problem is not fully-supported, as it can be easily recognized by noting that a config-
uration with two points away from each other and all of the other points concentrated
near the midposition of the first two points generates a disk where the segment joining
the first two points is a diameter and only these two points are of support.

Finally, let us compare the probability 1 − 10−5 with the probability that would
have been obtained by applying the previous bound (2) from [6]. Applying the latter,
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y = x∗
2u + x∗

3

x∗
1

Fig. 2. Strip of smaller vertical width.

x∗
2, x

∗
3

x∗
1

Fig. 3. Disk of smaller radius.

convex program

PN : min
x1,x2,x3∈R3

x1

subject to:
√

(u(i) − x2)2 + (y(i) − x3)2 ≤ x1, i = 1, . . . , N,

where (x2, x3) is the center of the disk and x1 is its radius, and again we can claim
with confidence 1 − 10−5 that the constructed disk will contain at least 99% of the
probability mass. In this disk case, the figure 1 − 10−5 is a lower bound since the
problem is not fully-supported, as it can be easily recognized by noting that a config-
uration with two points away from each other and all of the other points concentrated
near the midposition of the first two points generates a disk where the segment joining
the first two points is a diameter and only these two points are of support.

Finally, let us compare the probability 1 − 10−5 with the probability that would
have been obtained by applying the previous bound (2) from [6]. Applying the latter,

In both problems 3 samples are su�cient⇒ compression set with d = 3 exists
For the disk problem, for almost all multi-samples we only need 2
samples: Take the two most isolated samples as the disk’s diameter⇒ only 2 matter, the third could be arbitrary (it falls inside the disk)
In the disk problem, multiple compression sets of cardinality d = 3!
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Generalization – Complementary statements

Probability T and Hm being di↵erent higher than ✏, occurs with
confidence at most q(m, ✏)

Theorem
If a compression set Cd with cardinality d exists, then

Pm��1, . . . , �m ∶ P�� ∈ T �Hm� > ✏� ≤ q(m, ✏) = �m
d
�(1 − ✏�m−d .

Theorem
If there exists a unique compression set Cd with cardinality d , then

Pm��1, . . . , �m ∶ P�� ∈ T �Hm� > ✏� ≤ q(m, ✏) = d−1�
k=0
�m
k
�✏k(1 − ✏�m−k .
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Summary

Theorem
If a compression set Cd with cardinality d exists, then

Pm��1, . . . , �m ∶ P�� ∈ T �Hm� ≤ ✏� ≥ 1 − q(m, ✏)
with q(m, ✏) = �m

d
�(1 − ✏�m−d .
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Summary

Theorem
If there exists a unique compression set Cd with cardinality d , then

Pm��1, . . . , �m ∶ P�� ∈ T �Hm� ≤ ✏� ≥ 1 − q(m, ✏)
with q(m, ✏) = ∑d−1

k=0 �mk �✏k(1 − ✏�m−k .
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Thank you for your attention!
Questions?

Contact at:
kostas.margellos@eng.ox.ac.uk
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Recap – Learning & Generalization

Learning: Approximate target T with hypothesis Hm

Generalization: Find confidence 1 ⌐ q(m, ω) such that hypothesis is

an ω-good approximation of the target, i.e. P⌜ε ∈ T ∖Hm⌜ ≤ ω

Compression: Only the important samples (the d = 4 boundary ones
in the rectangle example)

Produces the same hypothesis with the one that would be obtained if
all samples were used, i.e. Hd = Hm

Target T and hypothesis Hd agree on all samples, i.e. approximation
error on the samples is zero
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Recap – Generalization

Theorem

If a compression set Cd with cardinality d exists, then

Pm⌝ε1, . . . , εm ⋊ P⌜ε ∈ T ∖Hm⌜ ≤ ω⌝ ≥ 1 ⌐ q(m, ω)
with q(m, ω) = ⌝md ⌝(1 ⌐ ω⌝m⌐d , where limm→∞ q(m, ω) = 0.

Hypothesis probably approximately correct (PAC) learns target

We do not care about Cd but only about d

It is a distribution-free result; holds true for any underlying (possibly
unknown) distribution, as long as data are independently extracted

If a compression set exists:
Hm and T fully agree on the samples ⇒ ω-agree for another ε.
Empirical generalization ⇒ Probabilistic generalization

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 3 / 23

Generalization

Theorem

If a compression set Cd with cardinality d exists, then

Pm⌝ε1, . . . , εm ⋊ P⌜ε ∈ T ∖Hm⌜ ≤ ω⌝ ≥ 1 ⌐ q(m, ω)
with q(m, ω) = ⌝md ⌝(1 ⌐ ω⌝m⌐d .

Does the cardinality d of the compression set matter?
Assume we were allowing the trivial case d = m

lim
d→m

1 ⌐ q(m, ω) = 1 ⌐ lim
d→m
⌝m
d
⌞(1 ⌐ ω⌝m⌐d = 0

As the compression “increases” the confidence 1 ⌐ q(m, ω) tends to 0⇒ result trivial (not useful) as we claim that Hm is an ω-good
approximation of T with non-negative probability!

The smaller the compression the more useful the result!
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Generalization – Stronger statement

Theorem

If there exists a unique compression set Cd with cardinality d , then

Pm⌝ε1, . . . , εm ⋊ P⌜ε ∈ T ∖Hm⌜ ≤ ω⌝ ≥ 1 ⌐ q(m, ω)
with q(m, ω) = ⩀d⌐1

k=0 ⌝mk ⌝ωk(1 ⌐ ω⌝m⌐k .
Stronger assumption ↢⇒ stronger statement

For the same m and ω ∈ (0,1),
d⌐1⊍
k=0
⌝m
k
⌞ωk(1 ⌐ ω⌝m⌐k < ⌝m

d
⌞(1 ⌐ ω⌝m⌐d ,

i.e. we can claim the probabilistic result with higher confidence
1 ⌐ q(m, ω)
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From learning to optimization under uncertainty

Uncertain scenario programs

Probabilistic guarantees on constraint satisfaction

The convex case (a compression set exists)
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Optimization under uncertainty

Uncertain program

min
x∈Rnx

c
⋊
x

subject to:
g(x , ε) ≤ 0, for all ε ∈!

Description of the uncertainty

⌐ Uncertain vector ε ∈ Rnω , distributed according to P
⌐ ! denotes the set of values ε can take with non-zero probability

Finite number of decision variables x ∈ Rnx but infinite constraints
(one per element of !, and ! might be a continuous set)

Either ! is unknown, or infinite constraints↢⇒ In general not solvable!
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Data based optimization

Uncertain scenario program

min
x∈Rnx

c
⋊
x

subject to:
g(x , εi) ≤ 0, for all i = 1, . . . ,m

Description of the uncertainty

⌐ Represent uncertainty ε ∈ Rnω , by an m multi-sample (ε1, . . . , εm)
⌐ All samples are independent from each other from the same distribution

Finite number of decision variables x ∈ Rnx and finite number of
constraints (one per sample εi )

Solvable! Denote by x
∗
m its minimizer
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Data based optimization as a learning problem

Uncertain program

min
x∈Rnx

c
⋊
x

subject to:
g(x , εi) ≤ 0, for all i = 1, . . . ,m

Connections with learning – Learn the uncertainty space !

Target set T =!, (i.e. T (ε) = 1, ∀ε ∈!)
Decision Minimizer ⇒ x

∗
m

Hypothesis Hm = ⌜ε ∈! ⋊ g(x∗m, ε) ≤ 0⌜
Hypothesis: The set of ε’s for which x

∗
m remains feasible

In other words, the subset of the uncertainty space for which
constraint satisfaction is ensured for x∗m
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Data based optimization as a learning problem

Uncertain program

min
x∈Rnx

c
⋊
x

subject to:
g(x , εi) ≤ 0, for all i = 1, . . . ,m

Connections with learning – Learn the uncertainty space !

Target set T =!, (i.e. T (ε) = 1, ∀ε ∈!)
Decision Minimizer ⇒ x

∗
m

Hypothesis Hm = ⌜ε ∈! ⋊ g(x∗m, ε) ≤ 0⌜
Approximation error = Probability of constraint violation for x∗m

P⌜ε ∈ T ∖Hm⌜ = P⌜ε ∈! ⋊ g(x∗m, ε) > 0⌜
Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 10 / 23

Data based optimization – Generalization

Theorem (the abstract version)

If a compression set Cd with cardinality d exists, then

Pm⌝ε1, . . . , εm ⋊ P⌜ε ∈ T ∖Hm⌜ ≤ ω⌝ ≥ 1 ⌐ q(m, ω)
with q(m, ω) = ⌝md ⌝(1 ⌐ ω⌝m⌐d .
Theorem (the optimization version)

If a compression set Cd with cardinality d exists, then

Pm⌝ε1, . . . , εm ⋊ P⌜ε ∈! ⋊ g(x∗m, ε) > 0⌜ ≤ ω⌝ ≥ 1 ⌐ q(m, ω)
with q(m, ω) = ⌝md ⌝(1 ⌐ ω⌝m⌐d .
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Scenario vs. Uncertain programs

Probabilistic feasibility

Data based program

minx∈Rnx c
⋊
x

subject to → x
∗
m

g(x , εi) ≤ 0, ∀i = 1, . . . ,m

Robust program

minx∈Rnx c
⋊
x

subject to

g(x , ε) ≤ 0, ∀ε ∈!
Is x∗m feasible for the uncertain program? No!

Is this true for any m multi-sample? Yes, with confidence 1 ⌐ q(m, ω)
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Scenario vs. Uncertain programs

Probabilistic feasibility

Data based program

minx∈Rnx c
⋊
x

subject to → x
∗
m

g(x , εi) ≤ 0, ∀i = 1, . . . ,m

Robust program

minx∈Rnx c
⋊
x

subject to

g(x , ε) ≤ 0, ∀ε ∈!
The link is our theorem: Probabilistic robustness
With certain confidence, the probability that a new ε appears and x

∗
m

(generated based on ε1, . . . , εm) violates the corresponding constraint,
i.e. g(x∗m, ε) > 0, is at most ω

If a compression set Cd with cardinality d exists, then

Pm⌝ε1, . . . , εm ⋊ P⌜ε ∈! ⋊ g(x∗m, ε) > 0⌜ ≤ ω⌝ ≥ 1 ⌐ ⌝m
d
⌞(1 ⌐ ω⌝m⌐d
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Convex uncertain programs

min
x∈Rnx

c
⋊
x

subject to:
g(x , εi) ≤ 0, for all i = 1, . . . ,m

For any ε ∈!, g(x , ε) is convex in x

Existence of a compression set: Minimizer with d samples coincides
with minimizer with m samples, i.e. x∗d = x∗m so that Hd = Hm

For convex programs a compression set always exists:

d ≤# decision variables nx

If d = nx then result is “tight” (i.e. non-conservative)

This bound is based on the notion of support constraints (very close
to the active constraints)

See Lecture 3 for a formal definition and proof
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Probabilistic feasibility for convex scenario programs

Theorem – Convex scenario programs

Let d be the # of decision variables in a convex scenario program. Then

Pm⌝ε1, . . . , εm ⋊ P⌜ε ∈! ⋊ g(x∗m, ε) > 0⌜ ≤ ω⌝ ≥ 1 ⌐ q(m, ω)
with q(m, ω) = ⌝md ⌝(1 ⌐ ω⌝m⌐d .

Cardinality of the compression set d is equal to the # of decision
variables in a convex scenario program

Convex scenario programs with di”erent objective and constraint
function could share the same feasibility guarantees if they have the
same number of decision variables⇒ only for some of them the confidence bound would be tight!
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Compression set: 2D example

optimization	
direction

Example with two decision variables x1, x2

Objective: minimize x2 (see optimization direction)

Feasibility region outside the shaded part
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Compression set: 2D example

optimization	
direction

Compression set cardinality d = nx
Compression set = Two active constraints⇒ If any of the two red constraints is removed the solution drifts to a
lower value (intersection of the remaining red with a lower constraint)

Compression set coincides with “red” constraints ↢⇒ x
∗
red = x∗m

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 17 / 23

Compression set: 2D example

optimization	
direction

Compression set cardinality d ≤ nx (always)

Compression set = One active constraint⇒ If any of the other constraints are removed the solution remains
unaltered; only the red constraint is needed

We again have that x∗red = x∗m
Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 18 / 23
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Fig. 2. Strip of smaller vertical width.
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Fig. 3. Disk of smaller radius.

convex program

PN : min
x1,x2,x3∈R3

x1

subject to:
√

(u(i) − x2)2 + (y(i) − x3)2 ≤ x1, i = 1, . . . , N,

where (x2, x3) is the center of the disk and x1 is its radius, and again we can claim
with confidence 1 − 10−5 that the constructed disk will contain at least 99% of the
probability mass. In this disk case, the figure 1 − 10−5 is a lower bound since the
problem is not fully-supported, as it can be easily recognized by noting that a config-
uration with two points away from each other and all of the other points concentrated
near the midposition of the first two points generates a disk where the segment joining
the first two points is a diameter and only these two points are of support.

Finally, let us compare the probability 1 − 10−5 with the probability that would
have been obtained by applying the previous bound (2) from [6]. Applying the latter,

m = 1650 points (ui , yi) are given – the underlying distribution is
unknown

Consider the disk with the smallest radius that contains all of them

What guarantees can you o!er that this disk contains 99% of
all possible points extracted from the same distribution (other
than the data points)?

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 19 / 23

Example (cont’d)
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Fig. 2. Strip of smaller vertical width.
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Fig. 3. Disk of smaller radius.

convex program

PN : min
x1,x2,x3∈R3

x1

subject to:
√

(u(i) − x2)2 + (y(i) − x3)2 ≤ x1, i = 1, . . . , N,

where (x2, x3) is the center of the disk and x1 is its radius, and again we can claim
with confidence 1 − 10−5 that the constructed disk will contain at least 99% of the
probability mass. In this disk case, the figure 1 − 10−5 is a lower bound since the
problem is not fully-supported, as it can be easily recognized by noting that a config-
uration with two points away from each other and all of the other points concentrated
near the midposition of the first two points generates a disk where the segment joining
the first two points is a diameter and only these two points are of support.

Finally, let us compare the probability 1 − 10−5 with the probability that would
have been obtained by applying the previous bound (2) from [6]. Applying the latter,

Construct the minimum radius disk program (d=3 decision variables)

min
x1,x2,x3

x1

subject to:
⌞(yi ⌐ x3)2 + (ui ⌐ x2)2 ≤ x1, for all i = 1, . . . ,1650

All samples should be within the x1 radius disk;(x2, x3) parametrize its center

Decision variables: x1, x2, x3; Samples: εi = (ui , yi), i = 1, . . . ,1650
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Example (cont’d)
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Fig. 3. Disk of smaller radius.

convex program

PN : min
x1,x2,x3∈R3

x1

subject to:
√

(u(i) − x2)2 + (y(i) − x3)2 ≤ x1, i = 1, . . . , N,

where (x2, x3) is the center of the disk and x1 is its radius, and again we can claim
with confidence 1 − 10−5 that the constructed disk will contain at least 99% of the
probability mass. In this disk case, the figure 1 − 10−5 is a lower bound since the
problem is not fully-supported, as it can be easily recognized by noting that a config-
uration with two points away from each other and all of the other points concentrated
near the midposition of the first two points generates a disk where the segment joining
the first two points is a diameter and only these two points are of support.

Finally, let us compare the probability 1 − 10−5 with the probability that would
have been obtained by applying the previous bound (2) from [6]. Applying the latter,

Construct the minimum radius disk program (d=3 decision variables)

min
x1,x2,x3

x1

subject to:
⌞(yi ⌐ x3)2 + (ui ⌐ x2)2 ≤ x1, for all i = 1, . . . ,1650

Disk should contain 99% of new points ε = (u, y) ⇒ ω = 0.01
Hence the “guarantee” is the confidence

1 ⌐ q(1650,0.01) = 1 ⌐ ⌝1650
3
⌝(1 ⌐ 0.01⌝1650⌐3
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Summary

Theorem – Convex scenario programs

Let d be the # of decision variables in a convex scenario program. Then

Pm⌝ε1, . . . , εm ⋊ P⌜ε ∈! ⋊ g(x∗m, ε) > 0⌜ ≤ ω⌝ ≥ 1 ⌐ q(m, ω)
with q(m, ω) = ⌝md ⌝(1 ⌐ ω⌝m⌐d .
Could we also have a stronger version? See Lecture 3
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Thank you for your attention!

Questions?

Contact at:
kostas.margellos@eng.ox.ac.uk
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Recap: Probabilistic feasibility

Theorem – Convex scenario programs

Let d = nx , i.e. the # of decision variables in a convex scenario program.
Then

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝ ≤ ε⌝ ≥ 1 − q(m, ε)
with q(m, ε) = ⌝md ⌝(1 − ε⌝m−d .

Existence of a compression set ⇔ Empirical generalization

Subset of the samples that leads to x⌐d = x⌐m
Empirical generalization ↢ Probabilistic generalization⇔ Feasibility guarantees

i.e. ε-probability of constraint violation

For convex scenario programs: d ≤ # of decision variables

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 2 / 21

Recap: Probabilistic feasibility

Theorem – Convex scenario programs

Let d = nx , i.e. the # of decision variables in a convex scenario program.
Then

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝ ≤ ε⌝ ≥ 1 − q(m, ε)
with q(m, ε) = ⌝md ⌝(1 − ε⌝m−d .
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Convex scenario programs

Relationship between compression set and support constraints

Bound on the cardinality of the compression set (Helly’s Theorem)

Distribution of the probability of constraint violation
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Convex scenario programs

min
x∈Rnx

c⋊x
subject to:

g(x , ωi) ≤ 0, for all i = 1, . . . ,m
For any ω ∈!, g(x , ω) is convex in x

Definition: Compression set

A set Cd ⊂ {ω1, . . . , ωm} with⌝Cd ⌝ = d < m is a compression set if

x⌐d = x⌐m,

i.e. the minimizer with d samples is
the same with the minimizer with
all samples.

Definition: Support constraints

A constraint k ∈ {1, . . . ,m} is of
support if

x⌐{ω1,...,ωm}∖ωk ≠ x⌐m,

i.e. if we remove the k-th
constraint, the solution with the
remaining ones changes.
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Compression set vs. Support constraints

Non-degenerate problems: support constraints = compression set

optimization	
direction

If any of the “red” constraints is removed, then the solution changes↢ “red” constraints are support constraints

Solving the problem only with the “red” constraints is the same with
the solution if all constraints are taken into account

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 6 / 21

Compression set vs. Support constraints

Degenerate problems (constraints accumulate at single points):
support constraints ⊂ compression set

optimization	
direction

Only if the “red” constraints is removed, then the solution changes↢ only “red” constraint is support constraint

Solving the problem only with the “red” constraints is not the same
with the solution if all constraints are taken into account↢ Need to include one of the other active ones in the compression set

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 7 / 21

Compression set vs. Support constraints

Facts: Compression set for convex scenario programs
1 It always exists and has cardinality d ≤ nx ,

i.e. at most equal to the # of decision variables

2 For non-degenerate problems: support constraints = compression set

3 For degenerate problems: support constraints ⊂ compression set

4 For any convex problem: support constraints ⊆ active constraints

We will assume that any given scenario program is non-degenerate
Compression set = Support constraints

In case of a degenerate problem we could slightly perturb the
constraints (constraint “heating”)

For continuous probability distributions (in fact distributions that
admit density) convex degenerate problems occur with probability zero

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 8 / 21

Compression set for non-degenerate convex problems

Theorem: Bound on compression set cardinality

For non-degenerate convex scenario programs, for a compression set Cd it
holds

1 ⌝Cd ⌝ = d ≤ nx (# of decision variables)

2 ... or equivalently, since compression set = support constraints
# support constraints ≤ nx

We will make use of the following theorem

Helly’s theorem (fundamental result in convex analysis)

Consider any finite number of convex sets in Rnx . If every collection of
nx + 1 sets has a non-empty intersection, then all of them have a
non-empty intersection.

How is this relevant?

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 9 / 21



Proof

We will apply Helly’s theorem with nx = 2 (similarly for higher nx)

Consider the family of sets including
⌐ m sets: each set is the feasibility region for each constraint
(non-shaded part of each parabola)

⌐ set S : shaded region not including x⌐m, i.e. all points that have a lower
value than x⌐m (i.e. c⊺x < c⊺x⌐m)

optimization	
direction

S

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 10 / 21

Proof (cont’d)

1 For the sake of contradiction assume that a third support constraint
exists (e.g. lower red one in the figure)

2 To apply Helly’s theorem take any nx + 1 = 3 sets from our collection
and show that they have a non-empty intersection

Case A: Take any nx + 1 = 3 sets the parabolic ones.
As the overall problem is feasible, by construction their intersection is
non-empty

Case B: Take now 2 of the parabolic sets and S .

⌐ As we have assumed 3 support constraints, one of them will be missing
from the intersection

⌐ As a support constraint is missing, then the solution changes from x⌐m,
hence it will be in S (it includes points such that c⊺x < c⊺x⌐m)

⌐ Therefore, any such collection will also have non-empty intersection
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Proof (cont’d)

3 For any case, any collection of nx + 1 = 3 sets has non-empty
intersection

4 By Helly’s theorem, any group of 3 sets has a non-empty intersection#↢ all of them should have a non-empty intersection

5 However, by construction S has empty intersection with the feasibility
region (non-shaded epigraph), as it includes all points with strictly
lower cost (infeasible solutions)#↢ contradiction

Only d ≤ nx = 2 support constraints may exist!
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Stronger version for convex scenario programs

For convex scenario programs we can always have a stronger version!

Let d = nx , i.e. the # of decision variables in a convex scenario program.
Then

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝ ≤ ε⌝ ≥ 1 − q(m, ε)
with q(m, ε) = ⩀d−1

k=0 ⌝mk ⌝εk(1 − ε⌝m−k .
Existence of a unique compression set is a su”cient condition for the
stronger generalization result (see Lecture 2)

For non-degenerate convex problems a unique compression set can
always be constructed (possibly upon some lexicographic order to
select among multiple ones)

It can be shown that stronger bound holds even for degenerate convex
scenario programs (via a constraint “heating and cooling” procedure)
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Stronger version – Di!erent interpretation

For convex scenario programs we can always have a stronger version!

Let d = nx , i.e. the # of decision variables in a convex scenario program.

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈! ⌐ g(x⌐m, ω) ≤ 0⌝ > 1 − ε⌝ ≥ 1 − q(m, ε)
with q(m, ε) = ⩀d−1

k=0 ⌝mk ⌝εk(1 − ε⌝m−k .
Di!erent interpretation: Fix confidence ϑ ∈ (0,1) and violation
level ε ∈ (0,1). Determine the number of samples needed to
guarantee that, with confidence at least 1 − ϑ, the probability of
constraint satisfaction for x⌐m is at least 1 − ε.

Set ϑ ≥ q(m, ε), and find an m that satisfies

d−1⊍
k=0
⌞m
k
⌞εk(1 − ε⌝m−k ≤ ϑ
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Stronger version – Di!erent interpretation

For convex scenario programs we can always have a stronger version!

Let d = nx , i.e. the # of decision variables in a convex scenario program.
Then

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈! ⌐ g(x⌐m, ω) ≤ 0⌝ > 1 − ε⌝ ≥ 1 − q(m, ε)
with q(m, ε) = ⩀d−1

k=0 ⌝mk ⌝εk(1 − ε⌝m−k .
Di!erent interpretation: Fix confidence ϑ ∈ (0,1) and violation
level ε ∈ (0,1). Determine the number of samples needed to
guarantee that, with confidence at least 1 − ϑ, the probability of
constraint satisfaction for x⌐m is at least 1 − ε.

A su”cient condition for m is given by

m ≥ 2

ε
⌜d − 1 + ln 1

ϑ
⌝
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Proof of explicit bound for number of samples m

1 By the Cherno# bound we can bound the “binomial tail” by

q(m, ε) ≤ e− (mω−d+1)2
2mω , for any mε > d

2 We determine a sequence of su”cient conditions for q(m, ε) ≤ ϑ:

e− (mω−d+1)2
2mω ≤ ϑ ⇐ (mε − d + 1)2

2mε
≥ ln 1

ϑ
[taking logarithm]

⇐ 1

2
mε + (d − 1)2

2mε
+ 1 − d ≥ ln 1

ϑ
[expanding the square]

⇐ 1

2
mε + 1 − d ≥ ln 1

ϑ
[dropping the red term since ≥ 0]

3 Solving with respect to m

m ≥ 2

ε
⌜d − 1 + ln 1

ϑ
⌝
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Distribution of the probability of constraint violation

For a random variable X , its distribution is characterized by
Prob{X ≤ x}, where x is the valuation of the random variable

For our probabilistic feasibility result

⌐ Random variable: Probability of constraint violation

X = P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝, and value: x = ε

⌐ Probability distribution of X ≤ x , i.e. “probability of the probability”

P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝ ≤ ε

Can we characterize the probability distribution of the probability of
constraint violation? This is our generalization theorem!
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Distribution of the probability of constraint violation

The distribution of P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝ is bounded by a binomial!

By our generalization statement, it is bounded by

1 − d−1⊍
k=0
⌞m
k
⌞εk(1 − ε⌝m−k , [non-shaded area in figure below]

the tail (complementary cumulative) distribution of a binomial
random variable

Density examples for di#erent m,d (with thanks to S. Garatti)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

0 0.2 0.4 0.6 0.8 1
0

5

10

15
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Distribution of the probability of constraint violation

The distribution of P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝ is bounded by a binomial!

By our generalization statement, it is bounded by

1 − d−1⊍
k=0
⌞m
k
⌞εk(1 − ε⌝m−k , [non-shaded area in figure below]

the tail (complementary cumulative) distribution of a binomial
random variable
Density for d = 1 and m = 15J Optim Theory Appl (2011) 148: 257–280 277

Fig. 7 The probability density function of V (x∗
N,k) for N = 15 and k = 0; grey area represents the

probability that V (x∗
N,k) > ε

Fig. 8 The probability density function of V (x∗
N,k) for N = 552 and k = 93; grey area represents the

probability that V (x∗
N,k) > ε

Again referring to N = 552 and k = 93, Fig. 9 further displays the region Bi where
V (∗N,k opt) > ε along with region Bii where J ∗

N,k opt = 1−V (x∗
N,k opt) > 1− (ε −ν) =

J ∗
ε−ν for ν = 0.05. Here, PN {Bi ∪ Bii} = 0.1352.

Thus, N = 552 and k = 93 suffice to simultaneously guarantee that V (x∗
N,k opt) ≤

0.2 and J ∗
N,k opt ≤ J ∗

0.15 with probability 0.8648. Interestingly enough, applying The-
orem 6.1 provides in general upper-bounds for N and k; however, in the present
1-dimensional case, substituting ε = 0.2, ν = 0.05, and β = 1 − 0.8648 = 0.1352
in (17) just returns N = 552 and k = 93.

Probability (%)

Probability of constraint violation
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Summary

Main result for convex scenario programs

Let d = nx , i.e. the # of decision variables in a convex scenario program.
Then

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝ ≤ ε⌝ ≥ 1 − q(m, ε)
with q(m, ε) = ⩀d−1

k=0 ⌝mk ⌝εk(1 − ε⌝m−k .
Di!erent interpretation: Fix confidence ϑ ∈ (0,1) and violation
level ε ∈ (0,1). Determine the number of samples needed to
guarantee that, with confidence at least 1 − ϑ, the probability of
constraint satisfaction for x⌐m is at least 1 − ε.

m ≥ 2

ε
⌜d − 1 + ln 1

ϑ
⌝
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Thank you for your attention!
Questions?

Contact at:
kostas.margellos@eng.ox.ac.uk
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Recap

Stronger generalization statement for convex scenario programs

Let d = nx , i.e. the # of decision variables in a convex scenario program.
Then

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝ ≤ ε⌝ ≥ 1 − q(m, ε)
with q(m, ε) = ⩀d−1

k=0 ⌝mk ⌝εk(1 − ε⌝m−k .
Explicit bound on the number of samples: Fix confidence
ϑ ∈ (0,1) and violation level ε ∈ (0,1). Determine the number of
samples needed to guarantee that, with confidence at least 1 − ϑ,
the probability of constraint satisfaction for x⌐m is at least 1 − ε.

m ≥ 2

ε
⌜d − 1 + ln

1

ϑ
⌝
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Tightness and expected probability of constraint violation

How tight is the strong confidence bound?

Bound on the expected value of the probability of violation

Robust control synthesis by means of an example
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Distribution of the probability of constraint violation

The distribution of P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝ is bounded by a binomial!

1 When is it equal to the tail distribution of a binomial random
variable?

1 − d−1⊍
k=0
⌝m
k
⌞εk(1 − ε⌝m−k , [non-shaded area in figure below]

2 What can we say about its expected value?J Optim Theory Appl (2011) 148: 257–280 277

Fig. 7 The probability density function of V (x∗
N,k) for N = 15 and k = 0; grey area represents the

probability that V (x∗
N,k) > ϵ

Fig. 8 The probability density function of V (x∗
N,k) for N = 552 and k = 93; grey area represents the

probability that V (x∗
N,k) > ϵ

Again referring to N = 552 and k = 93, Fig. 9 further displays the region Bi where
V (∗N,k opt) > ϵ along with region Bii where J ∗

N,k opt = 1−V (x∗
N,k opt) > 1− (ϵ −ν) =

J ∗
ϵ−ν for ν = 0.05. Here, PN {Bi ∪ Bii} = 0.1352.

Thus, N = 552 and k = 93 suffice to simultaneously guarantee that V (x∗
N,k opt) ≤

0.2 and J ∗
N,k opt ≤ J ∗

0.15 with probability 0.8648. Interestingly enough, applying The-
orem 6.1 provides in general upper-bounds for N and k; however, in the present
1-dimensional case, substituting ϵ = 0.2, ν = 0.05, and β = 1 − 0.8648 = 0.1352
in (17) just returns N = 552 and k = 93.

Probability (%)

Probability of constraint violation

Expected value
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Distribution of the probability of constraint violation

We will show that our strong theorem can hold with equality, i.e. the

confidence 1 −⩀d−1
k=0 ⌝mk ⌝εk(1 − ε⌝m−k is tight

We will do so by means of an example

Example with tight confidence bound

Assume that samples are extracted from a uniform distribution in [0,1],
and consider the scenario program

min
x∈R x

subject to ωi ≤ x , for all i = 1, . . . ,m
Convex scenario program with nx = 1
Objective function: c⋊x = x
Constraint function: g(x , ω) = ω − x

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 5 / 25

Distribution of the probability of constraint violation

1 Denote by x
⌐
m its minimizer, and notice that this is equal to the

maximum sample, i.e.
x
⌐
m = max

i=1,...,m ωi

2 What is the probability of constraint violation?

P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝ = P⌜ω ∈! ⌐ ω > x⌐m⌝
= 1 − x⌐m [since P uniform in [0,1]]

3 We will show that (our complementary generalization statement)

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈! ⌐ ω > x⌐m⌝ > ε⌝ = (1 − ε)m,

i.e. the the strong bound for d = nx .
Note that this holds with equality, hence it is tight! Problems where
the strong bound holds with equality are called fully-supported
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Distribution of the probability of constraint violation

To see this, notice that

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈! ⌐ ω > x⌐m⌝ > ε⌝
= Pm⌜ω1, . . . , ωm ⌐ 1 −max

i
ωi > ε⌝

= Pm⌜ω1, . . . , ωm ⌐ max
i

ωi < 1 − ε⌝
= Pm⌜ω1, . . . , ωm ⌐ ωi < 1 − ε, for all i = 1, . . . ,m⌝

Second step: we used the fact that P⌜ω ∈! ⌐ ω > x⌐m⌝ = 1 − x⌐m
Third step: if the maximum is below 1− ε, then each sample is as well
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Distribution of the probability of constraint violation

Samples are independent, so probability of “intersection” is the
product of individual probabilities

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈! ⌐ ω > x⌐m⌝ > ε⌝
= Pm⌜ω1, . . . , ωm ⌐ ωi < 1 − ε, for all i = 1, . . . ,m⌝
= ”m

i=1 P⌜ωi < 1 − ε⌝
Since the probability is uniform, each individual probability is given by

P⌜ωi < 1 − ε⌝ = 1 − ε

Putting everything together

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈! ⌐ ω > x⌐m⌝ > ε⌝ = (1 − ε)m
Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 8 / 25



Expected probability of constraint violation

Expected probability of constraint violation – Convex scenario

programs

Let d = nx , i.e. the # of decision variables in a convex scenario program.
Then

E∼Pm⌞P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝⌞ ≤ d

m + 1
E∼Pm denotes the expected value operator associated with the
probability Pm of extracting (ω1, . . . , ωm)
We no longer have two layers of probability, but rather a bound on
the expectation E∼Pm

From the “probability of the probability” to “expectation of the
probability”
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Expected probability of constraint violation

Sketch of proof

The cumulative distribution of the probability of constraint violation
is lower-bounded by the binomial bounds (say the strong one)L. Romao, K. Margellos and A. Papachristodoulou Automatica 149 (2023) 110601

Fig. 3. Comparison between the bound in inequality (2) and of Theorem 3
for m = 200, r = 141, for the scenario program given by (11). The dashed
blue line represents the cumulative distribution of V (x?(S)) obtained through
10.000 iterations of a Monte Carlo simulation, the solid black line stands for the
expression 1�Pdred+d�1

i=0
�
m

i

�
✏ i(1� ✏)m�i obtained from the result of Theorem 3,

and the dash-dotted red line represents 1�min{1, 1�
�
r+d�1

r

�P
r+d�1
i=0

�
m

i

�
✏ i(1�

✏)m�i}. Note that the result of Theorem 3 tightly assess the empirical cumulative
distribution.

6. Conclusion

In this paper we study fully-supported scenario programs
with discarded scenarios by means of a removal scheme that is
composed by a cascade of optimization problems. We developed
the existing analysis of such a removal procedure to allow for an
arbitrary number of removed scenarios. Extensions to deal with
non-degenerate scenario programs can be achieved by means of
a regularization procedure as in Calafiore (2010) and Romao et al.
(2022). These are not included in this paper for brevity.

An important contribution of this paper is that we generalize
the analysis of the removal procedure in Romao et al. (2022) to
an arbitrary number of removed scenarios. We also highlight an
intrinsic limitation of the considered removal scheme, namely,
the fact that it is always preferable in terms of achieving a better
performance if scenarios are removed in an integer multiple of
the dimension of the decision space, and shown that the proposed
bound, though not tight, outperforms the one in Campi and
Garatti (2011).

Appendix. Proof of Theorem 3

The proof of Theorem 3 is divided into two steps. We first
study the probability of constraint violation associated to the
optimal solution of a scenario program for which only a subset of
its support scenarios is removed. Then we combine this analysis
with the removal scheme in Romao et al. (2022) to produce the
bound of Theorem 3.

Step 1: Removing a subset of the support scenarios

Consider a cascade of two scenario programs as in (1) where
one is obtained from the other by removing a subset of the
support scenarios. Denote these scenario programs by SC1 and
SC2, respectively, to distinguish them from the Pk in the removal
procedure described in Section 3. Let SC1 be

SC1 : minimize
x2X

c
>
x

subject to g(x, �)  0, � 2 S. (A.1)

Denote by v?(S) the optimal solution of (A.1) and denote, as
before, by supp(v?(S)) its support set. To define SC2, fix any
0 < q2 < d, and let M(S), with |M(S)| = q2, be the subset of
supp(v?(S)) containing the q2 smallest scenarios in supp(v?(S))
according to an ordering � (see Section 4.2 for more details).
Then, let SC2 be

SC2 : minimize
x2X

c
>
x

subject to g(x, �)  0, � 2 S \ M(S). (A.2)

We denote the optimal solution of (A.2) by w?(S) and its sup-
port set by supp(w?(S)). To analyze the probability of constraint
violation properties associated to w?(S), we first define, for an
arbitrary set of samples C ⇢ S, the set N(C) that contains
the smallest scenarios (according to the order defined by � )
that neither support v?(C) nor w?(C) and that has cardinality
equal to that of supp(v?(C)) \ supp(w?(C)). In other words, N(C)
contains the |supp(v?(C)) \ supp(w?(C))|th smallest scenarios of
C \ {supp(v?(C)) [ supp(w?(C))}.

The reader may refer to Fig. 1 for a motivation to the defini-
tions of SC1 and SC2. In a comparison with the notation of Fig. 1
we have that v?(S) = x

?
0(S) and w?(S) = x

?(S) (i.e., SC1 plays the
role of P0 and SC2 that of P1); hence |supp(v?(C)) \ supp(w?(C))|
is equal to the number of scenarios that belong to both support
sets of SC1 and SC2, e.g., the scenarios are depicted in red in
Fig. 1. To encompass the fact that the realization in Fig. 1(b) may
happen with non-zero probability and to obtain a compression
set with a cardinality that is uniform with respect to possible
realizations, we need to append additional scenarios by forming
the set N(C) above. Similarly as in the proof of Theorem 2, we
establish a guarantee on the probability of constraint violation
associated to w?(S) by showing that there exists a compression
scheme associated with such a removal procedure. To this end,
we introduce the mapping B : �m ! 2�

B(C) = {B1(C) \ B2(C) \ B3(C)}
[

[

�2M(C)[N(C)

�, (A.3)

with B1(C) = {� 2 � : g(v?(C), �)  0}, B2(C) = {� 2 � :
g(w?(C), �)  0}, and
B3(C) =

�
� 2 � : � �� max

⇠2N(C)
⇠
 

[ supp(w?(C)).

The set B1(C) \ B2(C) contains the scenarios that satisfy both
of the interim solutions v?(C) and w?(C), while B3(C) contains
scenarios that are either larger than or equal to the maximum
scenario2 in N(C) or that are in supp(w?(S)). In fact, the next
proposition shows that

C = supp(v?(S)) [ supp(w?(S)) [
[

�2N(S)

� (A.4)

is the unique compression set for (A.3).

Proposition 4. Let 0 < q2 < d be a given integer. Consider the

cascade of two scenarios programs SC1 and SC2 as in (A.1) and (A.2),
respectively. The following statements hold:

(a) Suppose that the realization of Fig. 1(b) happens with non-zero

probability, i.e., suppose that, for all m 2 N, Pm{S 2 �m :
|supp(v?(S)) \ supp(w?(S))| = 0} > 0. Then, we have that:

2 Formally, the ordering ��1 is only defined on the finite set S. However,
given any finite set S and under mild conditions on the uncertainty space �,
one may extend ��1 to the whole space � in a way that its restriction to S is
the original bijection.

6
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Expected probability of constraint violation

Sketch of proof (cont’d)

The expected value of P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝ will thus be
upper-bounded by the expected value associated with the binomial tail

1 − d−1⊍
k=0
⌝m
k
⌞εk(1 − ε⌝m−k

This tail coincides with the cumulative distribution of the so called
beta distribution with d and m − d + 1 degrees of freedom
Its density function (by di#erentiating it with respect to ε) is given by

f (ε) = d⌝m
d
⌞εd−1(1 − ε)m−d

The expected value associated with the binomial tail can be shown to
be (by repeated integration by parts) d

m+1 , i.e.,

⊍ 1

0

εf (ε) dε = d

m + 1
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Expected probability of constraint violation

Expected probability of constraint violation – Convex scenario

programs

Let d = nx , i.e. the # of decision variables in a convex scenario program.
Then

E∼Pm⌞P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝⌞ ≤ d

m + 1
Explicit bound on the number of samples: Fix a violation level
ϖ ∈ (0,1). Determine the number of samples needed to guarantee
that the expected value of the probability of constraint violation for
x
⌐
m is at most ϖ.

A su$cient condition for E∼Pm⌞P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝⌞ ≤ ϖ

d

m + 1 ≤ ϖ ⇔ m ≥ d

ϖ
− 1
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Example: Minimum radius disk problem revisited
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y = x∗
2u + x∗

3

x∗
1

Fig. 2. Strip of smaller vertical width.

x∗
2, x

∗
3

x∗
1

Fig. 3. Disk of smaller radius.

convex program

PN : min
x1,x2,x3∈R3

x1

subject to:
√

(u(i) − x2)2 + (y(i) − x3)2 ≤ x1, i = 1, . . . , N,

where (x2, x3) is the center of the disk and x1 is its radius, and again we can claim
with confidence 1 − 10−5 that the constructed disk will contain at least 99% of the
probability mass. In this disk case, the figure 1 − 10−5 is a lower bound since the
problem is not fully-supported, as it can be easily recognized by noting that a config-
uration with two points away from each other and all of the other points concentrated
near the midposition of the first two points generates a disk where the segment joining
the first two points is a diameter and only these two points are of support.

Finally, let us compare the probability 1 − 10−5 with the probability that would
have been obtained by applying the previous bound (2) from [6]. Applying the latter,

Construct the minimum radius disk program (d=3 decision variables)

min
x1,x2,x3

x1

subject to:
⌞(yi − x3)2 + (ui − x2)2 ≤ x1, for all i = 1, . . . ,1650

How high is the expected value of the probability that the minimum
radius disk will not contain a new point ω = (u, y)?

E∼Pm⌞P⌜ω = (u, y) ⌐ ⌞(y − x3)2 + (u − x2)2 > x1⌝⌞ ≤ d

m + 1 =
3

1651
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Robust state feedback control design

Problem specifications

Consider the family of systems (each with nx states and nu inputs)

ẋ = A(ωi)x +B(ωi)u, i = 1, . . . ,m,

where ωi ’s are independent samples extracted from P.
1 Design a gain matrix K such that u = Kx renders the closed loop

system asymptotically stable.

2 Provide guarantees that the constructed K will stabilize a new system
ẋ = A(ω)x +B(ω)u (for some new ω).

Uncertainty enters the problem data, i.e. the elements of A and B

depend on ωi

We need that the same K stabilizes all systems, not a di#erent
feedback matrix per system
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Robust state feedback control design (cont’d)

Consider the closed loop system, once u = Kx has been applied

We have a family of closed loop systems:

ẋ = ⌝A(ωi) +B(ωi)K⌝x , for all i = 1, . . . ,m
Restatement of the problem:
Find K such that A(ωi) +B(ωi)K is Hurwitz for all i = 1, . . . ,m.

Recall Lyapunov’s stability condition

A matrix A is Hurwitz if and only if there exists P = P⋊ ≻ 0 such that

PA
⋊ +AP ≺ 0 [Linear Matrix Inequality (LMI)]

Note that this is a equivalent to the more standard A
⋊
P + PA ≺ 0

↢⇒ Apply Lyapunov’s LMI to the family of closed-loop systems
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Robust state feedback control design (cont’d)

Three step procedure:

1 Lyapunov’s stability LMI for the closed loop family of systems, i.e.
with A(ωi) +B(ωi)K in place of A

P⌝A(ωi) +B(ωi)K⌝⋊ + ⌝A(ωi) +B(ωi)K⌝P ≺ 0, ⋊i = 1, . . . ,m
which leads to

PA(ωi)⋊ + (PK⋊)B(ωi)⋊ +A(ωi)P +B(ωi)(KP) ≺ 0, ⋊i = 1, . . . ,m
2 Set Z = KP (recall that P is symmetric) and find P and Z such that

PA(ωi)⋊ + Z⋊B(ωi)⋊ +A(ωi)P +B(ωi)Z ≺ 0, ⋊i = 1, . . . ,m
3 Compute the gain matrix by K = ZP−1, for all i = 1, . . . ,m
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Robust state feedback control design (cont’d)

How to find P and Z such that

PA(ωi)⋊ + Z⋊B(ωi)⋊ +A(ωi)P +B(ωi)Z ≺ 0, ⋊i = 1, . . . ,m

By means of an optimization (in fact feasibility problem)

min
P,Z

0 [any constant would work]

subject to PA(ωi)⋊ + Z⋊B(ωi)⋊ +A(ωi)P +B(ωi)Z ≺ 0,
for all i = 1, . . . ,m

Convex scenario program as LMIs are convex constraints!
Let P⌐ and Z

⌐ denote its minimizers, and construct K⌐ = Z⌐(P⌐)−1
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Robust state feedback control design (cont’d)

Consider a new ω that gives rise to the system

ẋ = A(ω)x +B(ω)u
Determine the confidence with which the probability that K⌐ renders
the new system stable is at least 1 − ε

Probabilistic guarantees

1 Consider a given number of samples m and a violation level ε ∈ (0,1).
2 Count the number of decision variables in P ∈ Rnx×nx and Z ∈ Rnu×nx ,

i.e. d = n2x + nunx (could be reduced due to symmetry of P)

3 With confidence at least 1 −⩀d−1
k=0 ⌝mk ⌝εk(1 − ε⌝m−k ,

P⌜ω ⌐ P⌐A(ω)⋊ + (Z⌐)⋊B(ω)⋊ +A(ω)P⌐ +B(ω)Z⌐ ≺ 0⌝ > 1 − ε

or equivalently, the probability that K⌐ = Z⌐(P⌐)−1 renders a new
system/plant (induced by the new sample ω) stable is at least 1 − ε.
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Robust state feedback control design (cont’d)

Red regions illustrate the set of new ω’s for which x
⌐
m violates the

constraints

Example1 refers to a 2-dimensional uncertainty vector ω

1Figure taken from “Introduction to the scenario approach”, by M. Campi & S.
Garatti, SIAM 2018
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Robust state feedback control design (cont’d)

Guarantees on the expected probability of constraint violation

Let nx = 2. Determine the number of samples m such that the expected
value of the probability that K⌐ = Z⌐(P⌐)−1 renders a new system/plant
unstable is at most 0.05.

We want

E∼Pm⌞P⌜ω ⌐ P⌐A(ω)⋊ + (Z⌐)⋊B(ω)⋊ +A(ω)P⌐ +B(ω)Z⌐ ⪰ 0⌝⌞ ≤ 0.05
Set ϖ = 0.05. A su$cient condition for this to hold is given by

m ≥ d

ϖ
− 1,

where d = n2x + nxnu denotes the number of decision variables in
P ∈ Rnx×nx and Z ∈ Rnu×nx
We thus have that m ≥ 8

0.05 − 1 = 159 samples need to be extracted
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Summary

Generalization theorem for abstract problems

If a compression set Cd with cardinality d exists, then

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈ T ∖Hm⌝ ≤ ε⌝ ≥ 1 − q(m, ε)
with q(m, ε) = ⌝md ⌝(1 − ε⌝m−d , where limm→⋉ q(m, ε) = 0.

Hypothesis probably approximately correct (PAC) learns target

We do not care about Cd but only about d

It is a distribution-free result; holds true for any underlying (possibly
unknown) distribution, as long as data are independently extracted

Stronger version: If the compression set is unique, then

q(m, ε) = ⩀d−1
k=0 ⌝mk ⌝εk(1 − ε⌝m−k
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Summary

Probabilistic feasibility – Convex scenario programs

Let d = nx , i.e. the # of decision variables in a convex scenario program.
Then

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝ ≤ ε⌝ ≥ 1 − q(m, ε)
with q(m, ε) = ⌝md ⌝(1 − ε⌝m−d .
Support constraints = Compression set for non-degenerate problems

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 22 / 25

Summary

Probabilistic feasibility – Convex scenario programs (stronger version)

Let d = nx , i.e. the # of decision variables in a convex scenario program.
Then

Pm⌜ω1, . . . , ωm ⌐ P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝ ≤ ε⌝ ≥ 1 − q(m, ε)
with q(m, ε) = ⩀d−1

k=0 ⌝mk ⌝εk(1 − ε⌝m−k .
Explicit bound on the number of samples: Fix confidence
ϑ ∈ (0,1) and violation level ε ∈ (0,1). Determine the number of
samples needed to guarantee that, with confidence at least 1 − ϑ,
the probability of constraint satisfaction for x⌐m is at least 1 − ε.

m ≥ 2

ε
⌜d − 1 + ln

1

ϑ
⌝

Michaelmas Term 2024 C20 Robust Optimization November 9, 2024 23 / 25

Summary

Expected probability of constraint violation – Convex scenario

programs

Let d = nx , i.e. the # of decision variables in a convex scenario program.
Then

E∼Pm⌞P⌜ω ∈! ⌐ g(x⌐m, ω) > 0⌝⌞ ≤ d

m + 1
Explicit bound on the number of samples: Fix a violation level
ϖ ∈ (0,1). Determine the number of samples needed to guarantee
that the expected value of the probability of constraint violation for
x
⌐
m is at most ϖ.

m ≥ d

ϖ
− 1
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Thank you for your attention!

Questions?

Contact at:
kostas.margellos@eng.ox.ac.uk
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Appendix: Proof of the main PAC learning theorem

Theorem

If a compression set Cd with cardinality d exists, then

Pm��1, . . . , �m ∶ P�� ∈ T �Hm� ≤ ✏� ≥ 1 − q(m, ✏)
with q(m, ✏) = �m

d
�(1 − ✏�m−d .
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Proof

We assume existence of Cd for any m multi-sample;
it will also exist with confidence 1 − q(m, ✏), i.e.

Fix ✏ ∈ (0,1). We will equivalently show that

Pm��1, . . . ,�m ∶ ∃ Cd such that Hd
(�i) = T (�i), for all i = 1, . . . ,m

and P�� ∈ T �Hd� > ✏ � ≤ q(m, ✏)
where q(m, ✏) = �m

d
�(1 − ✏�m−d .

“Yellow” events: empirical generalization and probabilistic
generalization, respectively

First event: Zero disagreement between Hd and T on the samples;
Second event: ✏ disagreement in probability
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Proof (cont’d)

Equivalently, we have that

Pm��
Cd

��1, . . . , �m ∶ Hd
(�i) = T (�i), ∀i and P�� ∈ T �Hd� > ✏ ��

≤�
Cd

Pm��1, . . . , �m ∶ Hd
(�i) = T (�i), ∀i and P�� ∈ T �Hd� > ✏ �

Existence of a compression set Cd is equivalent to taking the “union”

Union is taken with respect to all potential compression sets Cd sets,
each one containing d samples

Subadditivity property: Probability of the “union” of events smaller
than or equal to the “sum” of the individual probability of each event
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Proof (cont’d)

Without loss of generality let Cd = {�1, . . . , �m} and
�̄ = ��1, . . . , �d ∶ P�� ∈ T �Hd� > ✏�
= ��1, . . . , �d ∶ P�� ∶ Hd

(�) ≠ T (�)� > ✏�
Since Hd is constructed based on �1, . . . , �d , notice that

Hd
(�i) = T (�i), for all i = 1, . . . ,d

Pick a “new” �

P�� ∶ Hd
(�) = T (�) and P�� ∈ T �Hd� > ✏�

= P�� ∶ Hd
(�) = T (�)� ≤ 1 − ✏

The equality follows from the fact that second “yellow” event is
independent of �; the inequality follows from the definition of �̄
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Proof (cont’d)

Pick a “new” �

P�� ∶ Hd
(�) = T (�) and P�� ∈ T �Hd� > ✏� ≤ 1 − ✏

Bernoulli trials: m − d independent extractions �d+1, . . . , �m;
condition on �1, . . . , �d ∈ �̄

Pm−d��d+1, . . . , �m ∶ Hd
(�i) = T (�i) for all i = d + 1, . . . ,m

and P�� ∈ T �Hd� > ✏�
= m�

i=d+1
P��i ∶ Hd

(�i) = T (�i) and P�� ∈ T �Hd� > ✏�
≤ (1 − ✏)m−d
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Proof (cont’d)

Deconditioning ...

Pm��1, . . . , �m ∶ Hd
(�i) = T (�i), ∀i and P�� ∈ T �Hd� > ✏ �

= �
�̄

Pm��1, . . . , �m ∶ Hd
(�i) = T (�i) for all i = 1, . . . ,m

and P�� ∈ T �Hd� > ✏ � �1, . . . , �d ∈ �̄� dP(d�1, . . . ,d�d)
≤ (1 − ✏)m−d
The equality is due to the definition of the conditional probability

The inequality follows from the obtained Bernoulli trials bound, since
the conditional probability is equal to the derived expression for Pm−d
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Proof (cont’d)

Deconditioning ...

Pm��1, . . . , �m ∶ Hd
(�i) = T (�i), ∀i and P�� ∈ T �Hd� > ✏ �

≤ (1 − ✏)m−d
Desired statement was shown to be upper-bounded by

�
Cd

Pm��1, . . . , �m ∶ Hd
(�i) = T (�i), ∀i and P�� ∈ T �Hd� > ✏ �

≤�
Cd

(1 − ✏)m−d ��m
d
� terms in the summation�

= �m
d
�(1 − ✏)m−d
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Thank you for your attention!

Questions?

Contact at:
kostas.margellos@eng.ox.ac.uk
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