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Problems

1. Let (δ1, . . . , δm) be a given m multi-sample used to construct a hypothesis

Hm to approximate a target set T . Assume that T ⊇ Hm for any multi-

sample. The Probably Approximately Correct (PAC) learning paradigm is

summarized in the following statement

Pm
{
δ1, . . . , δm : P

(
δ ∈ T \Hm

)
≤ ε
}
≥ 1− q(m, ε),

with limm→∞ q(m, ε) = 0.

(a) What are the random variables and events, and with respect to which

probabilities are they measured? Justify your answers in all cases.

(b) Comment on the roles of ε and q(m, ε)? Why do we require that

limm→∞ q(m, ε) = 0?

(c) A decision maker informs you that for this learning problem there

exists a compression set with cardinality d < m. Fix any β ∈ (0, 1).

Determine an upper-bound ε(m,β) on P
(
δ ∈ T \Hm

)
as a function

of m and β, such that, with confidence at least 1 − β, the proba-

bility that Hm does not agree with T on a new realization δ of the

uncertainty is at most ε(m,β).

Note that your answer will also depend on d.

2. Consider the following min−max uncertain optimization problem

min
x∈Rnx

max
δ∈∆

f(x, δ),

where x is a vector with nx decision variables, δ is an uncertain parameter

taking values in the set ∆, and f is convex in x. Let δ, . . . , δm be m
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independent samples of δ according to a possibly unknown distribution P,

and consider the following min−max scenario program

min
x∈Rnx

max
i=1,...,m

f(x, δi).

(a) Perform an epigraphic reformulation of the scenario program, intro-

ducing the scalar epigraphic variable γ ∈ R. Provide a mathematical

expression for the probability that the constraints of the reformulated

problem are violated when a new sample δ is extracted.

(b) For a given ε ∈ (0, 1), provide an expression for the confidence 1 −
q(m, ε) with which the probability of constraint violation of part (a)

is at most equal to ε.

(c) What is the implication of your answer in part (b) on the original

min−max scenario program.

3. Consider m samples in R, i.e., δ1, . . . , δm, i = 1, . . . ,m, extracted ac-

cording to an unknown probability measure P. Consider the problem of

determining the minimum length interval that contains all samples. See

Figure 1 for a pictorial representation.

Figure 1: Minimum width interval.

(a) Parameterize the interval using either its start- and end-point (de-

noted by x and x, respectively in Figure 1), or equivalently, by its

center and semi-width length. Show that the problem of determining

the minimum length interval enclosing all samples can be written as

a convex scenario program.

(b) Probabilistic robustness: Determine the number of samples m that

would be required to guarantee that, with confidence at least 1−10−6,

the probability that a new sample extracted according to P lies outside

the minimum length interval is at most 5%.
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4. Consider m = 1650 points with coordinates (ui, yi) ∈ R2, i = 1, . . . ,m.

The points are extracted independently according to an unknown, con-

tunuous probability measure P. Consider the problem of determining the

minimum width strip that contains all points. See Figure 2 for a pictorial

representation1.  
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Fig. 2. Strip of smaller vertical width.
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Fig. 3. Disk of smaller radius.

convex program

PN : min
x1,x2,x3∈R3

x1

subject to:
√

(u(i) − x2)2 + (y(i) − x3)2 ≤ x1, i = 1, . . . , N,

where (x2, x3) is the center of the disk and x1 is its radius, and again we can claim
with confidence 1 − 10−5 that the constructed disk will contain at least 99% of the
probability mass. In this disk case, the figure 1 − 10−5 is a lower bound since the
problem is not fully-supported, as it can be easily recognized by noting that a config-
uration with two points away from each other and all of the other points concentrated
near the midposition of the first two points generates a disk where the segment joining
the first two points is a diameter and only these two points are of support.

Finally, let us compare the probability 1 − 10−5 with the probability that would
have been obtained by applying the previous bound (2) from [6]. Applying the latter,
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Figure 2: Minimum vertical width strip.

(a) Consider the parameterization shown in Figure 2, where x1 denotes

the semi-width length, and x2, x3 encode the median line of the

strip. Formulate the problem of determining the minimum vertical

width strip that contains all points as a convex scenario program, and

denote by (x∗1, x
∗
2, x
∗
3) its optimal solution.

(b) Probabilistic robustness: Provide a probabilistic certificate (confi-

dence), with which the probability that a new sample extracted ac-

cording to P lies outside the minimum vertical width strip is at most

1%.

(c) How does the computed confidence compare with the one computed

in the minimum radius disk program worked out in the lecture notes?

Which result is more conservative and why?

5. Let δ1, . . . , δm be m independent samples of an uncertain parameter δ,

distributed according to a possibly unknown distribution P. Consider the
1Figure taken from “The exact feasibility of randomized solutions of uncertain convex programs”,

by M. Campi and S. Garatti, SIAM Journal on Optimization, 19(3), 1211-1230, 2008.
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following family of autonomous, linear dynamical systems/plants

ẋ(t) = A(δi)x(t), for i = 1, . . . ,m, (1)

where x ∈ Rn is the system state, and for each realization of the uncertain

parameter δ, A(δ) ∈ Rn×n governs its evolution.

Let γ ∈ R, and consider the following minimization program

min
P,γ

γ

subject to P � 0

− I � A>(δi)P + PA(δi) � γI, for all i = 1, . . . ,m,

where I is an identity matrix with appropriate dimension.

(a) Quadratic stability: Provide a range of values for γ for the family of

plants in (1) to be asymptotically stable.

(b) What type of probabilistic statement can you offer for the optimal

solutions P ∗, γ∗ of the aforementioned program?

Comment on the probability that a new new plant (i.e., a new δ

giving rise to A(δ)), is asymptotically stable.

Note that the lower bound −I in the constraint is introduced to ensure

boundedness of the solutions, as when the matrix A>(δi)P + PA(δi)

becomes negative for some i = 1, . . . ,m (and since it depends linearly on

P ), γ could drift to negative infinity.

6. Figure 3 shows three different scenario programs, each of them with two

decision variables x1 and x2. In all cases, each constraint is V -shaped

(e.g., 1-norm constraint). The feasibility region for each constraint is

outside the shaded part, and the arrow indicates the optimization direc-

tion, corresponding to minimizing x2.

(a) For each case indicate which constraints are of support.

(b) Which of those cases correspond to convex minimization programs?

How is your answer on the number of support constraints related to

convexity?
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Figure 3: Different scenario programs with V -shaped constraints.

Justify your answers in all cases.

7. Bounds on the expected value of the probability of constraint violation.

(a) Consider the minimum width interval of Problem 3. Determine the

number of samples that would be required for the expected value of

the probability that a new sample lies outside the minimum width

interval to be less than or equal to 0.05.

(b) Consider now the minimum vertical width strip of Problem 4. Deter-

mine the number of samples that would be required for the expected

value of the probability that a new sample lies outside the minimum

vertical width strip to be less than or equal to 0.01.


