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Problems

1. (a) Consider the following autonomous, nonlinear system

ẋ(t) = −x3(t) + sin4 x(t).

Determine the equilibrium points of this system.

Hint: Consider the points for which x = sinx.

(b) Consider the following differential equation

ẍ(t) + (x(t)− 1)2ẋ5(t) + x2(t) = sin
(π
2
x(t)

)
.

Write the system in state space form, using (x1(t), x2(t)) = (x(t), ẋ(t))

as the state vector. Deduce that ẋ(t) = 0 at an equilibrium point,

and hence determine the values of x(t) at equilibrium.

2. The rotational motion of a drifting spacecraft is described by the dynamics

ω̇x = aωyωz, ω̇y = −bωxωz, ω̇z = cωxωy,

where ωx, ωy, ωz are angular velocities measured in a coordinate frame

attached to the spacecraft (see Figure 1); their dependency on time is

not shown explicitly to ease notation. Parameters a, b, c are positive con-

stants.

(a) Determine the equilibrium points of this system.

(b) Show that the equilibrium (ω?
x, ω

?
y, ω

?
z) = (0, 0, 0), corresponding to

zero rotation, is stable.

Hint: Employ Lyapunov’s direct method using a candidate Lyapunov

function V (ωx, ωy, ωz) = pω2
x + qω2

y + rω2
z , where the coefficients p,

q and r are all positive, and satisy ap− bq + cr = 0.
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(c) Consider any ω0 > 0. Verify that the function

V (ωx, ωy, ωz) = cω2
y + bω2

z +
(
2acω2

y + abω2
z + bc(ω2

x − ω2
0)
)2
,

satisfies V̇ (ωx, ωy, ωz) = 0 along the trajectories of the system. Us-

ing Lypunov’s direct method with this candidate Lyapunov function,

investigate the stability properties of any non-zero equilibrium point

of the form (ω?
x, ω

?
y, ω

?
z) = (±ω0, 0, 0).
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y
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Figure 1: Pictorial illustration of the rotating spacecraft of Problem 2.

3. Consider the autonomous, nonlinear system

ẋ1(t) = x2(t),

ẋ2(t) = −x2(t)(x1(t)− 1)2 − x1(t)(x21(t)− 1).

(a) Show that the only equilibria of this system are (0, 0), (1, 0), (−1, 0).

(b) Using Lyapunov’s indirect method comment on the stability proper-

ties of these equilibria.

4. Consider the same system with Problem 3, and the candidate Lyapunov

function

V (x1, x2) =
1

4
x21(x

2
1 − 2) +

1

2
x22 +

1

4
.

(a) Using Lyapunov’s indirect method show that the equilibrium points

(1, 0) and (−1, 0) are stable.
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Hint: Show that these equilibria constitute local minima of V (x1, x2):

check the gradient of V and compute the Hessian at these points.

(b) Let S =
{
(0, 0), (−1, 0), (1, 0)

}
be the set containing all equilibria.

Consider a big enough c > 0 such that the level-set

Sc =
{
(x1, x2) : V (x1, x2) ≤ c

}
,

contains S. Justify whether Sc is compact and invariant.

(c) Apply La Salle’s invariance principle to show that state trajectories

tend to S as t→∞.

5. (a) Consider the scalar system (assume solutions exist and are unique)

ẋ(t) = −b(x(t)),

where b is a continuous nonlinear function such that xb(x) > 0 for

all x 6= 0.

Choose a quadratic Lyapunov function and, using Lyapunov’s direct

method, show that x? = 0 is a globally asymptotically stable equilib-

rium point.

(b) Consider a two-state system of the form (assume solutions exist and

are unique)

ẋ1(t) = x2(t),

ẋ2(t) = −b(x2(t))− c(x1(t)),

where b and c are continuous nonlinear functions such that

x2b(x2) > 0, for all x2 6= 0,

x1c(x1) > 0, for all x1 6= 0.

Show that (x?1, x
?
2) = (0, 0) is the only equilibrium point. Consider

the candidate Lyapunov function

V (x1, x2) =
1

2
x22 +

∫ x1

0

c(x) dx.

Using La Salle’s invariance principle show that (x?1, x
?
2) is locally

asymptotically stable.
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6. (a) The nonlinear circuit in the left panel of Figure 2 is described by the

equations:

ẋ1 =
x2

L(x2)
,

ẋ2 = −
x1

C(x1)
− R1x2
L(x2)

+ e,

where x1 is the charge on the capacitor and x2 is the magnetic flux in

the inductor. Notice that the capacitance C depends on x1, and the

inductance L on x2, rendering the system nonlinear. The resistance

R1 is time invariant and positive. Moreover, C(x1) > 0 for all x1,

L(x2) > 0 for all x2, and R1 > 0. The dependency of x1, x2 and e

on time is not shown explicitly to ease notation.

Consider the candidate storage function

V1(x1, x2) =

∫ x2

0

x

L(x)
dx +

∫ x1

0

x

C(x)
dx.

Show that the system with input u = e and output y = ẋ1 is strictly

passive.

(b) Consider now the circuit in the right panel of Figure 2. Denote by

x1, x2 the charge on the capacitor and the flux in the inductor in

the left-branch of the circuit, and by x3, x4, the respective quantities

in the right-branch of the circuit. Let x = (x1, x2, x3, x4). Assume

that switch S is closed, and notice that by Kirchhoff’s current law

ẋ1 + ẋ3 = i (where i is the current shown in the figure).

Find a function V (x) such that for all x,

V (x) ≥ 0, and V̇ (x) = ie− R1

L2(x2)
x22 −

R2

L2(x4)
x24.

What does this imply about the passivity properties of the system?

(c) Consider the same setting with part (b), and a function V with these

properties. Assume that the switch S opens up. Using La Salle’s

invariance principle determine the set of states towards which the

system converges as t→∞.
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Figure 2: Left panel: Electric circuit for part (a); Right panel: Electric circuit

of parts (b) and (c).

7. (a) Show that if there exist symmetric positive definite matrices P and

Q satisfying

A>P + PA+ 2µP = −Q, for some µ > 0,

then each eigenvalue λ(A) of A satisfies Re
[
λ(A)

]
< −µ.

(b) Consider the transfer function

G(s) =
1

s2 + s+ 1
.

Is this transfer function strictly positive real? Justify your answer.

8. Consider a linear system with input u and output y. The system has a

transfer function G(s), with all its poles having negative real part. This

system is to be controlled via feedback u = −φ(y), where φ is a static

nonlinearity. For all ω ∈ R, G(jω) lies within the bounds:

−1 < Re
[
G(jω)

]
< 2, −2 < Im

[
G(jω)

]
< 2.

(a) Show that the closed-loop system is asymptotically stable for any

function φ belonging to the sector [0, 1] or [−1
3 ,

1
2 ].

(b) Does this imply that the closed-loop system will also be asymptoti-

cally stable for all φ in the sector [−1
3 , 1]? Justify your answer.


