Logistics

C20 Robust Optimization
 Lecture 1

Kostas Margellos
University of Oxford

4) OXFORD

Hilary Term 2021-22
20 Robust Optimization
February 11, 2022 $1 / 24$

- Who: Kostas Margellos, Control Group, IEB 50.16 contact: kostas.margellos@eng.ox.ac.uk
- When: 4 lectures, weeks 5 \& 6 - Mon \& Thu
- Where: Remotely via Panopto
- Other info:
- 1 Q\&A Session: week 7 HT - Mon 28/2 @3pm (LR2)
- 1 example class: week 8 HT - Mon 7/3 @10am-1pm and 2 pm-3pm (4 slots, via Teams)
- Lecture slides available on Canvas
- Teaching style: Mix of slides and hand-written notes

Motivation

Objectives of the second part of this class

I believe we do not know anything for certain, but everything probably.

- Christiaan Huygens, 1629-1695

How to deal with uncertainty?

- There are many ways
- Deterministic: Just stick with the forecasts

Simple but agnostic!

- Robust: Consider the worst-case Offers immunization but conservative
- Let the DATA speak

'After careful consideration of all 437 charts, graphs, and metrics, I've decided to throw up my hands, hit the liguor store,
- Big picture
- Decision making in the presence of uncertainty
- Related to: Randomized/stochastic and robust optimization
- Convex optimization ... and a bit of Statistical Learning Theory
- What it is actually about
(1) Introduce data based optimization
(2) Make decisions under uncertainty and accompany them with performance certificatesNew toolkit: easy implementation - difficulty comes in the math

Motivation - The doctor's problem

Motivation - The doctor's problem

Motivation - The doctor's problem

Motivation - The doctor's problem

Motivation - The doctor's problem

Learning
Hilary Term 2021-22
C20 Robust Optimization

Probably Approximately Correct Learning

- Introduction to a particular notion of "learnability"
- Quantification of the notion of "generalization"
- Strong links with statistical learning theory

Motivation - The doctor's problem

Terminology by means of an example

(1) Consider the most popular random experiment: coin tossing

- Random variable $\delta \in\{$ Head, Tail $\}$
- Toss a fair coin 100 times, multi-sample: $\delta_{1}, \ldots, \delta_{100}$ multi-extraction, instances of our random variable
- Calculate the frequency of getting a head (empirical head probability)

$$
\widehat{\mathbb{P}}_{\left(\delta_{1}, \ldots, \delta_{100}\right)}=\frac{\# \text { Heads }}{\# \text { coin tosses }}
$$

(2) Repeat it the experiment 50 times

- You will get 50 different $\widehat{\mathbb{P}}_{\left(\delta_{1}, \ldots, \delta_{100}\right)}: 0.55,0.47,0.53, \ldots$
- $\widehat{\mathbb{P}}_{\left(\delta_{1}, \ldots, \delta_{100}\right)}$ is itself random!
- How likely it is that $\left|\widehat{\mathbb{P}}\left(\delta_{1}, \ldots, \delta_{100}\right)-0.5\right|$ is very small?

Learning \& Generalization question

How many times shall you toss the coin initially so that the empirical head probability is very close to 0.5 for most of the 50 trials?

Learning

- Target set T
- T is not known, but we are given samples $\delta_{1}, \ldots, \delta_{m}$ contained in T
- Example: Consider T to be an axis-aligned rectangle
- Hypothesis H_{m} (also a set)
- Depends on multi-sample $\delta_{1}, \ldots, \delta_{m}$
- Provides an approximation of T
- Example: Smallest axis-aligned rectangle that contains the samples

Hilary Term 2021-22
C20 Robust Optimization

Generalization - Probably Approximately Correct Learning

- Approximately: T and H_{m} very close
- How likely is it that H_{m} does not contain another sample δ (extracted according to \mathbb{P})?
- Depends on the "distance" $\mathbb{P}\left(\delta \in T \backslash H_{m}\right)$
- $-\dot{\text { if }} \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon$ (shaded region)
- Probably: T and H_{m} very close for most of the multi-samples
- H_{m} is itself random as it depends on the samples
- What is the probability that $\mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon$?
- In other words, for "how many" of the multi-samples is this the case?

Generalization - Probably Approximately Correct Learning

- Approximately: T and H_{m} very close
- How likely is it that H_{m} does not contain another sample δ (extracted according to \mathbb{P})?
- Depends on the "distance" $\mathbb{P}\left(\delta \in T \backslash H_{m}\right)$
- $-\dot{\text { if }} \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon$ (shaded region)
- Probably: T and H_{m} very close for most of the multi-samples
- H_{m} is itself random as it depends on the samples
- What is the probability that $\mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon$?
- In other words, for "how many" of the multi-samples is this the case?

Hilary Term 2021-22
C20 Robust Optimization
February 11, $2022 \quad 12 / 24$

Generalization - Probably Approximately Correct Learning

- Approximately: T and H_{m} very close
- How likely is it that H_{m} does not contain another sample δ (extracted according to \mathbb{P})?
- Depends on the "distance" $\mathbb{P}\left(\delta \in T \backslash H_{m}\right)$
- \odot if $\mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon$ (shaded region)
- Probably: T and H_{m} very close for most of the multi-samples
- H_{m} is itself random as it depends on the samples
- What is the probability that $\mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon$?
- In other words, for "how many" of the multi-samples is this the case?

Generalization

- In the doctor's problem: Doctor would be satisfied if ...
- Medicine cures patients with probability at least $1-\epsilon$
or, probability that a new patient δ is not cured, is at most ϵ
- If this holds with probability at least $1-q(m, \epsilon)$ with respect to the $\delta_{1}, \ldots, \delta_{m}$ trial patients

Problem

Find conditions for the existence of some $q(m, \epsilon)$ such that

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

and $\lim _{m \rightarrow \infty} q(m, \epsilon)=0$.

- Probability T and H_{m} being different at most ϵ, occurs with confidence at least $1-q(m, \epsilon)$
- We have implicitly assumed that $T \supseteq H_{m}$; this is for simplicity, otherwise we should use $\mathbb{P}\left(\delta \in\left(T \backslash H_{m}\right) \cup\left(H_{m} \backslash T\right)\right)$
Hilary Term 2021-22
C20 Robust Optimization

$$
\begin{array}{lll}
& \equiv & \text { February } 11,2022 \\
13 / 24 \\
\hline
\end{array}
$$

Generalization - sufficient condition

- Observation
- For any m multi-sample often only a subset of them matters

- Axis-aligned rectangle example
- The hypothesis H_{m} is determined only by the samples on the facets
- Different multi-samples, but always 4 are needed to determine the hypothesis (but for degenerate cases)!

Generalization

Problem

Find conditions for the existence of some $q(m, \epsilon)$ such that

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

and $\lim _{m \rightarrow \infty} q(m, \epsilon)=0$.

- Probability of a "new" $\delta: \mathbb{P}$
- Probability of an m multisample $\delta_{1}, \ldots, \delta_{m}: \mathbb{P} \times \ldots \times \mathbb{P}=\mathbb{P}^{m}$ product probability as all samples are independent from each other
- Confidence $1-q(m, \epsilon)$. It depends on the number of samples m and the violation level ϵ, The more samples we are provided, the closer it is to 1 , i.e. $\lim _{m \rightarrow \infty} q(m, \epsilon)=0$

Hilary Term 2021-22
C20 Robust Optimization

Generalization - sufficient condition

- Fix $d<m$
- Denote by $C_{d} \subset\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ a subset of the multi-sample with cardinality d, i.e. $\left|C_{d}\right|=d$
- Let H_{d} bet the hypothesis constructed using only the samples in C_{d}

Compression set

C_{d} with $\left|C_{d}\right|=d<m$ is called a compression set if

$$
\mathbb{1}_{H_{d}}\left(\delta_{i}\right)=\mathbb{1}_{T}\left(\delta_{i}\right), \text { for all } i=1, \ldots, m
$$

- Hypothesis H_{d} agrees with the target T on all samples, i.e. existence of a compression set \Leftrightarrow Empirical generalization
- Indicator function

$$
\mathbb{1}_{T}(\delta)= \begin{cases}1 & \text { if } \delta \in T \\ 0 & \text { otherwise }\end{cases}
$$

Generalization - sufficient condition

Compression set

Assume that for any m multi-sample there exists C_{d} with $\left|C_{d}\right|=d<m$ such that

$$
\mathbb{1}_{H_{d}}\left(\delta_{i}\right)=\mathbb{1}_{T}\left(\delta_{i}\right), \text { for all } i=1, \ldots, m
$$

C_{d} is then called a compression set.

- Existence of a compression set \Leftrightarrow Empirical generalization
- We approximate T with H_{d} using only d samples
- This hypothesis agrees with T on all other samples as well, i.e. approximation error on the samples is zero
- We do not need to know C_{d}; we only care that such a set exists

Generalization

Theorem

If a compression set C_{d} with cardinality d exists, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

with $q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d}$.

- Hypothesis probably approximately correct (PAC) learns target
- We do not care about C_{d} but only about d
- It holds $\lim _{m \rightarrow \infty} q(m, \epsilon)=0$

$$
\begin{aligned}
\lim _{m \rightarrow \infty} q(m, \epsilon) & =\binom{m}{d}(1-\epsilon)^{m-d} \\
& \leq \lim _{m \rightarrow \infty}\left(\frac{m e}{d}\right)^{d}(1-\epsilon)^{m-d}=0
\end{aligned}
$$

First term increases polynomially; second term tends to zero exponentially fast (dominant)

C20 Robust Optimization February 11, 2022 19/24

Recall our problem

Problem

Find conditions for the existence of some $q(m, \epsilon)$ such that

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

and $\lim _{m \rightarrow \infty} q(m, \epsilon)=0$.

Generalization - Stronger statement

Theorem

If there exists a unique compression set C_{d} with cardinality d, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

with $q(m, \epsilon)=\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}$.

- Stronger assumption \Longrightarrow stronger statement
- For the same m and $\epsilon \in(0,1)$,

$$
\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}<\binom{m}{d}(1-\epsilon)^{m-d}
$$

i.e. we can claim the probabilistic result with higher confidence
$1-q(m, \epsilon)$
Hilary Term 2021-22

Generalization - Stronger statement

- Minimum width strip vs. minimum radius disk (assume continuous distribution) - figures taken from [Campi \& Garatti, 2008]

- In both problems 3 samples are sufficient $\Rightarrow d=3$
- For the disk problem, for almost all multi-samples we can get away with 2: Take two isolated samples then all others fall inbetween \Rightarrow only 2 matter
- Compression set cardinality should be independent of the samples! Hilary Term 2021-22 C20 Robust Optimization

Summary

Theorem

If a compression set C_{d} with cardinality d exists, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

with $q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d}$.

Generalization - Complementary statements

- Probability T and H_{m} being different higher than ϵ, occurs with confidence at most $q(m, \epsilon)$

Theorem

If a compression set C_{d} with cardinality d exists, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right)>\epsilon\right\} \leq q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d} .
$$

Theorem

If there exists a unique compression set C_{d} with cardinality d, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right)>\epsilon\right\} \leq q(m, \epsilon)=\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}
$$

Hilary Term 2021-22
C20 Robust Optimization

Summary

Theorem

If there exists a unique compression set C_{d} with cardinality d, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

with $q(m, \epsilon)=\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}$.
Existence of
compression
scheme

Probabilistic generalization

Thank you for your attention!
Questions?

Contact at:

kostas.margellos@eng.ox.ac.uk

Recap - Learning \& Generalization

- Learning: Approximate target T with hypothesis H_{m}
- Generalization: Find confidence $1-q(m, \epsilon)$ such that hypothesis is an ϵ-good approximation of the target, i.e. $\mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon$

- Compression: Only the important samples (the $d=4$ boundary ones in the rectangle example)
- Produces the same hypothesis with the one that would be obtained if all samples were used, i.e. $H_{d}=H_{m}$
- Target T and hypothesis H_{d} agree on all samples, i.e. approximation error on the samples is zero

C20 Robust Optimization
Lecture 2

Kostas Margellos
University of Oxford

Hilary Term 2021-22
C20 Robust Optimization

- ㅁ * 的

Recap - Generalization

Theorem

If a compression set C_{d} with cardinality d exists, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

with $q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d}$, where $\lim _{m \rightarrow \infty} q(m, \epsilon)=0$.

- Hypothesis probably approximately correct (PAC) learns target
- We do not care about C_{d} but only about d
- It is a distribution-free result; holds true for any underlying (possibly unknown) distribution, as long as data are independently extracted
- If a compression set exists:
H_{m} and T fully agree on the samples $\Rightarrow \epsilon$-agree for another δ. Empirical generalization \Rightarrow Probabilistic generalization

Recap - Generalization

Theorem

If a compression set C_{d} with cardinality d exists, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

with $q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d}$.

- Does the cardinality d of the compression set matter?

$$
\lim _{d \rightarrow m} 1-q(m, \epsilon)=1-\lim _{d \rightarrow m}\binom{m}{d}(1-\epsilon)^{m-d}=0
$$

- As the compression "increases" the confidence $1-q(m, \epsilon)$ tends to 1 \Rightarrow result trivial (not useful) as we claim that H_{m} is an ϵ-good approximation of T with positive probability!
- The smaller the compression the more useful the result! \qquad Hilary Term 2021-22

Generalization - Stronger statement

- Minimum width strip vs. minimum radius disk (assume continuous distribution) - figures taken from [Campi \& Garatti, 2008]

- Does there exist a unique compression set with cardinality $d=3$?
- For both problems a compression set with 3 exists, i.e. $\Rightarrow d=3$
- For the disk problem, this not unique (hence the result not tight):
- For almost all multi-samples, only 2 matter - the most isolated ones
- Take the 2 most isolated samples and pick 1 from all inbetween samples \Rightarrow many compression sets with cardinality 3

Generalization - Stronger statement

Theorem

If there exists a unique compression set C_{d} with cardinality d, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

$$
\text { with } q(m, \epsilon)=\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}
$$

- Stronger assumption \Longrightarrow stronger statement
- For the same m and $\epsilon \in(0,1)$,

$$
\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}<\binom{m}{d}(1-\epsilon)^{m-d}
$$

i.e. we can claim the probabilistic result with higher confidence $1-q(m, \epsilon)$
Hilary Term 2021-22 C20 Robust Optimization \qquad

Generalization - Complementary statements

- Probability T and H_{m} being different higher than ϵ, occurs with confidence at most $q(m, \epsilon)$

Theorem

If a compression set C_{d} with cardinality d exists, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right)>\epsilon\right\} \leq q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d}
$$

Theorem

If there exists a unique compression set C_{d} with cardinality d, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right)>\epsilon\right\} \leq q(m, \epsilon)=\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}
$$

Optimization under uncertainty

From learning to optimization under uncertainty

- Uncertain scenario programs
- Probabilistic guarantees on constraint satisfaction
- The convex case (a compression set exists)

Data based optimization

- Uncertain scenario program

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n_{x}}} & c^{\top} x \\
\text { subject to: } & \\
& g\left(x, \delta_{i}\right) \leq 0, \text { for all } i=1, \ldots, m
\end{aligned}
$$

- Description of the uncertainty
- Represent uncertainty $\delta \in \mathbb{R}^{n_{\delta}}$, by an multi-sample ($\delta_{1}, \ldots, \delta_{m}$)
- All samples are independent from each other from the same distribution
- Finite number of decision variables $x \in \mathbb{R}^{n_{x}}$ and finite number of constraints (one per sample δ_{i})
- Solvable! Denote by x_{m}^{*} its minimizer
- Uncertain program

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n_{x}}} c^{\top} x \\
& \text { subject to: } \\
& g(x, \delta) \leq 0, \text { for all } \delta \in \Delta
\end{aligned}
$$

- Description of the uncertainty
- Uncertain vector $\delta \in \mathbb{R}^{n_{\delta}}$, distributed according to \mathbb{P}
- Δ denotes the set of values δ can take with non-zero probability
- Finite number of decision variables $x \in \mathbb{R}^{n_{x}}$ but infinite constraints (one per element of Δ, and Δ might be a continuous set)
- Either Δ is unknown, or infinite constraints
\Longrightarrow In general not solvable!

Hilary Term 2021-22
C20 Robust Optimization
February 11, $2022 \quad 9 / 25$

Data based optimization as a learning problem

- Uncertain program

```
    min
subject to:
g(x,\deltai)\leq0, for all i=1,\ldots,m
```

- Connections with learning - Learn the uncertainty space Δ

Target set	$T=\Delta,\left(\right.$ i.e. $\left.\mathbb{1}_{T}(\delta)=1, \forall \delta \in \Delta\right)$
Decision	Minimizer $\Rightarrow x_{m}^{*}$
Hypothesis	$H_{m}=\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right) \leq 0\right)$

- Hypothesis: The set of δ 's for which x_{m}^{*} remains feasible
- In other words, the subset of the uncertainty space for which constraint satisfaction is ensured for x_{m}^{*}

Data based optimization as a learning problem

- Uncertain program

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n_{x}}} c^{\top} x \\
& \text { subject to: } \\
& g\left(x, \delta_{i}\right) \leq 0, \text { for all } i=1, \ldots, m
\end{aligned}
$$

- Connections with learning - Learn the uncertainty space Δ

Target set	$T=\Delta,\left(\right.$ i.e. $\left.\mathbb{1}_{T}(\delta)=1, \forall \delta \in \Delta\right)$
Decision	Minimizer $\Rightarrow x_{m}^{*}$
Hypothesis	$H_{m}=\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right) \leq 0\right)$

- Approximation error $=$ Probability of constraint violation for x_{m}^{*}

$$
\mathbb{P}\left(\delta \in T \backslash H_{m}\right)=\mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right)
$$

Hilary Term 2021-22
C20 Robust Optimization
February 11, 2022 12/25

Scenario vs. Uncertain programs

Probabilistic feasibility

Data based program	
$\min _{x \in \mathbb{R}^{n_{x}}} c^{\top} x$	
subject to	
$g\left(x, \delta_{i}\right) \leq 0, \forall i=1, \ldots, m$	

Robust program

$$
\begin{aligned}
& \min _{x \in \mathbb{R}_{x \times}} c^{\top} x \\
& \text { subject to } \\
& g(x, \delta) \leq 0, \quad \forall \delta \in \Delta
\end{aligned}
$$

- Is x_{m}^{*} feasible for the uncertain program? No!
- Is this true for any m multi-sample? Yes, with confidence $1-q(m, \epsilon)$

Data based optimization - Generalization

Theorem (the abstract version)

If a compression set C_{d} with cardinality d exists, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

with $q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d}$.

Theorem (the optimization version)

If a compression set C_{d} with cardinality d exists, then

$$
\begin{aligned}
& \qquad \mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon) \\
& \text { with } q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d} .
\end{aligned}
$$

Hilary Term 2021-22
C20 Robust Optimization

Scenario vs. Uncertain programs

Probabilistic feasibility

Data based program	
$\min _{x \in \mathbb{R}^{n_{x}}} c^{\top} x$	$\rightarrow x_{m}^{*}$
subject to	$\min _{x \in \mathbb{R}^{n_{x}}} c^{\top} x$
$g\left(x, \delta_{i}\right) \leq 0, \forall i=1, \ldots, m$	

- The link is our theorem: Probabilistic robustness With certain confidence, the probability that a new δ appears and x_{m}^{*} (generated based on $\delta_{1}, \ldots, \delta_{m}$) violates the corresponding constraint, i.e. $g\left(x_{m}^{*}, \delta\right)>0$, is at most ϵ

If a compression set C_{d} with cardinality d exists, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right) \leq \epsilon\right\} \geq 1-\binom{m}{d}(1-\epsilon)^{m-d}
$$

Convex uncertain programs

$$
\min _{x \in \mathbb{R}^{n_{x}}} c^{\top} x
$$

subject to：

$$
g\left(x, \delta_{i}\right) \leq 0, \text { for all } i=1, \ldots, m
$$

－For any $\delta \in \Delta, g(x, \delta)$ is convex in x
－Existence of a compression set：Minimizer with d samples coincides with minimizer with m samples，i．e．$x_{d}^{*}=x_{m}^{*}$ so that $H_{d}=H_{m}$

For convex programs a compression set always exists：

－$d \leq \#$ decision variables n_{x}
－If $d=n_{x}$ then result is＂tight＂（i．e．non－conservative）
－This bound is based on the notion of support constraints（very close to the active constraints）
－See Lecture 3 for a formal definition and proof

Compression set：2D example

－Example with two decision variables x_{1}, x_{2}
－Objective：minimize x_{2}（see optimization direction）
－Feasibility region outside the shaded part

Probabilistic feasibility for convex scenario programs

Theorem－Convex scenario programs

Let d be the $\#$ of decision variables in a convex scenario program．Then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

with $q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d}$ ．
－Cardinality of the compression set d is equal to the $\#$ of decision variables in a convex scenario program
－Convex scenario programs with different objective and constraint function could share the same feasibility guarantees if they have the same number of decision variables
\Rightarrow only for some of them the confidence bound would be tight！
Hilary Term 2021－22 C20 Robust Optimization February 11， 2022 ののく
$17 / 25$

Compression set：2D example

－Compression set cardinality $d=n_{x}$
－Compression set $=$ Two active constraints
\Rightarrow If any of the two red constraints is removed the solution drifts to a lower value（intersection of the remaining red with a lower constraint）
－Compression set coincides with＂red＂constraints $\Longrightarrow x_{\text {red }}^{*}=x_{m}^{*}$ ๑のल

Compression set: 2D example

- Compression set cardinality $d \leq n_{x}$ (always)
- Compression set $=$ One active constraint
\Rightarrow If any of the other constraints are removed the solution remains unaltered; only the red constraint is needed
- We again have that $x_{\text {red }}^{*}=x_{m}^{*}$

Hilary Term 2021-22
C20 Robust Optimization

Example (cont'd)

- Construct the minimum radius disk program ($\mathrm{d}=3$ decision variables)
$\min _{x_{1}, x_{2}, x_{3}} x_{1}$
subject to: $\sqrt{\left(y_{i}-x_{3}\right)^{2}+\left(u_{i}-x_{2}\right)^{2}} \leq x_{1}$, for all $i=1, \ldots, 1650$
- All samples should be within the x_{1} radius disk;
$\left(x_{2}, x_{3}\right)$ parametrize its center
- Decision variables: x_{1}, x_{2}, x_{3}; Samples: $\delta_{i}=\left(u_{i}, y_{i}\right), i=1, \ldots, 1650$

Example

- $m=1650$ points $\left(u_{i}, y_{i}\right)$ are given - the underlying distribution is unknown
- Consider the disk with the smallest radius that contains all of them
- What guarantees can you offer that this disk contains 99% of all possible points extracted from the same distribution (other than the data points)?
Hilary Term 2021-22 C20 Robust Optimization
- व. $\begin{aligned} \text { February } 11,2022\end{aligned}$

Example (cont'd)

- Construct the minimum radius disk program ($\mathrm{d}=3$ decision variables)

$$
\min _{x_{1}, x_{2}, x_{3}} x_{1}
$$

subject to: $\sqrt{\left(y_{i}-x_{3}\right)^{2}+\left(u_{i}-x_{2}\right)^{2}} \leq x_{1}$, for all $i=1, \ldots, 1650$

- Disk should contain 99% of new points $\delta=(u, y) \Rightarrow \epsilon=0.01$
- Hence the "guarantee" is the confidence

$$
1-q(1650,0.01)=1-\binom{1650}{3}(1-0.01)^{1650-3}
$$

Summary

Theorem - Convex scenario programs
Let d be the \# of decision variables in a convex scenario program. Then

$$
\begin{aligned}
& \qquad \mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon) \\
& \text { with } q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d}
\end{aligned}
$$

Could we also have a stronger version? See Lecture 3

Thank you for your attention! Questions?

Contact at:

kostas.margellos@eng.ox.ac.uk

Recap: Probabilistic feasibility

C20 Robust Optimization
Lecture 3

Kostas Margellos
University of Oxford

9) OXFORD

Theorem - Convex scenario programs
Let $d=n_{x}$, i.e. the $\#$ of decision variables in a convex scenario program. Then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

$$
\text { with } q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d}
$$

- Existence of a compression set \Leftrightarrow Empirical generalization Subset of the samples that leads to $x_{d}^{*}=x_{m}^{*}$
- Empirical generalization \Rightarrow Probabilistic generalization \Leftrightarrow Feasibility guarantees
i.e. ϵ-probability of constraint violation
- For convex scenario programs: $d \leq \#$ of decision variables \qquad のดc Hilary Term 2021-22 C20 Robust Optimization February 11, $2022 \quad 2 / 21$

Recap: Probabilistic feasibility

Theorem - Convex scenario programs

Let $d=n_{x}$, i.e. the \# of decision variables in a convex scenario program. Then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

with $q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d}$.

Convex scenario programs

- Relationship between compression set and support constraints
- Bound on the cardinality of the compression set (Helly's Theorem)
- Distribution of the probability of constraint violation

Convex scenario programs

Compression set vs. Support constraints

Non-degenerate problems: support constraints = compression set

- If any of the "red" constraints is removed, then the solution changes \Rightarrow "red" constraints are support constraints
- Solving the problem only with the "red" constraints is the same with the solution if all constraints are taken into account

Hilary Term 2021-22
C20 Robust Optimization
February 11, $2022 \quad \begin{array}{ll} & 6 / 21\end{array}$

Compression set vs. Support constraints

Facts: Compression set for convex scenario programs

(1) It always exists and has cardinality is $d \leq n_{x}$,
i.e. at most equal to the $\#$ of decision variablesFor non-degenerate problems: support constraints = compression set
(3) For degenerate problems: support constraints \subset compression set

For any convex problem: support constraints \subseteq active constraints

- We will assume that any given scenario program is non-degenerate Compression set $=$ Support constraints
- In case of a degenerate problem we could slightly perturb the constraints (constraint "heating")
- For continuous probability distributions (in fact distributions that admit density) convex degenerate problems occur with probability zero
- Only if the "red" constraints is removed, then the solution changes \Rightarrow only "red" constraint is support constraint
- Solving the problem only with the "red" constraints is not the same with the solution if all constraints are taken into account
\Rightarrow Need to include one of the other active ones in the compression set

Compression set for non－degenerate convex problems

Theorem：Bound on compression set cardinality

For non－degenerate convex scenario programs，for a compression set C_{d} it holds
（1）$\left|C_{d}\right|=d \leq n_{x}$（\＃of decision variables）
（2）．．．or equivalently，since compression set $=$ support constraints \＃support constraints $\leq n_{x}$

We will make use of the following theorem

Helly＇s theorem（fundamental result in convex analysis）

Consider any finite number of convex sets in $\mathbb{R}^{n_{x}}$ ．If every collection of $n_{x}+1$ sets has a non－empty intersection，then all of them have a non－empty intersection．

How is this relevant？
Hilary Term 2021－22
20 Robust Optimization

February 11， 2022 9／21

Proof（cont＇d）

（1）For the sake of contradiction assume that a third support constraint exists（e．g．lower red one in the figure）
（2）To apply Helly＇s theorem take any $n_{x}+1=3$ sets from our collection and show that they have a non－empty intersection

Case A：Take any $n_{x}+1=3$ sets the parabolic ones．
As the overall problem is feasible，by construction their intersection is non－empty
Case B：Take now 2 of the parabolic sets and S ．
－As we have assumed 3 support constraints，one of them will be missing from the intersection
－As a support constraint is missing，then the solution changes from x_{m}^{*} hence it will be in S（it includes points such that $c^{\top} x<c^{\top} x_{m}^{*}$ ）
－Therefore，any such collection will also have non－empty intersection

Proof

－We will apply Helly＇s theorem with $n_{x}=2$（similarly for higher n_{x} ）
－Consider the family of sets including
－m sets：each set is the feasibility region for each constraint （non－shaded part of each parabola）
－set S ：shaded region not including x_{m}^{*} ，i．e．all points that have a lower value than $x_{m}^{*}\left(\right.$ i．e．$c^{\top} x<c^{\top} x_{m}^{*}$ ）

Hilary Term 2021－22
C20 Robust Optimization
February 11， $2022 \quad 10 / 21$

Proof（cont＇d）

（3）For any case，any collection of $n_{x}+1=3$ sets has non－empty intersection
（9）By Helly＇s theorem，any group of 3 sets has a non－empty intersection \Longrightarrow all of them should have a non－empty intersection
（0）However，by construction S has empty intersection with the feasibility region（non－shaded epigraph），as it includes all points with strictly lower cost（infeasible solutions）
\Longrightarrow contradiction
Only $d \leq n_{x}=2$ support constraints may exist！

Stronger version for convex scenario programs

For convex scenario programs we can always have a stronger version! Let $d=n_{x}$, i.e. the \# of decision variables in a convex scenario program. Then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

with $q(m, \epsilon)=\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}$.

- Existence of a unique compression set is a sufficient condition for the stronger generalization result (see Lecture 2)
- For non-degenerate convex problems a unique compression set can always be constructed (possibly upon some lexicographic order to select among multiple ones)
- It can be shown that stronger bound holds even for degenerate convex scenario programs (via a constraint "heating and cooling" procedure)

Hilary Term 2021-22

C20 Robust Optimization
February 11, $2022 \quad 13 / 21$

Stronger version - Different interpretation

For convex scenario programs we can always have a stronger version! Let $d=n_{x}$, i.e. the \# of decision variables in a convex scenario program. Then
$\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right) \leq 0\right)>1-\epsilon\right\} \geq 1-q(m, \epsilon)$
with $q(m, \epsilon)=\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}$.

- Different interpretation: Fix confidence $\beta \in(0,1)$ and violation level $\epsilon \in(0,1)$. Determine the number of samples needed to guarantee that, with confidence at least $1-\beta$, the probability of constraint satisfaction for x_{m}^{*} is at least $1-\epsilon$.
- A sufficient condition for m is given by

$$
m \geq \frac{2}{\epsilon}\left(d-1+\ln \frac{1}{\beta}\right)
$$

Stronger version - Different interpretation

For convex scenario programs we can always have a stronger version! Let $d=n_{x}$, i.e. the $\#$ of decision variables in a convex scenario program.

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right) \leq 0\right)>1-\epsilon\right\} \geq 1-q(m, \epsilon)
$$

with $q(m, \epsilon)=\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}$.

- Different interpretation: Fix confidence $\beta \in(0,1)$ and violation level $\epsilon \in(0,1)$. Determine the number of samples needed to guarantee that, with confidence at least $1-\beta$, the probability of constraint satisfaction for x_{m}^{*} is at least $1-\epsilon$.
- Set $\beta \geq q(m, \epsilon)$, and find an m that satisfies

$$
\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k} \leq \beta
$$

Hilary Term 2021-22
C20 Robust Optimization
 February 11, 2022 14/21

Proof of explicit bound for number of samples m

(1) By the Chernoff bound we can bound the "binomial tail" by

$$
q(m, \epsilon) \leq e^{-\frac{(m \epsilon-d+1)^{2}}{2 m \epsilon}}, \text { for any } m \epsilon>d
$$

(2) We determine a sequence of sufficient conditions for $q(m, \epsilon) \leq \beta$:

$$
\begin{gathered}
e^{-\frac{(m \epsilon-d+1)^{2}}{2 m \epsilon}} \leq \beta \Leftarrow \frac{(m \epsilon-d+1)^{2}}{2 m \epsilon} \geq \ln \frac{1}{\beta} \quad \text { [taking logarithm] } \\
\Leftarrow \frac{1}{2} m \epsilon+\frac{(d-1)^{2}}{2 m \epsilon}+1-d \geq \ln \frac{1}{\beta} \quad[\text { expanding the square] } \\
\Leftarrow \frac{1}{2} m \epsilon+1-d \geq \ln \frac{1}{\beta} \quad[\text { dropping the red term since } \geq 0]
\end{gathered}
$$

(3) Solving with respect to m

$$
m \geq \frac{2}{\epsilon}\left(d-1+\ln \frac{1}{\beta}\right)
$$

Distribution of the probability of constraint violation

－For a random variable X ，its distribution is characterized by $\operatorname{Prob}\{X \leq x\}$ ，where x is the valuation of the random variable
－For our probabilistic feasibility result
－Random variable：Probability of constraint violation

$$
X=\mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right), \text { and value: } x=\epsilon
$$

－Probability distribution of $X \leq x$ ，i．e．＂probability of the probability＂

$$
\mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right) \leq \epsilon
$$

－Can we characterize the probability distribution of the probability of constraint violation？This is our generalization theorem！

Hilary Term 2021－22
C20 Robust Optimization

February 11， $2022 \quad 17 / 21$

Distribution of the probability of constraint violation

The distribution of $\mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right)$ is bounded by a binomial！
－By our generalization statement，it is bounded by

$$
1-\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k},[\text { non-shaded area in figure below] }
$$

the tail of the cumulative distribution of a binomial random variable
－Density for $d=1$ and $m=15$

Distribution of the probability of constraint violation
The distribution of $\mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right)$ is bounded by a binomial！
－By our generalization statement，it is bounded by

$$
1-\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k},[\text { non-shaded area in figure below] }
$$

the tail of the cumulative distribution of a binomial random variable
－Density examples（with thanks to S．Garatti）

三 のロの
Hilary Term 2021－22
C20 Robust Optimization
February 11， 2022

Summary

Main result for convex scenario programs

Let $d=n_{x}$ ，i．e．the \＃of decision variables in a convex scenario program． Then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

with $q(m, \epsilon)=\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}$ ．
－Different interpretation：Fix confidence $\beta \in(0,1)$ and violation level $\epsilon \in(0,1)$ ．Determine the number of samples needed to guarantee that，with confidence at least $1-\beta$ ，the probability of constraint satisfaction for x_{m}^{*} is at least $1-\epsilon$ ．

$$
m \geq \frac{2}{\epsilon}\left(d-1+\ln \frac{1}{\beta}\right)
$$

Thank you for your attention!

Questions?

Contact at:
kostas.margellos@eng.ox.ac.uk

Recap

Stronger generalization statement for convex scenario programs

Let $d=n_{x}$, i.e. the $\#$ of decision variables in a convex scenario program.
Then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

$$
\text { with } q(m, \epsilon)=\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}
$$

- Explicit bound on the number of samples: Fix confidence $\beta \in(0,1)$ and violation level $\epsilon \in(0,1)$. Determine the number of samples needed to guarantee that, with confidence at least $1-\beta$, the probability of constraint satisfaction for x_{m}^{*} is at least $1-\epsilon$.

$$
m \geq \frac{2}{\epsilon}\left(d-1+\ln \frac{1}{\beta}\right)
$$

C20 Robust Optimization
Lecture 4

Kostas Margellos
University of Oxford

4. Unvessir of

Tightness and expected probability of constraint violation

- How tight is the strong confidence bound?
- Bound on the expected value of the probability of violation
- Robust control synthesis by means of an example

Distribution of the probability of constraint violation

The distribution of $\mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right)$ is bounded by a binomial!
(1) When is it equal to the tail of the cumulative distribution of a binomial random variable?

$$
1-\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k},[\text { non-shaded area in figure below] }
$$

(2) What can we say about its expected value?

Hilary Term 2021-22 C20 Robust Optimization

Distribution of the probability of constraint violation

(1) Denote by x_{m}^{*} its minimizer, and notice that this is equal to the maximum sample, i.e.

$$
x_{m}^{*}=\max _{i=1, \ldots, m} \delta_{i}
$$

(2) What is the probability of constraint violation?

$$
\begin{aligned}
\mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right) & =\mathbb{P}\left(\delta \in \Delta: \delta>x_{m}^{*}\right) \\
& =1-x_{m}^{*} \quad[\text { since } \mathbb{P} \text { uniform in }[0,1]]
\end{aligned}
$$

(3) We will show that (our complementary generalization statement)

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: \delta>x_{m}^{*}\right)>\epsilon\right\}=(1-\epsilon)^{m}
$$

i.e. the the strong bound for $d=n_{x}$.

Note that this holds with equality, hence it is tight! Problems where the strong bound holds with equality are called fully-supported

Distribution of the probability of constraint violation

- We will show that our strong theorem can hold with equality, i.e. the confidence $1-\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}$ is tight
- We will do so by means of an example

Example with tight confidence bound

Assume that samples are extracted from a uniform distribution in $[0,1]$, and consider the scenario program

```
    min
subject to }\mp@subsup{\delta}{i}{}\leqx,\mathrm{ for all i=1, ..,m
```

- Convex scenario program with $n_{x}=1$
- Objective function: $c^{\top} x=x$
- Constraint function: $g(x, \delta)=\delta-x$

Hilary Term 2021-22
C20 Robust Optimization

Distribution of the probability of constraint violation

- To see this, notice that

$$
\begin{aligned}
\mathbb{P}^{m} & \left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: \delta>x_{m}^{*}\right)>\epsilon\right\} \\
& =\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: 1-\max _{i} \delta_{i}>\epsilon\right\} \\
& =\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \max _{i} \delta_{i}<1-\epsilon\right\} \\
= & \mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \delta_{i}<1-\epsilon, \text { for all } i=1, \ldots, m\right\}
\end{aligned}
$$

- Second step: we used the fact that $\mathbb{P}\left(\delta \in \Delta: \delta>x_{m}^{*}\right)=1-x_{m}^{*}$
- Third step: if the maximum is below $1-\epsilon$, then each sample is as well

Distribution of the probability of constraint violation

- Samples are independent, so probability of "intersection" is the product of individual probabilities

$$
\begin{aligned}
\mathbb{P}^{m} & \left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: \delta>x_{m}^{*}\right)>\epsilon\right\} \\
& =\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \delta_{i}<1-\epsilon, \text { for all } i=1, \ldots, m\right\} \\
& =\Pi_{i=1}^{m} \mathbb{P}\left\{\delta_{i}<1-\epsilon\right\}
\end{aligned}
$$

- Since the probability is uniform, each individual probability is given by

$$
\mathbb{P}\left\{\delta_{i}<1-\epsilon\right\}=1-\epsilon
$$

- Putting everything together
$\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: \delta>x_{m}^{*}\right)>\epsilon\right\}=(1-\epsilon)^{m}$

Hilary Term 2021-22
C20 Robust Optimization

$$
\begin{aligned}
& \text { February 11, } 2022 \quad 8 / 23
\end{aligned}
$$

Expected probability of constraint violation

Expected probability of constraint violation - Convex scenario programs
Let $d=n_{x}$, i.e. the \# of decision variables in a convex scenario program. Then

$$
\mathbb{E}_{\sim \mathbb{P} m}\left[\mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right)\right] \leq \frac{d}{m+1}
$$

- Explicit bound on the number of samples: Fix a violation level $\rho \in(0,1)$. Determine the number of samples needed to guarantee that the expected value of the probability of constraint violation for x_{m}^{*} is at most ρ.
- A sufficient condition for $\mathbb{E}_{\sim \mathbb{P}^{m}}\left[\mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right)\right] \leq \rho$

$$
\frac{d}{m+1} \leq \rho \Leftrightarrow m \geq \frac{d}{\rho}-1
$$

Expected probability of constraint violation

Expected probability of constraint violation - Convex scenario programs

Let $d=n_{x}$, i.e. the $\#$ of decision variables in a convex scenario program. Then

$$
\mathbb{E}_{\sim \mathbb{P}^{m}}\left[\mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right)\right] \leq \frac{d}{m+1}
$$

- $\mathbb{E}_{\sim \mathbb{P}^{m}}$ denotes the expected value operator associated with the probability \mathbb{P}^{m} of extracting $\left(\delta_{1}, \ldots, \delta_{m}\right)$
- We no longer have two layers of probability, but rather a bound on the expectation $\mathbb{E}_{\sim \mathbb{P}^{m}}$
- From the "probability of the probability" to "expectation of the probability"

Hilary Term 2021-22
C20 Robust Optimization

Example: Minimum radius disk problem revisited

- Construct the minimum radius disk program ($\mathrm{d}=3$ decision variables)

$$
\begin{gathered}
\min _{x_{1}, x_{2}, x_{3}} x_{1} \\
\text { subject to: } \\
\sqrt{\left(y_{i}-x_{3}\right)^{2}+\left(u_{i}-x_{2}\right)^{2}} \leq x_{1}, \text { for all } i=1, \ldots, 1650
\end{gathered}
$$

- How high is the expected value of the probability that the minimum radius disk will not contain a new point $\delta=(u, y)$?

$$
\mathbb{E}_{\sim \mathbb{P}^{m}}\left[\mathbb{P}\left(\delta=(u, y): \sqrt{\left(y-x_{3}\right)^{2}+\left(u-x_{2}\right)^{2}}>x_{1}\right)\right] \leq \frac{d}{m+1}=\frac{3}{1651}
$$

Robust state feedback control design

Problem specifications

Consider the family of systems

$$
\dot{x}=A\left(\delta_{i}\right) x+B\left(\delta_{i}\right) u, \quad i=1, \ldots, m,
$$

where δ_{i} 's are independent samples extracted from \mathbb{P}.
(1) Design a gain matrix K such that $u=K x$ renders the closed loop system asymptotically stable.
(2) Provide guarantees that the constructed K will stabilize a new system $\dot{x}=A(\delta) x+B(\delta) u$ (for some new δ).

- Uncertainty enters the problem data, i.e. the elements of A and B depend on δ_{i}
- We need that the same K stabilizes all systems, not a different feedback matrix per system

Hilary Term 2021-22
C20 Robust Optimization

Robust state feedback control design (cont'd)

Three step procedure:

(1) Lyapunov's stability LMI for the closed loop family of systems, i.e. with $A\left(\delta_{i}\right)+B\left(\delta_{i}\right) K$ in place of A

$$
P\left(A\left(\delta_{i}\right)+B\left(\delta_{i}\right) K\right)^{\top}+\left(A\left(\delta_{i}\right)+B\left(\delta_{i}\right) K\right) P<0, \forall i=1, \ldots, m
$$

which leads to

$$
P A\left(\delta_{i}\right)^{\top}+\left(P K^{\top}\right) B\left(\delta_{i}\right)^{\top}+A\left(\delta_{i}\right) P+B\left(\delta_{i}\right)(K P)<0, \forall i=1, \ldots, m
$$

(2) Set $Z=K P$ (recall that P is symmetric) and find P and Z such that

$$
P A\left(\delta_{i}\right)^{\top}+Z^{\top} B\left(\delta_{i}\right)^{\top}+A\left(\delta_{i}\right) P+B\left(\delta_{i}\right) Z<0, \quad \forall i=1, \ldots, m
$$

(3) Compute the gain matrix by $K=Z P^{-1}$, for all $i=1, \ldots, m$

Robust state feedback control design (cont'd)

- Consider the closed loop system, once $u=K x$ has been applied
- We have a family of closed loop systems:

$$
\dot{x}=\left(A\left(\delta_{i}\right)+B\left(\delta_{i}\right) K\right) x, \text { for all } i=1, \ldots, m
$$

- Restatement of the problem:

Find K such that $A\left(\delta_{i}\right)+B\left(\delta_{i}\right) K$ is Hurwitz for all $i=1, \ldots, m$.

Recall Lyapunov's stability condition

A matrix A is Hurwitz if and only if there exists $P=P^{\top}>0$ such that

$$
P A^{\top}+A P<0 \quad[\text { Linear Matrix Inequality }(\text { LMI })]
$$

Note that this is a equivalent to the more standard $A^{\top} P+P A<0$
\Longrightarrow Apply Lyapunov's LMI to the family of closed-loop systems \qquad
Hilary Term 2021-22
C20 Robust Optimization
February 11, $2022 \quad 13 / 23$

Robust state feedback control design (cont'd)

- How to find P and Z such that

$$
P A\left(\delta_{i}\right)^{\top}+Z^{\top} B\left(\delta_{i}\right)^{\top}+A\left(\delta_{i}\right) P+B\left(\delta_{i}\right) Z<0, \quad \forall i=1, \ldots, m
$$

- By means of an optimization (in fact feasibility problem)

$$
\begin{array}{rl}
\min _{P, Z} & 0 \quad \text { [any constant would work] } \\
\text { subject to } & P A\left(\delta_{i}\right)^{\top}+Z^{\top} B\left(\delta_{i}\right)^{\top}+A\left(\delta_{i}\right) P+B\left(\delta_{i}\right) Z<0, \\
& \text { for all } i=1, \ldots, m
\end{array}
$$

- Convex scenario program as LMIs are convex constraints! Let P^{*} and Z^{*} denote its minimizers, and construct $K^{*}=Z^{*}\left(P^{*}\right)^{-1}$

Robust state feedback control design (cont'd)

- Consider a new δ that gives rise to the system

$$
\dot{x}=A(\delta) x+B(\delta) u
$$

Determine the confidence with which the probability that K^{*} renders the new system unstable is at most equal to a given level ϵ

Probabilistic guarantees

(1) Consider a given number of samples m and a violation level $\epsilon \in(0,1)$.
(2) Count the number of decision variables in $P \in \mathbb{R}^{n_{x} \times n_{x}}$ and $Z \in \mathbb{R}^{n_{x} \times n_{x}}$, i.e. $d=2 n_{x}^{2}$
(3) With confidence at least $1-\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}$,

$$
\mathbb{P}\left(\delta: P^{*} A(\delta)^{\top}+\left(Z^{*}\right)^{\top} B(\delta)^{\top}+A(\delta) P^{*}+B(\delta) Z^{*}>0\right) \leq \epsilon
$$

or equivalently, the probability that $K^{*}=Z^{*}\left(P^{*}\right)^{-1}$ renders a new system/plant (induced by the new sample δ) unstable is at most ϵ.

Robust state feedback control design (cont'd)

Guarantees on the expected probability of constraint violation

Let $n_{x}=2$. Determine the number of samples m such that the expected value of the probability that $K^{*}=Z^{*}\left(P^{*}\right)^{-1}$ renders a new system/plant unstable is at most 0.05

- We want

$$
\mathbb{E}_{\sim \mathbb{P}^{m}}\left[\mathbb{P}\left(\delta: P^{*} A(\delta)^{\top}+\left(Z^{*}\right)^{\top} B(\delta)^{\top}+A(\delta) P^{*}+B(\delta) Z^{*}>0\right)\right] \leq 0.05
$$

- Set $\rho=0.05$. A sufficient condition for this to hold is given by

$$
m \geq \frac{d}{\rho}-1
$$

where $d=2 n_{x}^{2}$ denotes the number of decision variables in $P \in \mathbb{R}^{n_{x} \times n_{x}}$ and $Z \in \mathbb{R}^{n_{x} \times n_{x}}$

- We thus have that $m \geq \frac{8}{0.05}-1=159$ samples need to be extracted

Robust state feedback control design (cont'd)

- Red regions illustrate the set of new δ 's for which x_{m}^{*} violates the constraints
- Example ${ }^{1}$ refers to a 2-dimensional uncertainty vector δ

[^0]
Summary

Generalization theorem for abstract problems

If a compression set C_{d} with cardinality d exists, then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in T \backslash H_{m}\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

with $q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d}$, where $\lim _{m \rightarrow \infty} q(m, \epsilon)=0$.

- Hypothesis probably approximately correct (PAC) learns target
- We do not care about C_{d} but only about d
- It is a distribution-free result; holds true for any underlying (possibly unknown) distribution, as long as data are independently extracted
- Stronger version: If the compression set is unique, then $q(m, \epsilon)=\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k}$

Summary

Probabilistic feasibility - Convex scenario programs

Let $d=n_{x}$, i.e. the $\#$ of decision variables in a convex scenario program.
Then

$$
\begin{aligned}
& \qquad \mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon) \\
& \text { with } q(m, \epsilon)=\binom{m}{d}(1-\epsilon)^{m-d}
\end{aligned}
$$

Support constraints $=$ Compression set for non-degenerate problems

Hilary Term 2021-22

Summary

Probabilistic feasibility - Convex scenario programs (stronger version) Let $d=n_{x}$, i.e. the \# of decision variables in a convex scenario program. Then

$$
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right) \leq \epsilon\right\} \geq 1-q(m, \epsilon)
$$

$$
\text { with } q(m, \epsilon)=\sum_{k=0}^{d-1}\binom{m}{k} \epsilon^{k}(1-\epsilon)^{m-k} \text {. }
$$

- Explicit bound on the number of samples: Fix confidence $\beta \in(0,1)$ and violation level $\epsilon \in(0,1)$. Determine the number of samples needed to guarantee that, with confidence at least $1-\beta$, the probability of constraint satisfaction for x_{m}^{*} is at least $1-\epsilon$.

$$
m \geq \frac{2}{\epsilon}\left(d-1+\ln \frac{1}{\beta}\right)
$$

C20 Robust Optimization \qquad $\begin{array}{cc}\text { February } 11,2022 & 21 / 23\end{array}$

Summary

Expected probability of constraint violation - Convex scenario programs
Let $d=n_{x}$, i.e. the $\#$ of decision variables in a convex scenario program. Then

$$
\mathbb{E}_{\sim \mathbb{P}^{m} m}\left[\mathbb{P}\left(\delta \in \Delta: g\left(x_{m}^{*}, \delta\right)>0\right)\right] \leq \frac{d}{m+1}
$$

- Explicit bound on the number of samples: Fix a violation level $\rho \in(0,1)$. Determine the number of samples needed to guarantee that the expected value of the probability of constraint violation for x_{m}^{*} is at most ρ.

$$
m \geq \frac{d}{\rho}-1
$$

Thank you for your attention!
Questions?

Contact at:

kostas.margellos@eng.ox.ac.uk

C20 Robust Optimization Appendix

Kostas Margellos

University of Oxford

OUND

Proof (cont'd)

Equivalently, we have that

$$
\begin{aligned}
& \mathbb{P}^{m}\left\{\bigcup_{C_{d}}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{1}_{H_{d}}\left(\delta_{i}\right)=\mathbb{1}_{T}\left(\delta_{i}\right), \forall i \text { and } \mathbb{P}\left(\delta \in T \backslash H_{d}\right)>\epsilon\right\}\right\} \\
& \leq \sum_{C_{d}} \mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{1}_{H_{d}}\left(\delta_{i}\right)=\mathbb{1}_{T}\left(\delta_{i}\right), \forall i \text { and } \mathbb{P}\left(\delta \in T \backslash H_{d}\right)>\epsilon\right\}
\end{aligned}
$$

- Existence of a compression set C_{d} is equivalent to taking the "union"
- Union is taken with respect to all potential compression sets C_{d} sets, each one containing d samples
- Subadditivity property: Probability of the "union" of events smaller than or equal to the "sum" of the individual probability of each event
- First event: Zero disagreement between H_{d} and T on the samples; Second event: ϵ disagreement in probability

$$
\begin{array}{rr}
\equiv & \equiv \\
\text { February } 11,2022 & \\
\hline
\end{array}
$$

Proof（cont＇d）

－Without loss of generality let $C_{d}=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ and

$$
\begin{aligned}
\bar{\Delta} & =\left\{\delta_{1}, \ldots, \delta_{d}: \mathbb{P}\left(\delta \in T \backslash H_{d}\right)>\epsilon\right\} \\
& =\left\{\delta_{1}, \ldots, \delta_{d}: \mathbb{P}\left(\delta: \mathbb{1}_{H_{d}}(\delta) \neq \mathbb{1}_{T}(\delta)\right)>\epsilon\right\}
\end{aligned}
$$

－Since H_{d} is constructed based on $\delta_{1}, \ldots, \delta_{d}$ ，notice that

$$
\mathbb{1}_{H_{d}}\left(\delta_{i}\right)=\mathbb{1}_{T}\left(\delta_{i}\right), \text { for all } i=1, \ldots, d
$$

Pick a＂new＂δ

$$
\begin{aligned}
& \mathbb{P}\left\{\delta: \mathbb{1}_{H_{d}}(\delta)=\mathbb{1}_{T}(\delta) \text { and } \mathbb{P}\left(\delta \in T \backslash H_{d}\right)>\epsilon\right\} \\
&=\mathbb{P}\left\{\delta: \mathbb{1}_{H_{d}}(\delta)=\mathbb{1}_{T}(\delta)\right\} \leq 1-\epsilon
\end{aligned}
$$

－The equality follows from the fact that second＂yellow＂event is independent of δ ；the inequality follows from the definition of $\bar{\Delta}_{\overline{\bar{\Sigma}}}$ Hilary Term 2021－22

20 Robust Optimization

February 11， 2022

Proof（cont＇d）

Deconditioning

$$
\begin{aligned}
& \mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{1}_{H_{d}}\left(\delta_{i}\right)=\mathbb{1}_{T}\left(\delta_{i}\right), \forall i \text { and } \mathbb{P}\left(\delta \in T \backslash H_{d}\right)>\epsilon\right\} \\
& =\int_{\bar{\Delta}} \mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}: \mathbb{1}_{H_{d}}\left(\delta_{i}\right)=\mathbb{1}_{T}\left(\delta_{i}\right) \text { for all } i=1, \ldots, m\right. \\
& \left.\quad \text { and } \mathbb{P}\left(\delta \in T \backslash H_{d}\right)>\epsilon \mid \delta_{1}, \ldots, \delta_{d} \in \bar{\Delta}\right\} d \mathbb{P}\left(d \delta_{1}, \ldots, d \delta_{d}\right) \\
& \leq(1-\epsilon)^{m-d}
\end{aligned}
$$

－The equality is due to the definition of the conditional probability
－The inequality follows from the obtained Bernoulli trials bound，since the conditional probability is equal to the derived expression for \mathbb{P}^{m-d}

Hilary Term 2021－22

Proof（cont＇d）

－Pick a＂new＂δ

$$
\mathbb{P}\left\{\delta: \mathbb{1}_{H_{d}}(\delta)=\mathbb{1}_{T}(\delta) \text { and } \mathbb{P}\left(\delta \in T \backslash H_{d}\right)>\epsilon\right\} \leq 1-\epsilon
$$

Bernoulli trials：$m-d$ independent extractions $\delta_{d+1}, \ldots, \delta_{m}$ ； condition on $\delta_{1}, \ldots, \delta_{d} \in \bar{\Delta}$

$$
\begin{aligned}
& \mathbb{P}^{m-d}\left\{\delta_{d+1}, \ldots, \delta_{m}: \mathbb{1}_{H_{d}}\left(\delta_{i}\right)=\mathbb{1}_{T}\left(\delta_{i}\right) \text { for all } i=d+1, \ldots, m\right. \\
& \text { and } \left.\mathbb{P}\left(\delta \in T \backslash H_{d}\right)>\epsilon\right\} \\
& =\prod_{i=d+1}^{m} \mathbb{P}\left\{\delta_{i}: \mathbb{1}_{H_{d}}\left(\delta_{i}\right)=\mathbb{1}_{T}\left(\delta_{i}\right) \text { and } \mathbb{P}\left(\delta \in T \backslash H_{d}\right)>\epsilon\right\} \\
& \leq(1-\epsilon)^{m-d}
\end{aligned}
$$

Hilary Term 2021－22

Proof（cont＇d）

Deconditioning

$$
\begin{aligned}
\mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}\right. & \left.: \mathbb{1}_{H_{d}}\left(\delta_{i}\right)=\mathbb{1}_{T}\left(\delta_{i}\right), \forall i \text { and } \mathbb{P}\left(\delta \in T \backslash H_{d}\right)>\epsilon\right\} \\
\leq & (1-\epsilon)^{m-d}
\end{aligned}
$$

Desired statement was shown to be upper－bounded by

$$
\begin{aligned}
\sum_{C_{d}} \mathbb{P}^{m}\left\{\delta_{1}, \ldots, \delta_{m}\right. & \left.: \mathbb{1}_{H_{d}}\left(\delta_{i}\right)=\mathbb{1}_{T}\left(\delta_{i}\right), \forall i \text { and } \mathbb{P}\left(\delta \in T \backslash H_{d}\right)>\epsilon\right\} \\
& \leq \sum_{C_{d}}(1-\epsilon)^{m-d} \quad\left[\binom{m}{d} \text { terms in the summation }\right] \\
& =\binom{m}{d}(1-\epsilon)^{m-d}
\end{aligned}
$$

Thank you for your attention!

 Questions?
Contact at:

kostas.margellos@eng.ox.ac.uk

[^0]: ${ }^{1}$ Figure taken from "Introduction to the scenario approach", by M. Campi \& S Garatti, SIAM 2018

 C20 Robust Optimization

