University of Oxford

Trinity Term

CourseWork Module (CWM)

LEGO Football

Lab organizer: Prof. Kostas Margellos (kostas.margellos@eng.ox.ac.uk)
Location: Control Laboratory, 5th Floor, Thom Building

May 2, 2019

Learning outcomes

The "LEGO Football" coursework module has four main objectives:

1. Apply in a more practical example tools from control theory and become familiar with the underlying concepts.
2. Provide an introduction to the entire control design process, that involves: physical modelling; design and analysis of a feedback control mechanism (stability and performance); model-based performance evaluation of the developed controller (in simulation); actual implementation using the systems' sensoractuators (in hardware).
3. Become familiar with the use of MATLAB and Simulink for control design of systems with different characteristics: unstable, critically stable, stable.
4. Interact with robots and make them play football!

In these notes we consider a self-balancing, two-wheeled LEGO Mindstorms EV3 robot, and provide a companion for the laboratory tasks, providing details on the modelling and control design aspects. The robot is represented by a two-wheeled inverted pendulum, with the wheels being driven by DC motors. A nonlinear dynamical system governing its behaviour is derived based on the equations of motion for the wheels and the inverted pendulum, and on a simplified representation of the DC motor dynamics. The constructed model is then transformed to a linear dynamical system by means of linearization. Treating the DC motors' input voltage as control inputs, a Proportional-Integral (PI) controller is developed to ensure that robot (two-wheeled inverted pendulum) can self-balance, a Proportional-Integral-Derivative (PID) controller is developed to allow forward/backward motion, and a Proportional (P) controller to allow turning. The performance of the constructed controllers is illustrated by means of simulations using MATLAB Simulink, and by deploying them on the LEGO Mindstorms EV3s.

Lab requirements

- Daily presence is required.
- Please email the lab organizer if you need to reschedule your lab.
- It might be useful to consult the notes from the course on Introduction to Control Theory.
- The various questions in these notes are intended to guide students through the lab tasks.

Laboratory safety

A risk assessment for this exercise will be available in the laboratory. Apart from normal laboratory precautions no further safety risks are anticipated, but all lab tasks, in particular those related to hardware should be performed with cautiousness.

Acknowledgements

These notes follow the notation and problem description of [1], [2], where some of the figures are also taken from (modified as appropriate), but the system dynamics are derived following an analysis similar to [3, 4]. We refer also to [5] for an alternative description and physical interpretation.

Robot assembling, hardware communication and the gamepad functionality is due to Dr. Isobel Mear (Teaching and Design Engineer, University of Oxford); the contribution of Dr. Filiberto Fele (University of Oxford) is also gratefully acknowledged. We are grateful to Dr. Coorous Mohtadi (MathWorks) for insightful discussions and input on the hardware implementation. The contribution of Dr. Luca Deori (Politecnico di Milano) in the first lab design involving LEGO Mindstorms NXT robots in Trinity Term 2015-16 is also gratefully acknowledged.

1 Physical description

Consider a two-wheeled LEGO Mindstorms EV3 robot, as shown in Figure 1, where both wheels are identical, and are driven by identical motors. This robot can be represented by a two-wheeled inverted pendulum (see Figure 2), whose side and top view are shown in Figure 3. It can be thought of as a combination of a unicycle-like model and an inverted pendulum.

Figure 1: LEGO Mindstorms EV3 robot.

Figure 2: Inverted pendulum representation of the LEGO Mindstorms EV3 robot.

Variable θ denotes the wheels' angle, ψ denotes the pitch angle of the pendulum, and ϕ the yaw angle of the robot. Before providing the equations of motion of the two-wheeled inverted pendulum,

Figure 3: Side and top view of the two-wheeled inverted pendulum.
we establish certain relations between the cartesian coordinates $\left(x_{w}, y_{w}, z_{w}\right)$ of the center of each wheel $w \in\{l, r\}$, where l, r, indicate the left and right wheel, respectively, the coordinates of the middle point $\left(x_{m}, y_{m}, z_{m}\right)$ along the wheel axis, and the ones of the middle point $\left(x_{b}, y_{b}, z_{b}\right)$ of the upper body. To this end, consider the reference coordinate frame of Figure 3, and denote by

$$
\begin{equation*}
\theta=\frac{1}{2}\left(\theta_{r}+\theta_{l}\right) \tag{1}
\end{equation*}
$$

the average angle of the right and left wheel, respectively.
Q1. Calculate the rate of change of the yaw angle $\dot{\phi}$ as a function of $\dot{\theta}_{r}$ and $\dot{\theta}_{l}$. Based on your answer, what input do you need to apply to cause yaw motion of the robot? Hint: Consult Figure 4.

Figure 4: Left panel: Wheel's side view for an angular displacement $d \theta_{w}, w \in\{l, r\}$. Right panel: Top view of the robot's displacement during a right turn.

We have that

$$
\begin{equation*}
\left(x_{m}, y_{m}, z_{m}\right)=\left(\int \dot{x}_{m} d t, \int \dot{y}_{m} d t, R\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\dot{x}_{m}, \dot{y}_{m}\right)=(R \dot{\theta} \cos \phi, R \dot{\theta} \sin \phi) \tag{3}
\end{equation*}
$$

Note that \dot{x}_{m}, \dot{y}_{m}, correspond to the projection of the velocity vector $R \dot{\theta}$ on the x and y axis, respectively.

Q 2. Calculate the coordinates $\left(x_{l}, y_{l}, z_{l}\right)$ and $\left(x_{r}, y_{r}, z_{r}\right)$ of the left and right wheel, respectively, and the coordinates of the middle point of the upper body.

For each $w \in\{l, r\}$, let $F_{s, w}$ denote the static friction force due to the contact between wheel w and the ground, whereas let $F_{h, w}$ denote the reaction force caused by the friction due to the contact between the wheel and the main body. Denote also by $F_{p, w}$ the vertical force due to the contact between each wheel and the main body. Let T_{w} denote the torque causing rotation of wheel w, produced by the associated DC motor, and by $T_{f, w}$ the component of the friction torque due to the contact between the DC motor and the main body with direction opposite to that of T_{w}.

Q 3. Provide free body diagrams for each of the wheels and the pendulum.

Each wheel $w, w \in\{l, r\}$, is driven by a DC motor. The behaviour of the DC motor is captured by the electric circuit of Figure 5, where $R_{d c}$ and $L_{d c}$ denote the resistance and inductance, respectively, of the armature circuit, which is assumed to be the same for both motors. When the armature circuit is placed within a fixed, separately excited field, torque causing rotation is generated. Variable u_{w} denotes the voltage input, which serves as a control variable for our purposes, I_{w} denotes the flowing current, and $u_{e, w}$ denotes the induced voltage, referred to as back electromotive force (back EMF), which is proportional to the angular velocity of the motor at wheel w, with proportionality constant K_{e}.

Figure 5: Electric circuit describing the behavior of the DC motor at wheel $w, w \in\{l, r\}$. Torque is generated when the armature circuit is placed within a fixed, separately excited field.

Q4. Assume that there are no current transients, and let

$$
\begin{equation*}
u_{1}=\frac{1}{2}\left(u_{l}+u_{r}\right), u_{2}=\frac{1}{2}\left(u_{l}-u_{r}\right) \tag{4}
\end{equation*}
$$

Show that

$$
\begin{align*}
\left(T_{l}+T_{r}\right)-\left(T_{f, l}+T_{f, r}\right) & =2 \frac{K_{T}}{R_{d c}} u_{1}-2\left(\frac{K_{T} K_{e}}{R_{d c}}+b\right)(\dot{\theta}-\dot{\psi}) \tag{5}\\
\left(T_{r}-T_{l}\right)-\left(T_{f, r}-T_{f, l}\right) & =-2 \frac{K_{T}}{R_{d c}} u_{2}-\frac{W}{R}\left(\frac{K_{T} K_{e}}{R_{d c}}+b\right) \dot{\phi} \tag{6}
\end{align*}
$$

Hint: For each $w \in\{l, r\}$, work according to the following steps:

1. Write I_{w} as a function of $u_{w}, \dot{\theta}_{w}$ and $\dot{\psi}$;
2. Use the fact that T_{w} is proportional to the armature current I_{w}, i.e., $T_{w}=K_{T} I_{w}$;
3. Model $T_{f, w}$ as a damper, using the friction coefficient b in Table 1, Appendix A.

2 Mathematical modelling

We will first design a controller that allows the robot to self-balance and move forward/backward, and, at a next stage, we will focus on the yaw motion. To achieve this and decouple the yaw motion we assume that $\phi=0$, i.e., the robot's heading is aligned with the x axis, when deriving the equations of motion for the wheels and the pendulum. This analysis is approximate, but accurate enough from a control point of view, leading to the same linearized dynamical system.

Definitions for all other parameters, treated as constants in our analysis, and their numerical values, are taken from [1], and can be found in Table 1, in Appendix A.

2.1 Self-balance and forward/backward motion

Q 5. For each $w=\{r, l\}$, derive the equations of motion for the wheel w due to its horizontal and its rotational motion. Show that they can be combined to form

$$
\begin{equation*}
\left(2 m R^{2}+2 J\right) \ddot{\theta}=\left(T_{l}+T_{r}\right)-\left(T_{f, l}+T_{f, r}\right)-\left(F_{h, l}+F_{h, r}\right) R-2 \bar{b} \dot{\theta} . \tag{7}
\end{equation*}
$$

Hint: For the rotational motion, but for $T_{f, w}$, the friction torque due to rotation along the wheel axis needs to be taken into account as well. To model this, use \bar{b} from Table 1, in Appendix A.

Q6. Derive the equations of motion for the pendulum, considering both its horizontal motion and its rotation along the pitch angle direction. Show that they are given by

$$
\begin{align*}
M\left(R \ddot{\theta}+L \cos \psi \ddot{\psi}-L \sin \psi \dot{\psi}^{2}\right) & =\left(F_{h, l}+F_{h, r}\right), \tag{8}\\
M\left(-L \sin \psi \ddot{\psi}-L \cos \psi \dot{\psi}^{2}\right) & =\left(F_{p, l}+F_{p, r}\right)-M g \tag{9}\\
J_{\psi} \ddot{\psi}=\left(T_{f, l}+T_{f, r}\right)-\left(T_{l}+T_{r}\right) & +\left(F_{p, l}+F_{p, r}\right) L \sin \psi-\left(F_{h, l}+F_{h, r}\right) L \cos \psi . \tag{10}
\end{align*}
$$

Q 7. Combine (7), (8), (9), and (10), by eliminating unknown force vectors, and show that the nonlinear equations of motion that govern the robot's self-balance and forward/backward motion take the form

$$
\begin{align*}
M L R \cos \psi \ddot{\theta}+\left(M L^{2}+J_{\psi}\right) \ddot{\psi}-M g L \sin \psi & =-\left(T_{l}+T_{r}\right)+\left(T_{f, l}+T_{f, r}\right), \tag{11}\\
\left(2 m R^{2}+2 J+M R^{2}\right) \ddot{\theta}+M L R \cos \psi \ddot{\psi}-M L R \sin \psi \dot{\psi}^{2} & =\left(T_{l}+T_{r}\right)-\left(T_{f, l}+T_{f, r}\right)-2 \bar{b} \dot{\theta} . \tag{12}
\end{align*}
$$

Q8. Let $x_{1}=\left[\begin{array}{lll}\theta & \psi & \dot{\theta}\end{array} \psi^{\top} \in \mathbb{R}^{4}\right.$. Using linearization around $x_{1}^{*}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ and $u_{1}^{*}=0$ (recall the definition of u_{1} in (4)), determine matrices A_{1} and B_{1} so that the equations that govern the robot's behaviour (11) and (12), can be written as

$$
\begin{equation*}
\dot{x}_{1}=A_{1} x_{1}+B_{1} u_{1}, \tag{13}
\end{equation*}
$$

where
$A_{1}=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -g R M^{2} L^{2} \frac{1}{q} & -2\left(M R L+M L^{2}+J_{\psi}\right)\left(\frac{K_{T} K_{e}}{R_{d e}}+b\right) \frac{1}{q}-2\left(M L^{2}+J_{\psi}\right) \bar{b} \frac{1}{q} & 2\left(M R L+M L^{2}+J_{\psi}\right)\left(\frac{K_{T} K_{e}}{R_{d} d_{K}}+b\right) \frac{1}{q} \\ 0 & g M L\left((2 m+M) R^{2}+2 J\right) \frac{1}{q} & 2\left((2 m+M) R^{2}+2 J+M R L\right)\left(\frac{K_{K} K_{e}}{R_{d e}}+b\right) \frac{1}{q}+2 M R L \bar{b} \frac{1}{q} & -2\left((2 m+M) R^{2}+2 J+M R L\right)\left(\frac{K_{K}}{R_{d e}}+b\right) \frac{1}{q}\end{array}\right]$,

$$
B_{1}=\left[\begin{array}{c}
0 \\
0 \\
2\left(M R L+M L^{2}+J_{\psi}\right) \frac{K_{T}}{R_{d c}} \frac{1}{\frac{q}{G}} \\
-2\left((2 m+M) R^{2}+2 J+M R L\right) \frac{K_{T}}{R_{d c}} \frac{1}{q}
\end{array}\right],
$$

and $q=\left((2 m+M) R^{2}+2 J\right)\left(M L^{2}+J_{\psi}\right)-M^{2} R^{2} L^{2}$.

2.2 Yaw motion

Notice that the sum of the motors' voltages $u_{l}+u_{r}$ is responsible for the forward/backward motion of the robot. As suggested by Q4, the yaw motion emanates from a differential voltage, i.e., $u_{l}-u_{r}$. Setting $x_{2}=[\phi \dot{\phi}]^{\top} \in \mathbb{R}^{2}$, the yaw dynamics linearized around $x_{2}^{*}=[00]^{\top}, u_{2}^{*}=0$ are given by

$$
\begin{equation*}
\dot{x}_{2}=A_{2} x_{2}+B_{2} u_{2} \tag{14}
\end{equation*}
$$

where

$$
A_{2}=\left[\begin{array}{cc}
0 & 1 \\
0 & -\frac{W^{2}}{2 R^{2}}\left(\frac{K_{T} K_{e}}{R_{d c}}+b+\bar{b}\right) \frac{1}{\frac{1}{2} m W^{2}+J_{\phi}+\frac{J W^{2}}{2 R^{2}}}
\end{array}\right], B_{2}=\left[\begin{array}{c}
0 \\
-\frac{W}{R} \frac{K_{T}}{R_{d c}} \frac{1}{\frac{1}{2} m W^{2}+J_{\phi}+\frac{J W^{2}}{2 R^{2}}}
\end{array}\right] .
$$

2.3 Modeling in MATLAB Simulink

Go to the LEGO_SW folder in your directory. Two files are needed for this task: the run_LEGO_SW.m MATLAB file, where all parameters shall be defined, and the Simulink file LEGO_SW.slx. The overall Simulink architecture exhibits the form of Figure 6, where the Signal Builder blocks provide reference trajectories for $\dot{\theta}^{\text {ref }}$ and $\dot{\phi}^{\text {ref }}$.

Figure 6: Simulink architecture of LEGO_SW.slx.

Q9. Define values for all necessary parameters according to Table 1, Appendix A, in run_LEGO_SW.m. Use the Simulink Library Browser to fill in the subsystem robot of LEGO_SW.slx shown in Figure 6.
Hint: Investigate the various modelling options from the Simulink Library Browser to select a compact representation.

3 Control design - Self-balancing and forward/backward motion

We aim at designing u_{1} for the two-wheeled inverted pendulum to self-balance, and track some reference signal $x_{1}^{\text {ref }}=\left[\theta^{\text {ref }} \psi^{\text {ref }} \dot{\theta}^{\text {ref }} \dot{\psi}^{\text {ref }}\right]^{\top}$, such that $\psi^{\text {ref }}=\dot{\psi}^{\text {ref }}=0$, i.e., the robot should move forward/backward with the pendulum balancing along the vertical position. Notice that, since it can be shown that x_{1}^{*} is an unstable equilibrium of (13), even when $x_{1}^{\text {ref }}=x_{1}^{*}$ and the robot is not moving, a controller is needed to stabilize the system at x_{1}^{*}, and the pendulum to self-balance. To achieve this task we consider the feedback control structure of Figure 7.

The output of the system is

$$
\begin{equation*}
y=C_{1} x_{1}+D_{1} u_{1}, \tag{15}
\end{equation*}
$$

where $C_{1}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ and $D_{1}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. The output corresponds to θ and $\dot{\psi}$. In practice, $\dot{\psi}$ is directly available via the gyro sensor, whereas θ can be calculated by means of the DC motor angle measurement $\theta-\psi$, where ψ is calculated from $\dot{\psi}$ by means of numerical integration.

We employ a Proportional-Integral (PI) controller and a Proportional-Integral-Derivative (PID) controller to regulate $\dot{\psi}$ and θ, to their reference values, respectively. Notice that the PI controller for $\dot{\psi}^{\text {ref }}-\dot{\psi}$ is effectively a proportional controller assuming feedback of the states $\psi, \dot{\psi}$, with gains $K_{\dot{\psi}}^{I}, K_{\dot{\psi}}^{P}$, respectively, and the state ψ being reconstructed from $\dot{\psi}$ via numerical integration. Similarly, the PID controller could be thought of as the composition of a PI controller concerning $\theta^{\text {ref }}-\theta$, with a proportional controller with gain K_{θ}^{D} for $\dot{\theta}^{\text {ref }}-\dot{\theta}$, with the latter being constructed via numerical differentiation from $\theta^{\text {ref }}-\theta$.

Figure 7: Feedback control structure.

3.1 Self-balancing pitch PI controller

Consider the system of Figure 7. We aim at choosing the feedback gains $K_{\dot{\psi}}^{P}, K_{\dot{\psi}}^{I}$ that are related to the pendulum's pitch angle so that the unstable system becomes stable.

Q 10. Using MATLAB, determine the system's transfer function (matrix) $G(s)$ from $u_{1} \rightarrow y$. Denote by G_{θ} and $G_{\dot{\psi}}$ the transfer functions from $u_{1} \rightarrow \theta$ and from $u_{1} \rightarrow \dot{\psi}$, respectively. Is the system stable?
Hint: Check MATLAB commands ss and zpk.
The transfer function of the PI controller is given by $G_{\mathrm{PI}}(s)=K_{\dot{\psi}}^{P}+\frac{K_{\dot{\psi}}^{I}}{s}=K_{\dot{\psi}}^{P}\left(\frac{s+K_{\dot{\psi}}^{I} / K_{\dot{\psi}}^{P}}{s}\right)$. Since $\dot{\psi}^{\text {ref }}=0$, consider the inner loop (blue dashed box) of Figure 7 .
Q11. Using MATLAB, choose the gains $K_{\dot{\psi}}^{P}, K_{\dot{\psi}}^{I}$ of the PI pitch controller.

1. Place first the zero $z_{\mathbf{P I}}=K_{\dot{\psi}}^{I} / K_{\dot{\psi}}^{P}$ of the controller on the left of the negative pole of $G_{\dot{\psi}}$ that is closest to the origin.
2. Determine the gain $K_{\dot{\psi}}^{P}$ by checking the root locus of the open-loop transfer function $G_{\dot{\psi}} \frac{s+K_{\dot{\psi}}^{I} / K_{\dot{\psi}}^{P}}{s}$. Plot the negation of this function since MATLAB allows only for positive gains in root locus.

Hint: Check MATLAB command $t f$.

Q12. Determine the transfer function $\widetilde{G}(s)$ of the inner loop system of Figure 7. Comment on the type of the corresponding system.
Hint: Check MATLAB command minreal.

3.2 Forward/backward motion PID controller

By inspection of $\widetilde{G}(s)$ it should be observed that there is one pole at the origin. As a result, the system will be unstable after a step input. We will thus design a PID controller to ensure a stable closed-loop performance. Moreover, $\widetilde{G}(s)$ exhibits a right-half plane zero and is strictly proper; we thus anticipate an initial undershoot in the system's response after a step reference increase. Note that the presence of a right-half plane zero imposes limitations on the cross-over frequency, and hence the bandwidth. In particular, the "slower" the right-half plane zero, the lower the cross-over frequency is expected to be (see Chapter 11.7 in [6]).
Control design problem: Consider the following stability and performance specifications:

1. Phase margin $P M$ greater than 50°.
2. Step response settling time T_{s} less than $10 s$.

The transfer function of the PID controller is given by

$$
\begin{equation*}
G_{\mathrm{PID}}(s)=K_{\theta}^{P}+\frac{K_{\theta}^{I}}{s}+K_{\theta}^{D} s=K_{\theta}^{D} \frac{s^{2}+\left(K_{\theta}^{P} / K_{\theta}^{D}\right) s+\left(K_{\theta}^{I} / K_{\theta}^{D}\right)}{s} . \tag{16}
\end{equation*}
$$

Q13. Using MATLAB, choose the gains $K_{\theta}^{P}, K_{\theta}^{I}$ and K_{θ}^{D} of the PID controller.

1. Turn the control design specifications into requirements for the damping ratio ζ and the natural frequency ω_{n}.
2. Place the zeros of the PID controller in the desired $\zeta-\omega_{n}$ region, by determining $r_{\mathbf{P D}}=K_{\theta}^{P} / K_{\theta}^{D}$ and $r_{\mathrm{ID}}=K_{\theta}^{I} / K_{\theta}^{D}$.
3. Determine the range of admissible K_{θ}^{D} values by the root locus of the open loop transfer function $\frac{s^{2}+\left(K_{\theta}^{P} / K_{\theta}^{D}\right) s+\left(K_{\theta}^{I} / K_{\theta}^{D}\right)}{} \widetilde{G}(s)$ (so that the closed loop system is stable). Plot the negation of this function since MATLAB allows only for positive gains in root locus.
Hint: Check MATLAB command rlocus.
4. Choose the gain K_{θ}^{D} in this range, ensuring (from the root locus) that the closed loop system will operate in the desired $\zeta-\omega_{n}$ region. Verify by the Bode plot that the desired phase margin specification is satisfied.
Hint: Check MATLAB command margin.
Q14. 1. Calculate the transfer function of the closed loop system, i.e., from $\theta^{\text {ref }} \rightarrow \theta$ with reference to Figure 7.
5. Verify the settling time specification by simulating a unit step response of the closed loop system.
Hint: Check MATLAB command step.
Q 15. Comment on the stability of the closed loop system by drawing the Nyquist diagram in MATLAB.
Hint: Check MATLAB command nyquist.
For a similar PID design procedure we also refer to [7] (Example 9.10, Chapter 9).

3.3 Modelling in MATLAB Simulink

Go to the run_LEGO_SW.m MATLAB file, define values for the control gains as calculated in the aforementioned tasks, and recall the general architecture as shown in Figure 6.

Q16. Use the Simulink Library Browser to fill in subsystems reference, controller dot-psi, controller theta and robot input of LEGO_SW.slx shown in Figure 6.

4 Control design - Yaw motion

4.1 Yaw motion

We consider now the task of designing u_{2}, which governs the yaw motion of the two-wheeled inverted pendulum. By inspection of A_{2}, B_{2}, it can be observed that (14) corresponds to a stable dynamical system (it has negative real eigenvalues). For this particular structure, applying a constant input u_{2} is sufficient for stabilizing the second component $\dot{\phi}$ of x_{2} to some desired reference value $\dot{\phi}^{\text {ref }}$ (we assume that $\ddot{\phi}{ }^{\text {ref }}=0$).

To see this, denote by $A_{2}^{(2,2)}, B_{2}^{(2)}$ the corresponding elements of A_{2} and B_{2}, respectively. Let

$$
\begin{equation*}
u_{2}=-\frac{A_{2}^{(2,2)}}{B_{2}^{(2)}} \dot{\phi}^{\mathrm{ref}} \tag{17}
\end{equation*}
$$

By (17), (14), we then have that

$$
\begin{equation*}
\left(\ddot{\phi}-\ddot{\phi}^{\mathrm{ref}}\right)=A_{2}^{(2,2)}\left(\dot{\phi}-\dot{\phi}^{\mathrm{ref}}\right) \tag{18}
\end{equation*}
$$

Notice that $A_{2}^{(2,2)}<0$, hence we can stabilize $\dot{\phi}$ to $\dot{\phi}$ ref , and as a result ϕ to $\phi^{\text {ref }}$, where the latter is the integral of $\dot{\phi}^{\text {ref }}$.

Q 17. Is (17) an open or a closed loop control design? What would you expect if controller (17) is applied to the LEGO Mindstorms EV3 robot?

Figure 8: Feedback control for yaw motion.
Consider the block diagram structure of Figure 8. A Proportional (P) controller with gain K_{ϕ}^{P} is employed to regulate ϕ to $\phi^{\text {ref }}$.

Q18. Define matrices C_{2} and D_{2} so that the output of the feedback loop is ϕ, and choose the gain K_{ϕ}^{P} of the proportional yaw controller. This can be done via simulation to ensure that the closed loop system is stable and sufficiently fast.

4.2 Modelling in MATLAB Simulink

Go to the run_LEGO_SW.m MATLAB file, define values for the gains associated with the yaw controller as calculated in the aforementioned tasks, and recall the general architecture as shown in Figure 6.

Q 19. Use the Simulink Library Browser to fill in subsystem controller yaw of LEGO_SW. slx shown in Figure 6. Consider two separate cases according to whether an open or a closed loop yaw controller is employed.

5 Control deployment

5.1 Simulation in MATLAB Simulink

Go to the LEGO_SW folder in your directory, and consider the run_LEGO_SW.m MATLAB file, and the Simulink file LEGO_SW.slx. With reference to Figure 6, all subsystems should be now filled in and connected.
Ensure that all parameters and control gains needed in the Simulink file are defined in run_LEGO_SW.m, and run both files.

Q 20. Plot the time evolution of the states x_{1} and x_{2} of the robot to investigate the performance in terms of tracking the reference signals.
Q21. Plot the trajectory traversed by the wheel's middle point $x_{m}-y_{m}$ in the horizontal plane.

5.2 Simulation on LEGO Mindstorms EV3

Go to the LEGO_HW folder in your directory. Two files are needed for this task: the run_LEGO_HW.m MATLAB file, where all parameters shall be defined, and the Simulink file LEGO_HW.slx. Switch on the LEGO Mindstorms EV3 on by pressing the EV3 main Button. The EV3 intelligent brick should blink and turn green. From the brick buttons navigate to Settings and confirm that EV3 is connected to WiFi and hence can communicate with the desktop computer.

The Simulink architecture exhibits the same form with that of Figure 6, with the difference that the controllers are now implemented in discrete time, and the robot subsystem should contain the LEGO Mindstorms EV3 blocks instead of the linear dynamical models for x_{1} and x_{2}. Define the calculated control gain values in run_LEGO_HW.m, and run the file. Ensure that all parameters needed in the Simulink file are defined in run_LEGO_HW.m.

Q 22. Use the EV3 blocks Motor, Encoder and Gyro Sensor to fill in the robot subsystem in LEGO_HW.slx. Plot the time evolution of the states x_{1} and x_{2} of the robot to investigate the performance in terms of tracking the reference signals.

Q23. Compare reference tracking when the open and closed loop yaw control schemes of Section 4 are employed. What do you observe?

Q24. Determine appropriate reference trajectories and show that your robot can track the pitch or penalty area perimeter.

Q25. Use an additional motor so that your robot can kick/pass the ball.

5.3 Playing football

Go to the LEGO_HW_game folder in your directory. Two files are needed for this task: the run_LEGO_HW_game.m MATLAB file, where all parameters shall be defined, and the Simulink file LEGO_HW_game.slx.

This Simulink file has the same architecture with LEGO_HW.slx, with the addition that it includes a reset and a gamepad functionality to facilitate the task of playing football. If the robot falls or crashes with other robots simply press the Touch Sensor (red button) on the EV3 instead of re-running the MATLAB script; it resets the integrators and stops the motors. Define the calculated control gain values in run_LEGO_HW_game.m, and run the file. Ensure that all parameters needed in the Simulink file are defined in run_LEGO_HW_game.m.

The overall set-up should be of the form of Figure 9. Each robot is still automatically stabilized via the developed control scheme, but is driven manually by setting the reference values $\dot{\theta}^{\text {ref }}$ and $\dot{\phi}^{\text {ref }}$ in real-time via the gamepad according to Figure 9.

Figure 9: Real-time steering principle, where $\dot{\psi}$ control refers the the PI controller regulating the pitch angle to zero, θ control refers to the PID controller regulating the forward/backward motion of the EV3, and ϕ control refers to the P controller regulating the yaw motion.

Figure 10: Place your robot on the football rug and start playing football!

Figure 11: Laboratory set-up with 6 Mindstorms EV3 robots.

6 Control design via pole placement

We consider an alternative control design technique by means of pole placement. To this end, consider the architecture of Figure 7. Set $z=\int\left(\theta-\theta^{\text {ref }}\right) d t$, thus leading to $\dot{z}=\theta-\theta^{\text {ref }}$. Let $K=\left[\begin{array}{lllll}K_{\theta}^{P} & K_{\dot{\psi}}^{I} & K_{\theta}^{D} & K_{\dot{\psi}}^{P} & K_{\theta}^{I}\end{array}\right]^{\top} \in \mathbb{R}^{5}$, and denote by \bar{C}_{1} the first row of C_{1}. By inspection of Figure 7, we then have that

$$
u_{1}=-K\left[\begin{array}{c}
x_{1} \tag{19}\\
z
\end{array}\right]+K\left[\begin{array}{c}
x_{1}^{\mathrm{ref}} \\
0
\end{array}\right] .
$$

By (13) and (19), we have for the closed-loop system that

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{20}\\
\dot{z}
\end{array}\right]=\left(\left[\begin{array}{cc}
A_{1} & 0_{4 \times 1} \\
\bar{C}_{1} & 0
\end{array}\right]-\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] K\right)\left[\begin{array}{c}
x_{1} \\
z
\end{array}\right]+\left[\begin{array}{c}
B_{1} K \\
{\left[-\bar{C}_{1} 0\right]}
\end{array}\right]\left[\begin{array}{c}
x_{1}^{\mathrm{ref}} \\
0
\end{array}\right] .
$$

Note that he open-loop system is unstable, since A_{1} has one eigenvalue with positive real part. We can determine K by placing the poles (eigenvalues) of $\left(\left[\begin{array}{cc}A_{1} & 0_{4 \times 1} \\ \bar{C}_{1} & 0\end{array}\right]-\left[\begin{array}{c}B_{1} \\ 0\end{array}\right] K\right)$ at some desired location $p=\left[\begin{array}{lllll}p_{1} & p_{2} & p_{3} & p_{4} & p_{5}\end{array}\right]$, so that the closed-loop system is stable (all elements of p should have negative real parts). This can be achieved by equating the coefficients of the characteristic polynomial ${ }^{1}$ of $\left(\left[\begin{array}{cc}A_{1} & 0_{4 \times 1} \\ \bar{C}_{1} & 0\end{array}\right]-\left[\begin{array}{c}B_{1} \\ 0\end{array}\right] K\right)$ with the ones of $\Pi_{i=1}^{5}\left(s-p_{i}\right)$. This results in solving a system of 5 equations, linear in the gains in K. For more details the reader is referred to [8] (Chapter 9). However, this can be achieved using MATLAB.

Q 26. Choose p so that a complex pole pair is dominant (meeting the control design specification), and calculate the control gain vector K that ensures that the poles of the closed-loop system are in the locations contained in p.
Hint: Check the MATLAB command place.
Q27. Compare the performance of the set of gains calculated via pole placement with those calculated via root locus and bode plots. Perform any fine tuning if appropriate.

Q 28. Consider the Simulink architecture of LEGO_SW.slx, as illustrated in Figure 6. Simplify the model to include only two state space Simulink blocks and two state feedback control loops, with the one feedback gain being the vector K.

[^0]
Appendix A

Table 1: Parameters and numerical values.

Symbol	Value	Measurement units	Physical meaning
g	9.81	m / s^{2}	gravity acceleration
m	0.024	$k g$	wheel's mass
M	0.6	$k g$	main body's mass
R	0.027	m	wheel's radius
D	0.04	m	main body's width
W	0.14	m	main body's depth
H	0.22	m	main body's length
L	$\frac{H}{2}$	m	main body's half-length
J	$\frac{m R^{2}}{2}$	$k g m^{2}$	wheel's moment of inertia
J_{ψ}	$\frac{M L^{2}}{3}$	$k g m^{2}$	pitch moment of inertia
J_{ϕ}	$\underline{M\left(W^{2}+D^{2}\right)}$	$k g m^{2}$	yaw moment of inertia
$J_{d c}$	$1 e^{-5^{12}}$	$k g m^{2}$	DC motor's moment of inertia
$R_{d c}$	6.69	Ω	DC motor's resistance
K_{e}	0.468	$V s / r a d$	back EMF constant
K_{T}	0.317	$N m / A$	DC motor's torque constant
b	0.0022	$N m s / r a d$	friction coefficient between main body
\bar{b}			and DC motor
	0.0022	$N m s / r a d$	friction coefficient due to rotation along
			the wheel axis

References

[1] Y. Yamamoto, "NXTway-GS Model-Based Design - Control of Self-balancing twowheeled robot build with LEGO Mindstorms NXT," Technical Report, pp. 1-73, 2009. [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/19147-nxtway-gs-self-balancing-two-wheeled-robot-controller-design
[2] "Simulink and LEGO MINDSTORMS NXT," Technical Report, MathWorks, Inc., pp. 1-23, 2013.
[3] Y. Kim, S. Kim, and Y. Kwack, "Dynamic analysis of a non-holonomic two-wheeled inverted pendulum robot," Journal of Intelligent and Robotic Systems, vol. 44, no. 1, pp. 25-46, 2005.
[4] B. Bonafilia, N. Gustafsson, P. Nyman, and S. Nilsson, "Self-balancing two-wheeled robot," Technical Report, Chalmers University of Technology, pp. 1-11, 2013. [Online]. Available: http://sebastiannilsson.com/wp-content/uploads/2013/05/Self-balancing-two-wheeled-robot-report.pdf
[5] "NXT SegWay Robot, Lesson 1," Technical Report, SolidWorks, pp. 1-45, 2013.
[6] K. Astrom and R. Murray, "Feedback Systems - An Introduction for Scientists and Engineers," Princeton University Press, Twelfth Edition, 2008.
[7] R. Dorf and R. Bishop, "Modern Control Systems," Prentice Hall, Twelfth Edition, 2011.
[8] J. Lygeros and F. Ramponi, "Lecture Notes on Linear System Theory," ETH Zurich, pp. 1-158, 2013.

[^0]: ${ }^{1}$ The characteristic polynomial of a matrix A is given by the determinant $\operatorname{det}(s I-A)$, which is in turn the denominator of the system's transfer function, and when equating it with zero, its solutions correspond to the poles of the system. I denotes an identity matrix of appropriate dimension.

