
University of Oxford

Trinity Term

CourseWork Module (CWM)

LEGO Football

Lab organizer: Prof. Kostas Margellos (kostas.margellos@eng.ox.ac.uk)

Location: Control Laboratory, 5th Floor, Thom Building

April 28, 2022

Learning outcomes

The “LEGO Football” coursework module has four main objectives:

1. Apply in a more practical example tools from control theory and become familiar with the underlying
concepts.

2. Provide an introduction to the entire control design process, that involves: physical modelling; design
and analysis of a feedback control mechanism (stability and performance); model-based performance
evaluation of the developed controller (in simulation); actual implementation using the systems’ sensor-
actuators (in hardware).

3. Become familiar with the use of MATLAB and Simulink for control design of systems with different
characteristics: unstable, critically stable, stable.

4. Interact with robots and make them play football!

In these notes we consider a self-balancing, two-wheeled LEGO Mindstorms EV3 robot, and provide
a companion for the laboratory tasks, providing details on the modelling and control design aspects. The
robot is represented by a two-wheeled inverted pendulum, with the wheels being driven by DC motors. A
nonlinear dynamical system governing its behaviour is derived based on the equations of motion for the
wheels and the inverted pendulum, and on a simplified representation of the DC motor dynamics. The
constructed model is then transformed to a linear dynamical system by means of linearization. Treating the
DC motors’ input voltage as control inputs, a Proportional-Integral (PI) controller is developed to ensure
that the robot (two-wheeled inverted pendulum) can self-balance, a Proportional-Integral-Derivative (PID)
controller is developed to allow forward/backward motion, and a Proportional (P) controller to allow turning.

Acknowledgements

These notes follow the notation and problem description of [1], [2], where some of the figures are also taken
from (modified as appropriate), but the system dynamics are derived following an analysis similar to [3, 4].
We refer also to [5] for an alternative description and physical interpretation.

Robot assembling, hardware communication and the gamepad functionality is due to Dr. Izzi Mear

(Teaching and Design Engineer, University of Oxford); the contribution of Dr. Filiberto Fele (University of

Oxford) is also gratefully acknowledged. We are grateful to Dr. Coorous Mohtadi (MathWorks) for insightful

discussions and input on the hardware implementation. The contribution of Dr. Luca Deori (Politecnico

di Milano) in the first lab design involving LEGO Mindstorms NXT robots in Trinity Term 2015-16 is also

gratefully acknowledged.

1

1 Physical description

Consider a two-wheeled LEGO Mindstorms EV3 robot, as shown in Figure 1, where both wheels are
identical, and are driven by identical motors. The main brick is responsible for any communication
and processing when interacting with MATLAB/Simulink. Our configuration is equipped with two
sensors: a gyro sensor that as will be discussed in the sequel contains information on the robot’s
angular displacement from the vertical axis, and a touch sensor that will be used to reset the
motors. Actuation inputs to the robot constitute the voltages applied to the left and right motor,
respectively.

From a mathematical point of view we can represent the robot by a two-wheeled inverted
pendulum (see Figure 2), whose side and top view are shown in Figure 3. It can be thought of as
a combination of a unicycle-like model and an inverted pendulum.

Guide to Lego Mindstorms EV3 Hardware

Isobel Mear

Trinity Term 2017

The EV3 is powered by a rechargeable battery pack. Although the pack should
allow the EV3 to run for a few hours, please make sure you charge the EV3 when
it is not in use and turn o↵ the robot at the end of the day.

• POWER ON EV3: Press CENTRE button.

• POWER OFF EV3: Press the BACK button.

There are a few chargers in the lab. When the battery
pack is charging a green and red light will show.
The red light will go o↵ once the pack is fully charged.

The EV3 display screen shows the battery status
(solid battery is fully charged, outline is empty):

Please note that as the battery depletes, the EV3 may
show exhibit erratic behaviour.

1

Figure 1: LEGO Mindstorms EV3 robot.

Variable θ denotes the wheels’ angle, ψ denotes the pitch angle of the pendulum, and φ the yaw
angle of the robot. Before providing the equations of motion of the two-wheeled inverted pendulum,
it would be convenient to establish certain relations between the cartesian coordinates (xw, yw, zw)
of the center of each wheel w ∈ {l, r}, where l, r, indicate the left and right wheel, respectively,
the coordinates of the middle point (xm, ym, zm) along the wheel axis, and the ones of the middle
point (xb, yb, zb) of the upper body, as a function of the angles θ, ψ and φ.

To this end, consider the reference coordinate frame of Figure 3, and denote by

θ =
1

2
(θr + θl), (1)

the average angle of the right and left wheel, respectively. The rate of change of the yaw angle φ̇
can be written as a function of θ̇r and θ̇l given by

φ̇ =
R

W
(θ̇r − θ̇l). (2)

2

Figure 2: Inverted pendulum representation of the LEGO Mindstorms EV3 robot.Figure 1: LEGO Mindstorm NXT robot and its two-wheeled inverted pendulum representation.

zm

3

L = H
2

A

M;JA

zb

0

m;J

Figure 2: Happy Smiley

yb

yr

yl

ym

xl xm xb xr

?W
2

W
2

L sinA

Figure 3: Sad Smiley

and denote by

θ =
1

2
(θl + θr), (1)

φ̇ =
R

W
(θ̇r − θ̇l), (2)

the average angle of the left and right wheel, and the rate of change of the yaw angle of the robot,
respectively. Note that the expression in (2) is derived by inspection of Figure 42.

2By the left panel of Figure 4 we have that the arc length travelled by wheel w for an angular displacement dθw,
incurred within some time interval dt, is equal to Rθw, w ∈ {l, r}. Consider now the right panel of Figure 4, where
x− y denotes the reference coordinate frame of Figure ??, with φ being the heading angle formed between the main
body and the x axis. We then have that for dt (and hence also for dφ) small enough, dφ ≈ tan dφ = Rdθl−Rdθr

W
.

However, since a change dφ tends to decrease φ according to the convention of Figure 4, we have that

φ̇ = − lim
dt→0

dφ

dt
= − R

W
(θ̇l − θ̇r),

which leads to (2). The notation dφ
dt

should not be confused with the time-derivative of φ, which is in turn denoted

by φ̇, but is the ratio between dφ and dt.

2

0

Figure 3: Side and top view of the two-wheeled inverted pendulum.

To see this notice that by the left panel of Figure 4 we have that the arc length travelled
by wheel w for an angular displacement dθw, incurred within some time interval dt, is equal to
Rθw, w ∈ {l, r}. Consider now the right panel of Figure 4, where x − y denotes the reference
coordinate frame of Figure 3. We then have that for dt (and hence also for dφ) small enough,
dφ ≈ tan dφ = Rdθl−Rdθr

W . However, since an increase by dφ tends to decrease φ according to the
convention of Figure 4, we have that

φ̇ = − lim
dt→0

dφ

dt
= − R

W
(θ̇l − θ̇r), (3)

which leads to (2). The notation dφ
dt should not be confused with the time-derivative of φ, which is

in turn denoted by φ̇, but is the ratio between dφ and dt. By (2) it follows that the yaw motion
requires a differential voltage input.

3

Figure 4: Left panel: Wheel’s side view for an angular displacement dθw, w ∈ {l, r}. Right panel:
Top view of the robot’s displacement during a right turn.

We have that

(xm, ym, zm) =
(∫

ẋmdt,

∫
ẏmdt,R

)
, (4)

where

(ẋm, ẏm) = (Rθ̇ cosφ,Rθ̇ sinφ). (5)

Note that ẋm, ẏm, correspond to the projection of the velocity vector Rθ̇ on the x and y axis,
respectively.

Q 1. Calculate the coordinates (xl, yl, zl) and (xr, yr, zr) of the left and right wheel, re-
spectively, and the coordinates of the middle point of the upper body, as a function
of xm, ym, zm and φ.

For each w ∈ {l, r}, let Fs,w denote the static friction force due to the contact between wheel w
and the ground, whereas let Fh,w denote the reaction force due to the friction caused by the contact
between the wheel and the main body. Denote also by Fp,w the vertical force due to the contact
between each wheel and the main body. Let Tw denote the torque causing rotation of wheel w,
produced by the associated DC motor, and by Tf,w the component of the friction torque due to the
contact between the DC motor and the main body with direction opposite to that of Tw.

Q2. Provide free body diagrams for each of the wheels and the pendulum.

Each wheel w, w ∈ {l, r}, is driven by a DC motor. The behaviour of the DC motor is
captured by the electric circuit of Figure 5, where Rdc and Ldc denote the resistance and inductance,
respectively, of the armature circuit, which is assumed to be the same for both motors. When
the armature circuit is placed within a fixed, separately excited field, torque causing rotation
is generated. Variable uw denotes the voltage input, which serves as a control variable for our
purposes, Iw denotes the flowing current, and ue,w denotes the induced voltage, referred to as back
electromotive force (back EMF), which is proportional to the angular velocity of the motor at wheel
w, with proportionality constant Ke.

4

Figure 5: Electric circuit describing the behavior of the DC motor at wheel w, w ∈ {l, r}. Torque
is generated when the armature circuit is placed within a fixed, separately excited field.

Q3. Assume that there are no current transients, and let

u1 =
1

2
(ul + ur), u2 =

1

2
(ul − ur). (6)

Show that

(Tl + Tr)− (Tf,l + Tf,r) = 2
KT

Rdc
u1 − 2

(KTKe

Rdc
+ b
)

(θ̇ − ψ̇), (7)

(Tr − Tl)− (Tf,r − Tf,l) = −2
KT

Rdc
u2 −

W

R

(KTKe

Rdc
+ b
)
φ̇. (8)

Hint: For each w ∈ {l, r}, work according to the following steps:

1. Provide an expression for the back EMF ue,w;
2. Write Iw as a function of uw, θ̇w and ψ̇;
3. Use the fact that Tw is proportional to the armature current Iw, i.e., Tw = KT Iw;
4. Model Tf,w as a damper, using the friction coefficient b in Table 1, Appendix A.

5

2 Mathematical modelling

We will first design a controller that allows the robot to self-balance and move forward/backward,
and, at a next stage, we will focus on the yaw motion. To achieve this and decouple the yaw
motion we assume that φ = 0, i.e., the robot’s heading is aligned with the x axis, when deriving the
equations of motion for the wheels and the pendulum. This analysis is approximate, but accurate
enough from a control point of view, leading to the same linearized dynamical system.

Definitions for all other parameters, treated as constants in our analysis, and their numerical
values, are taken from [1], and can be found in Table 1, in Appendix A.

2.1 Self-balance and forward/backward motion

Q 4. For each w = {r, l}, derive the equations of motion for the wheel w due to its
horizontal and its rotational motion. Show that they can be combined to form

(2mR2 + 2J)θ̈ = (Tl + Tr)− (Tf,l + Tf,r)− (Fh,l + Fh,r)R− 2b̄θ̇. (9)

Hint: To obtain (9), work according to the following steps:

1. Consider the cartesian motion. Under the assumption φ = 0, obtain an expression
for ẍw, which denotes the wheel’s linear acceleration along the x axis.

2. Consider the rotational motion. Obtain an expression for θ̈w, which denotes the
wheel’s angular acceleration. Except from Tf,w, the friction torque due to rotation
along the wheel axis needs to be taken into account as well. To model this, use b̄
from Table 1, in Appendix A.

3. Express ẍw as a function of θ̈w using (5), and use (1) to obtain (9).

Q5. Derive the equations of motion for the pendulum, considering both its horizontal
motion and its rotation along the pitch angle direction. Show that they are given by

M(Rθ̈ + L cosψψ̈ − L sinψψ̇2) = (Fh,l + Fh,r), (10)

M(−L sinψψ̈ − L cosψψ̇2) = (Fp,l + Fp,r)−Mg, (11)

Jψψ̈ = (Tf,l + Tf,r)− (Tl + Tr) + (Fp,l + Fp,r)L sinψ − (Fh,l + Fh,r)L cosψ. (12)

Hint: To obtain (10) – (12), work according to the following steps:

1. Consider the cartesian motion. The pendulum is moving both in the horizontal
direction (only along the x axis since φ = 0) and along the vertical direction.
Hence, obtain an expression for ẍb and z̈b, which denote the linear acceleration
of the middle point of the main body along the x axis and z axis, respectively.

2. Express ẍb and z̈b as a function of θ, ψ and their derivatives using (5) and (??).
This leads to (10) and (11).

3. Consider the rotational motion. Obtain an expression for ψ̈, which denotes the
angular acceleration along the pitch direction, thus leading to (12).

6

Q 6. Combine (9), (10) , (11), and (12), by eliminating unknown force vectors, and
show that the nonlinear equations of motion that govern the robot’s self-balance and
forward/backward motion take the form

MLR cosψθ̈ + (ML2 + Jψ)ψ̈ −MgL sinψ = −(Tl + Tr) + (Tf,l + Tf,r), (13)

(2mR2 + 2J +MR2)θ̈ +MLR cosψψ̈ −MLR sinψψ̇2 = (Tl + Tr)− (Tf,l + Tf,r)− 2b̄θ̇. (14)

Q7. Let x1 = [θ ψ θ̇ ψ̇]> ∈ R4. Using linearization around x∗1 = [0 0 0 0] and u∗1 = 0 (recall
the definition of u1 in (6)), show that the equations that govern the robot’s behaviour
(13) and (14), can be written in state space form as

ẋ1 = A1x1 +B1u1, (15)

y = C1x1 +D1u1, (16)

where

A1 =


0 0 1 0
0 0 0 1

0 −gRM2L2 1
q

−2(MRL +ML2 + Jψ)(
KTKe
Rdc

+ b) 1
q

− 2(ML2 + Jψ)b̄ 1
q

2(MRL +ML2 + Jψ)(
KTKe
Rdc

+ b) 1
q

0 gML((2m +M)R2 + 2J) 1
q

2((2m +M)R2 + 2J +MRL)(
KTKe
Rdc

+ b) 1
q

+ 2MRLb̄ 1
q

−2((2m +M)R2 + 2J +MRL)(
KTKe
Rdc

+ b) 1
q

 ,

B1 =


0
0

2(MRL+ML2 + Jψ)
KT
Rdc

1
q

−2((2m+M)R2 + 2J +MRL) KT
Rdc

1
q

 , C1 =

[
1 0 0 0
0 0 0 1

]
, D1 =

[
0
0

]
,

and q = ((2m+M)R2 + 2J)(ML2 + Jψ)−M2R2L2.

Note that the output corresponds to θ and ψ̇. In practice, ψ̇ is directly available via the gyro
sensor, whereas θ can be calculated by means of the DC motor angle measurement θ−ψ, where ψ
is calculated from ψ̇ by means of numerical integration.

2.2 Yaw motion

Notice that the sum of the motors’ voltages ul+ur is responsible for the forward/backward motion
of the robot. As suggested by Q3, the yaw motion emanates from a differential voltage, i.e., ul−ur.
Setting x2 = [φ φ̇]> ∈ R2, the yaw dynamics linearized around x∗2 = [0 0]>, u∗2 = 0 are given by the
state space form

ẋ2 = A2x2 +B2u2, (17)

y = C2x2 +D2u2, (18)

where

A2 =

[
0 1

0 −W 2

2R2 (KTKeRdc
+ b+ b̄) 1

1
2mW

2+Jφ+
JW2

2R2

]
, B2 =

[
0

−WR KT
Rdc

1
1
2mW

2+Jφ+
JW2

2R2

]
, C2 =

[
1 0

]
, D2 = 0.

Note that we have assumed that the yaw angle φ can be measured directly.

7

2.3 Modeling in MATLAB Simulink

Go to the LEGO SW folder in your directory. Two files are needed for this task: the run LEGO SW.m
MATLAB file, where all parameters shall be defined, and the Simulink file LEGO SW.slx. The
overall Simulink architecture exhibits the form of Figure 6, where the Signal Builder blocks
provide the means to design reference trajectories for θ̇ref and φ̇ref.

Q8. Define values for all necessary parameters according to Table 1, Appendix A, in
run LEGO SW.m. Use the Simulink Library Browser to fill in the subsystem robot
of LEGO SW.slx shown in Figure 6.
Hint: Check the State-Space block as a modelling option from the Simulink Library
Browser.

theta_ref

theta

u_theta

controller theta

dot_theta_ref

dot_phi_ref

phi_ref

theta_ref

reference

dot_psi

dot_psi_ref

u_dot_psi

controller dot_psi

phi

phi_ref

u_yaw

controller yaw

u_yaw

u_theta

u_dot_psi

u_left

u_right

robot input

u_left

u_right

phi

theta

dot_psi

robot

dot_theta_ref

Signal Builder1

dot_phi_ref

Signal Builder2

-C-

dot_psi_ref

Figure 6: Simulink architecture of LEGO SW.slx.

8

3 Control design – Self-balancing and forward/backward motion

We aim at designing u1 for the two-wheeled inverted pendulum to self-balance, and track some
reference signal xref1 = [θref ψref θ̇ref ψ̇ref]>, such that ψref = ψ̇ref = 0, i.e., the robot should move
forward/backward with the pendulum balancing along the vertical position. Notice that, since it
can be shown that x∗1 is an unstable equilibrium of (15), even when xref1 = x∗1 and the robot is not
moving, a controller is needed to stabilize the system at x∗1, and the pendulum to self-balance. To
achieve this task we consider the feedback control structure of Figure 7.

Recall that the output y includes the states θ and ψ̇. We employ a Proportional-Integral (PI)
controller and a Proportional-Integral-Derivative (PID) controller to regulate ψ̇ and θ, to their
reference values, respectively. Notice that the PI controller for ψ̇ref− ψ̇ is effectively a proportional
controller assuming feedback of the states ψ, ψ̇, with gains KI

ψ̇
, KP

ψ̇
, respectively, and the state

ψ being reconstructed from ψ̇ via numerical integration. Similarly, the PID controller could be
thought of as the composition of a PI controller concerning θref − θ, with a proportional controller
with gain KD

θ for θ̇ref − θ̇, with the latter being constructed via numerical differentiation from
θref − θ.

3.1 Self-balancing pitch PI controller

Consider the system of Figure 7. We start by designing the inner, PI controller so that the robot
can self-balance. To this end, we aim at choosing the feedback gains KP

ψ̇
, KI

ψ̇
that are related to

the pendulum’s pitch angle so that the unstable system becomes stable.

Q 9. Using MATLAB, determine the system’s transfer function (matrix) G(s) from
u1 → y. Denote by Gθ and Gψ̇ the transfer functions from u1 → θ and from u1 → ψ̇,
respectively. Is the system stable?
Hint: Check MATLAB commands ss and zpk.

ẋ1 = A1x1 + B1u1

y = C1x1 + D1u1
[1 0 0 0]

[0 0 0 1]

−
+

KP
ψ̇

(ψ̇ref − ψ̇)

KI
ψ̇
(ψref − ψ)

KP
ψ̇

KI
ψ̇

∫
+

+

+
+

+
+

+

KD
θ (θ̇ref − θ̇)

KI
θ

∫
(θref − θ)dt

KP
θ (θref − θ)

KD
θ

d

dt

KI
θ

∫

KP
θ

−
+

GPI(s) = KP
ψ̇

+
KI

ψ̇

s

GPID(s) = KP
θ +

KI
θ

s
+ KD

θ s

G(s)

G̃(s)

θ

θref

ψ̇

ψ̇ref

u1 y

Figure 7: Feedback control structure.

9

The transfer function of the PI controller is given by GPI(s) = KP
ψ̇

+
KI
ψ̇

s = KP
ψ̇

(s+KI
ψ̇
/KP

ψ̇

s

)
. Since

ψ̇ref = 0, consider the inner loop (blue dashed box) of Figure 7.

Q10. Using MATLAB, choose the gains KP
ψ̇

, KI
ψ̇

of the PI pitch controller.

1. Place first the zero zPI = KI
ψ̇
/KP

ψ̇
of the controller on the left of the negative pole

of Gψ̇ that is closest to the origin.

2. Determine the gain KP
ψ̇

by checking the root locus of the open-loop transfer

function Gψ̇
s+KI

ψ̇
/KP

ψ̇

s . Plot the negation of this function since MATLAB allows
only for positive gains in root locus.

Hint: Check MATLAB commands tf and rlocus. Ensure to negate the selected gains
since the root locus of the negation of the transfer function was considered.

Q11. Determine the transfer function G̃(s) of the inner loop system of Figure 7. Is the
corresponding system stable?
Hint: Check MATLAB command minreal, and use the equivalence between the sys-
tem’s state space representation and the associated transfer functions computed in Q9
as shown in Figure 8.

G ̇(s)

y =


✓

 ̇

�

 ̇u1

✓

ẋ1 = A1x1 + B1u1

y = C1x1 + D1u1

G✓(s)

u1

Figure 8: State space representation of the plant appearing in Figure 7 and the associated transfer
functions.

3.2 Forward/backward motion PID controller

By inspection of G̃(s) it should be observed that there is one pole at the origin. As a result, the
system will be unstable after a step input. We will thus design a PID controller to ensure a stable
closed-loop performance. Moreover, G̃(s) exhibits one (odd number) of right-half plane zeros and
is strictly proper; we thus anticipate an initial undershoot in the system’s response after a step
reference increase. Note that the presence of a right-half plane zero imposes limitations on the
cross-over frequency, and hence the bandwidth. In particular, the “slower” the right-half plane
zero, the lower the cross-over frequency is expected to be (see Chapter 11.7 in [6]).

Control design problem: Consider the following stability and performance specifications:
1. Phase margin PM greater than 50◦.
2. Step response settling time Ts less than 10s.

10

The transfer function of the PID controller is given by

GPID(s) = KP
θ +

KI
θ

s
+KD

θ s = KD
θ

s2 + (KP
θ /K

D
θ)s+ (KI

θ/K
D
θ)

s
. (19)

Q12. Using MATLAB, choose the gains KP
θ , KI

θ and KD
θ of the PID controller.

1. Turn the control design specifications into requirements for the damping ratio ζ
and the natural frequency ωn.

2. Place the zeros of the PID controller in the desired ζ−ωn region, by determining
rPD = KP

θ /K
D
θ and rID = KI

θ/K
D
θ .

3. Determine the range of admissible KD
θ values by the root locus of the open loop

transfer function
s2+(KP

θ /K
D
θ)s+(KI

θ/K
D
θ)

s G̃(s) (so that the closed loop system is sta-
ble). Plot the negation of this function since MATLAB allows only for positive
gains in root locus.

4. Choose the gain KD
θ in this range, ensuring (from the root locus) that the closed

loop system will operate in the desired ζ − ωn region. Verify by the Bode plot
that the desired phase margin specification is satisfied.
Hint: Check MATLAB command margin.

Ensure to negate the selected gains since the root locus of the negation of the transfer
function was considered.

Q13. 1. Calculate the transfer function of the closed loop system, i.e., from θref → θ
with reference to Figure 7.

2. Verify the settling time specification by simulating a unit step response of the
closed loop system.
Hint: Check MATLAB command step.

Q 14. Comment on the stability of the closed loop system by drawing the Nyquist
diagram in MATLAB.
Hint: Check MATLAB command nyquist.

For a similar PID design procedure we also refer to [7] (Example 9.10, Chapter 9).

3.3 Modelling in MATLAB Simulink

Go to the run LEGO SW.m MATLAB file, define values for the control gains as calculated in the
aforementioned tasks, and recall the general architecture as shown in Figure 6.

Q15. Use the Simulink Library Browser to fill in subsystems reference, controller
dot psi, controller theta and robot input of LEGO SW.slx shown in Figure 6.

11

4 Control design – Yaw motion

4.1 Yaw motion

We consider now the task of designing u2, which governs the yaw motion of the two-wheeled inverted
pendulum. By inspection of A2, B2, it can be observed that (17) corresponds to a stable dynamical
system (it has negative real eigenvalues). In particular, it is in controllable canonical form (see
Chapter 9 in [8]), hence the choice of gains for a state feedback controller via pole placement is
anticipated to be straightforward. For this particular structure, however, applying a constant input
u2 is sufficient for stabilizing the second component φ̇ of x2 to some desired reference value φ̇ref (we
assume that φ̈ref = 0); using a state feedback we could also enforce the desired stabilization rate.

To see this, denote by A
(2,2)
2 , B

(2)
2 the corresponding elements of A2 and B2, respectively. Let

u2 = −A
(2,2)
2

B
(2)
2

φ̇ref. (20)

By (20), (17), we then have that

(φ̈− φ̈ref) = A
(2,2)
2 (φ̇− φ̇ref). (21)

Notice that A
(2,2)
2 < 0, hence we can stabilize φ̇ to φ̇ref, and as a result φ to φref, where the latter

is the integral of φ̇ref.

Q 16. Is (20) an open or a closed loop control design? What would you expect if
controller (20) is applied to the LEGO Mindstorms EV3 robot?

ẋ2 = A2x2 + B2u2KP
φ−

+

φ

φref
u2

Figure 9: Feedback control for yaw motion.

Consider the block diagram structure of Figure 9. A Proportional (P) controller with gain KP
φ is

employed now to regulate φ to φref.

Q17. Consider the matrices C2 and D2 defined in Section 2.2, and choose the gain KP
φ

of the proportional yaw controller. This can be done via simulation to ensure that the
closed loop system is stable and sufficiently fast.

4.2 Modelling in MATLAB Simulink

Go to the run LEGO SW.m MATLAB file, define values for the gains associated with the yaw
controller as calculated in the aforementioned tasks, and recall the general architecture as shown
in Figure 6.

12

Q 18. Use the Simulink Library Browser to fill in subsystem controller yaw of
LEGO SW.slx shown in Figure 6. Consider two separate cases according to whether
(20) or the proportional controller of Q17 is employed.

13

5 Control deployment

5.1 Simulation in MATLAB Simulink

Go to the LEGO SW folder in your directory, and consider the run LEGO SW.m MATLAB file, and
the Simulink file LEGO SW.slx. With reference to Figure 6, all subsystems should be now filled in
and connected.
Ensure that all parameters and control gains needed in the Simulink file are defined in the file
run LEGO SW.m, and run both files.

Q 19. Plot the time evolution of the states x1 and x2 of the robot to investigate its
performance in terms of tracking reference signals. Use the Signal Builder block
of the Simulink Library Browser to construct reference signals that involve both
positive and negative step changes.

Q20. Plot in separate graphs the trajectory traversed by the wheel’s middle point xm
and ym, respectively, as a function of time.

5.2 Simulation on LEGO Mindstorms EV3

Go to the LEGO HW folder in your directory. Two files are needed for this task: the run LEGO HW.m
MATLAB file, where all parameters shall be defined, and the Simulink file LEGO HW.slx. Switch
on the LEGO Mindstorms EV3 on by pressing the EV3 main Button. The EV3 intelligent brick
should blink and turn green. From the brick buttons navigate to Settings and confirm that EV3
is connected to WiFi and hence can communicate with the desktop computer.

The Simulink architecture exhibits the same form with that of Figure 6, with the difference
that the controllers are now implemented in discrete time, and the state space representation of
the robot should now be replaced by LEGO Mindstorms EV3 blocks from the relevant Simulink
library.
To this end, follow the subsequent steps:

1. Go to the robot subsystem, and then enter in the EV3 Robot subsystem that can be found
therein.

2. Open the Simulink Support Package for LEGO MINDSTORMS EVE3 Hardware
that can be found in the Simulink Library Browser. You should find a list of blocks
as shown in Figure 10.

3. Drag and drop from this list to the EV3 Robot, two Motor, two Encoder and one Gyro
Sensor blocks.

4. Connect to the Motor blocks the outputs of the robot input subsystem, and use the
Encoder and the Gyro Sensor to obtain sensor measurements for the angle of the left and
right motors, and the gyro output, respectively.

5. Connect all sensor signals to a Bus Creator block selected from the Simulink Library
Browser. The output of this bus constitutes the Raw Sensors output of the EV3 Robot
subsystem.

Ensure that the EV3 brick input port appearing in the Gyro Sensor block corresponds to the
port where the gyro sensor is connected in the robot. Moreover, since we have a discrete time
implementation, ensure that in all blocks the sample time is set to Ts (its numerical value is

14

provided in the run LEGO HW.m). As an example see Figure 11, while the same comments apply
for the other blocks. Moreover, the name of the signals appearing in the Bus Creator block
should be in correspondence with the ones appearing in the Bus Selector block in the Sensor
Processing subsystem.
Once the EV3 Robot subsystem is filled in, define the control gain values calculated in Sections
3 and 4 in run LEGO HW.m, and run the file. Ensure that all parameters needed in the Simulink
file are defined in run LEGO HW.m. Then run LEGO HW.slx following the procedure outlined in
LEGO Football guidelines to connect.pdf, making sure that your robot can communicate
with MATLAB/Simulink via Wi-Fi.

Figure 10: Simulink library related to the support package for LEGO Mindstorms EV3 hardware.

Figure 11: Gyro Sensor block.

15

Q 21. Plot the time evolution of the states x1 and x2 of the robot to investigate its
performance in terms of tracking the reference signals.

Q 22. Compare reference tracking when using the yaw controller of (20) versus the
proportional controller of Q17. What do you observe compared to your answer in
Q18?

Q23. Determine appropriate reference trajectories and show that your robot can track
the penalty area perimeter.

5.3 Driving the robot via a gamepad

Go to the LEGO HW game folder in your directory. Two files are needed for this task:
the run LEGO HW.m MATLAB file as updated at the end of Section 5.2, where all parameters shall
be defined, and the new Simulink file LEGO HW game.slx.

This Simulink file has the same architecture with LEGO HW.slx, with the addition that it in-
cludes a reset and a gamepad functionality to facilitate the task of playing football. If the robot falls
or crashes with other robots simply press the Touch Sensor (red button) on the EV3 instead of re-
running the MATLAB script; it resets the integrators and stops the motors. Run run LEGO HW.m
(all parameters needed in the Simulink file should have been defined therein), as well as the gamepad
Simulink file run gamepad.slx (see LEGO Football guidelines to connect.pdf for guide-
lines on edits needed in this file). Once this is running, then run LEGO HW game.slx making sure
that the gains of the controllers have been updated according to the the ones that you have defined
in the m-file.

Q24. Repeat Q23 and drive your robot around using the gamepad. Use an additional
motor so that your robot can kick/pass the ball.

Your robot should be ready to play football! The overall set-up should look like the one of Figures
12 and 13.

Figure 12: Place your robot on the football rug and start playing football!

16

Figure 13: Laboratory set-up with 6 Mindstorms EV3 robots.

17

6 Control design via pole placement

We consider an alternative control design technique. To this end, consider the architecture of Figure

7. Set z =
∫

(θ − θref)dt, thus leading to ż = θ − θref. Let K =
[
KP
θ KI

ψ̇
KD
θ KP

ψ̇
KI
θ

]>
∈ R5,

and denote by C̄1 the first row of C1. By inspection of Figure 7, we then have that

u1 = −K
[
x1
z

]
+K

[
xref1

0

]
. (22)

By (15) and (22), we have for the closed-loop system that

[
ẋ1
ż

]
=
([A1 04×1

C̄1 0

]
−
[
B1

0

]
K
)[x1

z

]
+

[
B1K

[−C̄1 0]

] [
xref1

0

]
. (23)

Note that he open-loop system is unstable, since A1 has one eigenvalue with positive real part. We

can determine K by placing the poles (eigenvalues) of
([A1 04×1

C̄1 0

]
−
[
B1

0

]
K
)

at some targetlo-

cation p = [p1 p2 p3 p4 p5], so that the closed-loop system is stable (all elements of p should have
negative real parts). This can be achieved by means of the so called pole placement procedure.

Pole placement procedure:

1. Compute the target charectiristic polynomial (whose roots are p1, . . . , p5). This is
given by Π5

i=1(s− pi).
2. Compute the characteristic polynomial associated with the closed loop system

whose state space matrix is given by
([A1 04×1

C̄1 0

]
−
[
B1

0

]
K
)
. This is given by

det

(
sI −

([A1 04×1
C̄1 0

]
−
[
B1

0

]
K
))

.

3. Equate the coefficients of the two characteristic polynomials. Notice that the
coefficients of the one of step 2 depend on the gains in K that need to be deter-
mined.

Note that the characteristic polynomial of a given matrix A is given by the determinant det(sI−
A), which is in turn the denominator of the system’s transfer function, and when equating it with
zero, its roots correspond to the poles of the system. I denotes an identity matrix of appropriate
dimension. The aforementioned procedure results in solving a system of 5 equations (since the
characteristic polynomials are of 5-th order), linear in the gains in K. For more details the reader
is referred to [8] (Chapter 9). However, this can be achieved using MATLAB.

Q 25. Choose p so that a complex pole pair is dominant, meeting the control design
specifications of Section 3.2. Calculate the control gain vector K that ensures that the
poles of the closed-loop system are in the locations contained in p.
Hint: Check the MATLAB command place.

Q26. Compare the performance of the set of gains calculated via pole placement with
those calculated via root locus and bode plots. Perform any fine tuning if appropriate.

18

Q 27. Consider the Simulink architecture of LEGO SW.slx, as illustrated in Figure 6.
Simplify the model to include only two state space Simulink blocks and two state
feedback control loops, with the one feedback gain being the vector K.

The overall laboratory set-up is in the form of Figure 14. Each robot is still automatically
stabilized via the developed control scheme, but is driven manually by setting the reference values
θ̇ref and φ̇ref in real-time via the gamepad according to Figure 14.

ψ̇, θ, φ control−
+

θ̇ref, φ̇ref

sensor values

Figure 14: Real-time steering principle, where ψ̇ control refers the the PI controller regulating the
pitch angle to zero, θ control refers to the PID controller regulating the forward/backward motion
of the EV3, and φ control refers to the P controller regulating the yaw motion.

Q28. How many feedback control loops do you recognize in Figure 14?

19

Appendix A

Table 1: Parameters and numerical values.

Symbol Value Measurement units Physical meaning

g 9.81 m/s2 gravity acceleration
m 0.024 kg wheel’s mass
M 0.6 kg main body’s mass
R 0.027 m wheel’s radius
D 0.04 m main body’s depth
W 0.14 m main body’s width
H 0.22 m main body’s length
L H

2 m main body’s half-length

J mR2

2 kgm2 wheel’s moment of inertia

Jψ
ML2

3 kgm2 pitch moment of inertia

Jφ
M(W 2+D2)

12 kgm2 yaw moment of inertia
Jdc 1e−5 kgm2 DC motor’s moment of inertia
Rdc 6.69 Ω DC motor’s resistance
Ke 0.468 V s/rad back EMF constant
KT 0.317 Nm/A DC motor’s torque constant
b 0.0022 Nms/rad friction coefficient between main body

and DC motor
b̄ 0.0022 Nms/rad friction coefficient due to rotation along

the wheel axis

References

[1] Y. Yamamoto, “NXTway-GS Model-Based Design - Control of Self-balancing two-
wheeled robot build with LEGO Mindstorms NXT,” Technical Report, pp. 1–73, 2009.
[Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/19147-nxtway-
gs–self-balancing-two-wheeled-robot–controller-design

[2] “Simulink and LEGO MINDSTORMS NXT,” Technical Report, MathWorks, Inc., pp. 1–23,
2013.

[3] Y. Kim, S. Kim, and Y. Kwack, “Dynamic analysis of a non-holonomic two-wheeled inverted
pendulum robot,” Journal of Intelligent and Robotic Systems, vol. 44, no. 1, pp. 25–46, 2005.

[4] B. Bonafilia, N. Gustafsson, P. Nyman, and S. Nilsson, “Self-balancing two-wheeled robot,”
Technical Report, Chalmers University of Technology, pp. 1–11, 2013. [Online]. Avail-
able: http://sebastiannilsson.com/wp-content/uploads/2013/05/Self-balancing-two-wheeled-
robot-report.pdf

[5] “NXT SegWay Robot, Lesson 1,” Technical Report, SolidWorks, pp. 1–45, 2013.

[6] K. Astrom and R. Murray, “Feedback Systems – An Introduction for Scientists and Engineers,”
Princeton University Press, Twelfth Edition, 2008.

[7] R. Dorf and R. Bishop, “Modern Control Systems,” Prentice Hall, Twelfth Edition, 2011.

[8] J. Lygeros and F. Ramponi, “Lecture Notes on Linear System Theory,” ETH Zurich, pp. 1–158,
2013.

20

