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Disclaimer

System’s engineer by education and my research looks like this
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of decision variables n, whereas in [53], a refined bound is
provided. The subsequent result is valid for any given bound on
the cardinality of the support set. Therefore, and since PN̄ is
convex, let d ∈ N+ be a known upper bound for the cardinality
of its support set. A direct application of the scenario approach
theory in [9] leads to the following result.

Theorem 2: Fix β ∈ (0, 1) and let

ε̄ = 1− N̄ −d

√
β
(
N̄
d

) . (9)

We then have that

P N̄

{
S̄ ∈ ∆N̄ :

P

{
δ ∈ ∆ : x∗N̄ /∈

m⋂

i=1

Xi(δ)

}
≤ ε̄

}
≥ 1− β. (10)

In words, Theorem 2 implies that with confidence at least 1−
β, x∗

N̄
is feasible for Pδ apart from a set of uncertainty instances

with measure at most ε̄. Notice that ε̄ is in fact a function of N̄ , β,
and d. We suppress this dependency though to simplify notation.
Note that even though PN̄ does not necessarily have a unique
solution, Theorem 2 still holds for the solution returned by
Algorithm 1 (assuming convergence), since it is a deterministic
algorithm and hence serves as a tie-break rule to select among
the possibly multiple minimizers.

Following [10], (9) could be replaced with an improved ε̄, ob-

tained as the solution of
∑d−1

k=0

(
N̄
k

)
ε̄k
(
1− ε̄

)N̄−k
= β. How-

ever, we use (9) since it gives an explicit relation expression
for ε̄, and also renders (10) directly comparable with the results
provided in the next section.

In case ε̄ exceeds one, the result becomes trivial. However,
note that Theorem 2 can be also reversed (as in experiment
design) to compute the number N̄ of scenarios that is required
for (10) to hold for given ε̄, β ∈ (0, 1). This can be determined
by solving (9) with respect to N̄ with the chosen ε̄ fixed (e.g.,
using numerical inversion). The reader is referred to Theorem 1
of [9] for an explicit expression of N̄ .

B. Probabilistic Feasibility—Scenarios as a Private
Resource

We now consider the case where the information carried
by the scenarios is distributed, that is, each agent has its own
set of scenarios, which constitute agents’ private information.
Specifically, assume that each agent i, i = 1, . . . ,m, is pro-
vided with a set Si = {δ

(1)
i , . . . , δ

(Ni )
i } ⊂ ∆ of Ni ∈ N+ i.i.d.

scenarios of δ, extracted according to the underlying proba-
bility measure P . Here, δ

(j )
i denotes scenario j of agent i,

j = 1, . . . , Ni , i = 1, . . . ,m. The scenarios across the differ-
ent sets Si , i = 1, . . . ,m, are independent from each other. The
total number of scenarios is N =

∑m
i=1 Ni . Consider then the

following optimization program PN , where each agent has its
own scenario set

PN : min
x∈Rn

m∑

i=1

fi(x)

subject to x ∈
m⋂

i=1

⋂

δ∈Si

Xi(δ). (11)

Program PN can be solved via the distributed algorithm of
Section II-A, so that a solution is obtained without exchanging
any private information regarding the scenarios. In fact, one can
apply Algorithm 1 with

⋂
δ∈Si

Xi(δ) in place of Xi , for all
i = 1, . . . ,m.

Similarly to Corollary 1, letting X∗N ⊆
⋂m

i=1

⋂
δ∈Si

Xi(δ) be
the set of minimizers of PN , we have the following corollary of
Theorem 1.

Corollary 2: Consider Assumptions 1–5 with the modifica-
tions stated in Section III, and Algorithm 1. We have that, for
some x∗N ∈ X∗N

lim
k→∞

‖xi,N (k)− x∗N ‖ = 0, for all i = 1, . . . ,m (12)

where xi,N (k) denotes the solution generated at iteration k, step
8 of Algorithm 1, when Xi is replaced by

⋂
δ∈Si

Xi(δ).
As in Section III-A, we show that the minimizer x∗N of PN to

which our iterative scheme converges according to Corollary 2 is
feasible in a probabilistic sense for Pδ . Here, a difficulty arises,
since we seek to quantify the probability that x∗N satisfies the
global constraint

⋂m
i=1 Xi(δ), where δ is a common parameter

to all Xi(δ), i = 1, . . . , m, while x∗N has been computed con-
sidering Xi(δ) for uncertainty scenarios that are independent
from those of Xj (δ), j += i, i = 1, . . . ,m.

Let S = {Si}m
i=1 be a collection of the scenarios of all agents.

Similarly to the previous case, we denote by d ∈ N+ a known
upper bound for the cardinality of the support set of PN . How-
ever, the way the constraints of the support set are split among the
agents depends on the specific S employed. Therefore, for each
set of scenarios S and for i = 1, . . . , m, denote by di,N (S) ∈ N
(possibly equal to zero) the number of constraints that belong to
both the support set of PN and Si , i.e., the constraints of agent i.
We then have that

∑m
i=1 di,N (S) ≤ d, for any S ∈ ∆N . We will

write di,N in short instead of di,N (S) and make the dependency
on S explicit only when necessary.

1) Naive Result: For any collection of agents’ scenarios, it
clearly holds that di,N ≤ d for all i = 1, . . . ,m, for any scenario
set. Thus, for each i = 1, . . . ,m, Theorem 2 can be applied
conditionally to the scenarios of all other agents to obtain a
local, in the sense that it holds only for the constraints of agent
i, feasibility characterization. Fix βi ∈ (0, 1) and let

ε̃i = 1− N i −d

√
βi(
Ni

d

) . (13)

We then have that

PN
{

S ∈ ∆N : P
{

δ ∈ ∆ : x∗N /∈ Xi(δ)
}
≤ ε̃i

}
≥ 1− βi.

(14)

By the subadditivity of PN and P , (14) can be used to quantify
the probabilistic feasibility of x∗N with respect to the global
constraint

⋂m
i=1 Xi(δ). Following the proof of [54, Corollary

1], where a similar argument is provided, we have that

PN
{

S ∈ ∆N : P
{

δ ∈ ∆ : x∗N /∈
m⋂

i=1

Xi(δ)
}
≤

m∑

i=1

ε̃i

}

= PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : ∃i ∈ {1, . . . ,m}, x∗N /∈ Xi(δ)

}

≤
m∑

i=1

ε̃i

}
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βi(
Ni
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We then have that

PN
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1], where a similar argument is provided, we have that
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= PN
{
S ∈ ∆N : P

{ m⋃

i=1

{
δ ∈ ∆ : x∗N /∈ Xi(δ)

}}
≤

m∑

i=1

ε̃i

}

≥ PN
{

S ∈ ∆N :

m∑

i=1

P
{

δ ∈ ∆ : x∗N /∈ Xi(δ)
}
≤

m∑

i=1

ε̃i

}

≥ PN
{ m⋂

i=1

{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗N /∈ Xi(δ)

}
≤ ε̃i

}}

≥ 1−
m∑

i=1

PN
{

S ∈ ∆N : P
{
δ ∈ ∆ : x∗N /∈ Xi(δ)

}
> ε̃i

}

≥ 1−
m∑

i=1

βi (15)

which leads to the following proposition.
Proposition 1: Fix β ∈ (0, 1) and choose βi , i = 1, . . . , m,

such that
∑m

i=1 βi = β. For each i = 1, . . . ,m, let ε̃i be as in
(13) and set ε̃ =

∑m
i=1 ε̃i . We then have that

PN
{

S ∈ ∆N : P
{

δ ∈ ∆ : x∗N /∈
m⋂

i=1

Xi(δ)
}
≤ ε̃
}
≥ 1− β.

(16)
Proposition 1 implies that with confidence at least 1− β, x∗N

is feasible for Pδ apart from a set with measure at most ε̃. This
result, however, tends to be very conservative thus prohibiting
its applicability to problems with a high number of agents. This
can be seen by comparing ε̃ with ε̄, where the latter corresponds
to the case where scenarios are treated as a common resource.
To this end, consider the particular set-up where Ni = N̄ and
βi = β/m, for all i = 1, . . . , m. By (9) and (13), it follows that
ε̃ = mε̃i ≈ mε̄, thus growing approximately (we do not have
exact equality since βi = β/m) linearly with the number of
agents. This can be also observed in the numerical comparison
of Section III-B2 (see Fig. 1). The issue with Proposition 1 is
that it accounts for a worst-case setting, where di,N = d for all
i = 1, . . . , m; however, this cannot occur, since

∑m
i=1 di,N ≤ d

implies that if di,N = d for some i, then dj,N = 0, for all j '= i,
i = 1, . . . , m.

2) Tighter Result: To alleviate the conservatism of Propo-
sition 1, and exploit the fact that

∑m
i=1 di,N ≤ d, we use the

recent results of [15].
For each i = 1, . . . ,m, fix βi ∈ (0, 1) and consider a function

εi(·) defined as follows:

εi(k) = 1− N i −k

√
βi

(d + 1)
(
Ni

k

) , for all k = 0, . . . , d. (17)

Notice that εi(·) is also a function of Ni , βi , and d, but this
dependency is suppressed to simplify notation. For each i =
1, . . . ,m, working conditionally with respect to the scenarios
S \ Si of all other agents, [15, Theorem 1] entails that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗N /∈ Xi(δ)

}
≤ εi(di,N )

∣∣∣
{
S \ Si ∈ ∆N−Ni

}}
≥ 1− βi. (18)

Fig. 1. Probability of constraint violation as a function of the num-
ber of agents, for the case where d = 50, β = 10−5 , Ni = N̄ = 4500,
and βi = β/m, for all i = 1, . . . , m. The probability of violation ε̄ (green
dashed line) for the case of Section III-A is independent of m, so it
remains constant as the number of agents m increases. For the case
of Section III-B1, ε̃ ≈ mε̄ (red dotted–dashed line) for the considered
set-up, so it grows approximately linearly with m. For the case of
Section III-B2, ε (blue solid line) is moderately increasing with m, thus
offering a less conservative result compared to the approach of Section
III-B1, while, in contrast to the approach of Section III-A, it allows for
distributed information about the scenarios.

Integrating (18) with respect to the probability of realizing the
scenarios S \ Si , we have that

PN
{

S ∈ ∆N : P
{

δ ∈ ∆ : x∗N /∈ Xi(δ)
}
≤ εi(di,N )

}

≥ 1− βi. (19)

The statement in (19) implies that for each agent i = 1, . . . ,m,
with confidence at least 1− βi , the probability that x∗N does not
belong to the constraint set Xi(δ) of agent i is at most equal to
εi(di,N ).

Note, however, that (19) is very different from (14), which
is obtained by means of the basic scenario approach theory,
since di,N is not known a priori but depends on the extracted
scenarios. Using (19) in place of (14) in the derivations of (15),
by the subadditivity of PN and P , we have that

PN
{

S ∈ ∆N : P
{

δ ∈ ∆ : x∗N /∈
m⋂

i=1

Xi(δ)
}

≤
m∑

i=1

εi(di,N )
}
≥ 1−

m∑

i=1

βi. (20)

Unlike (10) and (16), (20) is an a posteriori statement due to the
dependency of εi(di,N ) on the extracted scenarios. However,
the sought a priori result can be obtained by considering the
worst-case value for

∑m
i=1 εi(di,N ), with respect to the different

combinations of di,N , i = 1, . . . , m, satisfying
∑m

i=1 di,N ≤ d.
This can be achieved by means of the following maximization
problem:

ε = max
{di ∈N+ }m

i = 1

m∑

i=1

εi(di)

subject to
m∑

i=1

di ≤ d. (21)

... but
I will not show any equation
I will give a systems’ perspective to smart cities
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What makes a city smart?

(my) Definition: A city is smart if “it”
I exploits technology to advance operations and services
I Goals: safety, efficiency and sustainability

Figure taken from https://newsroom.cisco.com/
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What makes a city smart?
To achieve the goals of the future smart cities combine

I Information and communication technology (ICT)
I Data collection from citizens, devices, buildings ... and processing
I Connectedness: vehicles + services + users

Figure taken from https://www.nokia.com/
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Smart city: key urban market verticals

UK’s industry in the smart cities arena
1 Transportation management

2 Energy management
3 Water management
4 Waste management
5 Assisted living

Estimated global market of >$400 Billion in 20201

Catapult Connected Places: UK’s innovation accelerator for cities,
transport & place leadership2

1Report Ove Arup & Partners Ltd, Dept for Business Innovation & Skills
2

https://cp.catapult.org.uk/
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Transportation management

Connected transportation: informed user choices of how and when
they access transport, reduced congestion, ...

Shift to sustainable transportation: limits carbon emissions and
waste, uses renewable resources

Shared mobility systems: reduce urban density
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Energy management: Electricity, heating & cooling

Building energy management: monitoring and control of heating,
ventilation & air conditioning, lighting ...

Consumption savings through smart meters and efficient appliances

Consumers become prosumers
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A systems’ perspective

dataschedule

Smart city: plant/process

Data: output, sensors’ measurements

Schedule: input, actuation

How to achieve schedule from seeing data? Feedback!

... but there are major challenges!
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Math tools

Networks: Increased levels of connectedness
Game theory: Strategic behaviour and selfishness
Learning: Randomness due to uncertainty but availability of data

Game theory Networks

Learning
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Hybrid electric vehicle scheduling game

Mani players: Hybrid electric vehicles

Find optimal schedule but rational
Price responsive
Keep local preferences/ limits private

Main players: Aggregator

aggregator
price Aggregates (sums) total demand

Sets price
Broadcasts price to vehicles

Game rules: Price-demand curve

aggregator
price

Increase in demand leads to a higher price
Elastic demand
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Equilibrium seeking algorithm

Step 1: Local computation

Each vehicle computes in a best-response
fashion a tentative charging schedule

aggregator
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Equilibrium seeking algorithm

Step 2: Communication – from vehicles to aggregator

Electric vehicles broadcast their charging
schedules to aggregator

aggregator
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Equilibrium seeking algorithm

Step 3: Communication – from aggregator to vehicles

aggregator
price The aggregator broadcasts price according

to total demand-price curve

aggregator

price
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Equilibrium seeking algorithm

Step 4: GO TO Step 1 and REPEAT

aggregator
price

Vehicles compute charging
schedules on the basis of
price received

aggregator

price
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Do we reach an equilibrium? What does this mean?
Main result – Such an iteration:

aggregator
price

Converges to an equilibrium charging schedule;
no vehicle has incentive to deviate
Respects privacy requirements
Is “valley-filling”

0 2 4 6 8 10 12 14 16 18 20 22 24

2.5

3

3.5

4
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A fully distributed set-up

No aggregator!

Communication only with neighboring vehicles

Maintain a local price estimate at the vehicle level

aggregator
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A fully distributed set-up

No aggregator!

Communication only with neighboring vehicles

Maintain a local price estimate at the vehicle level

neighbors 

local price estimate
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A fully distributed set-up
No aggregator!
Communication only with neighboring vehicles
Maintain a local price estimate at the vehicle level

Price estimates reach consensus!
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Equilibrium efficiency or else ... price of anarchy

Motivation from fish or birds
I Many individuals acting selfishly but the population could do

something meaningful – the social welfare!
I Price of anarchy: “distance” between individuality and social welfare
I Price of anarchy in the limit, i.e. in large populations?
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Equilibrium efficiency or else ... price of anarchy

Social welfare: Optimum for population if all vehicles cooperate

Equilibrium: No incentives for vehicles to change their schedule

As number of vehicles increases, price of anarchy tends to zero!

equilibrium #vehicles ↑−−−−−−−→ social welfare

0 2 4 6 8 10 12 14 16 18 20 22 24

2.5

3

3.5

4
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Uncertain environment and data

Smart cities affected by endogenous and/or exogenous uncertainty

... but we have data!

Uncertainty

dataschedule

Schedule depends on data =⇒ random!

Learning decisions from data!
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Learning with guarantees

What does a good schedule mean?
I How well it performs when it comes to new data

How likely is it to make good schedules for all data-bags?
I Not possible, but we can guarantee this for most of the data-bags,

i.e. in probability
I A priori quantified confidence on the learned schedule!

…
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Summary

Moving to a smart-city paradigm exhibits several challenges that call
for math tools

Networks

Learning

Game theory

Other key factors: Socio-political issues; poverty levels; ethical issues
& interaction with humans
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The book of nature is written in the language of mathematics.

– Galileo Galilei, 1564 – 1642

Maurice Lubbock Memorial Lecture The Mathematics of Smart Cities June 24, 2022 20 / 21



Thank you for your attention!

Contact at:
kostas.margellos@eng.ox.ac.uk

Source of images: the internet, unless stated otherwise
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