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A fundamental concern in progressing Airborne Wind Energy (AWE) operations towards

commercial success, is guaranteeing that safety requirements placed on the systems are met. Due

to the high dimensional complexity of AWE systems, however, formal mathematical robustness

guarantees become difficult to compute. We draw on research from Hamilton-Jacobi (HJ)

reachability analysis to compute the optimal control policy for tracking a flight path, while

enforcing safety constraints on the system. In addition, the zero-sublevel set of the computed

value function inherent in HJ reachability analysis indicates the backward reachable set, the

set of states from which it is possible to safely drive the system into a target set within a given

time without entering undesirable states. Furthermore, we derive a switching law, such that

the safety controller can be used in conjunction with arbitrary least restrictive controllers to

provide a safe hybrid control law. In such a setup, the safety controller is only activated when

the system approaches the boundary of its maneuverability envelope. Such a hybrid control law

is a notable improvement over existing robust control approaches that deteriorate performance

by assuming the worst-case environmental and system behavior at all times. We illustrate our

results via extensive simulation-based studies.

I. Introduction
With the looming threat of the climate crisis becoming ever more detrimental, the need for low-cost and reliable

sources of energy becomes increasingly pressing. Wind remains the primary non-hydro renewable and to reach net-zero

energy targets of 8008 TWh in 2030, will need to grow annually by 18% between 2021 and 2030 [1]. Conventional wind

turbines have high material costs and often struggle with unreliable wind patterns present at low altitudes. Airborne

Wind Energy (AWE) systems solve many of the problems of conventional wind turbines by harnessing wind energy at

high altitudes, where stronger and more reliable wind currents can be found. Thus, over the past decade, we have seen a
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Fig. 1 Tether rupture during traction phase of flight. The red dot marks the point during flight at which a
tether rupture occurs due to the maximum tether force being exceeded.

rapid increase in research and development into AWE from both academia and the private sector [2, 3].

In this paper, we only consider Ground-Gen systems, whereby energy is obtained by continuously performing two

phases of flight, a traction phase, and a retraction phase. During the traction phase, a tethered kite or fixed-wing aircraft

is flown in crosswind conditions at altitudes of up to 1000m above ground. The traction force acting on the aircraft’s

tether is converted into electricity using a generator and winch located at the base of the tether [4, 5]. For a discussion

of alternative AWE systems, we refer to [5, 6]. Since the tether is gradually reeled out during the traction phase, the

system will eventually need to be reset. For this, the aircraft is flown back to its starting altitude upwind in a phase

commonly referred to as the retraction phase. During the retraction phase, a small amount of the previously generated

energy needs to be spent on reeling in the tether. Nevertheless, AWE systems have been shown to be able to create a net

energy output of over 20 kW [5] with proposed larger systems producing energy in the range of MWs [7].

For AWE systems to become widely adopted, it is necessary to provide formal guarantees on the state operation

and control of such systems. The aim of this paper is to ensure robustness in the sense of safety-aware control of an

AWE system with minimal impact on power generation. To this end, we propose a hybrid control law, whereby a safety

controller is only activated when a critical system failure is predicted to occur. We consider an AWE setup as proposed

in [8], whereby a fixed-wing aircraft is flown in a figure of eight flight pattern, controlled using nonlinear dynamic

inversion (NDI), a control strategy common in aviation applications. The tether configuration is changed from [8], such

that a tether rupture is deemed to occur when a maximum tether force of 1.87 kN is exceeded. As can be seen in Fig. 1,

the tether ruptures before the aircraft can complete one full cycle of flight. Using Hamilton Jacobi (HJ) reachability

analysis, we will synthesize a safety controller as well as switching conditions, such that in a hybrid control setup,

minimal penalties on power generation are incurred, while ensuring a safe flight without tether rupture.

HJ reachability analysis has become a well-adopted formal verification method, whereby the optimal controller is
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derived through computation of the backward reachable set (BRS). Its advantages include compatibility with nonlinear

system dynamics, formal treatment of nonlinear bounds, and recently also with multi-objective optimization problems

[9, 10]. However, since HJ reachability analysis requires solving a quasi-variational inequality over a gridded state space,

it is subject to the curse of dimensionality. As such, its applications have been limited to low-dimensional systems [11].

To this end, we will derive a novel low-dimensional formulation of the system dynamics of AWE systems and

formulate the safety critical control problem as a differential game of two players. Furthermore, for numerical reasons

that will become evident later on, we are required to grid the state space, thus necessitating a coordinate transformation

that ensures only relevant states are considered for controller synthesis, minimizing numerical overhead. Thus the key

contributions of this paper are

1) the development of a simplified low dimensional AWE model that is accurate enough for safety-critical control

purposes (Section III),

2) the synthesis and deployment of the safety-critical controller based on the developed abstractions and HJ

reachability analysis, a non-trivial application for which we have made the code and simulation environment

available (Section IV),

3) the computation of the optimal control/disturbance actions that optimize the Hamiltonian of the underlying

optimal control problem, which is case-dependent and non-trivial in the setting (Section IV.B).

4) the validation of the performance of the controller by applying it to a high fidelity model, thus rendering our

controller as an add-on to existing tools to guarantee safety (Section V).

The remainder of the paper is organized as follows: Section II discusses the AWE model used for simulation purposes

as well as the guidance strategy and baseline controller. Section III introduces the simplifications, abstractions, and the

new reference frame used to derive a low dimensional model of the AWE system suitable for safety-control synthesis,

with the safety controller being derived and introduced in Section IV. Finally, in Section V we validate the controller in

its hybrid control setup using the high fidelity AWE model and discuss the effects on power generation with Section VI

providing concluding remarks and directions of future research.

II. Modeling
The modeling of AWE systems has been well studied and a variety of definitions for the equations of motion have

been derived. Yet commonly AWE systems require a high number of states in order to accurately capture both the

dynamics of the kite or aircraft as well as the tether and the associated winch controller. Since the goal of this paper is

to derive a safety-critical controller for the AWE system using HJ reachability analysis, we seek the development of a

simplified yet accurate enough, from a control point of view, model.

In the following section, we begin by modeling the AWE system based predominantly on the work of [8] with

extensions taken from [12, 13] and [14]. This model will be used for simulation purposes in Section V and is presented
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to provide the necessary notation and understanding needed for the abstractions and synthesis, the primary contributions

of this work, in Sections III and IV.

A. Reference Frames

For the discussion of the dynamics of AWE systems, it is useful to introduce a variety of reference frames. The

utilized reference frames (with the exception of the Γ frame, Section III.C) are common for AWE systems and have

been extensively discussed in [8] and [15]. For the transformation from one reference frame to another, we introduce

the transformation matricesM(·)(·), where the first subscript indicates the destination frame and the second subscript

indicates the origin frame. Thus, as an example, the kinematic velocity in the 𝜏 frame, where 𝜏 denotes one of the

employed frames, can be obtained from the body fix frame (B) by (vk)𝜏 = M𝜏B(vk)B. The transformation matrices for

the reference frames are listed in the appendix. We utilize bold notation for vectors and matrices and regular notation

for scalars. Furthermore, we utilize subscripts to denote vector elements, i.e., (𝑣k)𝜏,y denotes the y component of the

kinematic velocity in the 𝜏 frame.

1. Wind Frame

The wind frame (W) is a rotation of the commonly used North-East-Down (NED or O) frame. The x-axis of the W

frame is aligned with the mean wind direction (denoted by b). We assume that the mean wind direction is such that the

z-axis of the W frame points upwards and the y-axis forms a right-hand reference frame (Fig. 2).

2. Tangential Frame

The tangential frame (𝜏) is centered at the position of the aircraft, such that the z-axis points towards the origin of

the NED frame. To this end, the x-axis points towards the north direction, while the y-axis completes a right-hand

reference frame. Since the 𝜏 frame moves together with the aircraft, its location is determined using the longitude (_)

and latitude (𝜙) as well as the distance to the origin (ℎ𝜏). The tangential frame is shown in purple in Fig. 2.

3. Aerodynamic Frame

The aircraft’s kinematic velocity is denoted by vk and is composed of the aerodynamic velocity va as well as the

wind velocity vw, i.e., vk = va + vw. This relationship holds true regardless of reference frame. For a discussion of the

aerodynamic velocity, we define the aerodynamic frame (A) such that the velocity vector va is aligned with the x-axis.

For the derivation with respect to the NED frame (shown in blue in Fig. 2), we first rotate the NED frame by the course

angle 𝜒a and path angle 𝛾a, resulting in the intermediate frame 𝐴 (shown in orange in Fig. 2), before tilting the frame by

the bank angle `a. The A frame is shown in green in Fig. 2.
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Fig. 2 Visualization of the NED frame (blue), intermediate aerodynamic frame 𝐴 (orange), the aerodynamic
frame A (green), the body frame B (red) and the tangential frame (purple).

4. Body-Fixed Frame

The body-fixed frame (B) is used to calculate the aerodynamic forces acting on the aircraft. It can be obtained from

the aerodynamic frame (shown in green in Fig. 2) using the angle of attack 𝛼a as well as the sideslip angle 𝛽a (the

sideslip angle is neglected in this work). The B frame is shown in red in Fig. 2.

B. Aircraft Equations of Motion and Ground Station Model

For the AWE system considered in this paper, we simplify the modeling of the aircraft by neglecting the yaw, pitch,

and roll rates as well as the sideslip angle 𝛽𝑎. As control inputs we consider the bank angle `𝑎 as well as the angle of

attack 𝛼a. A more complex model of the AWE system is outside of the scope of this paper.

The position of the aircraft is defined in the W frame by [_, 𝜙, ℎ𝜏] and it moves with velocity 𝑣𝑎 along the x-axis of

the 𝐴 frame. To connect the 𝐴 frame with the NED frame, we add the course angle 𝜒𝑎 and path angle 𝛾𝑎 as additional

states. To influence the heading of the aircraft, we utilize the bank angle `a and angle of attack 𝛼a as inputs to the system

and assume that the sideslip angle 𝛽a is negligible, i.e., 𝛽a = 0.

Therefore our initial set of states used are [_, 𝜙, ℎ𝜏 , 𝑣a, 𝜒a, 𝛾a] ∈ R6. The position propagation can be calculated

from the kinematic velocity in the 𝜏 frame as follows:

¤_ =
(𝑣k)𝜏,y

cos(𝜙)ℎ𝜏
(1)

¤𝜙 =
(𝑣k)𝜏,x
ℎ𝜏

(2)

¤ℎ𝜏 = −(𝑣k)𝜏,z (3)

where (𝑣k)𝜏,x, (𝑣k)𝜏,y and (𝑣k)𝜏,z denote the x, y and z components of the kinematic velocity in the 𝜏 frame, respectively.
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(vk)𝜏 is calculated by transforming the kinematic velocity from the O frame to the W frame, and then to the 𝜏 frame

using the appropriate transformation matrix,MWO andM𝜏W, respectively, found in the appendix. (vk)O is derived from

the aerodynamic and wind velocity

(vk)O = MOA

[
𝑣a, 0, 0

]𝑇
A

+ (vW)O (4)

By assuming the wind field stays stationary, we are able to calculate the derivative of the kinematic velocity using

the gravitational force (Fg), aerodynamic force (Fa), as well as the force the tether exerts on the aircraft (Ft). For a

complete derivation we refer to [8].



¤𝑣a

¤𝜒a

¤𝛾a


=

1
𝑚a



1 0 0

0 1
𝑣a cos 𝛾a

0

0 0 − 1
𝑣a


(
MAO [(Fg)O + (Ft)O] + MAAMAB(Fa)B

)
(5)

where 𝑚a denotes the mass of the aircraft. Note that the matrixMAO depends on the course and path angles 𝜒a and 𝛾a,

MAA depends on the bank angle `a andMAB depends on the angle of attack 𝛼a and sideslip angle 𝛽a.

1. Ground Station Model

The ground station serves as the power generator for the AWE system. The winch controller within the ground

station is responsible for reeling out and reeling in the tether during flight. The winch is essentially a drum on which

the tether is wound. The position of the drum is defined by \w and the reeled out tether length is simply calculated as

𝑙tether = 𝑟w\w, where 𝑟w is the drum radius. Using the same dynamics as in [13], we can thus describe the winch using a

second order system.

¤\w = 𝜔w (6)

¤𝜔w =
1
𝐽w

(𝑟w | |Fw | |2−aw ¤\w + 𝑀c) (7)

where aw is the friction coefficient, 𝜔w is the rotation rate of the drum, Fw is the tether force at the ground station (equal

to F𝑠,0 in II.B.3), and 𝐽w is the inertia of the winch. For the control of the winch in the simulation study discussed in

Section V, we regulate the control moment 𝑀c using a PI-controller that attempts to track a given reference tether force,

𝐹ref .
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2. Gravitational and Aerodynamic Forces

The gravitational force can simply be expressed in the O frame as

(Fg)O =
[
0, 0, 𝑚a𝑔

]𝑇
∈ R3 (8)

where 𝑔 is the gravitational constant. As mentioned earlier, we assume yaw, pitch and roll rates to be zero and neglect

the effects of the sideslip angle 𝛽a. This simplifies the aerodynamic coefficients derived in [12], to



𝐶x

𝐶y

𝐶z


=



𝐶x,0(𝛼a) + 𝐶x, 𝛿e (𝛼a)𝛿e

𝐶y, 𝛿a (𝛼a)𝛿a + 𝐶y, 𝛿r (𝛼a)𝛿r

𝐶z,0(𝛼a) + 𝐶z, 𝛿e (𝛼a)𝛿e


(9)

where we consider the aileron (𝛿a), elevator (𝛿e) and rudder (𝛿r) deflections to be constant and all 𝛼a dependent

coefficients are approximated using second order polynomials. Using the aerodynamic coefficients we can then calculate

the aerodynamic force of the aircraft as

(Fa)B =
1
2
𝜌Sref𝑣

2
a

[
𝐶x, 𝐶y, 𝐶z

]𝑇
(10)

where Sref is the aerodynamic reference area corresponding to the projected surface area of the aircraft wing [12], and 𝜌

is the air density.

3. Tether Forces

For the calculation of the tether forces (Ft) that act on the aircraft, we use models of varying complexity. For the

controllers, we rely on a straight tether approximation, whereas for simulation purposes, we use a tether model similar

to the model derived in [14]. We begin by deriving the most complex of the three tether models employed in this paper.

Let us first consider a fixed number of lumped masses connected by 𝑛 spring-damper elements. The length of each

segment is denoted by 𝑙𝑠 and the spring and damping constants for each segment are denoted by 𝑘 and 𝑐, respectively.

Each tether segment is modeled as a point mass with position p𝑖 and velocity v𝑖 , as shown in Fig. 3. The equations of

motion of the tether segment are given by

¤p𝑖 = v𝑖 (11)

¤v𝑖 = 𝑚𝑡F𝑖 (12)

where 𝑚𝑡 is the mass of an individual segment and F𝑖 is the tether segment force. The tether segment force for segment
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Fig. 3 Visualization of the tether modeled as a straight tether (red) and as a fixed number of lumped masses
(blue). The velocities of the point masses are shown by the red and blue vectors respectively.

i is given by

F𝑖 = F𝑠,𝑖+1 − F𝑠,𝑖 − F𝑔,𝑠 + F𝑎,𝑖 (13)

where F𝑔,𝑠 is the gravitational force acting on the tether segment, F𝑎,𝑖 is the aerodynamic drag acting on the i-th

segment, and F𝑠,𝑖 is the tensile force of the i-th segment.

The tensile force is calculated according to Hooke’s law

F𝑠,𝑖 =
(
𝑘 (| |s𝑖 | |2−𝑙𝑠) + 𝑐( s𝑖

| |s𝑖 | |2
s𝑣,𝑖)

) s𝑖
| |s𝑖 | |2

(14)

where s𝑖 = p𝑖 − p𝑖−1 and s𝑣,𝑖 = v𝑖 − v𝑖−1. Thus the maximum tether force is exerted on the final segment attached to the

aircraft, i.e., F𝑡 = F𝑠,𝑛+1, with s𝑛+1 = paircraft − p𝑛 and s𝑣,𝑛+1 = vaircraft − v𝑛 and paircraft and vaircraft are the position and

velocity, respectively, of the aircraft in Cartesian coordinates.

For the tether drag calculation, we begin by introducing the apparent air velocity, v𝑎,𝑖 , composed of the wind speed

at the height of the i-th particle (vw,𝑖), as well as the average segment velocity

v𝑎,𝑖 = vw,𝑖 −
v𝑖+1 + v𝑖

2
(15)

Each segment is modeled as a cylinder, thus the drag is caused predominantly by the velocity perpendicular to the tether

segment

v𝑎,𝑖,⊥ = v𝑎,𝑖 −
( s𝑇

𝑖
v𝑎,𝑖

| |s𝑖 | |2

) s𝑖
| |s𝑖 | |2

(16)
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Using the perpendicular velocity components, the final tether drag is given by

F𝑎,𝑖 =
1
2
𝜌𝐶𝑑,𝑡v𝑎,𝑖,⊥ | |v𝑎,𝑖,⊥ | |2𝐴eff,𝑡 (17)

where 𝐶𝑑,𝑡 is the tether drag coefficient and 𝐴eff,𝑡 is the projected tether area perpendicular to v𝑎,𝑖 ,

𝐴eff,𝑡 = 𝑑𝑡 | |s𝑖 − s𝑖
v𝑎,𝑖

| |v𝑎,𝑖 | |2
| |2 (18)

where 𝑑𝑡 is the tether diameter.

This complex tether model requires 6𝑛 additional states, where 𝑛 is the number of segments used, and is therefore

only suited for simulation purposes. For the controller synthesis we use two simplified tether models that rely on a

straight tether approximation. Both models will be introduced in Section III.A and Section II.E.

4. Wind Field Model

To capture the varying wind speeds at different altitudes we employ the wind shear model provided by the MATLAB

Aerospace Toolbox [16].

(vshear)O = 𝑊20
ln( ℎ

𝑧0
)

ln( 20
𝑧0

)
(19)

where ℎ is the altitude of the aircraft in feet, 𝑧0 is a constant equal to 0.15 feet, and𝑊20 is the measured wind speed at an

altitude of 20 feet.

In addition to the wind shear, we also model atmospheric turbulence in form of a continuous Dryden wind turbulence

model. The Dryden model is a stochastic gust model, whereby the linear and angular velocities of the atmospheric

turbulence are modeled as spatially varying stochastic processes, each with a specific power spectral density. The

longitudinal, lateral, and vertical component spectra functions are provided by Military Handbook MIL-HDBK-1797B

[17]. For the implementation of the Dryden model, we utilize the continuous Dryden model block provided by the

MATLAB Aerospace Toolbox [16].

Neglecting the angular rates of the atmospheric turbulence and assuming the pitch, roll and yaw rates of the aircraft

stay constant, the wind turbulence is given by (vturb)W = [𝑢𝑔, 𝑣𝑔, 𝑤𝑔]𝑇 ∈ R3, where 𝑢𝑔 is the longitudinal turbulence

velocity aligned along the horizontal relative mean wind vector, 𝑣𝑔 is the lateral turbulence velocity and 𝑤𝑔 is the

vertical turbulence velocity. Due to the varying altitudes of the aircraft, the terms 𝑢𝑔, 𝑣𝑔 and 𝑤𝑔 are computed by

passing a band-limited white noise signal through two sets of forming filters, one for low altitudes and one for high

altitudes, and then interpolating the results.

Finally the wind velocity acting on the aircraft is computed by adding the turbulence to the wind shear (vW)O =

(vturb)O + (vshear)O.
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C. Optimal Flight Path

The fundamental idea behind Ground-Gen AWE is to transfer the force from the aerodynamic lift of the aircraft

or kite to the connected tether [18]. Similar to the blades of a wind turbine, this can be done by moving the aircraft

perpendicular to the mean wind direction. To this end, it has become common practice in the AWE community to

adopt a figure eight flight pattern. We thus use a Lissajous curve, Γ, lying on a sphere as the reference flight path. The

two-dimensional curve can be described by its longitude _Γ and latitude 𝜙Γ. We parameterize Γ on S2 using the arc

length 𝑠. In Cartesian coordinates the curve is then given by

ΓP(𝑠) =



cos_Γ(𝑠) cos 𝜙Γ(𝑠)

sin_Γ(𝑠) cos 𝜙Γ(𝑠)

sin 𝜙Γ(𝑠)


ℎ𝜏 (20)

For the specific Lissajous curve, we opt for the Lemniscate of Booth [19], a commonly used figure eight curve, using the

height/width ratio of 𝑎Booth/𝑏Booth = 120/200. The longitude and latitude of the Lemniscate of Booth can be calculated

as follows:

_Γ(𝑠) =
1
ℎ𝜏

𝑏Booth sin 𝑠

1 + ( 𝑎Booth
𝑏Booth

)2 cos2 𝑠
(21)

𝜙Γ(𝑠) =
1
ℎ𝜏

𝑎Booth sin 𝑠 cos 𝑠
1 + ( 𝑎Booth

𝑏Booth
)2 cos2 𝑠

(22)

We define our reference curve to lie centered on the horizon. However, during flight, we rotate the curve by 𝜓0 to assist

with power generation. Thus the tracking curve used during flight is given by

Γ(𝑠, 𝜓0) =



cos(𝜓0) 0 − sin(𝜓0)

0 1 0

sin(𝜓0) 0 cos(𝜓0)

︸                           ︷︷                           ︸
MWP

ΓP(𝑠) (23)

Finally, the tangent of the curve is given by t(𝑠) = 𝑑Γ
𝑑𝑠

= 𝜕Γ
𝜕_Γ

𝜕_Γ
𝜕𝑠

+ 𝜕Γ
𝜕𝜙Γ

𝜕𝜙Γ

𝜕𝑠
.

D. Guidance Strategy

Since we only derive the safety controller for the traction phase, the most critical part of flight (neglecting take-off

and landing), we refer to [8] for a complete discussion of the guidance strategy employed during retraction and transition

from retraction to traction.
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Fig. 4 Visualization of the guidance strategy to produce the optimal course heading (purple arrow).

As shown in Fig. 7, the shortest path from the position of the aircraft (denoted by K) to the closet point on the

tracking curve (denoted by C), is given by the geodesic vector 𝝈. For perfect path tracking, we need to minimize | |𝝈 | |2.

Taking the shortest path, however, would result in the aircraft intercepting the curve perpendicularly. In practice, this is

not desirable and thus we need to introduce a commanded flight direction that results in the distance to the tracking

curve being minimized, while also ensuring that when the aircraft intercepts the tracking curve, its kinematic velocity is

aligned with the tangent of the curve, t.

The commanded flight path can be defined on S2, independently of the distance to the origin by simply scaling the

parameters 𝑎Booth and 𝑏Booth by 1/ℎ𝜏 . The optimal course angle (𝜒)𝜏 should point the aircraft along the geodesic when

far from the curve, however, point perpendicular to the geodesic to align with t(𝑠) when close to the curve. We set the

optimal flight path angle to zero to prevent the aircraft from going into a nose dive in order to quickly gain speed and

reach the curve, something that would be counterintuitive to energy production.

To this end, let us define the optimal course and path angles as

(𝛾cmd)𝜏 = 0 (24)

(𝜒cmd)𝜏 = (𝜒∥)𝜏 + (Δ𝜒)𝜏 (25)

with (𝜒∥)𝜏 = arctan 𝑡𝑦

𝑡𝑥
, where 𝑡𝑥 and 𝑡𝑦 denote the x and y components of the curve tangent. The second component,

Δ𝜒𝜏 , of the command course angle ensures that as we approach the tracking curve, we align ourselves with the curve

tangent t. This is done by introducing a tuning parameter 𝛿0, allowing us to calculate course change as

(Δ𝜒)𝜏 = arctan
sign(𝜎)| |𝝈 | |2

𝛿0
(26)

This tracking strategy is similar to that of [15], and is visualized in Fig. 4.
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E. Benchmark Controller

Since the safety controller derived in this paper considers worst-case environmental conditions, to alleviate

conservatism we will activate it only when safety is at stake. Furthermore, the safety controller is only configured for

the flight of the aircraft in the traction phase. To this end, we employ a primary controller synthesized using nonlinear

dynamic inversion (NDI), an approach common in the aerospace sector [20]. For the NDI controller, we begin by

calculating the optimal course and path angle rates ( ¤𝜒cmd and ¤𝛾cmd) that lead to perfect curve tracking. Together with

the course and path angle errors, we are able to compute the necessary pseudo-control inputs

a𝜒 = ¤𝜒cmd + 𝑘 𝑝,𝜒(𝜒cmd − 𝜒) − ¤𝜒est (27)

a𝛾 = ¤𝛾cmd + 𝑘 𝑝,𝛾(𝛾cmd − 𝛾) − ¤𝛾est (28)

where 𝑘 𝑝,𝜒 and 𝑘 𝑝,𝛾 are control gains. Furthermore, ¤𝜒est and ¤𝛾est are the estimated path angle rates based on a simplified

version of the aircraft dynamics using a straight tether approximation, F̂𝑡 . Using the pseudo control inputs, we can

construct the optimal control input, 𝑢NDI, using the inverted aircraft dynamics. For detailed controller synthesis of the

NDI controller, we refer to [8].

However, unlike in [8], we cannot assume perfect tension tracking. When the safety controller is activated, the tether

tension will be reduced. We, therefore, update the simplified model of the NDI controller to use the true tether force,

| |F𝑡 | |2, projected along a straight line towards the origin. Thus the modified straight tether approximation is given by

F̂𝑡 = paircraft
| |paircraft | |2 | |F𝑡 | |2, where paircraft is the position of the aircraft, and F𝑡 is given by F𝑠,𝑛+1 as in (14).

III. Model Abstraction and Safety Considerations
For the derivation of the safety controller presented in Section IV, the previously introduced model does not suffice,

since it requires too many states for synthesis. We thus begin by introducing a simplification of the tether model that

allows us to introduce adversarial winch control into the AWE dynamics. Together with a new reference frame and the

subsequent safety control model, this section provides the first of our four key contributions.

A. Simplified Tether Model

As mentioned in the previous sections, a full particle tether model requires too many states, prohibiting its adoption

for the safety controller. From field tests conducted with an aircraft in [15], for a small aircraft the tether forces far

exceed the gravitational forces and a straight tether approximation is reasonable. However, if larger systems with larger

tethers are employed, the tether sag will need to be taken into account. For the AWE system considered in this paper, for

the purpose of controller synthesis, we assume that the tether sag remains negligible and, therefore, opt to approximate

the position and velocity of the tether segments. To this end, we assume that the position and velocity of the tether
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segments are distributed evenly along a straight line between the origin and the position of the aircraft. Thus the tether

particle’s position and velocity can be computed as the x, y, and z projections of the straight tether up to the i-th particle,

i.e.,

p𝑖 =
𝑖ℎ𝜏

𝑛 + 1



cos(𝜙) cos(_)

cos(𝜙) sin(_)

sin(𝜙)


(29)

v𝑖 =
𝑖 ¤ℎ𝜏
𝑛 + 1



cos(𝜙) cos(_)

cos(𝜙) sin(_)

sin(𝜙)


− 𝑖ℎ𝜏

𝑛 + 1



sin(𝜙) ¤𝜙 cos(_) + cos(𝜙) sin(_) ¤_

sin(𝜙) ¤𝜙 sin(_) − cos(𝜙) cos(_) ¤_

− cos(𝜙) ¤𝜙


(30)

In Fig. 3 a comparison of the straight tether and the full tether model is shown. Recall that the tether force acting on the

aircraft is given by the spring force of the (n+1)-th segment, i.e., F𝑡 = F𝑠,𝑛+1. The dominating factor in Hooke’s law is

given by the term | |s𝑛+1 | |2−𝑙𝑠, which is the difference between the segment length and the distance between the final

tether point mass and the aircraft. Having | |s𝑛+1 | |2−𝑙𝑠 > 0 implies the distance is greater than the length of the tether

and thus the tether is under tension. Modeling this term accurately is imperative for calculating the tether force, as the

slightest deviations result in vastly inaccurate force calculations. To this end, let us introduce Δ𝑡 = | |s𝑛+1 | |2−𝑙𝑠 as an

additional state. By (14), the tether force acting on the aircraft can be calculated as

F𝑡 =
(
𝑘Δ𝑡 + 𝑐( s𝑛+1

| |s𝑛+1 | |2
s𝑣,𝑛+1)

) s𝑛+1
| |s𝑛+1 | |2

(31)

where the position and velocity of the tether point masses is computed using (30).

The derivative of Δ𝑡 is then given by

¤Δ𝑡 =
s𝑇
𝑣,𝑛+1s𝑛+1

| |s𝑛+1 | |2
− 𝑟w ¤\w

𝑛 + 1
(32)

where ¤𝑙𝑠 , the reel-out speed of the tether, is substituted according to the winch dynamics (7). In order to keep the number

of system states minimal, we need to decouple the winch system from the aircraft dynamics. To this end, we model the

effects of the winch as a scalar disturbance, 𝑑Δ𝑡
B ¤Δ𝑡 . By accounting for worst-case winch behavior, the system can be

considered robust to arbitrary winch control. To compute the expected range of values that the derivative of Δ𝑡 might

take, we run a simulation of the AWE simulation using the baseline controller, introduced previously.

In Fig. 5, ¤Δ𝑡 for the traction phase of flight is shown. Since ¤Δ𝑡 never exceeds 0.0015𝑚
𝑠
, we constrain the disturbance,

𝑑Δ𝑡
, to lie within the interval [−𝑑Δ𝑡 ,max, 𝑑Δ𝑡 ,max] with 𝑑Δ𝑡 ,max = 0.005𝑚

𝑠
.
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Fig. 5 ¤Δ𝑡 during the traction phase of flight, using the baseline NDI controller.

B. Adversarial Wind Turbulence

Since we model the wind turbulence as a stochastic process, we need to ensure that the safety controller can account

for worst-case wind gusts, i.e., wind gusts that drive the system away from its target trajectory, and/or lead to a tether

rupture. To this end, we model the wind turbulence as an adversarial disturbance input to the system. Thus the wind

velocity for controller synthesis is given by

(vW)O = (vshear)O + (dturb)O (33)

where dshear ∈ R3 is an additional disturbance vector

Similar to how we computed the bounds for 𝑑Δ𝑡
, we simulate the flight of the aircraft using the baseline controller

and analyze the behavior of 𝑢𝑔, 𝑣𝑔 and 𝑤𝑔. The wind gusts are shown in Fig. 6. From the behaviour 𝑢𝑔, 𝑣𝑔 and 𝑤𝑔, we

can safely choose each element of dturb to be bounded by ±4𝑚
𝑠
.

Fig. 6 The behavior of the wind gusts during 50 seconds of flight.
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C. Γ Frame and Safety Control Model

As visualized in Fig. 7, the geodesic vector pointing from C along the geodesic towards K, is always orthogonal to t.

The derivative of Γ together with the direction of the geodesic vector can, therefore, be used as basis vectors to construct

another reference frame that will become useful during gridding, as discussed in Section IV. This new reference frame

will be referred to as the Γ frame. Any point on S2 defined using the longitude _ and latitude 𝜙 can also be defined using

the Γ frame, where the first coordinate, 𝑠, describes an arbitrary point along the curve Γ, and the second coordinate

𝜎 = | |𝝈 | |2 describes the geodesic distance in meters perpendicular to t(𝑠). The calculation of the geodesic for a sphere

is derived from [21] and relies on solving the geodesic equations for a sphere.

Fig. 7 Visualization of the Γ frame. 𝑠 is used to denote the position along the reference curve. The geodesic
vector, 𝜎, describes the distance to the reference curve.

The derivatives of 𝑠 can be obtained by projecting the kinematic velocity of the aircraft onto t. Similarly, the

derivative of 𝜎 is obtained by projecting the kinematic velocity onto a perpendicular rotation of t, denoted by t⊥.

¤𝑠 =
(t)𝜏(v𝑘)𝜏
| |t| |2𝑙Γ

(34)

¤𝜎 =
(t⊥)𝜏(v𝑘)𝜏
| |t⊥ | |2

(35)

where 𝑙Γ denotes the arc length of the Lissajous curve Γ. Using the Γ frame allows us to replace the longitude and

latitude resulting in the final set of states used for controller synthesis

x B [𝑠, 𝜎, ℎ𝜏 , 𝑣a, 𝜒a, 𝛾a,Δ𝑡 ]𝑇 ∈ R7 (36)

The transformation between the NED frame and the Γ frame is not bijective, thus we need to take the velocity vectors

into account to derive a deterministic transformation. To this end, we choose the transformation from the NED frame to

the Γ frame, such that the error between (vk) and t is minimized. Finally, we can summarize the equations of motion for
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the simplified aircraft model as ¤x = f(x, u, d). The control inputs, u, and disturbances, d, are defined as

u B


𝛼a

`𝑎

 ∈ 𝑈 ⊂ R2, d B


𝑑Δ𝑡

dturb

 ∈ 𝐷 ⊂ R4 (37)

The aircraft dynamics are composed of f̂, affected only by the control inputs, and f𝐶(x, d), affected only by the

disturbances and incorporating all remaining additive terms, i.e., f(x, u, d) = f̂(x, u) + f𝐶(x, d). Decomposing the

dynamics serves both the presentation of the final system dynamics, as well as the derivation of the Hamiltonian in the

subsequent section. Since the control inputs affect only the aircraft velocity, course, and path angles, with a slight abuse

of notation, we omit the four remaining states derivatives that are zero, allowing us to summarize f̂(x, u) as

f̂(x, u) =
1
𝑚a



1 0 0

0 1
𝑣a cos 𝛾a

0

0 0 − 1
𝑣a


MAAMAB(Fa)B (38)

The term f𝐶 (x, d) is then given by

f𝐶 (x, d) =
[

(t)𝜏 (v𝑘 )𝜏
| |t | |2𝑙Γ ,

(t⊥)𝜏 (v𝑘 )𝜏
| |t⊥ | |2 , −(𝑣k)𝜏,z,

(𝐹t)A,𝑥

𝑚a
,

(𝐹t)A,𝑦

𝑚a𝑣a cos 𝛾a
, − (𝐹t)A,𝑧

𝑚a𝑣a
, 0

]𝑇
︸                                                                              ︷︷                                                                              ︸

=f𝐶1(x,dturb)

(39)

+
[
0, 0, 0, 0, 0, 0, 𝑑Δ𝑡

]𝑇
︸                         ︷︷                         ︸

=f𝐶2(x,𝑑Δ𝑡 )

(40)

+
[
0, 0, 0,

(𝐹g,)A,𝑥

𝑚a
,

(𝐹g)A,𝑦

𝑚a𝑣a cos 𝛾a
, − (𝐹g)A,𝑧

𝑚a𝑣a
, 0

]𝑇
︸                                                   ︷︷                                                   ︸

=f𝐶3(x)

(41)

where we adopt the same notation as before to denote the x, y, and z components of the forces in the A frame and

simplify the notation by omitting the dependence of dturb and x in the tether and gravitational forces.

IV. HJ Reachability Analysis and Controller Synthesis

A. Problem Statement

Having formulated the system dynamics, we are able to introduce the necessary concepts of HJ reachability analysis

used for controller synthesis. The synthesized controller and subsequent hybrid control laws provide the second key

contribution of this paper.
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Let R be the reach set, the set of states that should be reached in a given time, and let A be the set of avoid states,

the set of states that lead to a critical system failure (i.e., tether rupture). Then we can define the backward reachable set

(BRS) as the set of states from which it is possible to reach the set R at the end of a given time interval with duration 𝑇

while guaranteeing never to enter the set A until then. Mathematically, let x ∈ R7 be the system state defined in (36)

evolving according to the ordinary differential equation

¤x(𝑡) = f(x(𝑡), u(𝑡), d(𝑡)), 𝑡 ∈ [−𝑇, 0], u ∈ U, d ∈ D (42)

Note that we treat time as negative consistent with [9, 22]; this only simplifies some of the notation and implies that we

start our system at time −𝑇 . The dynamics, f, are assumed to be bounded and Lipschitz continuous in x and uniformly

continuous in u and d. Then, given the Lebesgue-measurable functions u(·) ∈ U and d(·) ∈ D, the control and

disturbance inputs, respectively, there exists a unique trajectory, 𝜻 , solving (42), i.e.,

𝜕

𝜕𝑡
𝜻(𝑡; x0, u(·), d(·)) = f(𝜻(𝑡; x0, u(·), d(·)), u(𝑡), d(𝑡)) ∀𝑡 ∈ [−𝑇, 0]

𝜻(−𝑇 ; x0, u(·), d(·)) = x0

To capture the worst-case disturbance, we model the underlying control problem as a differential game of two players.

Following [23], we restrict the first player to play a nonanticipative strategy [24, 25], which is a function 𝝃 : D → U,

such that for all 𝑡 ∈ [−𝑇, 0] and for all d, d̂ ∈ D, if d(𝜏) = d̂(𝜏) for almost every 𝜏 ∈ [−𝑇, 𝑡], then 𝝃[d](𝜏) = 𝝃[d̂](𝜏) for

almost every 𝜏 ∈ [−𝑇, 𝑡]. Furthermore, we use Σ to denote the class of nonanticipative strategies.

Finally, we can define the BRS as

BRSA,R(−𝑇) =
{
x ∈ R7 |∃𝝃(·) ∈ Σ,∀d(·) ∈ D, (𝜻(0; x, 𝝃(·), d(·)) ∈ R) & (∀𝜏 ∈ [−𝑇, 0], 𝜻(𝜏; x, 𝝃(·), d(·)) /∈ 𝐴)

}
(43)

In words, BRSA,R(−𝑇) is the set of states from which trajectories can start at −𝑇 , and there exists a choice for a

non-anticipative strategy 𝝃, such that for any disturbance strategy d, the system state can reach R at the end of the

horizon while avoiding A until then.

By defining the avoid states as the set of states that imply a tether rupture, and the reach set as the set of states

that follow the optimal guidance strategy, the BRS is able to provide information about an impending critical failure.

Furthermore, by computing the BRS, we are able to simultaneously find the optimal trajectory and control policy that

allows for optimal flight while avoiding critical states.

Recall that themaximum force acting on the tether is given by the final segment attached to the aircraft. Thus, by setting

the maximum allowed tether force as 𝐹rupture, we can define the Lipschitz continuous function ℎ(x) = | |F𝑡 | |2−𝐹rupture.
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Then we can define the avoid set related to the superzero level-set of ℎ(·) as A = {x ∈ R7 |ℎ(x) > 0}.

Rather than defining our target set R as being the set of states that lie on the optimal tracking curve, we define

our target set as all states that are aligned with the commanded flight direction. To this end, we can define Lipschitz

continuous function 𝑙(·) by taking the signed distance functions of the course and path errors in the NED frame

𝑙(x) = max{|𝛾cmd,𝑂 − (𝛾)𝑂 |, |𝜒cmd,𝑂 − (𝜒)𝑂 |}, where (𝛾)𝑂 and (𝜒)𝑂 are the 5th and 6th states of our system transformed

to the NED frame. The reach set is then defined by the subzero level-set of 𝑙(·), i.e., R = {x ∈ R7 |𝑙(x) ≤ 0}.

Using the definition of A and R, as in [23], it can be shown that BRSA,R(−𝑇) = {x ∈ R7 |𝑉(x, 𝑇) ≤ 0}, where

𝑉(x, 𝑡) = inf
𝝃(·)∈Σ

sup
d(·)∈D

max
{
𝑙(𝜻(0; x, 𝝃(·), d(·)), max

𝜏∈[−𝑡 ,0]
ℎ(𝜻(𝜏; x, 𝝃(·), d(·))

}
(44)

Furthermore, as in [23], the value function in (44) is the unique continues viscosity solution of the following

quasi-variational inequality

max
{
ℎ(x) −𝑉(x, 𝑡),

𝜕𝑉(x, 𝑡)
𝜕𝑡

+ sup
d∈𝐷

inf
u∈𝑈

𝜕𝑉(x, 𝑡)
𝜕x

𝑓 (x, u, d)
}

= 0 (45)

with terminal condition 𝑉(x, 0) = max{ℎ(x), 𝑙(x)} and where 𝐷 and 𝑈 are the compact sets of possible disturbance

and control inputs, respectively as defined in (37). For numerical reasons, it has become common practice to solve

(45) using level-set methods in combination with upwinding schemes such as essential non-oscillatory schemes [26].

Alternative methods for solving (45), such as using Deep Learning [27] have been proposed, however, they lack many of

the performance and safety guarantees we require.

To apply level-set methods to (45), we are required to grid the state space, thus exponentially scaling the memory

requirements with each additional state. This necessitates the need for the low dimensional model of the AWE system

derived earlier in Section III. Furthermore, for each grid node, we are required to evaluate the dynamics and calculate the

derivative of the value function. Therefore, to minimize computational overhead, we need to ensure we only consider

grid nodes that are relevant during flight. To use conventional level-set methods, however, we are required to use an

evenly spaced grid. As can be seen in Fig. 8, gridding the position of the aircraft in the NED frame is inefficient

compared to the new Γ frame introduced in Section III.C.

B. Optimal Control and Disturbance Inputs

To solve (45), we are required to find the optimal control and disturbance inputs that are the minimizers and

maximizers, respectively, of supd∈𝐷 infu∈𝑈
𝜕𝑉(x,𝑡)

𝜕𝑥
f(x, u, d). To this end let us define the Hamiltonian of the system as

𝐻(x, q) = max
d∈𝐷

min
u∈𝑈

q𝑇 f(x, u, d) (46)
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Fig. 8 Comparison of a 31 × 7 grid in the NED frame vs the Γ frame. The Γ frame successfully captures only
relevant nodes close to the optimal tracking curve.

where q = [𝑞1, . . . , 𝑞7] ∈ R7 is the costate vector and since both 𝐷 and 𝑈 are compact, we are able to define the

Hamiltonian using the max and min over 𝐷 and 𝑈, instead of the sup and inf, respectively, i.e., the optimizers are

achieved. To determine the optimizers in (46) we utilize the separation of the dynamics presented in Section III.C. This

allows us to write the Hamiltonian as

𝐻(x, q) = min
u∈𝑈

q𝑇 f̂(x, u) + max
d∈𝐷

q𝑇 f𝐶 (x, d) (47)

separating the control from the disturbance inputs. We begin by finding the control inputs that minimize that Hamiltonian

u∗ ∈ arg min
u∈𝑈

q𝑇 f̂(x, u) = arg min
u∈𝑈

1
𝑚a

[
𝑞4

𝑞5
𝑣a cos 𝛾a

− 𝑞6
𝑣a

]
MAA(`)MAB(𝛼, 𝛽)(Fa(𝛼, 𝑣𝑎))B (48)

No analytic expression for (48) could be found, however, since we only need to know the optimal control inputs for a

finite number of 𝑣𝑎, 𝛾, 𝑞4, 𝑞5, and 𝑞6 values, we grid the input space and evaluate (48) for discrete values of ` and 𝛼 to

find the near-optimal control inputs, i.e.,

u∗ ∈ arg min
𝛼∈[𝛼1 ,...,𝛼𝑛],`∈[`1 ,...,`𝑚]

𝑣a𝑞4 (𝑎(𝛼) cos(𝛼) + 𝑏(𝛼) sin(𝛼)) + ( 𝑞5
cos 𝛾a

sin(`) + 𝑞6 cos(`))(𝑏(𝛼) cos(𝛼) − 𝑎(𝛼) sin(𝛼))

(49)

where 𝑎(𝛼) and 𝑏(𝛼) are second order polynomials and [𝛼0, ..., 𝛼𝑛] and [`1, ..., `𝑚] are discrete values of 𝛼 and `,

respectively. Notice that 𝑢∗ depends on the stat implicitly through the costate vector 𝑞.

Determining the control inputs that minimize the Hamiltonian by means of (49), we proceed to find the worst-case

disturbances as the maximizer of the Hamiltonian, i.e., d∗ ∈ arg maxd∈𝐷 q𝑇 f𝐶 (x, d) = arg max𝑑Δ𝑡 ,dturb
q𝑇 (f𝐶1(x, dturb) +

f𝐶2(x, 𝑑Δ𝑡
)) Due to this separable structure, we begin by computing the worst case disturbance, 𝑑Δ𝑡

, which captures

adverser winch control

𝑑∗Δ𝑡
∈ arg max

𝑑Δ𝑡 ∈[−𝑑Δ𝑡 ,max ,𝑑Δ𝑡 ,max]
q𝑇 f𝐶2(x, 𝑑Δ𝑡

) (50)
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where 𝑑Δ𝑡 ,max = 0.005 is considered the bound of ¤Δ𝑡 as derived in Section III.A. Solving (50) yields 𝑑∗
Δ𝑡

=

−sign(𝑞7)𝑑Δ𝑡 ,max.

For the computation of the disturbance vector dturb, the worst case wind turbulence, we need to consider the effects

the wind turbulence has on the position and heading of the aircraft. The wind turbulence naturally influences the wind

velocity (33) and subsequently the kinematic velocity of the aircraft (4). We thus begin by rewriting the kinematic

velocity in the 𝜏 frame, whereby we replace the wind turbulence with the disturbance vector dturb, i.e.,

(vk)𝜏 = M𝜏WMWO

(
MOA



𝑣a

0

0

A

+ (vshear)O

)
︸                                       ︷︷                                       ︸

(vk,0)𝜏

+ M𝜏W(dturb)W︸          ︷︷          ︸
(dturb)𝜏

(51)

This allows us to rewrite the position propagation in the NED frame as

¤_ =
(𝑣k,0)𝜏,y
cos(𝜙)ℎ𝜏︸     ︷︷     ︸

¤_0

+
(𝑑turb)𝜏,y
cos(𝜙)ℎ𝜏

(52)

¤𝜙 =
(𝑣k,0)𝜏,x

ℎ𝜏︸    ︷︷    ︸
¤𝜙0

+
(𝑑turb)𝜏,x

ℎ𝜏
(53)

¤ℎ𝜏 = −(𝑣k,0)𝜏,z︸     ︷︷     ︸
¤ℎ𝜏,0

−(𝑑turb)𝜏,z (54)

where (𝑣k,0)𝜏,x, (𝑣k,0)𝜏,y and (𝑣k,0)𝜏,z denote the x, y, and z components of the base kinematic velocity in the 𝜏 frame

and (𝑑turb)𝜏,x, (𝑑turb)𝜏,y and (𝑑turb)𝜏,z denote the x, y and z components of the turbulence disturbance vector in the 𝜏

frame.

Recall that the tether force (31) is also affected by the kinematic velocity of the aircraft through the difference

between the velocity of the aircraft and the final tether segment, given by s𝑣,𝑛+1 = vaircraft − v𝑛. To this end, let us rewrite
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v𝑖 using (52)-(54), to illustrate the dependence on dturb,

v𝑖 =
𝑖 ¤ℎ𝜏,0
𝑛 + 1



cos(𝜙) cos(_)

cos(𝜙) sin(_)

sin(𝜙)


−
𝑖(𝑑turb)𝜏,z
𝑛 + 1



cos(𝜙) cos(_)

cos(𝜙) sin(_)

sin(𝜙)


− 𝑖ℎ𝜏

𝑛 + 1



sin(𝜙) cos(_) ¤𝜙0 + cos(𝜙) sin(_) ¤_0

sin(𝜙) sin(_) ¤𝜙0 − cos(𝜙) cos(_) ¤_0

− cos(𝜙) ¤𝜙0


−

𝑖(𝑑turb)𝜏,x
𝑛 + 1



sin(𝜙) cos(_)

sin(𝜙) sin(_)

− cos(𝜙)


−

𝑖(𝑑turb)𝜏,y
cos(𝜙)(𝑛 + 1)



cos(𝜙) sin(_)

− cos(𝜙) cos(_)

0


(55)

Denoting the base difference (i.e., neglecting the the disturbance) as s𝑣,𝑛+1,0, we can now rewrite s𝑣,𝑛+1 as

s𝑣,𝑛+1 = s𝑣,𝑛+1,0 −
(𝑑turb)𝜏,z
𝑛 + 1



cos(𝜙) cos(_)

cos(𝜙) sin(_)

sin(𝜙)


−

(𝑑turb)𝜏,x
𝑛 + 1



sin(𝜙) cos(_)

sin(𝜙) sin(_)

− cos(𝜙)


−

(𝑑turb)𝜏,y
cos(𝜙)(𝑛 + 1)



cos(𝜙) sin(_)

− cos(𝜙) cos(_)

0


(56)

As can be seen, by choosing an 𝑛 sufficiently large, the effect of the disturbance on the tether force becomes negligible

and we only need to consider the effects on the position propagation. Thus the worst-case turbulence disturbance can be

calculated by

d∗
turb ∈ arg max

𝑑turb,x∈𝐷turb ,
𝑑turb,y∈𝐷turb
𝑑turb,z∈𝐷turb

[
𝑞1, 𝑞2, 𝑞3

] [
¤_, ¤𝜙, ¤ℎ𝜏

]𝑇
(57)

where 𝐷turb = [−𝑑turb,max, 𝑑turb,max], with 𝑑turb,max = 4𝑚
𝑠
, the possible range of turbulence velocities. The results in

(52)-(54) utilize the disturbance in the 𝜏 frame, while we require the final result to be in the wind frame. To this end,

we transform (dturb)𝜏 back into the wind frame and drop the additive term (vk,0)𝜏 , resulting in the final worst case

turbulence disturbances that maximize the Hamiltonian

𝑑∗turb,x = −𝑑turb,max · sign
[

sin(𝜙) cos(_)(𝑞1
(𝑡)𝜏,x
| |t| |2𝑙Γ

+ 𝑞2
(𝑡⊥)𝜏,x
| |t⊥ | |2

) + sin(_)(𝑞1
(𝑡)𝜏,y
| |t| |2𝑙Γ

+ 𝑞2
(𝑡⊥)𝜏,y
| |t⊥ | |2

)

+ cos(𝜙) cos(_)(𝑞1
(𝑡)𝜏,z
| |t| |2𝑙Γ

+ 𝑞2
(𝑡⊥)𝜏,z
| |t⊥ | |2

− 𝑞3)
]

𝑑∗turb,y = 𝑑turb,max · sign
[
− sin(𝜙) sin(_)(𝑞1

(𝑡)𝜏,x
| |t| |2𝑙Γ

+ 𝑞2
(𝑡⊥)𝜏,x
| |t⊥ | |2

) + cos(_)(𝑞1
(𝑡)𝜏,y
| |t| |2𝑙Γ

+ 𝑞2
(𝑡⊥)𝜏,y
| |t⊥ | |2

)

− cos(𝜙) sin(_)(𝑞1
(𝑡)𝜏,z
| |t| |2𝑙Γ

+ 𝑞2
(𝑡⊥)𝜏,z
| |t⊥ | |2

− 𝑞3)
]

𝑑∗turb,z = 𝑑turb,max · sign
[

cos(𝜙)(𝑞1
(𝑡)𝜏,x
| |t| |2𝑙Γ

+ 𝑞2
(𝑡⊥)𝜏,x
| |t⊥ | |2

) − sin(𝜙)(𝑞1
(𝑡)𝜏,z
| |t| |2𝑙Γ

+ 𝑞2
(𝑡⊥)𝜏,z
| |t⊥ | |2

− 𝑞3)
]
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Fig. 9 Visualization of the value function used for safety controller synthesis projected along [ℎ𝜏 = 250𝑚, 𝑣𝑎 =
31𝑚/𝑠, 𝜒𝑎 = −0.4470, 𝛾𝑎 = 0.5205,Δ𝑡 = 0.0003𝑚].

With both the worst-case disturbance and optimal control inputs computed, the Hamiltonian can be calculated. To

solve (45) we employ the Level Set Method toolbox of [28] and begin by initializing the value function at 𝑡 = 0 with

𝑉(x, 0) = max{ℎ(x), 𝑙(x)}. As we solve the quasi-variational inequality (45), we compute the optimal control inputs that

form our control policy u(x, 𝑡). The evolution of the value function over the time period [−0.1𝑠, 0𝑠] is shown in Fig. 9.

Any state in the zero-sublevel set belongs to the BRS, i.e., the set of points that can reach R while avoiding A within 𝑡

units of time.

C. Hybrid Control Setup

Let us refer to the safety and the NDI control laws as 𝑢safety and 𝑢NDI respectively. Then we can introduce the

following switching laws

𝑆1(F𝑡 ) = (| |F𝑡 | |2≥ 𝐹rupture − 30𝑁) ∨ (| |F𝑡 | |2+
𝜕 | |F𝑡 | |2

𝜕𝑡
𝑇 ≥ 𝐹rupture − 50𝑁) (58)

𝑆2(F𝑡 ) = ¬S1(| |F𝑡 | |2) ∧
[
(| |F𝑡 | |2≤ 𝐹rupture − 40𝑁) ∨ (

𝜕 | |F𝑡 | |2
𝜕𝑡

≤ 0)
]

(59)

where 𝑇 = 0.1𝑠 is the time horizon used for the BRS computation and | |F𝑡 | |2 is the moving average of the tether force

acting on the aircraft. The switching law needs to be tuned for a given AWE setup and influences the trade-off between

safety and conservatism. Since the actuation delays are not accounted for in the safety control synthesis, belated

switching to the safety controller will potentially not give the safety controller ample time to take the necessary action to
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𝑢NDIstart 𝑢safety

𝑆1(F𝑡 )

𝑆2(F𝑡 )

Fig. 10 State automaton of the hybrid control setup.

Table 1 Simulation Parameters

Parameter Value Description
𝐹ref 1600 N Force tracked by the winch controller
𝐹rupture 1870 N Force at which a tether rupture occurs
| |𝑊20 | | 9 𝑚

𝑠
Measured wind sped at 20 feet

b 𝜋 Wind direction
𝑛tether 5 Tether segments used during simulation

avoid a critical system failure. The switching law chosen in this work is based on the current tether force as well as a

prediction of the expected tether force, however, further extensions can be made to include the BRS as a maneuverability

envelope as in [29, 30]. The condition in 58 ensures that if the tether force comes within 30N of the critical force at

which a rupture occurs, or, based on a linear extrapolation, the tether force will come within 50N of the critical tether

force within the time horizon 𝑇 , the safety controller will be activated. In turn, the condition 59 ensures that we only

switch back to the NDI controller if the tether force is decreasing or we are below 40N of the critical rupture force, thus

preventing bang-bang control. Using the switching laws, the applied control action is determined using a simple state

automaton as illustrated in Fig. 10.

V. Simulation

A. Simulation Setup

To simulate the full AWE setup, we extend the MATLAB Simulink framework presented in [8] and [7]. Together with

the subsequent discussion, the validation of the presented hybrid control setup constitutes our fourth key contribution of

this paper. Some of the relevant simulation parameters are presented in Table 1 and we have made the simulation code

available ∗.

In order to accurately capture the behavior of the tether and thus detect a tether rupture, we simulate the tether

dynamics using 𝑛 = 5, i.e., 30 states. The winch is also simulated as a separate subsystem with a PI controller regulating

the reel-in and reel-out speed of the winch. Both the aircraft and the tether are affected by wind shear, which is modeled

using the MATLAB Aerospace Toolbox [16]. In addition to the wind shear, the aircraft is also subject to wind turbulence,

which is modeled using the continuous Dryden turbulence block [16].
∗https://github.com/nikovert/AWE_Simulation
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The aircraft dynamics use the tether force computed by the full tether model as well as the wind velocity computed

by the wind field model. To this end, we pass the altitude of the aircraft and the tether segments to the wind field model.

Since the aircraft model simulates the dynamics using the 𝜏 and the 𝐴 frame, we need to convert the aircraft’s longitude

and latitude to the Γ frame before computing the safety control input. We, therefore, add a Navigator module that does

the necessary frame transformations. Furthermore, we use the Navigator module to compute optimal course and path

angle rates ¤𝜒cmd and ¤𝛾cmd, respectively. The course and path angle rates are then used by the NDI controller to compute

the pseudo control inputs a𝜒 and a𝛾 based on the simplified aircraft dynamics.

To acquire the safety control inputs, 𝑢safety, we solve (49) using the numerically computed 𝜕𝑉(x,𝑇)
𝜕𝑥

as our costate

vector. Since calculating the derivatives of the value function is computationally intensive, it is impractical to compute

𝑢safety during the simulation. To this end, we calculate the optimal safety control inputs offline using a high fidelity grid

and save them on each grid point, using the saved values as a lookup table to be used during simulation.

Both control inputs, 𝑢safety and 𝑢NDI are passed to the control switch, which determines which control input to use

based on the switching law derived in Section IV.C. The final control 𝑢cmd is passed to the actuator, which simulates the

actuator delays. The bank angle `a and angle of attack 𝛼a are then passed to the aircraft model. To determine when to

switch from traction to the retraction phase, we utilize the state machine, derived in [8].

B. Simulation Results

To evaluate the performance of the safety controller, we run the simulation for multiple pumping cycles to determine

if, at any point, the maximum allowed tether force is exceeded. The tether force of three pumping cycles as well as the

switching behavior of the safety controller is shown in Fig. 11, 12 and 13. Notice how the tether force is able to remain

high throughout the pumping cycle and only minimal interventions by the safety controller (blue segments in Fig. 13)

are necessary to prevent a tether rupture.

Fig. 11 The tensile force of the tether acting on the aircraft during flight.

The power that is able to by harnessed by the ground station can be calculated by multiplying the tether force at the
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Fig. 12 The tether force in % of the maximum allowed tether force before a rupture occurs.

ground station by the reel-out speed, i.e., 𝑃mech = ¤\W | |Fw | |2. In Fig. 14 and 15, the power generation capabilities of the

AWE system are shown. On average the chosen setup is able to produce 3.37 kW of power.

To put the power generation into context, we derive a theoretical upper limit of the power that could be obtained

through optimal flight based on the work of [31]. We begin by calculating the maximum power harvesting factor, Z ,

based on the drag and lift coefficients presented in [19]. The power harvesting factor is a common metric used by both

AWE applications as well as conventional wind turbines (not to be confused with the power coefficient commonly used

for wind turbines)

Z =
4

27
𝐶3
𝐿

(𝐶𝐷 + 𝐶𝐷 tether)2 (60)

The power harvesting factor is unique for a given AWE setup and is used in [18] and [32] to calculate the theoretical

limit 𝑃max. However, in order to calculate a tighter, more realistic upper bounds of the power that a given controller

could achieve, we calculate an efficiency factor 𝑒 that can be multiplied by the theoretical upper bound of the power

generation, 𝑃max. This theoretical upper bound is given by Theorem 1 in [31], �̃� = 𝑃max cos3(𝛾0)︸   ︷︷   ︸
𝑒

, where 𝛾0 is the

optimal angle between the aerodynamic force and the wind.

Based on the observation that the average aerodynamic force needs to balance the gravitational force acting on the

aircraft as well as the force exerted on the aircraft by the tether (assuming that on average the system is not accelerating),

we can state the following equality based on a 2-dimensional simplification

| |F𝑎 | |2


cos 𝛾0

sin 𝛾0

 − ||F𝑡 | |2


cos𝜓

sin𝜓

 +


| |Fdrag | |2

| |F𝑔 | |2

 = 0 (61)
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Fig. 13 The safety controller only needs to be activated at particular times. For the remainder of the flight, a
more power-optimal controller, such as the NDI controller can be employed.

where 𝜓 is the angle between the tether and the ground and | |Fdrag | |2 is the negated 𝑥 component of the aerodynamic

force, (F𝑎)𝐴. On average, 𝜓 is equal to the rotation of the tracking curve, i.e., 𝜓 = 𝜓0.

As in [31], we multiply both sides by [sin𝜓,− cos𝜓]𝑇 , which cancels out the effect of the tether, allowing us to

solve for 𝛾0, which in turn leads to the theoretical efficiency factor

𝑒 = cos3
(
𝜓0 + sin−1 (

| |Fdrag | |2
| |F𝑎 | |2

sin𝜓0 +
| |F𝑔 | |2
| |F𝑎 | |2

cos𝜓0)
)

(62)

Finally, we calculate the theoretical maximum power that the hybrid control setup could obtain as

�̃� = 𝑒𝐴effZ
1
2
𝜌 | |vW | |32 (63)

When evaluated and averaged, this equates to a theoretical average power of 5.56 kW. Thus the hybrid control setup

comes close to the upper bound that could be achieved.

VI. Conclusion
We introduce a novel safety controller by deriving a low-dimensional simplification of the dynamics of an AWE

system and applying HJ reachability analysis. By introducing switching conditions, the safety controller can be used in

conjuncture with arbitrary controllers for safe and power-optimal flight. The hybrid control setup is simulated using a

turbulence and wind shear model as well as actuation delays to simulate real-world environmental conditions. Using the

hybrid control setup, we were able to successfully avoid a critical tether rupture while maintaining an average power
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Fig. 14 The power 𝑃mech that is generated at the ground station during flight.

output at a desired level. Future work will focus on improving the switching conditions between the safety controller

and the NDI controller as well as incorporating actuator delays into the safety control framework.

Appendix

Coordinate transformation matrices

For brevity, we only list the transformation matrices in one direction, as the inverse transformation is obtained by

simply transposing the appropriate matrix, since all transformation matrices are orthogonal [33].

MAB =



cos𝛼a cos 𝛽a sin 𝛽a sin𝛼a cos 𝛽a

− cos𝛼a sin 𝛽a cos 𝛽a − sin𝛼a sin 𝛽a

− sin𝛼a 0 cos𝛼a


, M𝜏W =



− sin 𝜙 cos_ − sin 𝜙 sin_ cos 𝜙

− sin_ cos_ 0

− cos 𝜙 cos_ − cos 𝜙 sin_ − sin 𝜙


(64)

MOW =



cos b sin b 0

sin b − cos b 0

0 0 −1


, MAA =



1 0 0

0 cos `a − sin `a

0 sin `a cos `a


, MAO =



cos 𝜒a cos 𝛾a sin 𝜒a cos 𝛾a − sin 𝛾a

− sin 𝜒a cos 𝜒a 0

cos 𝜒a sin 𝛾a sin 𝜒a sin 𝛾a cos 𝛾a


(65)
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Fig. 15 Generated power in relation to the aircraft’s flight path. Negative (resp. positive) power indicates a
reeling in (resp. out) by the winch thus power is exerted (resp. harvested).
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