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a b s t r a c t

In this paper we focus on noncooperative games with uncertain constraints coupling the agents’
decisions. We consider a setting where bounded deviations of agents’ decisions from the equilibrium
are possible, and uncertain constraints are inferred from data. Building upon recent advances in the
so called scenario approach, we propose a randomised algorithm that returns a nominal equilibrium
such that a pre-specified bound on the probability of violation for yet unseen constraints is satisfied
for an entire region of admissible deviations surrounding it—thus supporting neighbourhoods of
equilibria with probabilistic feasibility certificates. For the case in which the game admits a potential
function, whose minimum coincides with the social welfare optimum of the population, the proposed
algorithmic scheme opens the road to achieve a trade-off between the guaranteed feasibility levels of
the region surrounding the nominal equilibrium, and its system-level efficiency. Detailed numerical
simulations corroborate our theoretical results.

© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The study of noncooperative games plays a significant role in
panoply of applications ranging from smart-grids (Saad, Han,
oor, & Basar, 2012) to communication (Scutari, Facchinei, Pang,
Palomar, 2014) and social networks (Acemoglu & Ozdaglar,

011). In these setups, agents can be modelled as self-interested
ntities that interact with each other and make decisions based
n possibly misaligned individual criteria, while being subject
o constraints (local or global) that restrict the domain of their
hoices. Even though a variety of systems can be analysed by
eans of deterministic game-theoretic tools (Grammatico, Parise,
olombino and Lygeros, 2016; Paccagnan, Gentile, Parise, Kam-
arpour, & Lygeros, 2019; Scutari et al., 2014), in many applica-
ions the decision making procedure is affected by uncertainty.
number of results in the literature have explicitly addressed

ncertainty in a noncooperative setting. Specifically, Bopardikar,
orri, Hespanha, Prandini, and Di Benedetto (2013) follow a ran-
omised approach for the special case of stochastic zero-sum
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was recommended for publication in revised form by Associate Editor Gurdal
Arslan under the direction of Editor Florian Dorfler.
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games. Most results rely on specific assumptions on the proba-
bility distribution (Couchman, Kouvaritakis, Cannon, & Prashad,
2005; Singh, Jouini, & Lisser, 2016) and/or the geometry of the
uncertainty set (Aghassi & Bertsimas, 2006; Hayashi, Yamashita,
& Fukushima, 2005; Nishimura, Hayashi, & Fukushima, 2009).

To circumvent these limitations, recent developments adopt
a data-driven perspective, focusing on the connection of game
theory with the so called scenario approach (Calafiore & Campi,
2006). This is based on the idea that an optimisation problem
with constraints parametrised by an uncertain parameter — with
fixed but possibly unknown support set and probability dis-
tribution — can be approximated by drawing samples of that
parameter and solving the problem subject to the constraints
generated by those samples only; this approximation is known
as the scenario program. Standard results in the scenario ap-
proach (Calafiore, 2010; Campi & Garatti, 2008; Campi, Garatti,
& Prandini, 2009) provide certificates on the probability that a
new yet unseen constraint will violate the randomised solution
obtained by the scenario program.

While the aforementioned results apply to uncertain con-
vex optimisation problems, the works Campi and Garatti (2018)
and Campi, Garatti, and Ramponi (2018) paved the way towards
the provision of data-driven robustness guarantees to solutions
of more general nonconvex problems. In Paccagnan and Campi
(2019) and Fele and Margellos (2019, 2021), these theoretical ad-
vancements were leveraged for the first time in a game-theoretic
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ontext, for the formulation of distribution-free probabilistic fea-
ibility guarantees for randomised Nash equilibria. These works
rovide guarantees for one specific equilibrium point (often as-
umed to be unique); this was extended in Pantazis, Fele, and
argellos (2020, 2022), by providing a posteriori feasibility guar-
ntees for the entire domain. Besides the game-theoretic context,
lternative methodologies for set-oriented probabilistic feasibility
uarantees have been proposed in the seminal works (Alamo,
empo, & Camacho, 2009; de Farias & Roy, 2003), which a priori
haracterise probabilistic feasibility regions constructed out of
ampled constraints using statistical learning theoretic results.
ore recently, the so called probabilistic scaling (Alamo, Mi-

asierra, Dabbene, & Lorenzen, 2019; Mammarella, Mirasierra,
orenzen, Alamo, & Dabbene, 2022) has been proposed to obtain a
osteriori guarantees on the probability that a polytope generated
ut of samples is a subset of some chance-constrained feasibility
egion. Following an approach similar to Pantazis et al. (2020), the
orks (Fabiani, Margellos, & Goulart, 2020, 2022) deliver tighter
uarantees by focusing on variational-inequality (VI) solution
ets.
The results above follow a standard approach in the game-

heoretic literature, where a strict behavioural assumption — the
o called rationality — is imposed on the players’ decision mak-
ng. Namely, the players are viewed as rational agents wishing
o maximise their profit (expressed by some given cost func-
ion). However, studies have shown that this is unrealistic in
ractice (Camerer, 2003; Kahneman & Tversky, 1979; Plott &
mith, 2008; Wang, Saad, Mandayam, & Poor, 2016) and that
gents usually exhibit a boundedly rational behaviour (Rubinstein,
998), i.e., their decisions can deviate from rationality due to
ndividual biases, behavioural inertia, restricted computational
ower/time, etc. The consequences of this become relevant in
ngineering applications, as the human role in technical systems
volves beyond mere users and consumers to active agents, op-
rators, decision-makers and enablers of efficient, resilient and
ustainable infrastructures (Lamnabhi-Lagarrigue et al., 2017).
To bridge this gap between real-world applications and the

ognate literature, here we study games with uncertain
onstraints, where deviations from a nominal equilibrium are
xplicitly considered. We follow a randomised approach to ap-
roximate the coupling constraints by means of data. In this
ore general setting, where deviations are considered, providing
uarantees for a single solution is devoid of any meaning: indeed,
epetition of the game might lead to a different solution in a
eighbourhood around the nominal equilibrium, irrespective of
he employed dataset. Technically speaking, this renders the iden-
ification of the data samples that support the solution (cf. sample
ompression (Margellos, Prandini, & Lygeros, 2015)) a challenging
ask. Focusing on the class of generalised Nash/Wardrop equi-
ibrium seeking problems (GNEs/GWEs) (Facchinei & Kanzow,
010), we contribute to the provision of data-driven robustness
uarantees for the collection of possible deviations from the
quilibrium as follows:

(1) Adopting a scenario-theoretic paradigm, we establish a
methodology for the provision of a posteriori probabilistic
feasibility guarantees for a region around the randomised
equilibrium of the game under study. This result (Theo-
rem 1), complements (Fabiani et al., 2020, 2022; Pantazis
et al., 2020, 2022), that instead focus on the entire feasi-
bility region. Focusing on a circumscribed region around
a GNE/GWE allows offering tighter probabilistic bounds,
while the results of Fabiani et al. (2020, 2022) and Pantazis
et al. (2020, 2022), can be obtained as a limiting case of
Theorem 1.
2

(2) We design a data-driven algorithm that returns a GNE/GWE
and show that all points in a predefined admissible region
surrounding it enjoy a priori probabilistic feasibility guar-
antees. This result (Theorems 2 and 3), unlike Theorem 1,
offers an a priori statement valid for a region that is tunable
by the user, modelling possible deviations from a nominal
equilibrium that a designer wishes to take into account
when incentivising a certain operation profile.
A distinctive feature of this result is that it provides a
priori guarantees for a set rather than single points (Fele
& Margellos, 2019, 2021; Paccagnan & Campi, 2019). These
guarantees depend on a prespecified quantity, which in
turn can affect the location of the nominal equilibrium
and the size of the region for which these probabilis-
tic guarantees hold. As such this region is tunable, un-
like Grammatico, Zhang, Margellos, Goulart and Lygeros
(2016) where a priori guarantees for a set of solutions are
provided, but this set is not controlled by the user and
could be arbitrarily narrow. Moreover, the results of Gram-
matico, Zhang et al. (2016) do not focus on games and
follow a fundamentally different approach.
Furthermore, when the game under study admits a po-
tential function — whose minimum coincides with some
social welfare optimum — our methodology provides a new
perspective for trading off the probabilistic feasibility of
the region surrounding the nominal equilibrium and its
system-level efficiency.

(3) We propose an equilibrium seeking algorithm as the ma-
chinery to obtain a region surrounding a GNE/GWE over
which the aforementioned feasibility guarantees hold. The
algorithm relies on a primal–dual scheme and is inspired
by seminal developments in Facchinei and Pang (2003).
However, the mapping that characterises the algorithm
updates differs from those typically encountered in the
literature (e.g., see Facchinei and Pang (2003, Ch. 12)). This
requires showing that the ad-hoc mapping enjoys certain
continuity and co-coercivity properties, thus extending the
proof-line of Facchinei and Pang (2003) (see Lemmas 2 &
3, and proof of Theorem 2), a task which is interesting per
se.

Our contributions compared to the cognate literature are sum-
arised in Table 1. The rest of the paper is organised as follows.

n Section 2 we provide fundamentals of game theory and the
cenario approach. In Section 3.1 we show how the feasibil-
ty guarantees for a region around the game solution can be a
osteriori quantified. In Section 3.2 we propose a data driven
lgorithm and prove its convergence to an equilibrium such that
he considered neighbourhood of strategic deviations can satisfy
respecified probabilistic feasibility requirements. An illustra-
ive example in Section 4 corroborates our theoretical analysis.
ection 5 concludes the paper and presents future research direc-
ions. To streamline the presentation of our results, some proofs
re deferred to the Appendix.

. Preliminaries

Notation: All vectors are column unless otherwise indicated.
n
+

is the nonnegative orthant in Rn. For an n × n matrix A, we
rite A ≻ 0 (A ⪰ 0) when x⊺Ax > 0 (x⊺Ax ≥ 0), for any
∈ Rn. We denote by 0q×r the q × r null matrix, by Ir the r × r

dentity matrix, and by 1r the vector of r ones; dimensions can
e omitted when clear from the context. eq is the unit vector
hose qth element is 1 and all other elements are 0, ∥ · ∥p the
-norm operator, and (·)r denotes the rth component of its vector
rgument. Bp(x, ρ) = {y ∈ Rd

: ∥y − x∥p < ρ} is the open
-normed ball centred at x with radius ρ; when p is omitted, any
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Table 1
Classification of results and comparison with cognate literature.
Problem class Solution sets Type of feasibility

guarantees
Tuning References

Affine feasibility problems Entire feasible set A posteriori ✗ Pantazis et al. (2020, Thm. 6)
Convex feasibility problems Entire feasible set A posteriori ✗ Pantazis et al. (2022, Thm. 2)
Uncertain GNEs GNE solution set A posteriori ✗

Uncertain GNEs/GWEs Subset of feasible deviations
around GNE/GWE

A posteriori ✗ Theorem 1

Uncertain VIs Unique solution A priori/A posteriori ✗ Fele and Margellos (2019, Thm. 5), Fele
and Margellos (2021, Thm. 8) and
Paccagnan and Campi (2019, Cor. 1)

Convex feasibility problems (Arbitrary) inner approx. of
feasible set

A priori ✗ Grammatico, Zhang et al. (2016, Thm.2)

Uncertain GNEs/GWEs Tunable subset of feasible
deviations around GNE/GWE

A priori ✓ Theorem 3
choice of norm is valid. For a set S, |S| denotes its cardinality,
hile 2S denotes its power set, i.e., the collection of all subsets of
. Finally, given D ≻ 0, projK ,D[x] := argminy∈K (y− x)⊺D(y− x) is
he skewed projection of x onto the set K .

2.1. Games with uncertain constraints

We consider a population of agents with index set N =

{1, . . . ,N}. The decision vector xi of each agent i ∈ N takes value
in the set Xi ⊆ Rn, while x = (xi)Ni=1 ∈ X =

∏N
i=1 Xi ⊆ RnN

is the global decision vector that is formed by concatenating
the decisions of the entire population. The vector x−i ∈ Rn(N−1)

comprises all agents’ decisions except for those of agent i. In
our setup, the cost incurred by agent i ∈ N is expressed by a
real-valued function Ji(xi, x−i) that depends on local decisions as
well as on the decisions from other agents j ∈ N \ {i}. In the
following, with a slight abuse of notation, we can exchange x for
(xi, x−i) to single out agent i’s decision from the global decision
vector. Furthermore, we consider uncertain constraints coupling
the agents’ decisions. These can be expressed in the form1

Cδ = {x ∈ X : g(x, δ) ≤ 0}, δ ∈ ∆, (1)

where g : RnN
× ∆→ R depends on some uncertain parameter

δ taking values in a support set ∆ according to a probability
measure P.

Feasible collective decisions under this setup can be found
by letting every agent i ∈ N solve the following optimisation
program, where the decisions x−i of all other agents are given,

G : min
xi∈Xi

Ji(xi, x−i)

subject to xi ∈
⋂
δ∈∆

C i
δ(x−i)

⎫⎪⎬⎪⎭ ∀i ∈ N ; (2)

here, C i
δ(x−i) = {xi ∈ Xi : g(xi, x−i, δ) ≤ 0} is the projection of the

coupling constraint on Xi for fixed x−i and uncertain realisation
δ ∈ ∆. The collection of coupled optimisation programs in (2) for
all i ∈ N constitutes an uncertain noncooperative game; we denote
it as G.

Note that (2) follows a worst-case paradigm, taking into ac-
count all possible coupling constraints that can be realised by
variations of the uncertain parameter δ ∈ ∆. This can render the
solutions of G rather conservative. Furthermore, it is in general
not possible to compute a solution for G without an accurate
knowledge of, and/or additional assumptions on, the support
set ∆ and the probability distribution P. To circumvent these
limitations, we follow a data-driven paradigm and approximate
G by means of a finite number of samples drawn from ∆, namely

1 This formulation can describe deterministic and/or local constraints as
pecial cases.
3

the K -multisample δK = (δ1, . . . , δK ) ∈ ∆K . In the sequel, we
hold on to the standing assumption that these samples are in-
dependent and identically distributed (i.i.d.). Apart from this,
no other knowledge on the support set ∆ and the probability
distribution P of the uncertain parameter is required. Then, for
a given multi-sample δK , (2) can be rewritten as

GK : min
xi∈Xi

Ji(xi, x−i)

subject to xi ∈
K⋂

k=1

C i
δk
(x−i)

⎫⎪⎪⎬⎪⎪⎭ ∀i ∈ N . (3)

Instead of considering all possible uncertainty realisations δ ∈ ∆

as in (2), we let the data encoded in δK lead agents to their
decision by solving (3). We refer to the collection of coupled
optimisation programs in (3) as the scenario game GK (the sub-
script K implies dependence on the drawn multi-sample δK ).
Under standard assumptions, a solution to the scenario game
GK exists and the problem is, in contrast to G, tractable using
state-of-the-art equilibrium seeking algorithms.

2.2. Variational inequalities and game equilibria

Notably — under certain assumptions detailed next — solu-
tions to the game GK can be retrieved as solutions to a variational
inequality (VI), for specific choices of the mapping F : X →
RnN (Facchinei & Kanzow, 2010, Thm 3.9):

VIK : Find x∗ ∈ ΠK such that
(x− x∗)⊺F (x∗) ≥ 0 for any x ∈ ΠK ,

(4)

where ΠK := X∩
⋂K

k=1 Cδk denotes the problem domain. A classic
game solution concept, which encounters wide application in the
literature, is the Nash equilibrium (NE) (Nash, 1950). At a NE,
no agent can decrease their cost by unilaterally changing their
decision. Formally, this can be stated as follows.

Definition 1. A point x∗ = (x∗i , x
∗

−i) ∈ ΠK is called a generalised
Nash equilibrium (GNE) of GK if, for all i ∈ N ,

Ji
(
x∗i , x

∗

−i

)
≤ Ji(yi, x∗−i), ∀yi ∈ Xi ∩

K⋂
k=1

C i
δk
(x∗
−i).

For our analysis, we rely on the following conditions:

Assumption 1. For all i ∈ N , Ji(xi, x−i) is convex and continu-
ously differentiable in xi for any fixed x−i.

Assumption 2.

(1) For any multi-sample δK ∈ ∆K , the domain ΠK is non-
empty.
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(2) The set X =
∏N

i=1 Xi is compact, polytopic and convex.
(3) For any δ ∈ ∆, g is an affine function of the form g(x, δ) =

a(δ)⊺x− b(δ), where a : ∆→ RnN and b : ∆→ R.

Note that convexity of the cost function with respect to the
gent’s local decision is crucial for the design of tailored algo-
ithms with theoretical convergence guarantees for Nash equilib-
ium seeking. Under these assumptions, we can determine a GNE
s in Definition 1 by solving (4) with

(x) = FNE(x) :=

⎡⎢⎣ ∇x1 J1(x1, x−1)
...

∇xN JN (xN , x−N )

⎤⎥⎦ . (5)

A class of problems of common interest can be modelled by the so
called aggregative games (Acemoglu & Jensen, 2013; Jensen, 2010;
Kukushkin, 2004), where the cost incurred by agents depends on
some aggregate measure — typically the average — of the decision
of the entire population. Such a cost can be expressed in (3) by
the function Ji(xi, σ (x)), where the aggregate σ : RnN

→ Rn is
defined as the mapping x ↦→ 1

N

∑N
i=1 xi. A solution frequently

linked to this class of games is the Wardrop equilibrium (WE),
a concept akin to the NE but specifically defined in the context of
transportation networks (Beckmann, McGuire, & Winsten, 1956).
The variational WEs of GK can be expressed by using F (x) =
FWE(x) := [∇xi Ji(xi, z)|z=σ (x)]i∈N ; notice that in this case the second
argument of Ji is fixed and set to σ (x), consistently with the
notion of WE where agents neglect the impact of their decision
on others.

We restrict the considered class of variational mappings as
follows:

Assumption 3. The mapping F is

(1) α-strongly monotone, i.e., (x− y)⊺(F (x)− F (y)) ≥ α∥x− y∥2
for any x, y ∈ X ,

(2) LF -Lipschitz continuous., i.e., ∥F (x)− F (y)∥ ≤ LF∥x− y∥ for
any x, y ∈ X .

Assumptions 1 and 3 are standard in the game-theoretic liter-
ature (Facchinei & Pang, 2003; Scutari et al., 2014). Assumption 2
is relatively mild; the affine form of the constraints is exploited
in the proposed algorithm (see Section 3) for the convergence to
an equilibrium bearing the desired robustness properties.

We point out that in general only a subset of solutions to GK
can be retrieved through (4): these are referred to as variational
equilibria, and enjoy favourable properties over nonvariational
ones, as with the former the coupling constraints’ burden is
equally split among agents (Harker, 1991; Kulkarni & Shanbhag,
2012). The following lemma, adapted from Facchinei and Pang
(2003, Thm. 2.3.3), formalises the connection between the solu-
tions to VIK and the GNEs (or GWEs) of GK .

Lemma 1. Under Assumptions 1–3, VIK has a unique solution that
is also an equilibrium of GK .

For the considered class of VIs, several algorithms from the
literature can be employed to obtain a variational equilibrium
of GK ; see, e.g., Facchinei and Kanzow (2010) and Paccagnan
et al. (2019). We remark that, even if not explicitly shown for
ease of notation, any solution x∗ to GK is itself a function of the
drawn multisample δK ∈ ∆K . Probabilistic feasibility guarantees
for the unique solution of VIK can then be provided both in
an a priori and a posteriori fashion by resorting to the results
in Fele and Margellos (2019, 2021) and Paccagnan and Campi
(2019). However, these results are tailored to the provision of
probabilistic feasibility guarantees for a single point (namely the
solution of a VI): any strategic deviation from the equilibrium is
not covered by such guarantees. We cover this issue in Section 3.
First, we provide some background on the scenario approach.
4

2.3. Basic concepts in the scenario approach

A fundamental notion in the scenario approach is the proba-
bility of violation of an uncertain constraint.

Definition 2.

(1) The probability of violation V : RnN
→ [0, 1] of a point

x ∈ ΠK is defined as the probability that a new yet unseen
sample δ ∈ ∆ will give rise to a constraint Cδ (as defined
in (1)) such that x /∈ Cδ , i.e., V(x) := P{δ ∈ ∆ : x /∈ Cδ}.

(2) The probability of violation V : 2R
nN
→ [0, 1] of a set

S ⊆ ΠK is defined as the worst-case V among all the points
in S, i.e., V(S) = supx∈S P{δ ∈ ∆ : x /∈ Cδ}.

A data-driven decision-making process can be formally char-
cterised by a mapping — the algorithm — that takes as input the
ata encoded by the samples and returns a set of decisions.

efinition 3. An algorithm is a function A : ∆l
→ 2R

nN
×

nN that takes as input an l-multisample and returns the pair
x∗, S∗l (x

∗)), namely, a point x∗ and a solution set S∗l parametrised
y x∗.

In the setting we consider, we have x∗ ∈ S∗l (x
∗); however, this

ught not to be the case in general. In the following, we interpret
he above definition as context-dependent, in that the size l of the
nput multisample is admitted to vary—all else remaining fixed
or a given algorithm A.

A key notion, strongly linked to that of algorithm, is the mini-
mal compression set (Margellos et al., 2015). This concept springs
from the observation that typically only a subset of the sampled
data is relevant to a decision or set of decisions, and all other
samples are redundant.

Definition 4 (Compression Set). Consider an algorithm A as in
Definition 3. A subset of samples I ⊆ δK is called a compression
or A(δK ) if A(I) = A(δK ).2 As multiple subset of samples can exist
hat fulfil this property, the ones with the minimal cardinality are
alled minimal compression sets.

If we feed the algorithm with the set of samples corresponding
o a compression, then the same decision will be returned as
hen we feed the algorithm with the entire multi-sample. As
stablished in Margellos et al. (2015), the compression set is
elated to the notion of support samples (Campi & Garatti, 2008)
nd that of essential constraints (Calafiore, 2010). Under certain
on-degeneracy assumptions these concepts coincide.

. Probabilistic feasibility of sets around equilibria

.1. A first a posteriori result

Returning to the scenario game GK in (3), we now consider a
ore general setup where agents are allowed to deviate from x∗

ollowing, e.g., unmodelled changes in their cost functions; while
e suppose that these deviations are feasible with respect to the

ocal constraints, we want to study the feasibility as regards the
oupling constraints obtained through sampling. Specifically, the
egion in which agents’ strategies can deviate from the nomi-
al equilibrium is assumed to lie within a predefined open ball
(x∗, ρ), where ρ > 0 is a fixed radius that denotes the maxi-
um possible distance of agents’ deviations from x∗; the latter

2 With some abuse of notation, in the remainder the symbol δK is interpreted
as either the i.i.d. sample vector δK ∈ ∆K , or the set comprising its components,
i.e., δ = {δ , . . . , δ } ⊆ ∆, depending on the context.
K 1 K
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Fig. 1. Region S∗K (in green) obtained as the intersection of the set of deviations
B∞(x∗, ρ) around the equilibrium x∗ (red dot) with the domain ΠK . The samples
roducing the constraints in blue are in the compression set of x∗ , while those
ssociated with the red constraint are in the compression set of S∗K ; discarding
hese does not change x∗ . (For interpretation of the references to colour in this
igure legend, the reader is referred to the web version of this article.)

s assumed to be unique as per Lemma 1. As such, the region of
nterest is S∗K = ΠK ∩ B(x∗, ρ).

This is depicted in Fig. 1 using the ∞-norm (any other norm
could have been used instead): an algorithm A (see Section 2.3)
takes as input a multi-sample δK and returns the region S∗K around
he solution x∗ ∈ R2 of a game with two players whose decisions
re defined as scalar quantities. For this pictorial example, ΠK
s shaped exclusively by sampled coupling constraints. Any com-
ression set as per Definition 4 for A must be associated with the
olid blue constraints (these form a compression for x∗), and with
he dashed red constraint that intersects B(x∗, ρ)—as its removal
ould change S∗K .
We can quantify the number of samples that form a compres-

ion set for the algorithm that returns S∗K in an a posteriori fashion
as established in Theorem 1. To this end, for a fixed confidence
β ∈ (0, 1), let the violation level be defined as a function ϵ :
{0, . . . , K } → [0, 1] satisfying (Campi et al., 2018, Eq. (7))

ϵ(K ) = 1 and
K−1∑
i=0

(
K
i

)
(1− ϵ)K−i = β. (6)

Theorem 1. Under Assumptions 1–3, let algorithm A return a pair
(x∗, S∗K (x

∗)). Fix a confidence parameter β ∈ (0, 1) and a violation
level ϵ : {0, . . . , K } → [0, 1] that satisfies (6). We have that

PK {
δK ∈ ∆K

: V(S∗K ) > ϵ(s∗ +M)
}
≤ β,

where s∗ is the number of samples that form a compression set
for the equilibrium mapping x∗ and M the number of uncertain
constraints of ΠK that intersect S∗K .

Proof. Let (x∗, S∗K ) be the solution returned by A for some
given δK , according to Definition 3. We aim at determining a
compression set for A(δK ), and use its cardinality to reach the
theorem’s conclusion by means of Theorem 2 in Pantazis et al.
(2022). This would be the union of: (i) the samples that form
a compression set for x∗ — i.e., solving the problem using only
these would result in the same equilibrium obtained by using all
samples —, and (ii) any other sample (not in the compression set
of x∗) whose removal can still lead to a change of the region S∗K .

Case (i): Determining a (possibly non-minimal) compression
set for x∗ can be achieved, as suggested in Campi et al. (2018),
by progressively removing samples till a subset that leaves the
solution unchanged is determined. We denote its cardinality by
s∗. With reference to Fig. 1, this set would be associated with
the blue constraints active at x∗. Case (ii): We need to count the
samples whose removal does not change x∗ but yields a larger
region S∗K (red constraint in Fig. 1). Their number can be upper
bounded by the M facets of ΠK that intersect S∗K .

Hence, the number of samples that form a compression set
for A(δ ) is bounded by s∗ +M . Existence of a compression set I
K

5

with a bound on its cardinality is sufficient for the application of
Theorem 2 in Pantazis et al. (2022). The fact that for the minimal
compression set |I∗| ≤ |I| ≤ s∗ + M always holds leads then to
the statement of this theorem. ■

It is important to stress that the application of Theorem 1 is
agnostic on the choice of the equilibrium seeking algorithm. To
use the result of Theorem 1, one needs to quantify (an upper
bound of) the number of samples s∗ that form a compression
set for x∗ and (an upper bound of) the number M of coupling
constraints that correspond to facets of S∗K . While s∗ ≤ nN under
Assumptions 1 and 3,3 an upper bound for M can in general
only be achieved a posteriori, i.e., once δK is sampled. In the next
section we show how we could obtain a priori bounds for the
same quantity.

3.2. A priori probabilistic certificates

Consider the scenario game GK and suppose that bounded de-
viations from the solution are allowed. We model such deviations
as a ball of radius ρ around the equilibrium, as in Section 3.1.
In contrast to the a posteriori nature of the result therein, our
goal here is to achieve an a priori bound. Namely, we aim at
establishing the main statement of Theorem 1 with a prespecified
violation level, which does not depend on the given multi-sample
δK . In other words, we seek a statement — holding with known
confidence — of the form V(ΠK ∩ B(x∗, ρ)) < ϵ̄, with ϵ̄ ∈ (0, 1) a
priori fixed.

To achieve this we build upon the previous conclusions, which
expose a link between the probability of constraint violation and
the number M of facets of ΠK (each originated from some uncer-
tainty sample) that B(x∗, ρ) intersects. In particular, a monotonic
relationship follows from (6): the smaller M the better, i.e., less
conservative, the theoretical feasibility guarantees on constraint
violation for the strategies belonging to the feasible region S∗K
urrounding the equilibrium. Also, a smaller value of M can result
n a larger region for which the guarantees of Theorem 1 hold—
ue to a smaller portion of B(x∗, ρ) being cut off by intersection
ith ΠK . This motivates us to study the role of M as a modulating
arameter for the robustness of the feasibility certificates offered
or the region S∗K , as well as the extent of deviation from the
ominal equilibrium covered by such certificates.

.2.1. GNE-seeking algorithm with a priori robustness guarantees
We consider an iterative scheme to determine a solution of

IK in (4). In particular, since the problem involves coupling con-
traints, we build our Algorithm 1 upon a primal–dual scheme,
here constraint satisfaction is achieved by the use of Lagrange
ultipliers; similar developments hold for both GNE and GWE
roblems. To this end, we define the augmented vector y :=

(x, µ) ∈ RnN+m by stacking the global decision vector x and the
Lagrange multipliers µ = (µℓ)mℓ=1 ∈M ⊆ Rm

+
. The set M denotes

the domain of µ; in the sequel we impose some structure on M
once some necessary theoretical ingredients are introduced. As
deterministic constraints do not play a role in the evaluation of
the robustness guarantees, suppose for ease of exposition that ΠK
only comprises uncertain coupling constraints. Let A ∈ Rm×nN and
b ∈ Rm such that

ΠK = {x ∈ X : Ax ≤ b}, (7a)

∥aℓ∥2 = 1, ℓ = 1, . . . ,m, (7b)

3 By arguments similar to those in Pantazis et al. (2022) and Schildbach,
agiano, and Morari (2012) it can be shown that a tighter bound s∗ ≤ n holds

for the game G in case coupling constraints only concern the aggregate variable.
K
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Algorithm 1 A priori robust GNE seeking algorithm

Require: y(0), ρ ∈ R+, δK ∈ ∆K ,M ≤ m, ξ ≥ 0
1: κ ← 0
2: repeat
3: y(κ+1) ← projX×M,D

[
y(κ) − D−1T (y(κ), ρ,M)

]
4: κ ← κ + 1
5: until ∥y(κ+1) − y(κ)∥ ≤ ξ

6: y∗ ← y(κ+1)
7: return y∗ and ΠK ∩ B(x∗, ρ)

where aℓ
⊺ denotes the ℓth row of A. Eq. (7) is the irredundant

H-representation of the polytopic feasibility region ΠK defined
in (4), where the rows of matrix A are unit vectors. Property
(7b) is key to the second statement in Lemma 2. It entails no
loss of generality, since for any A, b forming an equivalent H-
representation of ΠK , (7) can be obtained by normalising each
row of A and the corresponding component of b by the row-vector
norm. Thus, the pair (A, b) encodes the set of randomised coupling
constraints that constitute facets of ΠK .4

The main step of Algorithm 1 (step 3) is a projected gradient
descent (ascent) update for x (µ) through the mapping T :
RnN+m+1

× N→ RnN+m given by

T (y, ρ,M) :=
[

F (x)+ A⊺
µ

− (Ax− b+ Q (µ,M)ρ)

]
. (8)

T follows from the primal–dual conditions of the game solution;
see Facchinei and Kanzow (2010, Sec. 4.2), Facchinei and Pang
(2003, Sec. 1.4.1). F is the pseudo-gradient mapping defined as in
Section 2.2, A, b are as in (7), and ρ := cρ1m, where c is a constant
scaling factor (see Section 3.2.2) and M a nonnegative integer. In
the second block-row of (8), the m −M least relevant (based on
the multipliers value) coupling constraints are tightened by an
amount cρ through the mapping Q : Rm

+
×N→ {0, 1}m×m. Finally,

he asymmetric projection matrix D ≻ 0 includes the step-size
arameter τ > 0 and is defined as

D :=

[
1
τ
InN 0

−2A 1
τ
Im

]
. (9)

Note that the constraint tightening performed in the second
block-row of T is equivalent to preventing B(x∗, ρ) from inter-
secting these constraints. In other words, Q ensures that the
number of facets of ΠK intersecting B(x∗, ρ) is at most M , which
in turn enables to obtain an a priori estimate of the number of
samples that form a compression for S∗K and hence on V(ΠK ∩

B(x∗, ρ)); this is formalised by Theorems 2 and 3. Since m − M
coupling constraints are tightened, smaller values forM can result
in a more robust and possibly larger region S∗K ; however, they
can also move the location of the nominal equilibrium x∗ to a
somewhat less efficient point towards the interior of ΠK . As we
will demonstrate numerically in the sequel, this is the case with
potential games (Facchinei, Piccialli, & Sciandrone, 2011).

3.2.2. Constraint tightening via mapping Q
We define the mapping Q as

Q (µ,M) := P⊺(µ)R(M), (10)

where

4 Formally, A : ∆K
→ Rm×nN and b : ∆K

→ Rm are mappings from the
K -multisample to the space of real m×nN matrices and m-dimensional vectors,
respectively.
 b

6

• P : Rm
→ {0, 1}m×m returns a permutation matrix such that

P(µ)µ is the vector composed by the elements of µ arranged
in decreasing order.
• R : N → {0, 1}m×m takes as input the number of coupling

constraints M ≤ m we allow B(x∗, ρ) to intersect with and
returns as output the matrix

R(M) =
[
0m×M

0M×m−M
Im−M

]
. (11)

Compatibly with the definition of P(·), R(M)P(µ)ρ =

(0M
⊺ cρ1m−M

⊺)⊺ = R(M)ρ, where the last equality holds
since all components of ρ are equal.

As discussed in Section 3.2.1, Q (·,M) allows to tighten the con-
straints corresponding to the smallest m−M multipliers. For this,
we use the radius of the sphere that circumscribes B(x∗, ρ). This
is ρℓ = cρ∥aℓ∥2 = cρ, where the last equality is due to (7b);
depending on the choice of norm, c = 1 if B(·, ρ) is expressed
by a p-norm with p ≤ 2, c =

√
n otherwise. Conversely, at

most M constraints can intersect B(x∗, ρ) upon convergence of
the algorithm. Let L(M) ⊆ {1, . . . ,m} contain the indices of the
M largest multipliers. Then, ℓ ∈ L(M) ⇔ (Q (µ,M)ρ)ℓ = 0, and
he second block row of T in (8) expresses{
aℓ

⊺x ≤ bℓ if (Q (µ,M)ρ)ℓ = 0,
aℓ

⊺x ≤ bℓ − cρ if (Q (µ,M)ρ)ℓ = cρ.
(12)

llustrative example: Let ΠK result from the intersection of 3
yperplanes and allow B(·, ρ) to intersect at most M = 1 of
hem. From (11), R(M) =

[
0 0 0
0 1 0
0 0 1

]
. At iteration κ of Algorithm 1,

et the multiplier vector µ(κ)
= (µ(κ)

ℓ )3ℓ=1 be such that µ
(κ)
2 >

(κ)
1 > µ

(κ)
3 . Then, P(µ(κ)) =

[
0 1 0
1 0 0
0 0 1

]
is the permutation matrix

uch that P(µ(κ))µ(κ)
= (µ(κ)

2 µ
(κ)
1 µ

(κ)
3 )⊺. So Q (µ(κ),M)ρ =

⊺(µ(κ))R(M)ρ = (cρ 0 cρ)⊺, where P⊺(·) applies the correct
rdering to the vector R(M)ρ. Suppose µ

(j)
2 > µ

(j)
1 > µ

(j)
3 holds for

ll j ≥ κ . Then, at convergence, it follows from (12) that B(x∗, ρ)
ill not be intersecting the constraints associated to µ1 and µ3,
hereas it could be intersecting the hyperplane associated to µ2.

.3 Convergence analysis and main result

Due to Q , mapping T is discontinuous on X × Rm. To circum-
ent this, we restrict the multipliers to the set M on which we
mpose some structure granting continuity of T on X×M. To this
nd, let Z := [ζ ,+∞) ∪ {0}, for some small ζ > 0, i.e., Z ⊂ R
ontains all nonnegative scalars which take value greater than ζ

hen nonzero.

ssumption 4. Let Λ be an arbitrarily large compact set. M
dmits the form

:= {µ ∈ Λ : (P(µ)µ)ℓ+1 ≤ (P(µ)µ)ℓ − ζ ,

∀ℓ = 1, . . . ,m− 1} ∩ Zm. (13)

Recalling that P(µ)µ rearranges the multipliers in descend-
ng order, the set M contains all vectors where the difference
etween every pair of strictly positive components—and the dis-
ance of the smallest of these from zero — is no less than ζ .
e note that (13) is the union of q = m! + m + 1 disjoint

onvex subsets of Rm
+
, each of which we denote as Mj, i.e., M =

q
j=1 Mj; Fig. 2 illustrates this set for m = 3. It is therefore
ossible to compute the projection in line 3 of Algorithm 1 by,
.g., projecting on Mj, for j = 1, . . . , q, and then setting y(κ+1) to

e the solution among these that results in the minimum distance
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Fig. 2. Domain M of the Lagrange multipliers associated to the coupling
onstraints, for ζ = 0.2 and m = 3. This results in q = 10 convex subsets,
ncluding the origin and a portion of the axes.

rom y(κ) − D−1T (y(κ), ρ,M). Still, the projection on M can be
computationally intensive if q is large.

Imposing on M the structure of (13) endows T with the de-
sired nonexpansiveness properties that are exploited in the proof
of Lemma 3. In the numerical implementation of the algorithm,
ensuring µ ∈M can possibly introduce small perturbations in the
multipliers — compared to standard formulations where µ ∈ Rm

+

—which in turn could produce a slight violation of the constraints
(this can be controlled through the magnitude of ζ ). We note that
M is compact by construction due to the intersection with the
compact set Λ in (13) which can, however, be arbitrarily large
thus not impacting the result numerically. Compactness is used
in the proof of Theorem 2; Remark 1 discusses cases where this
requirement can be lifted.

Lemma 2. Define T as in (8)–(11), where A, b satisfy (7). Then, for
any µ, µ′ ∈ M, µ ̸= µ′, there exists an integer 0 ≤ h ≤ M such
that

(µ− µ′)⊺(Q (µ,M)− Q (µ′,M))ρ ≤ −hζ cρ. (14)

Lemma 3. Consider T as in (8)–(11), where A, b satisfy (7) and
M =

⋃q
j=1 Mj as in (13). For each j = 1, . . . , q, let VI(X ×

Mj, T ) denote the VI problem defined by the map T restricted to
the subdomain X×Mj. Under Assumptions 1–3 the following holds:

(1) T is continuous on X ×M.
(2) Let D as in (9) and set τ > 0 such that

τ < min
{
−L2F+

√
L4F + 4α2∥A∥2

2α∥A∥2
,

−ρ(1+∥A∥2)+
√

ρ2(1+∥A∥2)2 + 16ζ 2∥A∥2

4ζ∥A∥2

}
. (15)

Then, for any j = 1, . . . , q, Algorithm 1 converges to a
solution of VI(X ×Mj, T ), when the gradient step in line 3
is projected on the corresponding subdomain, for any y(0) ∈
X ×Mj.

Continuity of the mapping is essential for the theoretical con-
ergence of Algorithm 1. The second part of Lemma 3 provides an
dmissible range of values for τ such that Algorithm 1 converges
o a solution of VI(X ×Mj, T ) if at each iteration the projection
n line 3 is performed on the (convex) subdomain Mj ⊂ M,
∈ {1, . . . , q}. The stepsize τ is chosen such that conditions
 w

7

tandard in NE seeking are satisfied and oscillations among mul-
iple equilibria are avoided. Still, we are interested in establishing
onvergence on the entire domainM, so at each iteration the pro-
jected solution might belong to a different subdomain. This does
not trivially follow from the second part of Lemma 3; therefore,
by Lemmas 2 and 3 we establish an additional condition on τ such
hat Algorithm 1 retrieves a solution of VI(X ×M, T ).

heorem 2. Consider Assumptions 1–4. Fixed 0 ≤ M ≤ m, assume
he domain ΠK is nonempty for any of the

(m
M

)
combinations of

onstraints tightened as in (12). Let D ≻ 0 be defined as in (9), where
satisfies (15) and

<
−(C̄ + R̄)+

√
(C̄ + R̄)2 + 2ζ R̄

2R̄
, (16)

where R̄ = max
{
supx∈X supµ∈M ∥2A(F (x) + A⊺

µ)∥, supx∈X ∥Ax −
b∥

}
and C̄ = cρ

√
m−M.

Then Algorithm 1 converges to a solution of VI(X ×M) for any
nitial condition y(0) ∈ X ×M.

Note that as µ(κ)
→ µ∗, we have Q (µ(κ)) → Q (µ∗) =: Q ∗.

Then, the solution returned by Algorithm 1 is the equilibrium of
a variant of GK with m − M tightened constraints (follows from
(12) with Q (µ) replaced by Q ∗).

Remark 1 (Relaxing Compactness). Theorem 2 still holds when
Λ = Rm in the definition of M in (13) if for all multi-samples,
(i) A is full row-rank, or (ii) all elements of A are positive.

(i) To show this, consider mapping T and matrix D in (9). The
multipliers’ update involves projecting (weighted according to D)
on M, the term

µ(k)
− 2τ 2A(F (x(k))+ A⊺

µ(k))
+τ (Ax(k) − b+ Q (µ(k),M)ρ). (17)

Since X is compact, there exists a subsequence {κi}i∈N such that
limi→∞ κi = ∞, limi→∞ x(κi) = x, for some x ∈ X . It suffices to
how that the sequence of multipliers {µ(κi)}∞i=1 remains bounded
all arguments in the proof of Theorem 2 from (C.1) onwards
emain unaltered).

For the sake of contradiction, assume that there exists at least
ne element of µ(κi) that tends to infinity across the consid-
red subsequence. Let then µ(κi) = (µ(κi)

∞ µ
(κi)
F ), where based

on our contradiction hypothesis limi→∞ ∥µ
(κi)
∞ ∥ = ∞ while

limi→∞ ∥µ
(κi)
F ∥ < ∞. (Taking the first elements of µ(κi) to be

he ones that tend to infinity is only to simplify notation and is
ithout loss of generality.) Let then A = [A∞

⊺ AF
⊺
]
⊺, b = (b∞ bF )

e the corresponding partition of A and b, respectively, where
∞, b∞ are non-empty by hypothesis. To have ∥µ(κi)

∞ ∥ → ∞,
e need the terms that are integrated in the multipliers’ update,

.e., last two terms in (17), to be positive for all i (in fact across a
ubsequence), which since τ > 0 is equivalent to

∞A⊺
µ(κi) < −A∞F (x(κi))

+
1
2τ

(
A∞x(κi) − b∞ + (Q (µ(κi),M)ρ)∞

)
, (18)

where (·)∞ denotes the elements of its argument corresponding
to µ

(κi)
∞ . Notice that A∞A⊺

µ(κi) = A∞A∞
⊺
µ

(κi)
∞ + A∞AF

⊺
µ

(κi)
F . As

such, we have

A∞A∞
⊺
µ(κi)
∞

< −A∞AF
⊺
µ

(κi)
F − A∞F (x(κi))

+
1
2τ

(
A∞x(κi) − b∞ + (Q (µ(κi),M)ρ)∞

)
. (19)

However, limi→∞ x(κi) = x ∈ X , and (Q (µ(κi),M)ρ)∞ ≤ cρ for all i,
hile by Lemma 3, F is continuous over the domain of multipliers
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atisfying (13). Moreover, µ
(κi)
F contains the components of µ(κi)

that remain finite. Therefore, the limit as i → ∞ of the right-
hand side of (19) is finite. Due to the assumed full row-rank
structure of A, matrix A∞A∞

⊺ is invertible, hence (19) implies
limi→∞ ∥µ

(κi)
∞ ∥ < ∞, establishing a contradiction showing that

the subsequence {µ(κi)} remains bounded.
(ii) If all elements of A are positive, and since aℓ

⊺aℓ = 1, for
ll ℓ = 1, . . . ,m, all arguments of case (i) remain the same with

the only difference that we directly have that ∥A∞A∞
⊺
µ

(κi)
∞ ∥ ≥

∥µ
(κi)
∞ ∥.

The next result accompanies the region S∗K = ΠK ∩ B(x∗, ρ) of
trategic deviations from the equilibrium x∗ with a priori prob-
abilistic feasibility guarantees that can be tuned by means of
M . It should be noted that Theorem 2 establishes that there
exists a choice of τ to guarantee convergence of Algorithm 1.
The admissible range of values for τ is explicit via (15), (16), but
ifficult to quantify due to R̄. Numerical evidence suggests that

selecting a small enough value is sufficient for convergence.

Theorem 3. Consider Assumptions 1–4. Let x∗ and S∗K = ΠK ∩

(x∗, ρ) be returned by Algorithm 1; fix ϵ ∈ (0, 1) and M. We then
ave that
K
{
δK ∈ ∆K

: V(S∗K ) ≤ ϵ

}
≥ 1−

nN+M−1∑
i=0

(
K
i

)
ϵ i(1− ϵ)K−i. (20)

By Definition 2, Theorem 3 guarantees that for any point in
∗

K , the probability of constraint violation is bounded by ϵ̄, with
confidence at least 1−

∑nN+M−1
i=0

(K
i

)
ϵ i(1− ϵ)K−i. The dependence

f this term on M gives us an additional degree of freedom in
rading the robustness of the solution for its associated proba-
ilistic confidence. The choice of M can also have an effect on
he size of S∗K , as well as on the location of x∗, thus resulting in a
trade-off between performance and robustness.

For the case in which the coupling constraints concern ex-
clusively the aggregate variable, it can be shown that the upper
limit of the summation in the right-hand side of (20) can be
replaced by n + M − 1, as n is the dimension of the aggregate
vector. This allows to state (20) with a much higher confidence
of 1 −

∑n+M−1
i=0

(K
i

)
ϵ i(1 − ϵ)K−i; for details, we refer the reader

to Pantazis et al. (2022), where the notion of support rank is
exploited (Schildbach et al., 2012).

4. Numerical example

Consider a game with N agents whose decisions are subject to
deterministic local constraints and uncertain coupling constraints
on the aggregate decision:

min
xi∈Xi

xi
⊺(Cσ (x)+ d)

subject to bδk
≤ σ (x) ≤ bδk ,

k = 1, . . . , K

⎫⎪⎪⎬⎪⎪⎭ ∀i ∈ N , (21)

where C ≻ αIn, for some α > 0, and d ∈ Rn. Note that a structure
similar to our numerical example has been considered in applica-
tions of aggregative games such as electric vehicle charging and
traffic management under uncertainty (Fele & Margellos, 2019,
2021; Paccagnan et al., 2019). We impose no knowledge of ∆

and P; we rely instead on a scenario-based approximation of
the game, whereby each sample δk ∈ δK gives rise to bδk

, bδk .
q. (21) is an aggregative game in the form of (3). In this in-

stance, we assume each agent’s action has negligible effect on
the aggregate, and accordingly consider a GWE-seeking problem.
8

Following the definition of FWE (Section 2.2), we get F (x) = FWE =

Cσ (x) + c]i∈N . It can be verified that F is Lipschitz continuous
nd strongly monotone with respect to σ : by Facchinei and Pang
2003, Thm. 2.3.3), (21) admits a unique aggregate equilibrium
∗
= σ (x∗).5
We employ Algorithm 1 to seek a WE x∗ such that, by fixing
, a prespecified theoretical violation level is guaranteed for

he set ΠK ∩ B(x∗, ρ). Due to uniqueness of σ ∗, all sets B(·, ρ)
parametrised by any x∗ solving (21) — are projected on the

nique ball B(σ ∗, ρ/N) in the aggregate space. Also note that by
efinition of σ , at most n non-redundant samples will contribute

o define the domain Πσ
K :=

1
N (1N

⊺
⊗In)X∩

(⋂K
k=1 Cδk

)
in (21). For

the derivation of the robustness guarantees, we can thus restrict
our attention to S∗K = Πσ

K ∩ B(σ ∗, ρ/N) ⊆ Rn. As remarked at
the end of Section 3.3, we can apply (20) with the upper limit in
the summation involved replaced by n+M − 1. For the case n =
,N = 50, and different choices of M , Fig. 3 depicts the projected

iterations {σ (x(κ))}, κ = 1, 2, . . . generated by Algorithm 1 on the
space Πσ

K . It can be observed how the region S∗K changes as the
value of M is modified.

It is worth noting that in this case F (x) is integrable—this
can be inferred by Facchinei and Pang (2003, Thm. 1.3.1) since
the Jacobian of the game is symmetric, i.e., ∇xF (x) = ∇xF (x)

⊺.
Therefore, a GWE x∗ can also be obtained by solving

min
x∈X

σ (x)⊺Cσ (x)+ d⊺
σ (x)

subject to bδk
≤ σ (x) ≤ bδk , k = 1, . . . , K .

(22)

In other words, this game admits a potential function E(x) :=
σ (x)⊺Cσ (x) + d⊺

σ (x), whose minimisers correspond to GWEs. E
an be interpreted as the total cost incurred by the population of
gents, and its minimisation leads to the optimum social welfare.
he contour lines of E are depicted in Fig. 3: since x∗ minimises

E(·), σ ∗ lies on the contour associated to the minimum value of
E within the feasible domain. Lower values of M result in larger
regions for which guarantees are provided. Fig. 4 shows how
the sequence {E(x(κ))}κ=1,2,... converges to the minimum potential
within the possibly tightened feasibility region. It can be observed
how in this case the efficiency of the equilibrium decreases as
smaller values of M are chosen. The three panels in Fig. 4 show
the trade-off between system level efficiency and the guaranteed
robustness levels. The lower the value of M , the lower the em-
pirical constraints violation—corresponding to a better confidence
bound in the right-hand side of (20).

5. Concluding remarks

This work proposes a data-driven equilibrium-seeking algo-
rithm such that probabilistic feasibility guarantees are provided
for a region surrounding a game equilibrium. These guarantees
are a priori and the region that is accompanied with such a prob-
abilistic certificate is tunable. For games that admit a potential
function, the proposed scheme is shown to achieve a trade-off
between cost and the level of probabilistic feasibility guarantees.
In fact, our scheme returns the most efficient equilibrium such
that the predefined guarantees are achieved. Proving this conjec-
ture is left for future work. Moreover, current work investigates a
distributed implementation of the proposed equilibrium seeking
algorithm.

5 We note that this case slightly transcends the conditions in Theorem 2, as F
does not comply with Assumption 3–(1). Convergence of Algorithm 1 (following
from the nonexpansiveness of T on each subdomain Mj) can still be ensured
here due to the affine structure of F ; cf. Facchinei and Pang (2003, Sec. 12.5.1).
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Fig. 3. Iterates generated by Algorithm 1 (blue diamonds) for different choices of M . In this numerical instance, N = 50, ρ = 10, and Xi := {xi ∈ Rn
: xi ∈ [xi, xi]}, with

xi = (0 0), xi = (3.5 3.5). The randomly generated coupling constraints form the rectangular feasibility region Πσ
K (delineated by the solid black line). The red-shaded

egion represents the intersection between the latter and the ball B1(σ ∗, ρ/N) around the aggregate equilibrium σ ∗ (red diamond marker). In this instance, its
olume increases as larger values for M are chosen. The value associated to the contour lines of the potential function E decreases from top-right to bottom-left,
howing that σ ∗ is the unique minimiser in the admissible region (shaded in green) after constraint tightening is performed by the algorithm (see Section 3.2.2).
For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
d

Fig. 4. Potential function E(x(κ)) evaluated along the iterations of Algorithm
. Lower values of M yield better confidence on the theoretical robustness
ertificates for the considered region (see Theorem 3), which results in a lower
mpirical probability of constraint violation. On the other hand, the system-level
fficiency of the equilibrium increases for higher values of M .
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ppendix A. Proof of Lemma 2

Let µ, z be arbitrary vectors in M and, as in the proof of
emma 3, define µ⃗, z⃗ as the vectors composed by rearranging the
lements of µ, z in decreasing order. According to this arrange-
ent, let Iµ = {i1, i2, . . . , im} be the ordered set of indices of µ,

i.e., ik : µik = µ⃗k, k = 1, . . . ,m; as a result, i1 and im will be the
indices of the largest and smallest components of µ, respectively.
Applying a similar definition to z, we denote the corresponding
9

set Iz := {j1, j2, . . . , jm}. Then, the first M indices in Iµ and Iz ,
enoted as Lµ and Lz , respectively, are relative to the constraints

not tightened by the application of Q (·,M). In other words, for
all ℓ ∈ Lµ, (Q (µ,M)ρ)ℓ = 0 — and similarly for z. Vice versa,
the complementary sets Lc

µ = Iµ \ Lµ and Lc
z = Iz \ Lz are

such that for all ℓ ∈ Lc
µ, (Q (µ,M)ρ)ℓ = cρ, and for all ℓ ∈ Lc

z ,
(Q (z,M)ρ)ℓ = cρ. Let q = [Q (µ,M)− Q (z,M)]ρ. We distinguish
between the following cases:

(1) ℓ ∈ Lc
µ ∩ Lz : we have (Q (µ,M)ρ)ℓ = cρ since ℓ ∈ Lc

µ,
while (Q (z,M)ρ)ℓ = 0 as ℓ ∈ Lz . Then, qℓ = cρ.

(2) ℓ ∈ Lµ ∩ Lc
z : from ℓ ∈ Lc

z we have (Q (z,M)ρ)ℓ = cρ. On
the other hand, since ℓ ∈ Lµ, (Q (µ,M)ρ)ℓ = 0. This results
in qℓ = −cρ.

(3) ℓ ∈ (Lµ∩Lz)∪(Lc
µ∩L

c
z ). If ℓ ∈ Lµ∩Lz then (Q (·,M)ρ)ℓ = 0

for both µ and z. Therefore, qℓ = 0. Conversely, if ℓ ∈

Lc
µ ∩ Lc

z , then (Q (·,M)ρ)ℓ = cρ for both µ and z, which
results again in qℓ = 0.

The sets Lc
µ ∩ Lz , Lµ ∩ Lc

z , (Lµ ∩ Lz) ∪ (Lc
µ ∩ Lc

z ) are pairwise
disjoint and exhaust the set {1, . . . ,m}. Hence we can write

U = (µ− z)⊺(Q (µ,M)− Q (z,M))ρ =
m∑

ℓ=1

(µℓ − zℓ)qℓ

=

∑
i∈Lc

µ∩Lz

(µi − zi)cρ +
∑

j∈Lµ∩Lc
z

(µj − zj) · (−cρ)

=
( ∑
i∈Lc

µ∩Lz

µi −
∑

j∈Lµ∩Lc
z

µj

  
=:U1

+

∑
j∈Lµ∩Lc

z

zj −
∑

i∈Lc
µ∩Lz

zi

  
=:U2

)
cρ,

(A.1)

Now, notice that for any i ∈ Lc
µ ∩Lz ⊆ Lc

µ and j ∈ Lµ ∩Lc
z ⊆ Lµ,

we have by definition of Lµ and Lc
µ that µi ≤ µj (which by

(13) only holds with equality if µi = µj = 0). With analogous
reasoning, we have zi ≥ zj for any i ∈ Lc

µ ∩ Lz ⊆ Lz and
j ∈ Lµ ∩ Lc

z ⊆ Lc
z . Let h1 be the cardinality of the set Lc

µ ∩ Lz ,
and h2 that of Lµ ∩ Lc

z . Then,

h1 = |Lc
µ ∩ Lz |

(a)
= |Lz \ Lµ| = |Lz | − |Lµ ∩ Lz |

(b)
= |Lµ| − |Lz ∩ Lµ| = |Lµ \ Lz | = |Lµ ∩ Lc

z | = h2,

where (a) holds since Lµ,Lz ⊆ {1, . . . ,M}, and (b) follows from
|Lµ| = |Lz | = M . Therefore h1 = h2 =: h and 0 ≤ h ≤ M ,
which implies U1 ≤ 0 and U2 ≤ 0 in (A.1). We can observe that
U1 < 0 and U2 < 0 if Lµ ∩ Lc

z and Lc
µ ∩ Lz are nonempty and
the corresponding components of µ and z are nonzero. In such a
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ase h ≥ 1 and we can write

U1 =
∑

i∈Lc
µ∩Lz

µi −
∑

j∈Lµ∩Lc
z

µj ≤ −hζ , (A.2)

here the inequality follows from (13) and the above discussion.
similar reasoning holds for U2. Lastly, note that if µ ̸= z and
≥ 1, then at least one of U1 ≤ −hζ and U2 ≤ −hζ will hold.

By (A.1), we can thus conclude U ≤ −hζ cρ for any µ, z ∈ M,
µ ̸= z. ■

Appendix B. Proof of Lemma 3

Part (1): To prove that the mapping T is continuous on its domain,
we first notice that T is by construction continuous on X ×M
when the operator Q (·,M) is continuous on M (as the parameter
M is fixed). Therefore, it is sufficient to show that for any µ, z ∈
M and any η > 0, there exists δ > 0 such that

∥µ− z∥ < δ ⇒ ∥Q (µ,M)− Q (z,M)∥∥ρ∥ < η, (B.1)

here ρ = cρ1m ̸= 0. To this end, consider any µ, z ∈ M such
hat ∥µ− z∥ <

ζ

2 , with ζ as defined in (13).6 Let µ⃗ and z⃗ denote
he vectors µ and z sorted in decreasing order; thus, µ⃗ℓ is the
th largest element of µ (and similarly for z). For any given ℓ, let
: µi = µ⃗ℓ, j : zj = z⃗ℓ, and ℓ̄ := min{1,...,m} ℓ : i ̸= j. In words,
¯ is the smallest index for which the ℓth largest elements of µ

nd z do not appear at the same row of their respective vectors.
e then let I be the set of indices for which the ordering of the

lements of µ and z agrees, i.e., for all k ∈ I, there exists ℓ < ℓ̄

uch that i = j = k, with i : µi = µ⃗ℓ and j : zj = z⃗ℓ.
We prove our statement by contradiction. Suppose there exists

, j /∈ I such that i : µi = µ⃗ℓ and j : zj = z⃗ℓ for some ℓ > ℓ̄, where
i < µj and zi > zj. First, we note that such an instance exists
y hypothesis, as otherwise the only possible case is where i = j,
hich contradicts i, j /∈ I and implies Q (µ,M) = Q (z,M). Since
∈M, it further holds zj < zi−ζ , which by ∥µi−zi∥ ≤ ∥µ−z∥ <

ζ

2 implies

j < µi +
ζ

2
− ζ . (B.2)

e bound (B.2) from below by noting zj > µj −
ζ

2 , which holds
ince ∥µj−zj∥ <

ζ

2 , obtaining µj−
ζ

2 < µi+
ζ

2−ζ , or equivalently
µj < µi, which contradicts our hypothesis. Hence the elements of
any pair of vectors µ, z ∈M such that ∥µ− z∥ <

ζ

2 must follow
he same ordering. By definition of P(·), this implies P(µ) = P(z)
and, in turn, ∥Q (µ,M) − Q (z,M)∥ = 0. This validates (B.1) with
δ =

ζ

2 and any η > 0, establishing the continuity of Q (·,M) on
M and concluding the proof of the first part.
Part (2): We show that the mapping T fulfils certain nonexpan-
siveness properties required for the convergence of Algorithm 1,
for compatible choices of τ . In particular, we provide a sufficient
condition for which the iteration

y(κ+1) = projX×Mj,D
[
y(κ) − D−1T (y(κ), ρ,M)

]
, (B.3)

onverges to a solution of VI(X ×Mj, T ), where j ∈ {1, . . . , q}
s fixed, for any y(0) ∈ X × Mj. Notice that in (B.3) the skew
projection is performed on the convex subdomain X×Mj. (B.3) is
the solution of the VI(X×Mj, T

(κ)
D ) (see Facchinei and Pang (2003,

ec. 12.5.1)), where T (κ)
D (y) := T (y(κ), ρ,M)+D(y−y(κ)) is strongly

monotone due to D ≻ 0 and (T (y, ρ,M)−T (y′, ρ,M))⊺(y−y′) ≥ 0,
for all y, y′ ∈ X ×M, which in turn follows from Assumption 3
and Lemma 2. The fixed-point iteration (B.3) is an instance of the
forward–backward splitting method: we thus resort to standard

6 The proof of this part also holds for µ ∈ Rm
⊃M.
+

10
esults in the literature to prove its convergence. Following the
otation in Facchinei and Pang (2003, Sec. 12.5.1), we let D̃ :=

D−1/2s (D − Ds)D
−1/2
s , where Ds :=

D+D
⊺

2 . Also, Uj := {D
1/2
s y :

∈ X ×Mj}, U =
⋃q

j=1 Uj, and T̃ (w) := D−1/2s T (D−1/2s w, ρ,M),
or all w ∈ U . To ease notation, we drop the dependence of
˜ and T̃D on ρ,M , as they remain fixed throughout the proof.
ccording to Facchinei and Pang (2003, Thm. 12.5.2) (see also Zhu
nd Marcotte (1996, Sec. 4.3)), to ensure convergence of (B.3)
o a solution of the VI(X × Mj, T ) it is sufficient to show that
˜D = T̃ − D̃ is β-cocoercive on Uj, i.e.,

T̃D(v)− T̃D(w))⊺(v − w) ≥ β∥T̃D(v)− T̃D(w)∥2, (B.4)

or some β > 1
2 and all v, w ∈ Uj, j ∈ {1, . . . , q}. In fact, we will

o a step forward and demonstrate here that T̃D is co-coercive
on U with β > 1

2 . Due to the saddle problem structure of the
apping in (8), we adopt the procedure in Facchinei and Pang

2003, Prop. 12.5.4) and define D as in (9) (see also Paccagnan
t al. (2019)). It then follows from the above definitions that
˜D(w), for any w ∈ U , reduces to

˜D(D1/2
s y) = D−1/2s

[
F (x)

b− Q (µ,M)ρ

]
, ∀y ∈ X ×M, (B.5)

which can be easily seen by rewriting (8) as

T (y, ρ,M) =
[
F (x)
0

]
+

[
0 A⊺

−A 0

]
  

D−Ds

y+
[

0
b− Q (µ,M)ρ

]
.

Define W := (D−1/2s )⊺D−1/2s = D−1s , and let Q⃗ (·) be a shorthand for
(·,M)ρ (as M is a fixed parameter). Then, for any wa, wb ∈ U ,
e can expand (B.4) by using (B.5), obtaining

wa − wb)
⊺(T̃D(wa)− T̃D(wb))− β∥T̃D(wa)− T̃D(wb)∥2

= (D−1/2s wa − D−1/2s wb)
⊺

[
F (xa)− F (xb)

Q⃗ (µb)− Q⃗ (µa)

]
− β

D−1/2s

[
F (va)− F (vb)
Q⃗ (µb)− Q⃗ (µa)

]2

=

[
xa − xb
µa − µb

]⊺ [
F (xa)− F (xb)

Q⃗ (µb)− Q⃗ (µa)

]
− β

[
F (xa)− F (xb)

Q⃗ (µb)− Q⃗ (µa)

]⊺

W
[

F (xa)− F (xb)
Q⃗ (µb)− Q⃗ (µa)

]
,

(B.6)

or all ya, yb ∈ X ×M, where the last equality follows from the
efinition of Uj and by expanding the norm. Matrix W can be
ritten as W =

[
W11 W12
W21 W22

]
, where W11 ∈ RnN×nN , W12 ∈ RnN×m,

33 ∈ Rm×m are:

11 = τ (In − τ 2A⊺A)−1,

12 = W21
⊺
= τ 2(In − τ 2A⊺A)−1A⊺

,

22 = τ Im + τ 3A(In − τ 2A⊺A)−1A⊺
.

xpanding the inner product in (B.6) with respect to the matrix
locks W11,W12,W21,W33 we obtain

(F (xa)− F (xb))
⊺
[ 1

β
(xa − xb)

− W11(F (xa)− F (xb))− 2W12(Q⃗ (µb)− Q⃗ (µ1))
]

+ β(Q⃗ (µb)− Q⃗ (µa))
⊺
[ 1

β
(µa − µb)

⃗ ⃗
]

−W22(Q (µb)− Q (µa))
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(F (xa)− F (xb))
⊺(xa − xb)

− β(F (xa)− F (xb))
⊺W11(F (xa)− F (xb))

− 2β(F (xa)− F (xb))
⊺W12(Q⃗ (µb)− Q⃗ (µa))

+ (Q⃗ (µb)− Q⃗ (µa))
⊺(µa − µb)

− β(Q⃗ (µb)− Q⃗ (µa))
⊺W22(Q⃗ (µb)− Q⃗ (µa)).

Setting pτ := (I − τ 2A⊺A)−1/2(F (xa) − F (xb)) and qτ := τ (I −
τ 2A⊺A)−1/2A⊺(Q⃗ (µb)− Q⃗ (µa)) above we obtain

(F (xa)− F (xb))
⊺(xa − xb)

+ (Q⃗ (µb)− Q⃗ (µa))
⊺(µa − µb)

− βτ (Q⃗ (µb)− Q⃗ (µa))
⊺(Q⃗ (µb)− Q⃗ (µa))

− βτ (pτ + qτ )
⊺(pτ + qτ )

≥ α∥xa − xb∥2 + 2hζ cρ

− 2βτh(cρ)2 − 2βτ (pτ
⊺pτ + qτ

⊺qτ ),

(B.7)

where for the last inequality we used, in order, (i) strong mono-
tonicity of F (cf. Assumption 3), (ii) Lemma 2, (iii) ∥Q⃗ (µb) −
Q⃗ (µa)∥2 ≤ 2h(cρ)2 — which follows from the same arguments
used in the proof of Lemma 2 — and (iv) (pτ + qτ )

⊺(pτ + qτ ) ≤
2(pτ

⊺pτ + qτ
⊺qτ ). Expanding the term containing pτ , qτ in (B.7)

we get

α∥xa − xb∥2 + 2hζ cρ − 2βτh(cρ)2

− 2βτ (F (xa)−F (xb))
⊺(In − τ 2A⊺A)−1(F (xa)−F (xb))

− 2βτ 3(Q⃗ (µb)− Q⃗ (µa))
⊺

· A(In − τ 2A⊺A)−1A⊺(Q⃗ (µb)− Q⃗ (µa))
(a)
≥ α∥xa − xb∥2 + 2hζ cρ − 2βτh(cρ)2

− 2βτ∥F (xa)−F (xb)∥2 · ∥(In − τ 2A⊺A)−1∥

− 2βτ 3
∥Q⃗ (µb)− Q⃗ (µa)∥2 · ∥(In − τ 2A⊺A)−1∥ · ∥A∥2

(b)
≥ (α − 2βτL2F∥(In − τ 2A⊺A)−1∥)∥xa − xb∥2

+ 2hζ cρ − 2βτh(cρ)2
(
1+

2τ 2

1− τ 2∥A∥2
∥A∥2

)
,

(B.8)

here (a) is obtained by applying the Cauchy–Schwarz inequality,
nd in (b) we use the Lipschitz continuity of F (cf. Assumption 3),
Q⃗ (µb)− Q⃗ (µa)∥2 ≤ 2h(cρ)2, and the triangle inequality. Notice
hat for the last term in (B.8),

βτh(cρ)2
(
1+

2τ 2

1− τ 2∥A∥2
∥A∥2

)
= 2βτh(cρ)2

1+ τ 2
∥A∥2

1− τ 2∥A∥2
≤ 2βτh(cρ)2

1+ ∥A∥2

1− τ 2∥A∥2
(B.9)

olds for any choice of τ ∈
(
0,max

{ 1
∥A∥ , 1

})
. Recall that by

nvoking (Facchinei & Pang, 2003, Thm. 12.5.2), our objective is
o show that (B.4) holds for some τ > 0 and β > 1

2 . Then, by
nspecting (B.8) and using (B.9), to achieve this it is sufficient to
uarantee

− τL2F∥(In − τ 2A⊺A)−1∥ > 0,

hζ cρ − τh(cρ)2
1+ ∥A∥2

1− τ 2∥A∥2
> 0, if 1 ≤ h ≤ M.

olving the quadratic expressions above with respect to τ results
n the admissible range of values in (15) (these are also satisfying
∈

(
0,max

{ 1
∥A∥ , 1

})
, required for (B.9) to hold). Therefore, for

any τ satisfying this condition, T̃D is co-coercive with β > 1
2 on

the entire domain U , which in turn implies that co-coercivity of T̃D
olds on each subdomain U , j = 1, . . . , q, with the same modulus.
j

11
Fig. C.1. Domain M of the Lagrange multipliers associated to the coupling
constraints, for the case m = 2. Notice the minimum distance ζ between any
two subdomains of M involves the origin as one of these subdomains.

By Facchinei and Pang (2003, Thm. 12.5.2), this is sufficient to
guarantee the convergence of (B.3) to a solution of the VI(X ×
Mj, T ), thus concluding the proof. ■

Appendix C. Proof of Theorem 2

Fix any τ satisfying the conditions of Lemma 3 and (16). The
sequence {y(κ)}κ=1,2,... (where y(κ) = (x(κ), µ(κ))) generated by
Algorithm 1 lives in a compact set since X and M are com-
pact (see Assumption 4). As such, by the Bolzano–Weierstrass
theorem (Rudin, 1976, Thm. 3.6), there exist convergent subse-
quences, i.e., the set

Ω :=

{
ȳ = (x̄, µ̄) : ∃ subsequence {κi}i∈N

such that lim
i→∞

κi = ∞, lim
i→∞

y(κi) = ȳ
}
, (C.1)

containing the limit points of {y(κ)} is non-empty; see, e.g., Rudin
(1976, p. 48). We will show that Ω is a singleton for any τ
satisfying (15)–(16), which implies that the iterates generated
by Algorithm 1 have a unique limit point, hence they converge.
To achieve this, we assume for the sake of contradiction that
there exist two cluster points ȳ1, ȳ2 ∈ Ω , where ȳ1 = (x̄1, µ̄1)
nd ȳ2 = (x̄2, µ̄2). Moreover, we assume that µ̄1 ∈ Mi, and
¯ 2 ∈ Mj, with i ̸= j. Note that if this were not the case, then
e would be in a trivial case where ȳ1 = ȳ2, due to co-coercivity
f T (see Lemma 3)—by which Algorithm 1 converges to a unique
olution when restricted to any convex subdomain X ×Mj, j =
, . . . , q. To ease the notation in the remainder of the proof, we
ssume without loss of generality that µ̄1 ∈ M1, µ̄2 ∈ M2 (see
ig. C.1). By (C.1) there exist an infinite subsequence {κi}i∈N of the
terates generated by Algorithm 1 whose elements get arbitrarily
lose to µ̄1 while staying in M1 where this cluster point belongs
similarly for µ̄2). We then have that for any δ > 0, there exists κ̃
uch that for all κi ≥ κ̃ , ∥y(κi)− ȳ1∥ ≤ δ; this implies ∥x(κi)− x̄1∥ ≤
and ∥µ(κi) − µ̄1∥ ≤ δ.
Due to our contradiction hypothesis (recall that {κi}i∈N is a

ubsequence), the sequence of iterates generated by Algorithm 1
ould be leavingM1 towardsM2 infinitely often. Denote then by

κ > κ̃ the smallest index of the subsequence such that µ(κ)
∈M1,

ut µ(κ+1)
∈ M2, i.e., after the κth iterate the original sequence

would jump to M2 (for the first time after κ̃). For this jump
to occur, the unprojected solution for the Lagrange multipliers
must be ‘‘closer’’ to M2 than to any other sub-domain of M.
To see this more formally, let D−1µ denote the lower block-row

of D−1 =
[

τ InN 0
]
, corresponding to the Lagrange multiplier
2Aτ2 τ Im
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pdate in line 3 of Algorithm 1. By definition of M, such a jump
equires the Euclidean distance between the unprojected gradient
tep at κ + 1 and µ(κ) to satisfy

µ(κ)
− D−1µ T (y(κ), ρ,M)− µ(κ)

∥ > ζ/2. (C.2)

ig. C.1 illustrates this construction: (C.2) describes the minimum
istance for a jump to occur. This is when the ellipsoidal contour
evels according to which the projection is performed (skew
rojection defined by matrix D) have their major axis aligned

between subdomains as in Fig. C.1 (solid red ellipses). For this
two-dimensional example this distance would then be half the
width of the white stripe, i.e., ζ/

√
2. We rather impose ζ/2

which is smaller) in (C.2), to account for the case where one of
he subdomains is the origin (M3). However,

µ(κ)
− D−1µ T (y(κ), ρ,M)− µ(κ)

∥

= τ∥ − 2τA(F (x(κ))+ A⊺
µ(κ))

+ Ax(κ) − b+ Q (µ(κ),M)ρ∥

= τ∥ − 2τA(F (x(κ))− F (x̄1)+ A⊺(µ(κ)
− µ̄1))

+ A(x(κ) − x̄1)+ Q (µ(κ),M)ρ
− 2τA(F (x̄1)+ A⊺

µ̄1)+ (Ax̄1 − b)∥

≤ τ 2
∥2A(F (x̄1)+ A⊺

µ̄1)∥ + τ∥Ax̄1 − b∥

+ τ∥Q (µ(κ),M)ρ∥ + τ∥A∥∥x(κ) − x̄1∥

+ 2τ 2(
∥A(F (x(κ))− F (x̄1))∥ + ∥AA

⊺(µ(κ)
− µ̄1)∥

)
≤ (τ 2

+ τ )R̄+ τ cρ
√
m−M

+ τδ
(
2τ (LF∥A∥ + ∥AA

⊺
∥)+ ∥A∥

)
, (C.3)

where the first equality follows from the definition of D−1µ and
, and the second one by adding and subtracting F (x̄1), A

⊺
µ̄1 and

x̄1. The first inequality is due to the triangle inequality, while
he last one follows from the previous one by upper-bounding (i)
he first two terms using the definition of R̄; (ii) ∥Q (µ(κ),M)ρ∥ by
cρ
√
m−M based on its definition; and (iii) the last three terms

using ∥F (x(κ)) − F (x̄1)∥ ≤ LF∥x(κ) − x̄1∥ by Assumption 3, and
x(κ) − x̄1∥ ≤ δ, ∥µ(κ)

− µ̄1∥ ≤ δ. By (C.3), and choosing τ as
in (16), we have that

∥µ(κ)
− D−1µ T (y(κ), ρ,M)− µ(κ)

∥ <
ζ

2
+ K̄δ, (C.4)

where K̄ is a constant, emanating from the coefficient of δ in (C.3)
when substituting for τ the upper-bound in (16). Note that κ is
a function of δ, as it depends on κ̃ , which in turn depends on δ.
ince δ is arbitrary, taking lim supδ→0 in (C.4) and lim infδ→0 in
C.2) leads to

im sup
δ→0
∥µ(κ)

− D−1µ T (y(κ), ρ,M)− µ(κ)
∥ <

ζ

2
, (C.5)

im inf
δ→0
∥µ(κ)

− D−1µ T (y(κ), ρ,M)− µ(κ)
∥ >

ζ

2
, (C.6)

stablishing a contradiction. Then µ̄2, µ̄1 ∈ M1, i.e., all cluster
oints should be in the same subdomain of M. As Lemma 3
stablishes co-coercivity of T on each subdomain X ×Mj, j =
, . . . , q, it must be µ̄2 = µ̄1, i.e., Ω is a singleton, implying that
lgorithm 1 converges. ■

ppendix D. Proof of Theorem 3

The elements of the minimal compression set I of Algorithm
can belong to one or both of the following sets:

(1) The subset I1 of samples that form a minimal compression
for x∗. Note that since Algorithm 1 converges to the point
12
(x∗, µ∗) for a fixed choice of M , Q (µ∗,M) will be a fixed
quantity. Then Algorithm 1 will converge to a solution of

Find x∗ ∈ Π̂K such that

F (x∗)⊺(x− x∗) ≥ 0 for any x ∈ Π̂K , (D.1)

where Π̂K denotes the polytope obtained from ΠK by tight-
ening at most M coupling constraints, as dictated by (12)
with Q (µ∗,M). The constraints in (D.1) are equivalent to
F (x∗)⊺x ≥ F (x∗)⊺x∗ for all x ∈ Π̂K . Then, x∗ is the minimiser
of

min
x∈RnN

F (x∗)⊺x

subject to x ∈ Π̂K , (D.2)

which is unique due to Lemma 1. Since the cost function
is linear in x and Π̂K is convex by Assumption 2, we
obtain a scenario program as in Campi and Garatti (2008).
Applying (Campi & Garatti, 2008, Prop. 1) or Margellos et al.
(2015, Section III-B) to (D.2), we have that |I1| ≤ nN ,
i.e., the cardinality of a minimal compression set for x∗ is
bounded by the dimension of the decision vector nN .

(2) The subset I2 of samples whose corresponding coupling
constraints intersect B(x∗, ρ). By construction of Algorithm
1 we have that |I2| ≤ M .

s such, we have that I = I1 ∪ I2 is a compression set with
ardinality |I| = |I1 ∪ I2| ≤ |I1|+|I2| ≤ nN+M . Then, by Corollary
in Margellos et al. (2015), (20) follows. ■
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