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Abstract

We propose distributed iterative algorithms for safe control design and safety verification for networked multi-agent systems.
These algorithms rely on distributing a control barrier function (CBF) related quadratic programming (QP) problem assuming
the existence of CBFs. The proposed distributed algorithm addresses infeasibility issues of existing schemes via a cooperation
mechanism between agents. The resulting control input is guaranteed to be optimal, and satisfies CBF constraints of all
agents. Furthermore, a truncated algorithm is proposed to facilitate computational implementation. The performance of the
truncated algorithm is evaluated using a distributed safety verification algorithm. The algorithm quantifies safety for multi-
agent systems probabilistically by means of CBFs. Both upper and lower bounds on the probability of safety are obtained
using the so called scenario approach. Both the scenario sampling and safety verification procedures are fully distributed. The
efficacy of our algorithms is demonstrated by an example on multi-robot collision avoidance.
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1 Introduction

Safety of a dynamical system requires the system state
to remain in a safe set for all time. This property is
important in many applications such as collision avoid-
ance [2,3], vehicle platooning [4,5], vehicle merging con-
trol [6], etc. For a single agent system, safety is usually
captured by introducing constraints on the state of the
agent and the environment. For a multi-agent system,
the meaning of safety extends to capture the interac-
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tions among agents. In this case, safety is encoded by
coupling constraints over the states of a group of agents.
For a networked multi-agent system, where agents coop-
erate to satisfy safety constraints, we consider designing
distributed algorithms to ensure safety for all agents.

Another problem of interest is to validate the proposed
control law. For a single agent system, an agent can eval-
uate the system behaviour to characterize its risk of be-
ing unsafe under the employed control input. Similarly,
for a multi-agent safety verification problem, coopera-
tion among agents is necessary since safety involves mul-
tiple agents. In summary, this paper focuses on designing
a distributed protocol for safe control input design and
developing a distributed safety verification algorithm.

1.1 Related Work

Safety in control systems is often certified by control
barrier functions (CBF), which is a type of control
Lyapunov-like functions [7–9]. By enforcing the inner
product of the CBF derivative and vector field of the
controlled system to be bounded, safety is rigorously
guaranteed at any time. CBF is shown to be powerful
and scalable in control input design for control-affine
systems, as this condition can be encoded as a linear
constraint in a quadratic programming (QP) prob-
lem [7]. By solving online QP problems at every state,
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the system is guaranteed to be safe [10,11]. Most of the
existing results in this direction involve a centralized
approach; however, multi-agent considerations call for
distributed solution regimes.

CBF-based distributed algorithms have been proposed
in [12–14]. In these papers, the CBF constraints are de-
composed and allocated to neighbouring agents to facil-
itate a distributed implementation. Under the assump-
tion that each local optimization problem is feasible, the
overall CBF constraints are satisfied. However, this as-
sumption is usually much stronger than that of feasibil-
ity of the nominal centralized problem. Moreover, opti-
mality of the nominal centralized problem by the dis-
tributed controller is not guaranteed. An improved con-
straint sharing mechanism is developed in [15], where
the CBF constraints are dynamically tuned for feasibil-
ity, but for single-agent systems. Optimality is further
considered in [16] , but for multi-agent systems with only
one CBF constraint. A dynamical constraint allocation
scheme among agents based on a consensus protocol is
proposed. In our work, we deal with the problem of guar-
anteeing feasibility of local problems across iterations
while preserving optimality, under multiple CBF safety
constraints. In essence, the distributed CBF-based safe
control design problem can be seen under the lens of dis-
tributed optimization.

Distributed optimization for a multi-agent system aims
to design a distributed protocol that involves solving
an optimization problem locally for every agent. Algo-
rithms can be divided into two types, dual decompo-
sition [17–20] and primal decomposition-based [21–25].
Dual decomposition methods consider the dual problem,
where each agent maintains a local copy of the dual vari-
ables. Constraint satisfaction is achieved by consensus
over the dual variables. Primal decomposition methods
directly decompose the primal problem into local prob-
lems. By local projection [21, 24, 25] or updating auxil-
iary variables [22,23], algorithms converge to centralized
optimum under convexity assumptions. Such methods
guarantee near feasibility as far as the constraints of the
primal problem are concerned. As our problem has sim-
ilar structure as the one considered in [22, 23], primal
decomposition structure is applied to develop our algo-
rithm.

To reduce the communication and computation burden,
a truncation mechanism is proposed to allow us to termi-
nate the algorithm before reaching convergence. To give
a probabilistic guarantee for safety over the state space,
we leverage scenario approach [26–30], which samples a
number of independent states from the state space and
enforces the constraint only at these realizations.

1.2 Contributions

Our contributions can be summarized as follows:

(1) We provide a distributed algorithm for designing
safe controllers for multi-agent systems. Under the
assumption of the existence of feasible CBFs, a cen-
tralized safe control design problem is formulated.
Our distributed algorithm parallelizes computation
by decomposing the centralized problem into local
problems, while guaranteeing feasibility of every lo-
cal problem across iterations. The optimal solution
returned by our algorithm is guaranteed to be the
same as that of the nominal centralized problem,
therefore satisfying all the CBF constraints.

(2) In view of practical implementation, and since the
convergence guarantees of the proposed algorithm
are asymptotic, we propose a truncation mecha-
nism for early termination. This comes at the cost
of sacrificing strict guarantees of satisfying the CBF
constraints, however, it reduces the communication
and computation burden of an asymptotic algo-
rithm. Moreover, it is accompanied with a verifica-
tion scheme that provides probabilistic guarantees
on safety constraint violation.

(3) The proposed verification scheme can be applied
more generally to verify safety for multi-agent
systems. In particular, instead of verifying safety
over the whole state-space, which is challenging for
multi-agent systems, we propose a scenario-based
verification algorithm for a probabilistic quan-
tification of safety by means of satisfying CBF
constraints. A sequential sampling algorithm is
proposed to sample scenarios efficiently in a dis-
tributed fashion. We accompany our solution with
a probabilistic safety certificate; to achieve this,
we extend the state-of-the-art result [30, Theorem
1] to a multi-agent setting. Both lower and up-
per bounds on the probability of violating CBF
constraints are established, while the safety veri-
fication program is also shown to be amenable to
parallelized computation.

1.3 Organization

Section 3 proposes our distributed safe control design
algorithm, including a truncated version and the associ-
ated mathematical analysis. Section 4 provides the dis-
tributed safety verification scheme, and the distributed
scenario sampling algorithm. Section 5 demonstrates the
control design and safety verification algorithms on a
multi-robot system collision avoidance case study. Sec-
tion 6 concludes the paper and provides some directions
for future research.

2 Preliminaries

2.1 Notation

We use R, RN to represent the set of one-dimensional,
and N -dimensional real numbers, respectively. A con-
tinuous function α(·) : (−b, a) → (−∞,+∞) is said to
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be an extended class-K function for positive a and b, if
it is strictly increasing and α(0) = 0. G = (V, E) denotes
a graph with a nodes set V and an edge set E . Bold-
face symbols are used as stacked vectors for scalar or
vector elements, e.g., x = [x⊤

1 , . . . , x
⊤
N ]⊤. For matrices

g1, . . . , gN , diag(g1, . . . , gN ) denotes the corresponding
block diagonal matrix. I is an identity matrix, with its
dimension being clear from the context. For a set K, |K|
denotes its cardinality. For a set S, Int(S) denotes the
interior.

2.2 Control Barrier Functions

Consider a nonlinear control-affine system

ẋ = f(x) + g(x)u, (1)

with x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm, f(x) : X →
Rn, and g(x) : X → Rn×m. Both f and g are further
assumed to be locally Lipschitz continuous on a compact
set X ⊂ Rn. We denote by x(u(·), t, x0) the state of the
system at time t starting from x0, under a local Lipschitz
continuous control law u(·).

The safe set S is represented by the zero-super level set of
a function s(x). Dually, the unsafe set S̄ can be defined as
the complementary set. With this formulation, the safe
control design problem boils down to finding u(·) ∈ U ,
such that s(x(u(·), t, x0)) ≥ 0 for any t. To achieve this,
a control barrier function-based quadratic programming
approach was proposed [7].

Definition 2.1 For the control-affine dynamical system
(1), a continuously differentiable function b(·) : Rn → R
is said to be a control barrier function, if there exists an
extended class-K function α(·), such that for any x ∈ B,

sup
u∈U

[Lfb(x) + Lgb(x)u+ α(b(x))] ≥ 0. (2)

Here Lfb(x) and Lgb(x) are Lie derivatives, which are

defined by Lfb(x) :=
∂b(x)
∂x f(x) and Lgb(x) :=

∂b(x)
∂x g(x),

respectively.

Given a control barrier function b(x), the control admis-
sible set corresponding to (2) is defined by

Kcbf (x) := {u ∈ U : Lfb(x) + Lgb(x)u+ α(b(x)) ≥ 0}.
(3)

Theorem 1 [7, Corollary 2] Consider a control barrier
function b(x). Then for any x ∈ B, any locally Lipschitz
continuous controller u(x) such that u(x) ∈ Kcbf (x) will
render the set B forward invariant.

2.3 Scenario Optimization

Robust optimization offers a methodology to immunize
decisions against uncertainty. An uncertain optimization
problem is formulated as

min
z∈Z

c⊤z

subject to z ∈ Zx, for all x ∈ H,
(4)

where z ∈ Rn is a decision variable constrained by a set
Z ⊆ Rn and, c ∈ Rn is a constant vector. The uncer-
tain constraint set Zx is parameterized by an uncertain
parameter x, which is a random variable defined on a
probability space (H,F ,P). Even in the case where Zx

is convex for any x ∈ H, if the uncertain parameters’ do-
main H is continuous or even unknown, the robust op-
timization problem is usually hard (or even impossible)
to solve. The so-called scenario approach, on the other
hand, proposes to solve the problem over finite empiri-
cal records, named scenarios, and accompany the result-
ing solution with probabilistic guarantees on its feasibil-
ity properties. The corresponding scenario optimization
problem can be formulated as

min
z∈Z

c⊤z

subject to z ∈
⋂

r=1,...,R

Zx(r) ,
(5)

where x(r), r = 1, . . . , R are scenarios sampled indepen-
dently from the set H. If Zx is convex for any x ∈ H,
the scenario optimization (5) is a convex optimization
problem which can be solved efficiently.

Definition 2.2 (violation probability) The vio-
lation probability of a a given z ∈ Z is defined as
V (z) = P{x ∈ H : z /∈ Zx}.

Clearly, the optimal solution of (5) satisfies z∗ ∈⋂
r=1,...,R Zx(r) , but is not necessarily within Zx for an

arbitrary new x ∈ H. i.e., we do not necessarily have
V (z∗) = 0. In fact, z∗ is itself a random variable as it de-
pends on the choice of the scenarios x(r), r = 1, . . . , R.
To align with our subsequent developments, we will
characterize V (z∗) for a slightly more general scenario
program; to this end, consider the following scenario
optimization problem with relaxed constraints:

min
z∈Z,ξ(r)≥0,r=1,...,R

c⊤z + ρ

R∑
r=1

ξ(r)

subject to h(z, x(r)) ≤ ξ(r), r = 1, . . . , R, (6)

where x(r), r = 1, . . . , R are independently sampled from
(H,F ,P). Notice that here we consider the explicit char-
acterization of the constraint setZx(r) through functions
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h(z, x(r)), r = 1, . . . , R.

A constraint z ∈ Zx(r) is called a support constraint if
its removal (while the other constraints are maintained)
changes the solution z∗. We impose the following as-
sumption.

Assumption 2.1 ( [30, Assumption 2]) Consider
problem (6) and assume that a unique optimal solution
(z∗, {ξ∗,(r)}Rr=1) exists almost surely with respect to the
choice of {x(r)}Rr=1. We further assume that the op-
timal solution (z∗, {ξ∗,(r)}Rr=1 of (6) coincides almost
surely with respect to the choice of the scenarios x(r),
r = 1, . . . , R with the solution that is obtained after
eliminating all the constraints that are not of support.

The violation probability V (z∗) = P{x ∈ H : f(z∗, x) >
0} can be then characterized by the following theorem.

Theorem 2 ( [30, Theorem 4]) Consider the opti-
mization problem (6). Suppose that its optimal solution
(z∗, {ξ∗,(r)}Rr=1 satisfies Assumption 2.1. Given a confi-
dence parameter β ∈ (0, 1), for any k = 0, 1, . . . , R − 1
consider the polynomial equation in the t variable(

R

k

)
tR−k − β

2R

R−1∑
j=k

(
j

k

)
tj−k

− β

6R

4R∑
j=R+1

(
j

k

)
tj−k = 0, (7)

and for k = R consider the polynomial equation

1− β

6R

4R∑
i=R+1

(
j

k

)
tj−R = 0. (8)

For any k = 0, . . . , R − 1, (7) has exactly two solutions
in [0,+∞), which we denote with t(k) and t(k) (t(k)) ≤
t(k). Instead, (8) has only one solution in [0,+∞), which
we denote with t(R), while we define t(R) = 0. Let ϵ(k) :=
max{0, 1 − t(k)} and ϵ(k) := 1 − t(k), k = 0, 1, . . . , R.
We then have that

PR{ϵ(s∗) ≤ V (z∗) ≤ ϵ(s∗)} ≥ 1− β, (9)

where s∗ is the number of x(r)’s for which h(z∗, x(r)) ≥ 0.

3 Distributed Safe Control Law

Consider an N -agent system with the dynamics of the
i-th agent described by

ẋi = fi(xi) + gi(xi)ui, (10)

where xi(t) ∈ Xi ⊂Rni denotes its state, ui ∈ Ui ⊆
Rmi denotes its control input, and Ui is a convex set.
The dynamics fi(xi) : Xi → Rni and gi(xi) : Xi →
Rni × Rmi are both locally Lipschitz-continuous on a
compact set Xi ⊂ Rni , which represents the domain of
each agent. Vector x = [x⊤

1 , . . . , x
⊤
N ]⊤ stacks the states

of all systems, u = [u⊤
1 , . . . , u

⊤
N ]⊤ stacks the control in-

puts, while f(x) = [f1(x1)
⊤, . . . , fN (xN )⊤]⊤, g(x) =

diag(g1(x1), . . . , gN (xN )) stack the dynamics for each
agent. The domain and control admissible set for the
multi-agent system are then defined by

X :=

N∏
i=1

Xi, U :=

N∏
i=1

Ui,

where
∏

represents the Cartesian product for the state
space of all the agents. Given that all Xi, i = 1, . . . , N ,
are assumed to be compact, compactness of X is assured
using Tychonoff’s theorem [31]. In this way, the system
dynamics of the whole multi-agent system can be com-
pactly modeled by ẋ = f(x) + g(x)u.

The networked system is described by an undirected and
connected graph G, with nodes set V = {1, . . . , N}, and
edges set E such that {i, j} ∈ E if agent j communicates
with agent i. Agents are partitioned in E sub-networks
with specific safety requirement. For each subgraph Ge,
e ∈ {1, . . . , E}, the set of agents is Ve ⊆ V. Let xe =
[x⊤

i ]
⊤
i∈Ve

be the stacked states in the eth sub-network.
Each agent i can communicate and cooperate with its
neighbour j ∈ Ni to stay safe inside sub-network e by
ensuring

xe(t) ∈ Se := {xe : se(xe) ≥ 0}, ∀t ≥ 0, (11)

where se(·) ∈ R. Define S :=
∏E

i=1 Se, and let Ci denote
the set of indices representing the safety constraints as-
sociated with agent i ∈ {1, . . . , N}. Specifically, for a
given agent i ∈ {1, . . . , N}, Ci contains all indices e for
which constraint e applies to agent i. Given that each
safety constraint involves a sub-network of agents, Ci also
describes the set of indices of sub-networks that agent i
belongs to. As a result, agent i belongs to sub-networks
Ge, e ∈ Ci. Figure 1 illustrates pictorially the relation-
ship between Ve and Ci.

Assumption 3.1 For each e = 1, . . . , E, sub-network
Ge is connected and undirected.

Connectivity allows communication among agents in ev-
ery sub-network Ge, e ∈ {1, . . . , E}. Agents in Ge are
then able to cooperatively design a controller ue(x) for
safety, satisfying se(xe) ≥ 0, for all e = 1, . . . , E.

Assumption 3.2 Given sets X and Se, e = 1, . . . , E,
we assume there exist control barrier functions be(·), such
that Be := {xe : be(xe) ≥ 0} ⊆ Se, e = 1, . . . , E. Define
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Fig. 1. Pictorial illustration of a connected network G with
9 agents, where agents 1, 2, and 3 form the sub-network G1

with safe set S1, agents 1, 4, 5, 6 and 7 form the sub-network
G2 with a safe set S2, and agents 7, 8, and 9 form the sub-
-network G3 with a safe set S3. The set of agents in each
sub-network is given by V1 = {1, 2, 3}, V2 = {1, 4, 5, 6, 7},
and V3 = {7, 8, 9}. It can be observed that agent 1 belongs
to two sub-networks, G1 and G2, and thus C1 = {1, 2}. Sim-
ilarly, agent 2 belongs only to G1, and agent 7 belongs to
both G2 and G3, giving C2 = {1} and C7 = {2, 3}.

B :=
∏E

e=1 Be, and H := B∩X . We further assume that
Int(H) ̸= ∅.

Assumption 3.2 directly implies that Int(S) ̸= ∅ and
Int(B) ̸= ∅. This is essential for using CBF methods to
design safe controllers. However, checking emptiness of
these sets is a challenging task.When se(xe), be(xe), e =
1, . . . , E, are polynomial functions, and X is defined by
polynomial functions as well, emptiness can be checked
via sum-of-squares programming. We refer the reader
to [32] for further details.

Assumption 3.3 Consider the multi-agent system (10)
and CBFs be(xe), e = 1, . . . , E, and class-K functions
αie(·), i = 1, . . . , N, e ∈ Ci. For every x ∈ B, we assume
there exists a locally Lipschitz u = [u⊤

1 ∈ U1, . . . , u⊤
N ∈

UN ]⊤ ∈ U , such that for any e ∈ {1, . . . , E}:

∑
i∈Ve

(
∂be
∂xi

(fi(xi) + gi(xi)ui) + αie(be)

)
≥ 0. (12)

The summation in (12) follows from applying the chain
rule and considering the partial derivative of be(xe) with
respect to the state xi of every agent i ∈ Ve.

Assumption 3.3 guarantees the existence of one con-
trolleru that satisfies all CBF constraints. This property
is also known as the control sharing property [15, Defi-
nition 2]. CBFs that satisfy Assumption 3.2 and 3.3 can
be designed using sum-of-squares programming [33].

Following [7, Theorem 3], safety constraints can be in-
corporated in the CBF-QP formulation given by

J∗ = min
ui∈U

N∑
i=1

||ui − udes
i (xi)||22

s.t.
∑
i∈Ve

(
∂be
∂xi

(fi(xi) + gi(xi)ui) + αie(be)

)
≥ 0,

∀e ∈ {1, . . . , E}, (13)

where αie(·)’s are class-K functions, and hence also∑
i∈Ve

αie(·) is also a class-K. udes
i (xi) is a nominal

stabilizing control input.

The CBF constraints in (13) are defined on the control
inputs for multiple agents. If every agent regards the
variables of other agents as stationary, (13) decomposes
to a family of problems, one for each i = 1, . . . , N ,

min
ui∈Ui

||ui − udes
i (xi)||22

s.t.
∂be
∂xi

(fi(xi) + gi(xi)ui) + αie(be) ≥ 0,∀e ∈ Ci.
(14)

Under Assumptions 3.2 and 3.3, (13) is guaranteed to be
feasible, but feasibility of (14) is not ensured for every
i ∈ {1, . . . , N}. In this work, we propose an improved
distributed framework for solving (13) with guaranteed
feasibility.

Let

Ji(ui) = ||ui − udes
i (xi)||22,

hie(ui) = −
(
∂be
∂xi

(fi(xi) + gi(xi)ui) + αie(be)

)
.
(15)

We then have the following safety results.

Proposition 3.1 ( [34, Proposition 1]) Consider
Assumptions 3.2, 3.3. Let u∗

nom(x) be the optimal so-
lution of (13). Suppose u∗

nom(x) is locally Lipschitz
continuous for every x ∈ B, then the set B is forward
invariant under the vector field f(x) + g(x)u∗

nom(x).

Remark 3.1 Local Lipchitz continuity ofu∗
nom(x) is im-

portant for forward invariance of B under the vector field
f(x) + g(x)u∗

nom(x). This can be guaranteed if the CBF
constraints are linearly independent, and there are no in-
put constraints. For more general cases, (strong) forward
invariance can be guaranteed for a discontinuous vector
field, under certain regularity conditions on the different
CBFs. Interested readers are referred to [35,36], and [37,
Section 9] for a comprehensive review. As this is tan-
gential to the focus of our work, we will concentrate on
the distributed implementation of the QP induced from
multi-CBFs (13).

Notice that, even not shown explicitly, hie(ui) depends
on xi, i ∈ Ve. We also highlight that (13) is parameter-
ized in x, which can be thought of as constant as for the
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optimization problem in (13) is concerned. Under As-
sumptions 3.2, 3.3, problem (13) is always feasible for all
x ∈ B. To begin with our analysis, we propose a relaxed
version of (13) to guarantee feasibility of the local prob-
lems in the proposed distributed algorithm. This will be
clarified in the sequel.

H∗ = min
u∈U,ρ≥0

H(u,ρ)

:=

N∑
i=1

{
Ji(ui) +

∑
e∈Ci

(ρ2ie +Miρie)

}
subject to

∑
i∈Ve

hie(ui) ≤
∑
i∈Ve

ρie,∀e ∈ {1, . . . , E}.

(16)

Feasibility of problem (16) is clear, as the positive vari-
able ρ relaxes the linear constraints.

In view of an optimality analysis, we further impose the
following constraint qualification assumption.

Assumption 3.4 For every x ∈ B, there exists
u(x)∈ U , such that

∑
i∈Ve

hie < 0 for all e = 1, . . . , E.

Assumption 3.4 ensures strong duality for the nominal
problem (13). As a result, there also exists u(x) ∈ U
and ρ = 0, such that

∑
i∈Ve

hie <
∑

i∈Ve
ρie, for all

e ∈ {1, . . . , E}. This demonstrates strong duality for the
relaxed problem (16).

Optimality is analyzed in the following lemma.

Lemma 3.1 Consider Assumptions 3.2, 3.3 and 3.4.
Denote the minimizers of (13) and (16), by u∗

nom(x)
and (u∗

rel(x),ρ
∗), respectively. Let µ̃∗ be an optimal dual

variable associated with the CBF constraint in (13). If

Mi ≥ µ̃∗
e,∀i ∈ Ve,∀e ∈ {1, . . . , E}, (17)

where µ̃∗
e is the e-th element of µ̃∗, then u∗

rel(x) =
u∗
nom(x), ρ

∗ = 0, and µ̃∗ is also an optimal dual solution
of (16).

PROOF. See Appendix.

Lemma 3.1 establishes a lower bound for Mi, i =
1, . . . , N , under which the optimal primal-dual solution
of (16) coincides with that of (13). The lower bound is
determined by the optimal dual solution µ̃ of the unre-
laxed problem (13). Under Assumption 3.4, µ̃∗ is also
bounded following [38, Lemma 1]. In practice, one can
select a large enough Mi, i = 1, . . . , N to satisfy (17).

3.1 Full Control Law

We now design an algorithm to solve the centralized
CBF-QP problem (13) in a distributed manner with
guaranteed feasibility across iterations; see Algorithm 1.
Since hie(ui) also depends on xl for l ∈ Ve\{i}, an addi-

Algorithm 1 Distributed Safe Control Design Algo-
rithm for agent i at xi

Initialization Arbitrary λ0
il,∀l ∈ Ni ∩ Ve, ∀e ∈ Ci.

Receive xl for any l ∈ Ni ∩ Ve,e ∈ Ci
Send xi to any l ∈ Ni ∩ Ve, for e ∈ Ci.
Output: Optimal control input u∗

i
1: while Not reaching convergence do
2: Receive λk

il from ∀l ∈ Ni ∩ Ve,∀e ∈ Ci.
3: Solve ((uk

i ,ρ
k
i ),µ

k
i ) as a primal-dual solution of

the following optimization problem

min
ui,ρi

Ji(ui) +
∑
e∈Ci

(ρ2ie +Miρie)

s.t. ui ∈ Ui, ρie ≥ 0,

hie(ui) +
∑

l∈Ni∩Ve

(λk
il − λk

li) ≤ ρie,∀e ∈ Ci.

(18)

4: Receive µk
le from agent l ∈ Ni ∩ Ve.

5: Update λil by

λk+1
il = λk

il − γk(µk
ie − µk

le). (19)

6: end while

tional communication round at the beginning of the algo-
rithm is designed. For all i = 1, . . . , N , and e ∈ Ci, agent
i is to receive xl from agent l ∈ Ni ∩ Ve. Within a finite
number of communication rounds, agent i can gather all
the other agents’ states in sub-networks e ∈ Ci. Then,
for any e ∈ Ci, functions hie(ui) can be constructed as
in (15).

There are two main computation and two communica-
tion steps in the algorithm. At the first computation step
(Step 3), agent i solves the optimization problem (18) to
obtain the optimal primal-dual solution ((uk

i ,ρ
k
i ),µ

k
i ),

where ρi includes relaxation variables denoted by ρie
(penalized in the cost by Mi), and µi includes the dual
variables µie, for all e ∈ Ci. In practice, µie corresponds
to the constraints allocated to agent i, i.e. hie(xi) +∑

l∈Ni∩Ve
(λk

il − λk
li) ≤ ρie. Moreover, the constraints

in the distributed problem (18) are relaxed by an addi-
tional non-negative relaxation variable ρie. This guar-
antees the feasibility of the local optimization problem.
However, this does not necessarily imply satisfaction of
the CBF constraints in (13) by using uk+1.

The first computation step uses auxiliary variables λk
il

and λk
li. The difference λk

il − λk
li constitutes estimates
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of the neighbouring terms hle(ul). λ
0
il is initialized arbi-

trarily. As we will show in Theorem 3, the initialization
will not influence convergence to the optimizer. Among
all these variables, λk

le for l ∈ Ni ∩ Ve are updated and
stored by neighbours. They are available to agent i via
communication in Step 2. The second computation step
is to update the local auxiliary variables (5). Part of the
dual variables used in the update are received from the
neighbours at Step 4. Here the update is a gradient-like
procedure, with stepsize γk > 0.

Remark 3.2 Algorithm 1 capitalizes on the primal-
decomposition algorithm in [23, Algorithm RSDD], how-
ever, with several key extensions. First, the relaxation
penalty in the cost includes a new quadratic term. This
renders the cost function strongly convex, allowing for
superior convergence properties and ensuring unique-
ness of the minimizer across iterations. Moreover, for
every agent i ∈ {1, . . . , N}, each CBF constraint e ∈ Ci
is relaxed by an individual relaxation variable ρie. On
the contrary, [23, Algorithm RSDD] uses one relaxation
variable for all the constraints. Multiple relaxation vari-
ables enable stricter satisfaction of CBF constraints
across iterations. This is especially important when a
particular ρkie1 is significantly larger than the other ones

ρkie2 , e2 ∈ Ci\e1. It should also be noted that Algorithm 1
is applicable to the case where G is divided into several
sub-networks Ge, e ∈ {1, . . . , E}, while [23, Algorithm
RSDD] only deals with a single network. This becomes
of importance for multi-agent applications where safety
constraints are typically defined on several sub-networks.

Among different types of distributed optimization algo-
rithms, primal-decomposition methods, firstly proposed
by [23, Algorithm RSDD] is selected here for its abil-
ity to guarantee almost-safety across iterations. This is
realized by allocating the auxiliary variables λ, while
balancing the safety requirement to every agent. We
say “almost” here since additional relaxation variables
are introduced in every local optimization problem for
feasibility. In applications that require high control fre-
quency, the algorithm may stop before reaching conver-
gence. When the relaxation variables ρk = 0 for a given
k > 0, then for any e ∈ {1, . . . , E} we have that

∑
i∈Ve

hie(u
k
i ) =

∑
i∈Ve

{
hie(u

k
i ) +

∑
l∈Ni∩Ve

(λk
il − λk

li)

}
︸ ︷︷ ︸

≤0

≤ 0,

which implies that the CBF constraints are satisfied with
uk. The next theorem gives the convergence result.

Theorem 3 Consider Assumptions 3.1, 3.2, 3.3, 3.4,
and letMi ≥ µe for every i = 1, . . . , N , e ∈ Ci. For every
agent i = 1, . . . , N , and any bounded λ0,

(a) if Ui ⊂ Rmi . Choose the sequence {γk}k≥0, with each

γk > 0, and
∑∞

k=0 γ
k = ∞,

∑∞
k=0(γ

k)2 < ∞. Then
we have limk→∞ H(uk,ρk) − J∗ → 0, and uk con-
verges to the primal optimal solution of (13).

(b) if Ui = Rmi , and for every e ∈ {1, . . . , E},∑
i∈Ve

hie(ui) are linearly independent in u. Let the

step size γk = γ > 0 be a small constant. H(uk,ρk)
converges to the optimal cost J∗ in (13) sublinearly,

i.e. H(uk,ρk) − J∗ ≤ 2||λ0−λ∗||22
γk , and uk converges

to the primal optimal solution of (13).

PROOF. See Appendix.

Given that (13) is guaranteed to be feasible under As-
sumption 3.3, the optimal controller designed by Algo-
rithm 1 is guaranteed to satisfy all the CBF constraints.
However, this does not necessarily hold for uk(x) with
arbitrary k, if ρk(x) ̸= 0. However, terminating the al-
gorithm early, and considering uk(x) at the time of ter-
mination has many benefits in terms of reducing compu-
tation and communication complexity. This motivates
the analysis of a truncated algorithm as presented in the
next section.

3.2 Truncated Control Law

Algorithm 1 can be implemented in a distributed fashion
with ensured safety and optimality properties, however,
it may not be suitable for control tasks that require high
control frequency, i.e. multi-robot system control, as its
theoretical properties are established in an asymptotic
manner. This motivates the use of a truncated algorithm,
Algorithm 2, where the algorithm terminates after a fi-
nite number of iterations, denoted by η.

Algorithm 2 Truncated Distributed Safe Control De-
sign Algorithm for agent i

Initialization Predefined λ0
il,∀l ∈ Ni ∩ Ve, ∀e ∈ Ci,

truncated parameter η ∈ N
Receive xl for any l ∈ Ni ∩ Ve,e ∈ Ci
Send xi to any l ∈ Ni ∩ Ve, e ∈ Ci
Output: Optimal control input u∗

i
1: while k ≤ η do
2: steps 2, 3, 4 in Algorithm 1
3: step 5 in Algorithm 1
4: end while

Algorithm 2 is computationally more efficient compared
to Algorithm 1, at the cost of potentially violating the
control barrier function constraints. The violations are
reflected in the non-zero relation variables ρη(x). In gen-
eral, it is challenging to provide an explicit bound for
η, under which ρη(x) = 0, as the distributed algorithm
converges asymptotically as per Theorem 3. Moreover,
ρη(x) depends on the state x ∈ H := X ∩ B, which
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parameterizes the optimization problem (16). To quan-
tify safety of the multi-agent system (10) with u(x) =
uη(x), we study the problem of safety verification by
means of CBFs. This is established in the following sec-
tion.

4 Distributed Safety Verification

In this section we show how to verify safety for a multi-
agent system for any x ∈ H, using the truncated con-
troller uη(x) designed by Algorithm 2. The verification
is conducted by checking the risk of becoming unsafe
along the current trajectories by means of CBFs. We
would like to measure the violations of the CBF con-
straints for the multi-agent system (10), under the con-
trol lawuη(x). However, this problem becomes challeng-
ing as Int(H) ̸= ∅, and one would need to verify a safety
property for an uncountable number of points. Instead
of verifying this for any x ∈ H, we propose to verify over
finite scenarios, i.e. samples of x, from H. Notice that
the multi-agent system under consideration (see (10))
is deterministic; however, we draw scenarios as a dis-
crete approximation of H. The scenario approach [30]
then provides the theoretical foundation for quantify-
ing the probability that the solution that satisfies our
safety property for a finite number of scenarios, satisfies
this property when it comes to yet another realization of
x ∈ H. Such a generalization property is in turn prob-
abilistic, with a probability measure implicitly defined
using the mechanism employed to draw scenarios (see
Section 4.2).

We note here the analysis conducted in this section can
be applied to, but not limited to the controller designed
using Algorithm 2. The only requirement for the verified
controller u(x) is locally Lipschitz continuous, which
is necessary for the solution of the multi-agent system
to be unique. We also highlight that in this section a
CBF is only regarded as a verification criterion but not
necessarily as a control design principle.

4.1 Scenario Based Safety Verification

Consider an N -agent system (10) and a safe invariant
set B. Our objective is to verify whether all the CBF
constraints are satisfied for the multi-agent system (10)
using u(x), for any x ∈ H. A new set Zx is introduced
to represent the satisfaction of all the CBF constraints.

Zx :={
z :
∑
i∈Ve

hie(ui(x)) ≤
∑
i∈Ve

zie,∀e ∈ {1, . . . , E}

}
.

(20)

Here, z := [zie], ∀e ∈ {1, . . . , E},∀i ∈ Ve. Then, if 0 ∈
Zx,∀x ∈ H, we conclude that all CBF constraints are
satisfied using u(x), for any x ∈ H. With a slight abuse
of notation, we define Zi

x as

Zi
x :=

{
z :

∑
k∈Ve

hke(uk(x)) ≤
∑
k∈Ve

zke,∀e ∈ Ci

}
(21)

to represent the satisfaction of CBF constraints that in-
volve agent i, for every i ∈ {1, . . . , N}. Here, uk(x) de-
notes the control input of agent k. If 0 ∈ Zi

x, ∀x ∈ H,
the CBF constraints that involve agent i are satisfied
using u(x). Conversely, if 0 /∈ Zi

x, at least one CBF con-
straint that involves agent i is violated, for some x ∈ H.
Therefore, Zx can be expressed as

Zx =

N⋂
i=1

Zi
x. (22)

We propose a scenario-based safety verification program
as follows.

min
z≥0,ζ≥0

N∑
i=1

∑
e∈Ci

(
z2ie +Hi

R∑
r=1

ζ
(r)
ie

)
s.t.

∑
i∈Ve

hie(ui(x
(r))) ≤

∑
i∈Ve

(zie + ζ
(r)
ie ),

∀e ∈ {1, . . . , E},∀r ∈ {1, . . . , R}, (23)

where scenarios x(r) ∈ H for any r = 1, . . . , R are
extracted according to some probability distribution
to be clarified in the sequel. Throughout the section
X̄ = {x(1), . . . ,x(R)} denotes the set of scenarios,

where x(r) = [(x
(r)
1 )⊤, . . . , (x

(r)
N )⊤]⊤ ∈ R

∑N

i=1
ni , for

r = 1, . . . , R, and R is the number of scenarios. Re-
laxation variables ζ are introduced, while Hi > 0 is
a penalty coefficient for every i ∈ {1, . . . , N}. Let
(z∗(x), ζ∗(x)) denote the optimal solution of (23). In
the sequel, we drop the dependency of x for simplicity.

Program (23) is a data-driven QP, where all the con-
straints are linear based on the samples. If for any sce-
nario x(r), r = 1, . . . , R, and the corresponding control
input u(x), all the CBF constraints are satisfied, then
ζ∗ = 0. Conversely, ζ∗ ̸= 0 represents a CBF constraint
violation, and indicates the risk of being unsafe bymeans
of CBF, up to level z∗. Following Definition 2.2, the vi-
olation probability for (23) is defined by

V (z) := P {x ∈ H : z /∈ Zx} . (24)

Then, V (z∗) = P {x ∈ H : z∗ /∈ Zx} represents the
probability that at least one CBF constraint is violated
up to z∗, for any x ∈ H. Our goal is to distributedly
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characterize the violation probability V (z∗) using a
finite number of scenarios, i.e. samples of x from H.

4.2 Sampling the Scenarios

The scenarios are sampled independently from the set
H. For sampling we define a probability density π(x)
associated with set H that satisfies

∫
H π(x)dx = 1. One

typical choice of π(x) is to set it according to the density
of the uniform distribution, i.e., π(x) = πuni(x) = 1∫

H
dx

.

The existence of πuni(x) is assured as H is a non-empty
and compact set, due to Assumption 3.2. Then, x can
be sampled R times independently from the distribution
πuni(x). Note that the choice of the probability distribu-
tion does not affect the probabilistic results established
in the sequel due to the distribution-free nature of the
scenario approach [30, Section 3.1]. Although the uni-
form distribution here is well-defined, the setH is defined
implicitly as the intersection of multiple sets. Sampling
a point from the proposed uniform distribution is rather
arduous in practice, and every agent may not have ac-
cess to H. Here, we provide a sequential algorithm to
sample scenarios x(r), r = 1, . . . , R.

Algorithm 3 Scenarios Sampling Algorithm

Initialization Set H = B ∩ X , failed times F = 0.
Output: Scenario x(r).

1: Sample x
(r)
1 from π1(x).

2: for i = 2, . . . , N do
3: Construct a set Hi =

⋂
e∈Ci
Hie following (25).

4: if Hi = ∅ then
5: F ← F + 1.
6: go to i = i− F (i = 1 is step 1).
7: end if
8: Sample x

(r)
i from distribution πi =

1∫
Xi

dx
.

9: while x
(r)
i /∈ Hi do

10: Sample x
(r)
i from distribution πi.

11: end while
12: end for

The algorithm constructs the densities from which sam-
ples are extracted sequentially for each agent. We first
define the sets from which samples are extracted for
agent i with part of the states of agents in the same sub-
network Ge fixed.

Hie =

{
Xi, if ∃l ∈ Ve, such that l > i

{xi ∈ Xi|be(xi, {x(r)
l }) ≥ 0)}, otherwise

(25)

Let Hi :=
⋂

e∈Ci

Hie. The parameters in (25) can all be

collected by local communication, since only states of
agents in the same sub-network are required.

In Step 1, the first scenario x
(r)
1 associated with Agent 1

is sampled from distribution π1 = 1∫
X

dx
, since now there

are no other agents involved to restrict the set for Agent
1. Then, the sampling-construction procedures repeat
sequentially from Agent 2 to Agent N . For i = 2, . . . , N ,

before sampling the scenario x
(r)
i , we first check whether

Hi is empty (Step 4). If Hi = ∅ (Step 5), then we return
to the sampling-construction of agent i − F , F ̸= 1 to
avoid a deadlock on step i. The deadlock happens when

for given scenarios x
(r)
1 , . . . , x

(r)
i−2, the set Hi−1 is such

that for any x
(r)
i−1 ∈ Hi−1, Hi = ∅. It is guaranteed that

F ≤ i − 1 for i ≥ 2, since H1 = X1 ̸= ∅. After finding

feasible scenarios x
(r)
1 , . . . , x

(r)
i−1, we sample the scenario

x
(r)
i for the ith agent from the uniform distribution πi

(Step 8). The sampled scenario is then checked at Step

9. If x
(r)
i /∈ Hi, it will be sampled again following π1. The

loop will terminate in finite time since Int(Hi ∩ X ) ̸=
∅ ∀i ∈ {1, . . . , N}.

Proposition 4.1 Consider Assumptions 3.1, 3.2, and
assume scenarios x(r), r = 1, . . . , R are sampled using
Algorithm 3. We then have that x(r) ∈ H, for all r =
1, . . . , R. Moreover, all scenarios are independently and
identically sampled.

PROOF. The feasibility result holds directly from the

definition of every set Hi in (25) that x
(r)
i is sampled

from. As a result, we have bie(x
(r)
i , {x(r)

k }) ≥ 0 for any

i = 1, . . . , N , e ∈ Ci, and k ∈ Ve\i. Therefore, x(r) ∈ H.
Moreover, for all r = 1, . . . , R,x(r) are independent since

x
(r)
1 , r = 1, . . . , R are independently sampled from the

distribution π1.

At Step 6, when F = i−1, it returns Step 1 to resample

x
(r)
1 . This happens when there exists e ∈ C2, and be is

defined only on Agent 1 and 2, such that H2e = {x2 ∈
X2|be(x2, x

(r)
1 ) ≥ 0} = ∅. x(r)

1 will then be resampled
from the distribution π1 to make H2e ̸= ∅. Therefore,
the actual distribution π̃1 from which x

(r)
1 is sampled is

defined on a set X̃1 ⊆ X1, which satisfies

{x2 ∈ X2 : be(x2, x
∗
1) ≥ 0} ≠ ∅,∀x∗

1 ∈ X̃1. (26)

It trivially holds that Int(X̃1) ̸= ∅ since Int(H) ̸= ∅, from
Assumption 3.2. π̃1 can be different from π1, but is iden-
tical for every r = 1, . . . , R. Similarly, the resampling
mechanism implicitly defines distributions π̃2, . . . , π̃N

that may be different from π2, . . . , πN . But these distri-
butions are identical for scenarios x(r), r = 1, . . . , R.

We note here that the elements in x(r) are correlated,
but this will not influence the independence results in

9



Proposition 4.1 since we seek independence across r.

4.3 Distributed Safety Verification

After sampling scenarios x(r), r = 1, . . . , R using Algo-
rithm 3, we are at the stage of solving the safety verifi-
cation program (23).

Letting the local cost function Ji(zi, ζi), and constraint

function ĥie(zi, ζi) be

Ji(zi, ζi) =
∑
e∈Ci

(
z2ie +Hi

R∑
r=1

ζ
(r)
ie

)
,

ĥ
(r)
ie (zi, ζi) = hie(ui(x

(r)))− zie − ζ
(r)
ie , r = 1, . . . , R,

(27)

Algorithm 1 can be applied to solve the distributed sce-
nario optimization problem (23). The relaxation vari-
ables in Algorithm 1 are unnecessary, since every opti-
mization sub-problem across iterations is solvable. We
then have the following theorem as the main result on
distributed probabilistic safety. The following theorem
constitutes the multi-agent counterpart of Theorem 2.
Using the density functions constructed in Algorithm
3 and considering Assumption 3.2, there will be no re-
peated scenarios for r = 1, . . . , R. Therefore, eliminat-
ing all the constraints that are not in the support set for
(23) will not change the optimal solution z∗, and hence
due to Assumption 3.2, the non-degeneracy requirement
of Assumption 2.1 is satisfied.

Theorem 4 Let Assumptions 3.1 and 3.2 hold.
Consider the optimization problem (23) and let
(z∗, {ζ∗,(r)}Rr=1) be the optimal solution. Choose

βi ∈ (0, 1), i = 1, . . . , N , and set β =
∑N

i=1 βi. For
i = 1, . . . , N , and 0 ≤ ki ≤ R − 1, consider the polyno-
mial equation in the ti variable(

R

ki

)
tR−ki
i − βi

2R

R−1∑
j=ki

(
j

ki

)
tj−ki

i

− βi

6R

4R∑
j=R+1

(
j

ki

)
tj−ki

i = 0,

(28)

while for ki = R consider the polynomial equation

1− β

6N

4R∑
j=R+1

(
j

ki

)
tj−R
i = 0. (29)

For every i = 1, . . . , N and any ki = 0, . . . , R − 1,
Equation (28) has exactly two solutions in [0,+∞) de-
noted by ti(ki) and t̄i(ki), where ti(ki) ≤ t̄i(ki). Instead,
Equation (29) has only one solution in [0,+∞), which

we denote with ti(R), while we define ti(R) = 0. Let
ϵi(ki) := max{0, 1 − t̄i(ki)}, ϵ̄i(ki) := 1 − ti(ki), and

ϵ(s∗) =
∑N

i=1 ϵi(s
∗
i ), ϵ̄(s

∗) = min{
∑N

i=1 ϵ̄i(s
∗
i ), 1}. We

then have that

PR

{
ϵ(s∗)

N
≤ V (z∗) ≤ ϵ̄(s∗)

}
≥ 1− β, (30)

where s∗i is the number of x(r)’s for which there exists
e ∈ Ci, such that

∑
k∈Ve

hke(uk(x
(r))) ≥

∑
k∈Ve

z∗ke.

Recalling Equation (24), the violation probability V (z∗)
is defined by V (z∗) = P{x ∈ H : z∗ /∈ Zx}.

PROOF. See Appendix.

Theorem 4 is a generalization of [30, Theorem 2] to a
multi-agent setting. It also extends [21] by determining

the lower bound
ϵ(s∗)
N . Theorem 4 states that with con-

fidence at least 1−β, the probability that the CBF con-
straints of the multi-agent system are violated by more

than z∗, lies within the interval [
ϵ(s∗)
N , ϵ̄(s∗)].

5 Simulation Results

The distributed safe control input design and safety veri-
fication algorithms are numerically validated on a multi-
robot positions swapping problem. To facilitate compar-
ison, we adopt a similar setup as in [13].

5.1 Multi-Robot Position Swapping

Robots are assigned different initial positions and are
required to navigate towards target locations. In a dis-
tributed framework, robots are equipped with sensing
and communication modules for collision detection and
information sharing. A network of ten robots, indexed
by i = 1, . . . , 10 are considered, with double integrator
dynamics [

ṗi

v̇i

]
=

[
0 I2×2

0 0

][
pi

vi

]
+

[
0

I2×2

]
ai, (31)

where pi ∈ R2, vi ∈ R2 represent positions and veloci-
ties, and ai ∈ R2 is the control input, representing accel-
erations. The acceleration is limited as ||ai||∞ ≤ amax

i .
amax
i will be cleared in the sequel. Each robot is regarded

as a disk centered at pi with radiusDi ∈ R+. The safety
certificate sij(p,v) for collision avoidance between robot
i and j is defined by

sij(p,v) = ||∆pij ||22 −Dij , (32)
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Fig. 2. Trajectory of ten robots swapping positions according
to Algorithm 1. Robots with the same color are swapping
positions, and avoiding collision with the others.

where ∆pij = pi−pj ,Dij = Di+Dj . Note here that the
system is heterogeneous as different robots have different
mobility. Following [13], the control barrier function for
invariance certificates is then defined pair-wisely, as

bij(p,v) =
√
2(amax

i + amax
j )(||∆pij ||22 −Dij)

+
∆p⊤

ij

||∆pij ||22
∆vij , (33)

where ∆vij = vi − vj . The function bij(p,v) is guar-
anteed to be a CBF since when bij(p,v) > 0, colli-
sion can be avoided with maximum braking acceleration
amax
i + amax

j applied to robots i and j. For i = 1, . . . , 5,
amax
i = 1, while for i = 6, . . . , 10, amax

i = 10. Note
that although bij(p,v) is guaranteed to be a CBF for
safety certificate sij(p,v), the corresponding invariant
set B =

∏
{i,j}∈E

Bij is possibly empty. Intuitively, this is

since robots cannot utilize the maximum braking force
to avoid collision with multiple other robots simultane-
ously. This problem is beyond the scope of this paper,
and we still adopt the CBF as in (33).

5.2 Distributed Control: Asymptotic Algorithm

The distributed safe control design procedure of Algo-
rithm 1 that exhibits asymptotic convergence and opti-
mality guarantees that it is implemented for robots to
swap positions with the opposite robots while avoiding
collision. The resulting simulation results are shown in
Figure 2.

5.3 Distributed Control: Truncated Algorithm

The truncated Algorithm 2 is then implemented for the
same setting, the truncation parameter η = 30.
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Fig. 3. Trajectory of ten robots swapping positions while
avoiding collision by means of Algorithm 2, with η = 30.

The resulting swapping trajectories are shown in Figure
3. Define

ρksum =

N∑
i=1

∑
e∈Ci

(
(ρkie)

2 +Miρ
k
ie

)
. (34)

The evolution of the relaxation parameters ρ0sum(x)
and ρ30sum(x) at each time step along the trajectory is
shown in Figures 4a and 4b. It can be seen that ρ30sum is
close to zero at every time step, even ρ0sum is relatively
large at some time steps. This empirically demonstrates
the safety guarantees performance of the proposed dis-
tributed algorithm. From our experience, η could be
much smaller for a practical implementation.
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(a) ρ0sum(x) along the trajec-
tory
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Fig. 4. Evolution of the relaxation parameters ρ0sum(x) and
ρ30sum(x) evaluated at the state trajectory, across algorithm
iterations.

11



5.4 Distributed Safety Verification

The proposed safety verification procedure is illustrated
on a four-robot system within the working space

X = {p ∈ R2 : ||p|| ≤ pmax = 4}
× {v ∈ R2 : ||v|| ≤ vmax = 3}.

Each robot employs Algorithm 2 to safely move towards
the origin.

We first examine the effect of the number of scenar-
ios R on the verification result. Let η = 30 for the
four agents and consider R = 2000. Each agent main-
tains a confidence level βi = 0.025 for i ∈ {1, . . . , 4}.
By solving the verification program (23) and applying
Theorem 4, we establish that with confidence at least
1−β = 0.9, the violation probability satisfies ϵ = 0.02 ≤
P {x ∈ H : z∗ = 0 /∈ Zx} ≤ ϵ = 0.19. In practice, an
even smaller βi can be chosen; this would only have a
mild effect on the interval [ϵ, ϵ] due to the way this de-
pends on the confidence.

To validate the obtained probabilistic result, we run 100
independent experiments, each with Rv = 50 scenarios
x(1),j , . . . ,x(Rv),j , for j ∈ {1, . . . , 100}. In each experi-
ment j ∈ {1, . . . , 100}, we monitor the frequency of vio-
lation f j

v by

f j
v =

Rv∑
i=1

IZc

x(i),j
(z∗). (35)

In the above equation, IZc

x(i),j
(z∗) is the indicator func-

tion that equals one if z∗ belongs to the set complement
of Zx(i),j , i.e., if z∗ /∈ Zx(i),j , and zero otherwise. For
each experiment j ∈ {1, . . . , 100}, the violation proba-
bility P{x ∈ H : z∗ /∈ Zx} is empirically calculated as

P̂j{x ∈ H : z∗ /∈ Zx} =
f j
v

Rv
. (36)

Figure 5 illustrates the bar graph of f j
v , j ∈ {1, . . . , 100},

while with dashed lines we highlight the theoretical
bounds [ϵ, ϵ]. It can be observed that most of the empir-
ical mass of the violation probability lies between [ϵ, ϵ].
This in turn implies that our bound for this case study
offers a tight estimate of the violation probability.

The empirical cumulative distribution function (CDF)

of P {x ∈ H : z∗ /∈ Zx} can be constructed using P̂j{x ∈
H : z∗ /∈ Zx}, j ∈ {1, . . . , 100}. These results are shown
in Figure 6; it can be observed that the empirical prob-
ability implies that P{P {x ∈ H : z∗ /∈ Zx} ∈ [ϵ, ϵ]} ≈
0.9134 ≥ 1 − β = 0.9, thus demonstrating numerically
the confidence of the theoretical result of Theorem 4.

Fig. 5. Bar graph for the violation probability, and (with
dashed lines) the theoretical bounds [ϵ, ϵ].
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Fig. 6. Empirical Cumulative distribution function (CDF)
for P {x ∈ H : z∗ /∈ Zx}, theoretic bounds [ϵ, ϵ] and the cor-
responding empirical probability. The horizontal axis repre-
sents the violation probability while the vertical axis repre-
sents the associated empirical cumulative probability.

6 Conclusion

In this paper we presented distributed safe control design
and safety verification algorithms for multi-agent sys-
tems. The proposed control algorithms introduce auxil-
iary and relaxation variables to allow feasibility across
iterations. We guaranteed convergence to an optimal so-
lution and established a sublinear convergence rate un-
der certain conditions. We also addressed the problem of
distributed safety verification for given control inputs. A
scenario-based verification program was formulated and
can be solved locally by each agent. The scenarios are
sampled independently by a sequential algorithm. The
distributed scenario program characterizes the probabil-
ity of being unsafe, with both lower and upper bounds
being determined. Simulation on amulti-robot swapping
position problem demonstrated the efficacy of our result.
Current work concentrates in accounting for communi-
cation delays and model uncertainty in real systems.
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A Appendix

PROOF. [Proof of Lemma 3.1] The dual function of
the relaxed problem (16) is given by

q(µ) := inf
{ui∈Ui}N

i=1
,ρ≥0

N∑
i=1

{
Ji(ui) +

∑
e∈Ci

(ρ2ie +Miρie)

}

+

E∑
e=1

µe

{∑
i∈Ve

hie(ui)−
∑
i∈Ve

ρie

}

= inf
{ui∈Ui}N

i=1
,ρ≥0

N∑
i=1

{
Ji(ui) +

∑
e∈Ci

µehie(ui)

}

+

E∑
e=1

∑
i∈Ve

{
ρ2ie + (Mi − µe)ρie

}
.

= qnom(µ) + inf
ρ≥0

E∑
e=1

∑
i∈Ve

{
ρ2ie + (Mi − µe)ρie

}
,

(A.1)

where

qnom(µ) := inf
{ui∈Ui}N

i=1

N∑
i=1

{
Ji(ui) +

∑
e∈Ci

µehie(ui)

}
(A.2)

is the dual function of the nominal problem (13). Let
µ∗ be the maximizer for q(µ), and µ̃ be a maximizer of
qnom(µ).

Now consider the value of the second term in q(µ). If
µe ≤Mi for some e ∈ {1, . . . , E}, i ∈ Ve, then

inf
ρie≥0

ρ2ie + (Mi − µe)ρie = 0, ρ∗ie = 0. (A.3)

Otherwise if µe > Mi, then

inf
ρie≥0

ρ2ie+(µe−Mi)ρie = −
(Mi − µe)

2

4
, ρ∗ie =

µe −Mi

2
.

(A.4)
We first show that if (17) holds, then

Mi ≥ µ∗
e,∀i ∈ Ve,∀e ∈ {1, . . . , E}, (A.5)

where µ∗
e is the e-th element of µ∗. Suppose for the sake

of contradiction that there exists e ∈ {1, . . . , E}, i ∈ Ve
such that µ∗

e > Mi. Then, from (A.1), (A.3) and (A.4)
we have

q(µ∗) < qnom(µ
∗) ≤ qnom(µ̃

∗).

The second inequality comes from a fact that µ̃∗ is a
maximizer of qnom(µ). However, from (A.1), (A.3), and

(17) we have
q(µ̃∗) = qnom(µ̃

∗).

We conclude that q(µ̃∗) > q(µ∗), thus reach a contradic-
tion as µ∗ maximizes q(µ). By (A.5) and (A.3) we have
ρ∗ = 0, any µ̃∗ that maximizes qnom(µ) also maximizes
q(µ).

As a direct result of (A.3) and (A.4), the second part of

q(µ), infρ≥0

∑E
e=1

∑
i∈Ve

{
ρ2ie + (Mi − µe)ρie

}
, is con-

cave and smooth. This is different from [23, Lemma III.2]
where the dual function goes to −∞ when µe > Mi.
Introducing a quadratic term for the relaxation vari-
ables enhances convexity of the primal function, hence
smoothness of the dual function.

PROOF. [Proof of Theorem 3] We begin with (a). Un-
der Assumption 3.4, strongly duality holds for the pri-
mal problem (13) and the dual problem (A.1). With a
slight abuse of notation, we define

qi(µi) := inf
{ui∈Ui},ρ≥0

{
Ji(ui) +

∑
e∈Ci

(ρ2ie +Miρie)

+
∑
e∈Ci

µie(hie(ui)− ρie)

}
. (A.6)

By Assumption 3.1, we have Ge is undirected and con-
nected for every e ∈ {1, . . . , E}. Therefore, suppose
µie = µle, ∀e ∈ {1, . . . , E}, i ∈ Ve, l ∈ Ni ∩ Ve, then we
can deduce that

µie = µle,∀i, l ∈ Ve. (A.7)

Recalling that i ∈ {1, . . . , N} is the numbering of agent,
e ∈ Ci is the numbering of CBF constraint that involves
agent i, Ni is the set of neighbouring agents for agent i,
and Ve is the set of agents in sub-network Ge.Ni∩Ve ̸= ∅
due to Assumption 3.1. The new variable µie and µle can
be regarded as local copies of µe by agent i and agent
l, which are associated with the e-th CBF constraint.
Using the decomposed dual function (A.6) and the new
constraint (A.7), we come up with an equivalent decom-
posed dual problem

max
µi≥0

N∑
i=1

qi(µi)

subject to µie = µle,∀i ∈ {1, . . . , N}, e ∈ Ci, l ∈ Ni ∩ Ve,
(A.8)

If Ve = {1, . . . , N},∀e ∈ {1, . . . , E}, (A.8) is a generic
dual decomposition problem [39, Section 3.1.3].
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Consider the dual function of (A.8)

d(λ) :=

N∑
i=1

sup
µi≥0

(
qi(µi) +

∑
e∈Ci

∑
l∈Ni∩Ve

λ⊤
il (µie − µle)

)
,

(A.9)
where λil is a free dual variable for the constraint µie =
µle in (A.8). Recalling that the network G is undirected,
for each (i, l) ∈ E we also have (l, i) ∈ E . This indicates
that in (A.9), we have both λ⊤

il (µie − µle) and λ⊤
li (µle −

µie) for every given i ∈ {1, . . . , N}, e ∈ Ci, l ∈ Ni∩Ve. By
gathering the terms involving µi together, such as λ⊤

ilµie

and −λ⊤
liµie, and doing some algebraic calculations, we

obtain

d(λ) =

N∑
i=1

sup
µi≥0

(
qi(µi) +

∑
e∈Ci

µ⊤
ie

∑
l∈Ni∩Ve

(λil − λli)

)
(A.10)

As (A.9) is traversing every i ∈ {1, . . . , N}, µle in (A.9)
is also contained in (A.10), for l ∈ Ve. A procedure simi-
lar to (A.9) and (A.10) has been proposed in [23, Section
III.B] but only for one network G. Our formulation gen-
eralizes these results to constraints defined on multiple
sub-networks Ge, for e ∈ {1, . . . , E}.

The dual problem of (A.8) is then given by

d∗ = min
λ

d(λ). (A.11)

Strong duality holds between problem (A.8) and (A.11)
since (A.8) is an linear equality constrained concave
problem. Therefore, solving problem (A.11) leads to
the optimal solution of problem (A.8). Solving problem
(A.11) has advantages in terms of distributed com-
putation. This can be seen by applying the gradient
descent method to solve (A.11). From (A.9), for every
i ∈ {1, . . . , N}, e ∈ Ci, and l ∈ Ni ∩ Ve, the gradient
∇d(λil) is given by

∇d(λil) = µie − µle. (A.12)

At iteration k, each agent i performs two steps:

• (i) for every e ∈ Ci, l ∈ Ni∩Ve, calculate the gradient
∇d(λk

il): receive λk
li, l ∈ Ni ∩ Ve, and compute µie by

solving

max
µi≥0

(
qi(µi) +

∑
e∈Ci

µ⊤
ie

∑
l∈Ni∩Ve

(λk
il − λk

li)

)
. (A.13)

• (ii) use gradient descent: for every e ∈ Ce, l ∈ Ni ∩Ve,
receive µk

le and update λil by (A.12):

λk+1
il = λk

il − γk(µk
ie − µk

le). (A.14)

(A.14) is Step 5 of Algorithm 1. We then show that solv-
ing (A.13) is equivalent to solving (18) at Step 3. For
every i ∈ {1, . . . , N}, dualizing the CBF constraints in
(18) by µi ≥ 0 yields a dual problem

max
µi≥0

inf
{ui∈Ui},ρ≥0

{
Ji(ui) +

∑
e∈Ci

(ρ2ie +Miρie)

+
∑
e∈Ci

µie(hie(ui)− ρie)

}
+
∑
e∈Ci

µ⊤
ie

∑
l∈Ni∩Ve

(λk
il − λk

li)

(A.6)
= max

µi≥0

(
qi(µi) +

∑
e∈Ci

µ⊤
ie

∑
l∈Ni∩Ve

(λk
il − λk

li)

)
,

(A.15)

which is (A.13). Therefore, Steps 2-5 in Algorithm 1
involve performing gradient descent to solve problem
(A.11) in a distributed manner.

Diminishing step-size is used here as [23]. Specifically,
(A.13) is the dual problem of (18). Strong duality holds
for large enough ρ as the relaxed CBF constraints hold
strictly. Updating (A.14) is the same as (19) for every
agent across iterations. Given that d(λ) is convex, gra-
dient descent guarantees that d(λk) convergence to the
optimal value d∗ = J∗ since strong duality holds be-
tween (16) and (A.8), as well as (A.8) and (A.11). More-
over, the relaxed problem (16) is strongly (hence also
strictly) convex, which indicates uniqueness of the op-
timal solution (u∗

rel,ρ
∗) . Using Lemma 3.1, we obtain

u∗
rel = u∗

nom, which is the optimal solution of (13).

We then prove (b). First we prove that q(µ) in (A.1)
is a concave quadratic function. When every Ui = Rmi

and the CBF constraints are linearly independent, the
relaxed CBF-QP (16) is a linearly constrained strongly
convex quadratic problem. Following the example [40,
Section 5.2.4, Eq. 5.28] 1 , qnom(µ) in (A.2) is a strongly
concave quadratic function. Together with (A.1), (A.3)
and (A.4), we conclude that q(µ) is a strongly concave
and smooth function. From duality between strong con-
cavity (convexity) and smoothness [41, Theorem 6], d(λ)
is a smooth and necessarily convex function. Using con-
stant step size

0 < γ <
1

2L
, (A.16)

where L is Lipschitz constant of∇d(λ), in a gradient de-
scent method to minimize a smooth and convex function

1 The example demonstrates that the dual function of a con-
vex quadratically constrained quadratic programming prob-
lem is a concave quadratic function. Our problem is as a
special case where the quadratic terms are zero in the con-
straints.
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d(λ), the generated iterates converge sublinearly as

d(λk)− J∗ ≤ 2(d(λ0)− J∗)||λ0 − λ∗||22
2||λ0 − λ∗||22 + kγ(2− Lγ)(d(λ0)− J∗)

≤2(d(λ0)− J∗)||λ0 − λ∗||22
kγ(d(λ0)− J∗)

≤ 2||λ0 − λ∗||22
kγ

.

(A.17)

The first inequality is proved by [42, Theorem 2.1.14], the
second one comes from eliminating the term ||λ0−λ∗||22
from the denominator, and considering 2−Lγ ≥ 1 from
(A.16).

Recalling the expression of d(λ) from (A.6), and the
duality result from (A.15), we have

d(λk) =
N∑
i=1

inf
ui,ρi≥0

(
sup
µi≥0

(
Ji(ui) +

∑
e∈Ci

(
ρ2ie +Miρie

))

+
∑
e∈Ci

µie(hie(ui)− ρie) +
∑
e∈Ci

µ⊤
ie

∑
l∈Ni∩Ve

(λk
il − λk

li)

)

=

N∑
i=1

(
Ji(u

k
i +

∑
e∈Ci

((ρkie)
2 +Miρ

k
ie)

)

=

N∑
i=1

||uk
i − udes||2 + ρksum = H(uk,ρk). (A.18)

Hence, by (A.17) and (A.18), we conclude that

H(uk,ρk)− J∗ <
2||λ0−λ∗||22

γk .

PROOF. [Proof of Theorem 4] We have that

PR

{∑N
i=1 ϵi(s

∗
i )

N
≤ P {x ∈ H : z∗ /∈ Zx} ≤

N∑
i=1

ϵ̄i(s
∗
i )

}

= PR

{
1

N

N∑
i=1

ϵi(s
∗
i ) ≤ P

{
x ∈ H :

∃i ∈ {1, . . . , N}, z∗ /∈ Zi
x

}
≤

N∑
i=1

ϵ̄i(s
∗
i )

}

= PR

{
1

N

N∑
i=1

ϵi(s
∗
i ) ≤ P

{
x ∈ H :

N⋃
i=1

{
z∗ /∈ Zi

x

}}
⋂

P

{
N⋃
i=1

{
x ∈ H : z∗ /∈ Zi

x

}}
≤

N∑
i=1

ϵ̄i(s
∗
i )}

(A.19)

The second equation comes from the fact that z∗ ∈ Zx

is equivalent to z∗ ∈ Zi
x ∀i{1, . . . , N}. The second equa-

tion changes ∃i ∈ {1, . . . , N}, z∗ /∈ Zi
x into

⋃N
i=1{z∗ /∈

Zi
x}. Similar tricks have been used in [21, Equation 15] to

derive an upper bound for the inner probability. Here we
extend the results to both upper and lower bounds, us-
ing Theorem 2. We separately deal with the two bounds
on the probability. For the upper bound we have

PR

{
P

{
N⋃
i=1

{
x ∈ H : z∗ /∈ Zi

x

}}
≤

N∑
i=1

ϵ̄i(s
∗
i )

}

≥PR

{
N∑
i=1

P
{
x ∈ H : z∗ /∈ Zi

x

}
≤

N∑
i=1

ϵ̄i(s
∗
i )

}
.

The equality is achieved when for any i ̸= j, z∗ /∈ Zi
x and

z∗ /∈ Zj
x are mutually exclusive. For the lower bound we

have

PR

{
1

N

N∑
i=1

ϵi(s
∗
i ) ≤ P

{
x ∈ H :

N⋃
i=1

{
z∗ /∈ Zi

x

}}}

≥PR

{
N · 1

N

N∑
i=1

ϵi(s
∗
i ) ≤

N∑
i=1

P
{
x ∈ H : z∗ /∈ Zi

x

}}
.

The equality is achieved if for any i ̸= j, z∗ ̸= Zi
x ⇔

z∗ ̸= Zj
x and ϵi(s

∗
i ) = ϵj(s

∗
j ). The right-hand side of

(A.19) can be then lower-bounded by

PR

{
N · 1

N

N∑
i=1

ϵi(s
∗
i ) ≤

N∑
i=1

P
{
x ∈ H : z∗ /∈ Zi

x

}
⋂ N∑

i=1

P
{
x ∈ H : z∗ /∈ Zi

x

}
≤

N∑
i=1

ϵ̄i(s
∗
i )

}

≥ PR

{
N⋂
i=1

{
ϵi(s

∗
i ) ≤ P

{
x ∈ H : z∗ /∈ Zi

x

}
≤ ϵ̄i(s

∗
i )
}}

≥ 1−
N∑
i=1

PR
{
ϵ̄i(s

∗
i ) < P

{
x ∈ H : z∗ /∈ Zi

x

}
⋃

P
{
x ∈ H : z∗ /∈ Zi

x

}
< ϵi(s

∗
i )
}
. (A.20)

By applying Theorem 2 to every agent i ∈ {1, . . . , N}, in
the sense that it holds only for the the CBF constraints
that involve agent i, we have that for any i ∈ {1, . . . , N}

PR
{
x ∈ H : ϵi(s

∗
i ) ≤ P

{
x ∈ H : z∗ /∈ Zi

x

}
≤ ϵ̄i(s

∗
i )
}

≥ 1− βi

⇒
N∑
i=1

PR
{
ϵ̄i(s

∗
i ) < P

{
x ∈ H : z∗ /∈ Zi

x

}
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⋃
P
{
x ∈ H : z∗ /∈ Zi

x

}
< ϵi(s

∗
i )
}
<

N∑
i=1

βi.

(A.21)

Here s∗i is the number of x(r)’s for which there exists e ∈
Ci, such that

∑
k∈Ve

hke(uk(x
(r))) ≥

∑
k∈Ve

z∗ke. For a
specific r, this means that agent i recognizes that at least
one CBF constraint is violated up to level

∑
i∈Ve

z∗ie, over

this scenario x(r). After solving the scenario program
(23) and communicating with the neighbouring agents
in Ge in a distributed manner, every individual agent is

able to compute ϵ∗i (s
∗
i ), ϵ

∗
i (s

∗
i ) by (28), (29). Since

ϵ(s∗)
N <

ϵ(s∗) < ϵ̄(s∗), substituting (A.21) into (A.19) with i =
1, . . . , N we obtain

PR

{
ϵ(s∗)

N
≤ P {x ∈ H : z∗ /∈ Zx} ≤ ϵ̄(s∗)

}
≥ 1− β.

(A.22)
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we analysed – theoretically and numerically
– three approximate dynamic programming algorithms to
find approximately optimal delivery slot prices in the rev-
enue management problem in attended home delivery. From
a control-theretical perspective, we identified limitations in
the affine value function approximation algorithm and the
non-linear stochastic dual dynamic programming algorithm.
Through our numerical analysis, we showed how gradient-
bounded dynamic programming can overcome these limi-
tations. In our case study, we compared the performance
of all three algorithms, i.e. profit-generation capabilities and
computational time, in a number of scenarios. Overall, our
numerical analysis shows that the gradient-bounded dynamic
programming algorithm exhibits superior performance, since
the affine value function approximation algorithm cannot
reach its profit-generation capabilities and since the non-linear
stochastic dual dynamic programming algorithm cannot reach
its computational speed and computational stability properties.

Possible directions for future work include investigating the
numerical performance of these algorithms for other network
revenue management problems and extending the promising
gradient-bounded dynamic programming approach to other
customer decision models than multinomial logit.
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