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Abstract

We propose distributed iterative algorithms for safe control design and safety verification for networked multi-agent systems.
These algorithms rely on distributing a control barrier function (CBF) related quadratic programming (QP) problem. The
proposed distributed algorithm addresses infeasibility issues of existing schemes by dynamically allocating auxiliary variables
across iterations. The resulting control input is guaranteed to be optimal, and renders the system safe. Furthermore, a truncated
algorithm is proposed to facilitate computational implementation. The performance of the truncated algorithm is evaluated
using a distributed safety verification algorithm. The algorithm quantifies safety for a multi-agent system probabilistically, using
a certain locally Lipschitz continuous feedback controller by means of CBFs. Both upper and lower bounds on the probability
of safety are obtained using the so called scenario approach. Both the scenario sampling and safety verification procedures are
fully distributed. The efficacy of our algorithms is demonstrated by an example on multi-robot collision avoidance.
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1 Introduction

Safety of a dynamical system requires the system state
to remain in a safe set for all time. This property is
important in many applications such as collision avoid-
ance [2,3], vehicle platooning [4,5], vehicle merging con-
trol [6], etc. For a single agent system, safety is usually
captured by introducing constraints on the state of the
agent and the environment. For a multi-agent system,
the meaning of safety extends to capture the interac-
tions among agents. In this case, safety is encoded by
coupling constraints over the states of a group of agents.
For a networked multi-agent system, where agents coop-
erate to satisfy safety constraints, we consider designing
distributed algorithms to ensure safety for all agents.

⋆ For the purpose of Open Access, the authors have applied
a CC BY public copyright licence to any Author Accepted
Manuscript (AAM) version arising from this submission.
Part of the results of this manuscript has been presented in
the IEEE Conference on Decision and Control 2023 [1]. Here
we significantly extend the conference version by addition-
ally evaluating a lower bound on the probability of safety
in Section 4, proposing a distributed safe controller design
algorithm, and a truncated algorithm with rigorous safety
analysis in Section 3.
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Another problem of interest is to validate the proposed
control law. For a single agent system, an agent can eval-
uate the system behaviour to characterize its risk of be-
ing unsafe under the employed control input. Similarly,
for a multi-agent safety verification problem, coopera-
tion among agents is necessary since safety involves mul-
tiple agents. In summary, this paper focuses on designing
a distributed protocol for safe control input design and
developing a distributed safety verification algorithm.

1.1 Related Work

Safety in control systems is often certified by control
barrier functions (CBF), which is a type of control
Lyapunov-like functions [7–9]. By enforcing the inner
product of the CBF derivative and vector field of the
controlled system to be bounded, safety is rigorously
guaranteed at any time. CBF is shown to be powerful
and scalable in control input design for control-affine
systems, as this condition can be encoded as a linear
constraint in a quadratic programming (QP) prob-
lem [7]. By solving online QP problems for every state,
the system can be guaranteed to be safe [10,11]. Most of
the existing results in this direction involve a centralized
approach; however, multi-agent considerations call for
distributed solution regimes. In this paper we address
the distributed safety problem for multi-agent systems.
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Related to the problem considered in this paper, CBFs
for multi-robot systems were studied in [12–14]. These
works propose to split the CBF constraints into two
components for neighbouring agents: the computation is
therefore distributed as every agent solves a local optimi-
sation problem. An improved constraint sharing mecha-
nism is developed in [15], where the CBF constraints are
dynamically tuned for compatibility. Optimality is fur-
ther considered in [16], and a dynamical constraint allo-
cation scheme among agents based on a consensus proto-
col is proposed. In our work, we aim at dealing with the
problem of feasibility and optimality simultaneously, as
well as considering multiple CBF constraints for safety.
In essence, the distributed CBF-based safe control de-
sign problem can be seen under the lens of distributed
optimisation.

Distributed optimisation for a multi-agent system aims
to design a distributed protocol that involves solving
an optimisation problem locally for every agent. Algo-
rithms can be divided into two types, dual decompo-
sition [17–20] and primal decomposition-based [21–25].
Dual decomposition methods consider the dual problem,
where each agent maintains a local copy of the dual vari-
ables. Constraint satisfaction is achieved by consensus
over the dual variables. Primal decomposition methods
directly decompose the primal problem into local prob-
lems. By local projection [21, 24, 25] or updating auxil-
iary variables [22,23], algorithms converge to centralized
optimum under convexity assumptions. Such methods
guarantee near feasibility as far as the constraints of the
primal problem are concerned. As our problem has the
same structure with the one considered in [22, 23], pri-
mal decomposition methods are leveraged.

Our first contribution is to provide a method for con-
structing a distributed, safe controller. To parallelize
the computation, we leverage the primal decomposition
method presented in [23] to decompose the coupling con-
straints via the introduction of auxiliary variables. We
also introduce additional relaxation variables for every
CBF constraint to overcome incompatibility issues of
multiple safety certificates, and avoid compromising the
control ability. Compared with other methods in the lit-
erature, our approach offers feasibility and optimality
guarantees, and exhibits a sublinear convergence rate.

To reduce the communication and computation burden,
a truncation mechanism is proposed to allow us to ter-
minate the algorithm prior to convergence. To give a
probabilistic guarantee for safety over the state space,
we leverage scenario approach [26–30], which samples a
number of independent states from the state space and
enforces the constraint only at these realizations.

Another problem of interest in this work is safety verifi-
cation. For a dynamical system, safety requires the tra-
jectory to be within a safe set. Given the vector field,
a target set and an unsafe set, solving a reach-avoid

game [31,32] yields a set from which all trajectories start
can reach the target set without entering the unsafe set.
In this sense, safety verification lies in the scope of reach-
ability analysis. The main challenge here is how to solve
the underlying Hamilton Jacobi partial differential equa-
tion. To bypass this difficulty, the barrier certificates
method was proposed in a convex programming frame-
work [33,34]. A barrier certificate identifies an invariant
set inside the safe set. System trajectories cannot escape
from the underlying invariant set, and this directly leads
to safety. Numerical methods for verifying safety using
barrier certificates with convex programs entails sum-of-
squares (SOS) programs [35,36], which are equivalent to
semi-definite programs. In real applications, the system
model and control input are usually not precisely known,
or are even unknown. In this setup, another type of ver-
ification method [37] using sampled data was proposed
recently. Probabilistically guaranteed safety is ensured
using the so called scenario approach [26–30].

A further contribution is that of constructing a dis-
tributed safety verification algorithm. Here we address
the problem of certifying safety for a multi-agent sys-
tem. We propose a scenario-based verification algorithm
for a probabilistic quantification of safety. A sequential
sampling algorithm is proposed to sample scenarios ef-
ficiently in a distributed fashion. For the probabilistic
result, we extend the state-of-the-art result [30, Theo-
rem 1] to the multi-agent setting. Both lower and up-
per bounds on the probability of being unsafe are es-
tablished, while the safety verification program is also
shown to be amenable to parallelization.

1.2 Organization

Section 3 proposes our distributed safe control design
algorithm, including a truncated version and the associ-
ated mathematical analysis. Section 4 provides the dis-
tributed safety verification scheme, and the distributed
scenario sampling algorithm. Section 5 demonstrates the
control design and safety verification algorithms on a
multi-robot system collision avoidance case study. Sec-
tion 6 concludes the paper and provides some directions
for future research.

2 Preliminaries

2.1 Notation

We use R, RN , R+ to represent the set of one-
dimensional, N -dimensional and nonnegative real num-
bers, respectively. N is the set of natural numbers. For
matrices A and B, A ⪯ B implies B − A is positive
semi-definite. A continuous function α(·) : (−b, a) →
(−∞,+∞) is said to be an extended class-K function for
positive a and b, if it is strictly increasing and α(0) = 0.
G = (V, E) denotes a graph with a nodes set V and an
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edge set E . Throughout the paper S is used for a safe set,
B is used for an invariant set. Boldface symbols are used
as stacked vectors for scalar or vector elements, e.g.,
x = [x⊤1 , . . . , x

⊤
N ]⊤. Specifically, 0 is vector whose ele-

ments are all zero, and I is an identity matrix, with their
dimensions being clear from the context. For a set K, |K|
denotes its cardinality. For a function s(x) : Rn → R, we
use the calligraphic font to represent the corresponding
zero-super level set, i.e., S := {x|s(x) ≥ 0}.

2.2 Control Barrier Functions

Consider a nonlinear control-affine system

ẋ = f(x) + g(x)u, (1)

with x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm, f(x) : X →
Rn, and g(x) : X → Rn×m. Both f and g are further
assumed to be locally Lipschitz continuous on a compact
set X ⊂ Rn. The existence and uniqueness of solutions
x(u(·), t, x0) is assumed where x0 is the initial state.

The safe set S is represented by the zero-super level set
of a continuously differentiable function s(x). Dually,
the unsafe set S̄ can be defined as the complementary
set. We denote by S the safe set, by ∂S the boundary
of the safe set, by Int(S) the interior of the safe set, and
by S̄ the unsafe set, respectively. With this formulation,
the safe control design problem boils down to finding
u(·) ∈ U , such that s(x(u(·), t, x0)) ≥ 0 for any t. To
achieve this, a control barrier function-based quadratic
programming approach was proposed [7].

Control barrier functions are an extension to barrier cer-
tificates [33] for safety verification. It has been revealed
in these papers that safety is closely related to the no-
tion of control invariance.

Definition 1 A set B ⊂ Rn is said to be control invari-
ant with respect to (1), if for any x0 ∈ B, there exists
u ∈ U such that ψ(u, t, x0) ∈ B.

The relationship between safety and control invariance
is demonstrated in the following equivalence lemma.

Lemma 2 ( [38]) System (1) is able to maintain safety
under S, if and only if there exists a control invariant set
B ⊆ S.

Clearly, given a control invariant set B, a safe control
input u(x) always exists for any x ∈ B. The control
barrier function approach answers the question of how
to design a closed loop safe control input u(x) inside B.
The notion of control barrier functions is related to the
notion of extended class-K functions.

Definition 3 For the control-affine dynamical system
(1), a continuously differentiable function b(·) : Rn → R

is said to be a control barrier function, if there exists an
extended class-K function α(·), such that for any x ∈ B,

sup
u∈U

[Lfb(x) + Lgb(x)u+ α(b(x))] ≥ 0. (2)

Here Lfb(x) and Lgb(x) are Lie derivatives, which are

defined by Lfb(x) :=
∂b(x)
∂x f(x) and Lgb(x) :=

∂b(x)
∂x g(x),

respectively.

Given a control barrier function b(x), the control admis-
sible set corresponding to (2) is defined by

Kcbf (x) := {u ∈ U : Lfb(x) + Lgb(x)u+ α(b(x)) ≥ 0}.
(3)

Theorem 4 [7, Corollary 2] Consider a control barrier
function b(x). Then for any x ∈ B, any locally Lipschitz
continuous controller u(x) such that u(x) ∈ Kcbf (x) will
render the set B control invariant.

3 Distributed Safe Control Law

Consider an N -agent system with the dynamics of the
i-th agent described by

ẋi = fi(xi) + gi(xi)ui, (4)

where xi(t) ∈ Xi ⊂Rni denotes its state, ui ∈ Ui ⊆
Rmi denotes its control input. The dynamics fi(xi) :
Xi → Rni and gi(xi) : Xi → Rni × Rmi are both
locally Lipschitz-continuous on a compact set Xi ⊂
Rni , which represents the domain of each agent. Vec-
tor x = [x⊤1 , . . . , x

⊤
N ]⊤ stacks the states of all systems,

u = [u⊤1 , . . . , u
⊤
N ]⊤ stacks the control inputs, while f(x),

g(x) stack the dynamics for each agent. The domain
and control admissible set for the multi-agent system are
then defined by

X :=

N∏
i=1

Xi,U :=

N∏
i=1

Ui,

where
∏

represents the Cartesian product for the state
space of all the agents. Given that all Xi, i = 1, . . . , N ,
are assumed to be compact, compactness of X is assured
using Tychonoff’s theorem [39]. In this way, the system
dynamics of the whole multi-agent system can be com-
pactly modelled by ẋ = f(x) + g(x)u.

The networked system is described by an undirected
graph G, with nodes set V = {1, . . . , N}, and edges set
E such that {i, j} ∈ E if agent j communicates with
agent i. Agents are grouped in E sub-networks with
specific safety requirement. For each sub-network Ge,
e = 1, . . . , E, the set of grouped agents is Ve ⊆ V. Let
xe = [x⊤i ]

⊤
i∈Ve

be the stacked states in group e. Each
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agent i can communicate and cooperate with its neigh-
bour j ∈ Ni to stay safe inside group e by ensuring

xe ∈ Se := {xe : se(xe) ≥ 0}, (5)

where se(·) ∈ R. We let Ci be the set of constraints agent
i participates in; then we have Ve = {i|e ∈ Ci}.

Assumption 5 (Connectivity) For each e = 1, . . . , E,
sub-network Ge is connected and undirected.

Assumption 6 Suppose S =
⋂E

e=1 Se ̸= ∅. There exists
E control barrier functions be(·), such that Be := {xe :

be(xe) ≥ 0} ⊆ Se, and B =
⋂E

e=1 Be ̸= ∅. Moreover,
H := B ∩ X ̸= ∅.

Assumption 7 For the multi-agent system (4) and
CBFs be(xe), e = 1, . . . , E. For every x ∈ B, there ex-
ists u = [u⊤1 ∈ U1, . . . , u⊤N ∈ UN ]⊤ ∈ U , such that for
any e = 1, . . . , E:

∑
k∈Ve

(
∂be
∂xk

(fk(xk) + gk(xk)uk) + αke(be)

)
≥ 0. (6)

Following [7, Theorem 3], safety constraints can be in-
corporated in the CBF-QP formulation given by

J∗ = min
u∈U

N∑
i=1

||ui − udesi (xi)||22

s.t.
∑
k∈Ve

(
∂be
∂xk

(fk(xk) + gk(xk)uk) + αke(be)

)
≥ 0,

∀e = 1, . . . , E, (7)

where αke(·) (and hence also
∑

k∈Ve
αke(·) is also a class-

K) are class-K functions, while udesi (xi) is a nominal
stabilizing control input. Let

Ji(ui) = ||ui − udesi (xi)||22,

hie(ui) = −
(
∂be
∂xi

(fi(xi) + gi(xi)ui) + αie(be)

)
.

(8)

Assumption 8 For every x ∈ B, there exists u(x)∈ U ,
such that hie < 0 for all e = 1, . . . , E, i ∈ Ve.

Notice that, even not shown explicitly, hie(ui) depends
on xi, i ∈ Ve. We also highlight that (7) is parameterized
in x, which can be thought of as constant as for the op-
timisation problem in (7) is concerned. Under Assump-
tion 8, problem (7) is always feasible for all x ∈ B. To
begin with our analysis, we propose a relaxed version of
(7) to guarantee feasibility of the local problems in the
proposed distributed algorithm. This will be clarified in

the sequel.

H∗ = min
u∈U,ρ≥0

H(u,ρ) :=

N∑
i=1

{
Ji(ui) +

∑
e∈Ci

(ρ2ie +Miρie)

}
subject to

∑
i∈Ve

hie(ui) ≤ ρie, e = 1, . . . , E.

(9)

Let µe be the optimal dual solution for the constraint∑
i∈Ve

hie(ui) ≤ ρie. Feasibility of problem (9) is clear,
as the positive variable ρ relaxes the linear constraints.
Optimality is analyzed in the following lemma.

Lemma 9 Denote the minimizer of problem (7) by
u∗
nom(x), and the minimizer of problem (9) by u∗

rel(x).
Then u∗

rel(x) = u∗
nom(x), and ρ∗ = 0 if

Mi ≥ µe,∀i ∈ Ve,∀e = 1, . . . , E. (10)

Besides, the cost functionH(u,ρ) is strongly convex and
has a Lipschitz continuous gradient.

PROOF. See Appendix.

3.1 Full Control Law

We now design an algorithm to solve the centralized
CBF-QP problem (7) in a distributed manner; see Algo-
rithm 1. Since hie(ui) also depends on xk for k ∈ Ve\{i},
an additional communication round at the beginning
of the algorithm is designed. For all i = 1, . . . , N , and
e ∈ Ci, agent i is to receive xk for any k ∈ Ve\{i} from
agent l ∈ Ni ∩ Ve. Within a finite number of communi-
cation rounds, agent i can gather all the other agents’
states in sub-networks e ∈ Ci. Then, for any e ∈ Ci, func-
tions hie(ui) can be constructed as in (8).

There are two main computation and two commu-
nication steps in the algorithm. In the first compu-
tation step (Step 3), agent i solves the optimisation
problem (11) to obtain the optimal primal-dual so-

lution ((uk+1
i ,ρk+1

i ),µk+1
i ), where ρi includes relax-

ation variables denoted by ρie (penalized in the cost
by Mi), and µi includes the dual variables µie, for
all e ∈ Ci and l ∈ Ni ∩ Ve. In practice, µie corre-
sponds to the constraints allocated to agent i, i.e.
hie(xi) +

∑
l∈Ni∩Ve

(λkil − λkli) ≤ ρie. Moreover, the con-

straints in the distributed problem (11) are relaxed by
an additional non-negative relaxation variable ρie. This
guarantees the feasibility of the local optimisation prob-
lem by loosing the restriction of the original constraints.
However, this does not necessarily imply satisfaction
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Algorithm 1 Distributed Safe Control Design Algo-
rithm for agent i at xi

Initialization Arbitrary λ0il,∀l ∈ Ni ∩ Ve, ∀e ∈ Ci.
Receive xk for any k ∈ Ve\i from l ∈ Ni ∩ Ve, for

any e ∈ Ci
Send xi to any l ∈ Ni ∩ Ve, for any e ∈ Ci.
Output: Optimal control input u∗i

1: while Not reaching convergence do
2: Receive λkil from ∀l ∈ Ni ∩ Ve,∀e ∈ Ci.
3: Solve ((uk+1

i ,ρk+1
i ),µk+1

i ) as a primal-dual solu-
tion of the following optimisation problem

min
ui,ρi

Ji(ui) +
∑
e∈Ci

(ρ2ie +Miρie)

s.t. ui ∈ Ui, ρie ≥ 0,

hie(ui) +
∑

l∈Ni∩Ve

(λkil − λkli) ≤ ρie,∀e ∈ Ci.

(11)

4: Receive µk+1
le from agent l ∈ Ni ∩ Ve.

5: Update λil by

λk+1
il = λkil − γk(µk+1

ie − µk+1
le ). (12)

6: end while

of the CBF constraints in (7) by using uk+1. The in-
terpretation of this kind of infeasibility in CBF-QP
application is that, there is no admissible control input
that renders the agent system safe with the CBFs and
given auxiliary variables.

The first computation step uses auxiliary variables λkil
and λkli. The difference λkil − λkli constitutes estimates
of the neighbouring terms hle(ul). λ

0
il is initialized ar-

bitrarily. As we will show in Theorem 11, the initial-
ization will not influence convergence to the optimizer.
Among all these variables, λkle for l ∈ Ni ∩ Ve are up-
dated and stored by neighbours. They are available by
agent i via communication in Step 2. We note here that
for all l ∈ Ni ∩ Ve, λil and λli are all scalars, hence
the communication burden will not be high. The second
computation step is to update the local auxiliary vari-
ables by means of (5). Part of the dual variables used in
the update are received from the neighbours in the sec-
ond communication round, i.e. Step 4. Here the update
is a gradient-like procedure, with stepsize γ > 0. The
dual variables will be bounded provided that the auxil-
iary variables are also bounded.

Algorithm 1 is fully distributed, where the two computa-
tion and communication steps can be carried out locally
by each agent. Differently from the setting in [23, Al-
gorithm RSDD], the relaxation penalty in the cost in-
cludes now a quadratic term. This renders the cost func-
tion strongly convex, allowing for superior convergence

properties and ensuring the minimizer u∗i is unchanged.

We directly have the following optimality and safety re-
sults.

Theorem 10 For every x ∈ B, the optimal distributed
control input u∗(x) returned by Algorithm 1 coincides
with the optimal centralized control input solved using
(7). Besides, the optimal distributed control input renders
B invariant.

Among different types of distributed optimisation algo-
rithms, [23, Algorithm RSDD] is selected here for its
ability to guarantee almost-safety in iterations. This is
realized by allocating the auxiliary variables λ, while
balancing the safety requirement to every agent. We say
“almost” here since additional relaxation variables are
introduced in every local optimisation problem for feasi-
bility. In high-frequency applications, the algorithmmay
stop before reaching convergence. When the relaxation
variables ρk = 0 for a k > 0, then for any e = 1, . . . , E
we have that

∑
i∈Ve

hie(u
k
i ) =

∑
i∈Ve

{
hie(u

k
i ) +

∑
l∈Ni∩Ve

(λkil − λkli)

}
︸ ︷︷ ︸

≤0

≤ 0,

which implies that the CBF constraints are satisfied with
any control input solving (11) at iteration k. The next
theorem gives the convergence result.

Theorem 11 Consider Assumption 8, and letMi ≥ µe

for every i = 1, . . . , N , e = 1, . . . , E. For every i =
1, . . . , N , and any initialized λ0,

(a) if Ui ⊂ Rmi . Choose the sequence {γk}k≥0, with each
γk ≥ 0, and

∑∞
k=0 γ

k = ∞,
∑∞

k=0(γ
k)2 < ∞. Then

we have limk→∞H(uk,ρk) − J∗ → 0, and uk con-
verges to the primal optimal solution of (7).

(b) if Ui = Rmi . Let the step size γk = γ be small as
(A.7). H(uk,ρk) converges to the optimal cost J∗ in

(7) sublinearly, i.e. H(uk,ρk)−J∗ ≤ 2||λ0−λ∗||22
γk , and

uk converges to the primal optimal solution of (7).

PROOF. See Appendix.

Under certain regularity condition, [23, Algorithm
RSDD] only guarantees local sublinear convergence [22]
since ∇d(λ) is only guaranteed to be bounded [22,
Proposition 5.2]. Lipschitz continuity of ∇d(λ) is im-
portant to establish a global sublinear convergence rate.
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3.2 Truncated Control Law

Algorithm 1 can be implemented in a distributed fashion
with ensured safety and optimality properties, however,
it may not be suitable for control tasks that require high
actuation frequency, i.e. multi-robot system control, as
its theoretical properties are established in an asymp-
totic manner. This motivates the use of a truncated al-
gorithm, Algorithm 2, where the algorithm terminates
after a finite number of iterations, denoted by η.

Algorithm 2 Truncated Distributed Safe Control De-
sign Algorithm for agent i

Initialization Predefined λ0il,∀l ∈ Ni ∩ Ve, ∀e ∈ Ci,
truncated parameter η ∈ N

Receive xk for any k ∈ Ve\i from l ∈ Ni ∩ Ve, for
any e ∈ Ci

Send xi to any l ∈ Ni ∩ Ve, for any e ∈ Ci
Output: Optimal control input u∗i

1: while k ≤ η do
2: steps 2, 3, 4 in Algorithm 1
3: step 5 in Algorithm 1
4: end while

Algorithm 2 is computationally more efficient compared
to Algorithm 1, at the cost of potentially violating the
control barrier function constraints. The violations are
reflected in the non-zero relation variables ρη. In gen-
eral, it is challenging to provide an explicit bound for η,
under which ρη = 0, as the distributed algorithm con-
verges asymptotically as per Theorem 11. Moreover, ρη

depends on the state x ∈ H := X ∩ B, which param-
eterizes the optimization problem (9). To address this
challenge, we study the problem that given η, we charac-
terize the confidence (probability) with which P{x ∈ H :
ρη(x) ̸= 0}. This is established in the following section.

4 Distributed Safety Verification

In this section we show how to verify safety for a multi-
agent system, using a given feedback controller u(x).
The verification is conducted by checking the risk of
becoming unsafe along the current trajectories by means
of the CBFs using the so called scenario approach. We
tend to measure the violations of the CBF constraints
to estimate the trend of being unsafe for the system.
We note here the analysis conducted in this section can
be applied to, but not limited to the controller designed
using Algorithm 2. The only requirement for the verified
controller u(x) is locally Lipschitz continuous, which
is necessary for the solution of the multi-agent system
to be unique. We also highlight that in this section a
CBF is only regarded as a verification criterion but not
necessarily as a control design principle.

4.1 Scenario Based Safety Verification

Consider an N -agent system (4) and a safe invariant set
B. Our objective is to verify whether for the designed
u(x(t)), x(t) ∈ S, for all t > 0 and for all x(0) ∈ H =
B ∩ X .

We propose a scenario-based safety verification program
as follows.

min
z≤0,ζ≥0

N∑
i=1

∑
e∈Ci

z2ie +M

N̄∑
r=1

ζ
(r)
ie


(SC-Verification)

s.t.
∑
i∈Ve

hie(ui(x
(r))) ≤

∑
i∈Ve

(zie + ζ
(r)
ie ),

∀e = 1, . . . , E,∀r = 1, . . . , N̄ , (13)

where scenarios x(r) ∈ H for any r = 1, . . . , N̄ are
extracted according to some probability distribution
to be clarified in the sequel. Throughout the section
X̄ = {x(1), . . . ,x(N̄)} denotes the set of scenarios,

where x(r) = [(x
(r)
1 )⊤, . . . , (x

(r)
N )⊤]⊤ ∈ R

∑N

i=1
ni , for

r = 1, . . . , N̄ . Relaxation variables ζ are introduced to
ensure feasibility, whileM > 0 is a large enough penalty
coefficient.

Program (SC-Verification) is a data-driven QP, where all
the constraints are linear based on the samples. Roughly
speaking, if for any x ∈ H and corresponding control
input u(x), all the CBF constraints are satisfied, then
ζ∗ = 0. Conversely, ζ∗ ̸= 0 represents a CBF constraint
violation, and indicates the risk of being unsafe bymeans
of CBF. A new set Z(H) for optimal solution z∗ is de-
fined as follow

z∗ ∈ Z(H)⇐⇒∑
i∈Ve

hie(ui(x)) ≤
∑
i∈Ve

z∗ie,∀e = 1, . . . , E,∀x ∈ H. (14)

Then Z(H) is constituted of N individual set Zi(H) as

Z(H) =
N⋂
i=1

Zi(H). (15)

The argument of Z and Zi is dropped in the sequel for
simplicity.

4.2 Sampling the Scenarios

The scenarios are sampled independently from the set
H. For sampling we define a probability density π(x)
associated with set H that satisfies

∫
H π(x)dx = 1. One
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typical choice of π(x) is to set it according to the density
of the uniform distribution, i.e., π(x) = πuni(x) = 1∫

H
dx

.

The existence of πuni(x) is assured as H is a non-empty
and compact set, due to Assumption 6. Then, x can be
sampled N̄ times independently from the distribution
πuni(x). Note that the choice of the probability distribu-
tion does not affect the probabilistic results established
in the sequel due to the distribution-free nature of the
results of [30, Section 3.1]. Although the uniform distri-
bution here is well-defined, the set H is defined implic-
itly as an intersection of multiple sets. Sampling a point
from the proposed uniform distribution is rather ardu-
ous in practice, and agents may not have access to H.
Here, we provide a sequential algorithm to sample sce-
narios x(r), r = 1, . . . , N̄ .

Algorithm 3 Scenarios Sampling Algorithm

Initialization Set H = B ∩ X , failed times F = 0.
Output: Scenario x(r).

1: Sample x
(r)
1 from π1(x).

2: for i = 2, . . . , N do
3: Construct a set Hi = ∩e∈Ci

Hie following (16).
4: if Hi = ∅ then
5: F ← F + 1.
6: go to i = i− F (i = 1 is step 1).
7: end if
8: Sample x

(r)
i from distribution πi =

1∫
Xi

dx
.

9: while x
(r)
i /∈ Hi do

10: Sample x
(r)
i from distribution πi.

11: end while
12: end for

The algorithm constructs the densities from which sam-
ples are extracted sequentially for each agent. We first
define the sets from which samples are extracted for
agent i with part of the states of agents in the same sub-
network Ge fixed.

Hie =

{
Xi, if ∃l ∈ Ve, such that l > i

{xi ∈ Xi|bie(xi, {x(r)l }) ≥ 0)}, otherwise
(16)

We then have thatHi =
⋂

e∈Ci

Hie. The parameters in (16)

can all be collected by local communication, since only
states of agents in the same sub-network are required.
Note here Hi is possibly empty with some parameters

{x(r)1 , . . . , x
(r)
i−1}.

At Step 1, the first scenario x
(r)
1 associated with agent

1 is sampled from distribution π1 = 1∫
X

dx
, since now

there are no other agents involved to restrict the set
for agent 1. Then, the sampling-construction proce-
dures repeat sequentially from agent 2 to agent N . For

i = 2, . . . , N , before sampling the scenario x
(r)
i , we

first check whether Hi is empty (Step 4). By Assump-

tion 6, there exists {x(r)1 , . . . , x
(r)
i−1} such that Hi ̸= ∅.

Therefore, if Hi = ∅ (Step 5), then go back to the
sampling-construction of agent i− F , F ̸= 1 is to avoid
a deadlock on step i. The deadlock happens when for

given scenarios x
(r)
1 , . . . , x

(r)
i−2, the set Hi−1 is such that

for any x
(r)
i−1 ∈ Hi−1, Hi = ∅. It is guaranteed that

F ≤ i − 1 for i ≥ 2, since H1 = X1 ̸= ∅. After finding

feasible scenarios x
(r)
1 , . . . , x

(r)
i−1, we sample the scenario

x
(r)
i for the ith agent from the uniform distribution πi

(Step 8). The sampled scenario is then checked at Step

9. If x
(r)
i /∈ Hi, it will be sampled again following π1.

The loop will terminate in finite time since Hi ∩X ̸= ∅.

Proposition 12 The scenarios x(r), r = 1, . . . , N̄ , are
feasible, i.e., x(r) ∈ H, and independent.

PROOF. The feasibility result holds directly from the

definition of every set Hi in (16) that x
(r)
i is sampled

from. As a result, we have bie(x
(r)
i , {x(r)k }) ≥ 0 for any

i = 1, . . . , N , e ∈ Ci, and k ∈ Ve. Therefore, x(r) ∈ H.
x(r) for r = 1, . . . , N̄ are independent since for r =

1, . . . , N̄ , x
(r)
1 are independently sampled from distribu-

tion π1.

We note here that the elements in x(r) are correlated,
but this will not influence the independence results in
Proposition 12 since we seek independence across r.

4.3 Distributed Safety Verification

After sampling scenarios x(r), r = 1, . . . , N̄ using Algo-
rithm 3, we are at the stage of solving the safety verifi-
cation program (SC-Verification).

Letting the local cost function Ji(zi, ζi), and constraint

function ĥie(zi, ζi) be

Ji(zi, ζi) =
∑
e∈Ci

z2ie + N̄∑
r=1

ζ
(r)
ie

 ,

ĥ
(r)
ie (zi, ζi) = hie(ui(x

(r)))− zie − ζ(r)ie , r = 1, . . . , N̄ ,
(17)

Algorithm 1 can be applied to solve the distributed sce-
nario optimisation problem (SC-Verification). The re-
laxation variables in Algorithm 1 are unnecessary, since
every optimisation sub-problem in iteration is solvable.
In the sequel, we use z∗ and ζ∗ to represent the opti-
mal solution to (SC-Verification), with scenarios x(r),
r = 1, . . . , N̄ . We then have the following theorem as the
main result on probabilistic safety.
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Theorem 13 Choose βi ∈ (0, 1), i = 1, . . . , N , and set

β =
∑N

i=1 βi. For i = 1, . . . , N , and 0 ≤ s∗i ≤ N̄ − 1,
consider the polynomial equation in ti(

N̄

s∗i

)
t
N̄−s∗i
i − βi

2N̄

N̄−1∑
j=s∗

i

(
j

s∗i

)
t
j−s∗i
i

− βi
6N̄

4N̄∑
j=N̄+1

(
j

s∗i

)
t
j−s∗i
i = 0,

(18)

while for s∗i = N̄ consider the polynomial equation

1− β

6N

4N̄∑
j=N̄+1

(
j

s∗i

)
tj−N̄
i = 0. (19)

For any i = 1, . . . , N , this equation has exactly two
solutions in [0,+∞) denoted by ti(s

∗
i ) and t̄i(s

∗
i ),

where ti(s
∗
i ) ≤ t̄(s∗i ). Let ϵi(s

∗
i ) := max{0, 1 − t̄i(s∗i )},

ϵ̄i(s
∗
i ) := 1 − ti(s∗i ), and ϵ(s∗) =

∑N
i=1 ϵi(s

∗
i ), ϵ̄(s

∗) =

min{
∑N

i=1 ϵ̄i(s
∗
i ), 1}. We then have that

PN̄

{
ϵ(s∗)

N
≤ P {x ∈ H : 0 /∈ Z} ≤ ϵ̄(s∗)

}
≥ 1− β,

(20)

where s∗i is the number of non-zero ζ
(r)∗
ie , e ∈ Ci.

PROOF. See Appendix.

Note that Theorem 13 constitutes a generalization of
[30, Theorem 2] to a multi-agent setting. It also extends

[21] by determining the lower bound
ϵ(s∗)
N . Theorem 13

states that with confidence 1 − β, the system tends to
be unsafe by means of the CBFs with probability within

the interval [
ϵ(s∗)
N , ϵ̄(s∗)].

Furthermore, for a given r, (SC-Verification) can be split

into
∑E

i=1 |Ve| sub-problems, each one with its own CBF
constraint. Each sub-problem is solved at the agent level
and has only N̄ constraints. Then, the probability that
one of the CBF constraints is violated can be bounded
as shown in the following corollary.

Corollary 14 Consider the multi-agent system (4), and
let ϵi(s

∗
i ), ϵ̄i(s

∗
i ), and βi as in Theorem 13. We then have

that

PN̄

{
ϵi(s

∗
i ) ≤ P

{
x ∈ H :

∑
i∈Ve

hie(ui(x
(r))) > 0

}
≤ ϵ̄i(s∗i )

}
≥ 1− βi.

(21)

5 Simulation Results

The distributed safe control input design and safety veri-
fication algorithms are numerically validated on a multi-
robot positions swapping problem. To facilitate compar-
ison, we adopt a similar setup as in [13].

5.1 Multi-Robot Position Swapping

Robots are assigned different initial positions and are
required to navigate towards target locations. In a dis-
tributed framework, robots are equipped with sensing
and communication modules for collision detection and
information sharing. A group of ten robots, indexed by
i = 1, . . . , 10 are considered, with double integrator dy-
namics [

ṗi

v̇i

]
=

[
0 I2×2

0 0

][
pi

vi

]
+

[
0

I2×2

]
ai, (22)

where pi ∈ R2, vi ∈ R2 represent positions and veloci-
ties, and ai ∈ R2 is the control input, representing accel-
erations. The acceleration is limited as ||ai||∞ ≤ amax

i .
amax
i will be cleared in the sequel. Each robot is regarded

as a disk centered at pi with radiusDi ∈ R+. The safety
certificate sij(p,v) for collision avoidance between robot
i and j is defined by

sij(p,v) = ||∆pij ||22 −Dij , (23)

where ∆pij = pi−pj ,Dij = Di+Dj . Note here that the
system is heterogeneous as different robots have different
mobility. Following [13], the control barrier function for
invariance certificates is then defined pair-wisely, as

bij(p,v) =
√
2(amax

i + amax
j )(||∆pij ||22 −Dij)

+
∆p⊤

ij

||∆pij ||22
∆vij , (24)

where ∆vij = vi − vj . The function bij(p,v) is guar-
anteed to be a CBF since when bij(p,v) > 0, colli-
sion can be avoided with maximum braking acceleration
amax
i + amax

j applied to robots i and j. For i = 1, . . . , 5,
amax
i = 1, while for i = 6, . . . , 10, amax

i = 10. Note
that although bij(p,v) is guaranteed to be a CBF for
safety certificate sij(p,v), the corresponding invariant
set B =

⋂
{i,j}∈E

Bij is possibly empty. Intuitively, this

is since robots cannot utilize maximum braking force
to avoid collision with multiple other robots simultane-
ously. This problem is beyond the scope of this paper,
and we still adopt the CBF as in (24).
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5.2 Distributed Control: Asymptotic Algorithm

The distributed safe control design procedure of Algo-
rithm 1 that exhibits asymptotic convergence and opti-
mality guarantees is implemented for robots to swap po-
sitions with the opposite robots while avoiding collision.
The resulting simulation results are shown in Figure 1.
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Fig. 1. Trajectory of ten robots swapping positions according
to Algorithm 1. Robots with the same color are swapping
positions, and avoiding collision with the others.

5.3 Distributed Control: Truncated Algorithm

The truncated Algorithm 2 is then implemented for the
same setting, the truncation parameter η = 30.

The resulting swapping trajectories are shown in Figure
2. Define

ρksum =

N∑
i=1

∑
e∈Ci

(
(ρkie)

2 +Miρ
k
ie

)
. (25)

The evolution of the relaxation parameters ρ0sum(x)
and ρ30sum(x) at each time step along the trajectory is
shown in Figures 3a and 3b. It can be seen that ρ30sum is
close to zero at every time step, even ρ0sum is relatively
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Fig. 2. Trajectory of ten robots swapping positions while
avoiding collision by means of Algorithm 2, with η = 30.

large at some time steps. This empirically demonstrates
the safety guarantees performance of the proposed dis-
tributed algorithm. From our experience, η could be
much smaller for a practical implementation.
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Fig. 3. Evolution of the relaxation parameters ρ0sum(x) and
ρ30sum(x) evaluated at the state trajectory, across algorithm
iterations.

5.4 Distributed Safety Verification

Safety verification is performed for a four-robot
system, within the working space X , defined as
{p : ||p|| ≤ pmax = 6} × {v : ||v|| ≤ vmax = 1}. Each
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robot is using Algorithm 2 to safely move towards the
origin. We sample 200 scenarios via Algorithm 3. The-
orem 13 yields then that with confidence at least 0.9,
P {x ∈ H : 0 /∈ Z} ∈ [0, 0.146]. We repeat this proce-
dure 300 times, each time using 300 scenarios, and
construct the empirical cumulative distribution func-
tion of P {x ∈ H : 0 /∈ Z}. This is shown in Figure 4;
it can be observed that the empirical probability that
P {x ∈ H : 0 /∈ Z} ∈ [0, 0.146] ≈ 1, thus satisfying the
theoretical confidence lower bound of 0.9.
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Fig. 4. Cumulative distribution function for safety violation.

6 Conclusion

In this paper we presented distributed safe control design
and safety verification algorithms for multi-agent sys-
tems. The proposed control algorithms introduce auxil-
iary and relaxation variables to allow feasibility across
iterations. We guaranteed convergence to an optimal so-
lution and establish a sublinear convergence rate. We
also addressed the problem of distributed safety verifi-
cation for given control inputs. A scenario-based verifi-
cation program is formulated and can be solved locally
by each agent. The scenarios are sampled independently
by a sequential algorithm from the controlled invariant
set. The distributed scenario program characterizes the
probability of being unsafe, with both lower and upper
bounds being determined. Simulation on a multi-robot
swapping position problem determines the efficacy of
our result. Current work concentrates in accounting for
communication delays andmodel uncertainty in real sys-
tems.

A Appendix

PROOF. [Proof of Lemma 9] The dual function of (9)
is given by

q(µ) = inf
{ui∈Ui},ρ≥0

N∑
i=1

{
Ji(ui) +

∑
e∈Ci

(ρ2ie +Miρie)

}

+

E∑
e=1

µe

{∑
i∈Ve

hie(ui)−
∑
i∈Ve

ρie

}

= inf
{ui∈Ui},ρ≥0

N∑
i=1

{
Ji(ui) +

∑
e∈Ci

µehie(ui)

}

+

E∑
e=1

∑
i∈Ve

{
ρ2ie + (Mi − µe)ρie

}
(A.1)

If there exists e = 1, . . . , E, and i ∈ Ve, such that

Mi − µe < 0, then the minimizer of
∑E

e=1

∑
k∈Ve
{ρ2ie +

(Mi − µe)ρie} is given by ρ∗ > 0. Notice that this is an
unconstrained QP, so its minimizer can be determined
by setting its gradient with respect to ρie to zero. On the
other hand if Mi − µe ≥ 0, for all e = 1, . . . , E, i ∈ Ve,
the unconstrained minimizer for ρ is negative, hence the
constrained minimizer ρ∗ = 0 as ρ ≥ 0. For this case,
we obtain

q(µ) = inf
{ui∈Ui}

N∑
i=1

{
Ji(ui) +

∑
e∈Ci

µehie(ui)

}
, (A.2)

which is the dual function for the original unrelaxed
problem (7). Recall that (7) is a strictly convex quadratic
problem, then u∗

rel(x) = u∗
nom(x) if Mi ≥ µe, for all

e = 1, . . . , E, i ∈ Ve since ρ∗ = 0. The cost function
H(u,ρ) is strongly convex with Lipschitz continuous
gradient since every Ji(ui) is a strongly convex quadratic
function with respect to ui, and

∑
e∈Ci

(ρ2ie +Miρie) is
strongly convex with respect to ρie.

PROOF. [Proof of Theorem 11] We begin with (a).
The proof follows a similar idea as [40, Theorem II.6],
we only scratch the primal-dual exploration here. Un-
der Assumption 8, strongly duality holds for the primal
problem (7) and the dual problem (A.1). To solve the
dual problem maxµ≥0 q(µ) in a distributed manner, an
equivalent decomposed problem [40, Section 3.1.3] is for-
mulated as

max
µi≥0

N∑
i=1

qi(µi)

subject to µi = µj , (i, j) ∈ E ,
(A.3)

where µi is a local copy of µ for agent i. The dual prob-
lem of (A.3) is given by

d∗ = min
λ
d(λ) :=

N∑
i=1

sup
µi≥0

qi(µi) + µ⊤
i

∑
j∈Ni

(λij − λji)

 ,

(A.4)

where λij is a free dual variable for the constraint
µi = µj . Strong duality holds between problem (A.3)
and (A.4) since (A.3) is an equality constrained concave
problem. Using the gradient descent method to solve
(A.4) at each iteration k, each agent i performs two
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steps:

• (i) calculates the gradient∇d(λk): receive λkji, j ∈ Ni,

and compute µk+1
i by solving

max
µi≥0

qi(µi) + µ⊤
i

∑
j∈Ni

(λkij − λkji)

 (A.5)

• (ii) uses gradient descent: receive µk+1
j , and update

λij by:

λk+1
ij = λkij − γk(µk+1

i − µk+1
j ). (A.6)

Diminishing step-size is used here as [23]. Specifically,
(A.5) is the dual problem of (11). Strong duality holds
for large enough ρ as the relaxed CBF constraints hold
strictly. Updating (A.6) is the same as (12) for every
agent in iterations. Given that d(λ) is convex, gradient
descent guarantees that d(λk) convergence to the opti-
mal value d∗ = J∗ since strong duality holds between
(9) and (A.3), as well as (A.3) and (A.4). Moreover,
the relaxed problem (9) is strongly (hence also strictly)
convex, which indicates uniqueness of the optimal solu-
tion (u∗

rel,ρ
∗) . Using Lemma 9, we obtain u∗

rel = u∗
nom,

which is the optimal solution of (7).

We then prove (b). We show that d(λ) is a con-
vex quadratic function. First we prove that for every
i = 1, . . . , N , qi(µi) in (A.3) is a concave quadratic
function. When every Ui = Rmi , the relaxed CBF-QP
(9) is a linearly constrained quadratic problem. Follow-
ing the example [41, Section 5.2.4, Eq. 5.28] 1 , every
qi(µi) is a concave quadratic function. Therefore, prob-
lem (A.3) is a linearly constrained concave quadratic
problem. Following [42, Example 3.6] d(λ) is a convex
quadratic function, which is necessarily smooth. Using
constant step size

0 < γ <
1

2L
, (A.7)

where L is Lipschitz constant of∇d(λ), in a gradient de-
scent method to minimize a smooth and convex function
d(λ), the generated iterates converge sublinearly as

d(λk)− J∗ ≤ 2(d(λ0)− J∗)||λ0 − λ∗||22
2||λ0 − λ∗||22 + kγ(2− Lγ)(d(λ0)− J∗)

1 The example demonstrates that the dual function of a con-
vex quadratically constrained quadratic programming prob-
lem is a concave quadratic function. Our problem is as a
special case where the quadratic terms are zero in the con-
straints.

≤2(d(λ0)− J∗)||λ0 − λ∗||22
kγ(d(λ0)− J∗)

≤ 2||λ0 − λ∗||22
kγ

.

(A.8)

The first inequality is proved by [43, theorem 2.1.4], the
second one comes from eliminating the term ||λ0−λ∗||22,
and considering 2 − Lγ ≥ 1 from (A.7). The Lipschitz
constant can be calculated by the largest eigenvalue of
the quadratic term for d(λ). Although the expression of
d(λk) is not derived, d(λk) can be calculated by

d(λk) =

N∑
i=1

sup
µi≥0

qi(µi) + µ⊤
i

∑
j∈Ni

(λij − λji)


=

N∑
i=1

sup
µi≥0

(
inf

ui,ρi≥0

(
Ji(ui) +

∑
e∈Ci

(
ρ2ie +Miρie

))

+
∑
e∈Ci

µie(hie(ui)− ρie) + µ⊤
i

∑
j∈Ni

(λkij − λkji)

 .

(A.9)

For every i = 1, . . . , N , and λk, there always exists ui

and ρi, such that the inequality constraint in (4) strictly
holds, which indicates strong duality. Therefore, we have

d(λk) =
N∑
i=1

inf
ui,ρi≥0

(
sup
µi≥0

(
Ji(ui) +

∑
e∈Ci

(
ρ2ie +Miρie

))

+
∑
e∈Ci

µie(hie(ui)− ρie) + µ⊤
i

∑
j∈Ni

(λkij − λkji)


=

N∑
i=1

(
Ji(u

k
i +

∑
e∈Ci

((ρkie)
2 +Miρ

k
ie)

)

=

N∑
i=1

||uki − udes||2 + ρksum = H(uk,ρk). (A.10)

Hence, by (A.9) and (A.10) we conclude thatH(uk,ρk)−
J∗ <

2||λ0−λ∗||22
γk .

PROOF. [Proof of Theorem 13] We have that

PN̄

{∑N
i=1 ϵi(s

∗
i )

N
≤ P {x ∈ H : z∗ /∈ Z} ≤

N∑
i=1

ϵ̄i(s
∗
i )

}

= PN̄

{
1

N

N∑
i=1

ϵi(s
∗
i ) ≤ P

{
x ∈ H :

∃i ∈ {1, . . . , N}, z∗ /∈ Zi

}
≤

N∑
i=1

ϵ̄i(s
∗
i )

}
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= PN̄

{
1

N

N∑
i=1

ϵi(s
∗
i ) ≤ P

{
x ∈ H :

N⋃
i=1

{z∗ /∈ Zi}

}
⋂

P

{
N⋃
i=1

{x ∈ H : z∗ /∈ Zi}

}
≤

N∑
i=1

ϵ̄i(s
∗
i )}

(A.11)

We separately deal with the inner and upper bounds on
the probability. For the upper bound we have

PN̄

{
P

{
N⋃
i=1

{x ∈ H : z∗ /∈ Zi}

}
≤

N∑
i=1

ϵ̄i(s
∗
i )

}

≥PN̄

{
N∑
i=1

P
{
x ∈ H : z∗ /∈ Zi

}
≤

N∑
i=1

ϵ̄i(s
∗
i )

}
.

The equality is achieved when for any i ̸= j, z∗ /∈ Zi and
z∗ /∈ Zj are mutually exclusive. For the lower bound we
have

PN̄

{
1

N

N∑
i=1

ϵi(s
∗
i ) ≤ P

{
x ∈ H :

N⋃
i=1

{z∗ /∈ Zi}

}}

≥PN̄

{
N · 1

N

N∑
i=1

ϵi(s
∗
i ) ≤

N∑
i=1

P
{
x ∈ H : z∗ /∈ Zi

}}
.

The equality is achieved if for any i ̸= j, z∗ ̸= Zi ⇔ z ̸=
Zj and ϵi(s

∗
i ) = ϵj(s

∗
j ). The right-hand side of (A.11)

can be then lower-bounded by

PN̄

{
N · 1

N

N∑
i=1

ϵi(s
∗
i ) ≤

N∑
i=1

P
{
x ∈ H : z∗ /∈ Zi

}
⋂ N∑

i=1

P
{
x ∈ H : z∗ /∈ Zi

}
≤

N∑
i=1

ϵ̄i(s
∗
i )

}

≥ PN̄

{
N⋂
i=1

{
ϵi(s

∗
i ) ≤ P

{
x ∈ H : z∗ /∈ Zi

}
≤ ϵ̄i(s∗i )

}}

≥ 1−
N∑
i=1

PN̄
{
ϵ̄i(s

∗
i ) < P

{
x ∈ H : z∗ /∈ Zi

}
⋃

P
{
x ∈ H : z∗ /∈ Zi

}
< ϵi(s

∗
i )
}
. (A.12)

By [30, Theorem 1] we have that for any i = 1, . . . , N

PN̄
{
x ∈ H : ϵi(s

∗
i ) ≤ P

{
x ∈ H : z∗ /∈ Zi

}
≤ ϵ̄i(s∗i )

}
≥ 1− βi

⇒
N∑
i=1

PN̄
{
ϵ̄i(s

∗
i ) < P

{
x ∈ H : z∗ /∈ Zi

}

⋃
P
{
x ∈ H : z∗ /∈ Zi

}
< ϵi(s

∗
i )
}
<

N∑
i=1

βi. (A.13)

Since
ϵ(s∗)
N < ϵ(s∗) < ϵ̄(s∗), substituting (A.13) into

(A.11) with i = 1, . . . , N we obtain

PN̄

{
ϵ(s∗)

N
≤ P {x ∈ H : z∗ /∈ Z} ≤ ϵ̄(s∗)

}
≥ 1− β.

(A.14)
We then prove that z∗ is unique, and z∗ = 0. For
the case where all the CBF constraints are satis-
fied, i.e.

∑
k∈Ve

hke(uk(x
(r))) ≤ 0,∀e = 1, . . . , E,

r = 1, . . . , N̄ , we have that z∗ = 0 and ζ∗ = 0. For
the case where there exists violated CBF constraint,
i.e.

∑
i∈Ve

hie(ui(x
(r))) > 0, we have that z∗ie = 0 since

z ≤ 0, and ζ∗ie > 0 for i ∈ Ve. In summary, we always
have z∗ = 0 for any scenarios, thus (A.14) is equivalent
to (20). In addition, we directly obtain that ζ∗ie > 0
shows that

∑
i∈Ve

hie(ui(x
(r))) > z∗ie = 0. Thus, for

every agent, s∗i is the number of non-zero ζ∗ie, for e ∈ Ci.
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