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Continuous-time Data-driven Barrier Certificate Synthesis

Luke Rickard!, Alessandro Abate? and Kostas Margellos'

Abstract— We consider the problem of verifying safety for
continuous-time dynamical systems. Developing upon recent
advancements in data-driven verification, we use only a finite
number of sampled trajectories to learn a barrier certificate,
namely a function which verifies safety. We train a safety-
informed neural network to act as this certificate, with an
appropriately designed loss function to encompass the safety
conditions. In addition, we provide probabilistic generalisation
guarantees from discrete samples of continuous trajectories,
to unseen continuous ones. Numerical results demonstrate the
efficacy of our approach and contrast it with related results in
the literature.

I. INTRODUCTION

Ensuring the safety of continuous-time dynamical systems
is of critical importance in an increasingly autonomous
world [1], [2], [3]. It is often infeasible to model system
behaviour precisely, thus making direct use of system data
to verify behaviour is of interest [4], [5]. A technique for
verifying properties of dynamical systems involves discretis-
ing the state space [6], under approximation guarantees,
and verifying the resulting model. Alternatively, the use
of certificates [7], [8] allows one to directly analyse the
continuous-state system. These certificates map the system’s
states to real values, and exhibit certain properties that are
relevant for analysis: here, in particular, we construct safety
certificates for continuous-time systems, but extensions to the
more complex certificates in [3] are possible.

There are a number of techniques for synthesising such
certificates. In the case that an exact model is known, one
can use a polynomial function as a certificate to formulate a
convex sum-of-squares problem [9]. Recent work in this area
investigated the use of neural networks (which represent a
class of general function approximators) as certificates [1].

Obtaining a model of the system, however, is generally
a difficult task. It requires domain-specific knowledge and,
since parts of the system may often not be known exactly,
such a model will only constitute an approximation. To
alleviate these issues, we turn to model-free data-driven
techniques. One method for employing data in certificate
synthesis is through the use of state pairs (i.e. states, and
next-states), sampled from across the domain of interest.
Such techniques are investigated in [2] for deterministic
systems, and in [10] for stochastic systems. Both these
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works make use of the techniques in [11], [12] to bound the
distance between what is referred to as a robust program, and
its sample-based counterpart. As discussed in [12, Remark
3.9], such techniques exhibit an exponential growth in the
dimension of the sampling space (here the state space), and
also require access to the underlying probability distribution.

Alternatively, one can consider using entire trajectories

as samples, hence only requiring access to runs compatible
with the dynamics of the system. This is explored in [3]
for discrete-time systems. This work leverages the so-called
scenario approach [13], [14] and the notion of compression
[15], [16], and provides a constructive algorithm for the
general pick-to-learn framework [17], to provide a probably
approximately correct (PAC) bound on the correctness of
certificates for newly sampled discrete trajectories. How-
ever, these guarantees are no longer valid when it comes
to continuous-time systems. Here, we extend these devel-
opments to allow constructing a safety/barrier certificate
based on a finite number of discretised trajectories of the
continuous-time system; however, we provide guarantees on
the safety of a new unseen continuous-time trajectory. The
latter does not follow from the results in [3].

Our contributions can be summarised as follows:

o« We develop novel theoretical results that extend the
results of [3] (which was limited in scope to discrete-
time systems) to verify entire continuous trajectories,
using discretised approximations for computations;

o We complement the results in [2], following an alterna-
tive approach for data-driven certificate synthesis which,
however, does not scale exponentially with respect to
the dimension of the underlying state space;

o Our approach is entirely data-driven, avoiding the use of
satisfiability modulo theories (SMT) solvers, which are
computationally expensive and require a system model.

Notation. We use {{;} ) to denote a sequence indexed

by k € {0,1,...,K}. B |= v defines condition satisfaction,
i.e., it evaluates to true if the quantity B on the left satisfies
the condition 1) on the right. Using [~ represents the logical
inverse of this (i.e., condition dissatisfaction). By (V¢ €
E)B | ¢(§) we mean that some quantity B satisfies a
condition v which, in turn, depends on some parameter &, for
all £ € . We use §|p  to refer to a subsequence {&o, ..., &k}
of a sequence.

II. SAFETY AND BARRIER CERTIFICATES

We focus on barrier certificates as the tool to verify
safety; however, our techniques naturally extend to more
complex certificates, as in [3]. Consider a bounded state
space X C R"”, and a continuous-time dynamical system
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whose evolution starts at an initial state £(0) € X, where
X7 € X denotes the set of possible initial conditions.
From an initial state, we unravel a finite trajectory, i.e.,
a continuous sequence of states { = {x(t)};e[0,r), Where
T € R and z(t): [0,7] — R™, by following the dynamics

(t) = f(x(t))- (1)

We only require f: X — R"™ to be Lipschitz continuous,
thus allowing for existence and uniqueness of solutions. The
set of all possible trajectories = C X; x X (071 is then the
set of all trajectories starting from the initial set X7.

In Section we discuss how to use a finite set of
trajectories to build safety certificates, and accompany them
with generalisation guarantees with respect to their validity
for a new, unseen trajectory. We will also consider time-
discretised versions of continuous-time trajectories. To this
end, define the time-discretised trajectory

£ = {2(t) heqotr,tar} € ECXrx XM, 2)

for M sampled time steps t1,...,t.

Property 1 (Safety): Consider (I)), and let X;, Xy C X
with X; N Xy = @ denote an initial and an unsafe set,
respectively. We say that ¢ encodes a safety property for a
trajectory £ € Z if,

6() =Vt € 0, 7], 2(t) ¢ Xu.
By the definition of ¢, it follows that verifying that a tra-
jectory exhibits the safety property is equivalent to verifying
that a trajectory emanating from the initial set avoids the
unsafe set for all time instances, until the horizon T' < oco.

We now define the relevant criteria for a certificate B to
verify a safety property. Assume that B is continuous, so
that when considering the supremum/infimum of B over X
(already assumed to be bounded) or over some of its subsets,
this is well-defined. Consider:

B(z) <0,Vz € Xy, 3)
B(z) > 0,Vz € Xy, 4)
dB 1
0 <~ inf B(z)— sup B ) 5
7| <7 Ba - sw B@).
where 28 = %—f f(x), and hence recognise that this depends

on the system dynamics f(z).

Assumption 1 (Lipschitz Derivative): Assume that (fT]f is
Lipschitz continuous.
Note that even if inf,cx,, B(x) —sup,¢x, B(z) > 0, ie., if
the last condition encodes an increase of B along the system
trajectories, the system still avoids entering the unsafe set.
This is established in the proof of Proposition [T] below.

Denote by 1* the conjunction of (3) and (@), and by 1> (¢)
the property in (3). Notice that the latter depends on £ as it
relates to the derivative along a trajectory. We define a barrier
certificate as follows.

Definition 1 (Property Verification & Certificates):
Given a safety property ¢(¢), and a function B: R" — R,
let ¢* and 1 (£) be conditions such that, if

3B: B A (VW €E)B E Y2 (§) = ¢(¢), V¢ € &,

then the property ¢ is verified for all £ € =. We then say
that such a function B is a barrier certificate.

In words, the implication of Definition E]is that if a barrier
certificate B satisfies the conditions in 1)°, as well as the
conditions in 2 (&), for all £ € Z, then the safety property
@(€) is satisfied for all trajectories £ € E.

Proposition 1 (Safety/Barrier Certificate): A
B: R™ — R is a safety/barrier certificate if

B = ¢° A (V€ € E)B = 95(¢). (0)
Proof: Tt suffices to show that satisfaction of (5)) implies
safety. Integrating (3) up to ¢ < T, we obtain

function

B(z(t)) < B(x(0)) + %( inf B(z)— sup B(:c))

z€Xy TEXT
T—t t
sup B(z) + = inf B(z
- IG)I()I ( ) T zeXy ( )
t
< — inf B < inf B(x). 7
< 7,5, 5@ < B 5@ @
where the second inequality is since B(z(0)) <

sup,cx, B(z), as £(0) € X;. The third inequality is since
sup,ex, B(x) < 0 due to (@), and the last one is since
t <T. We thus have
B(z(t)) < inf B(x), t€[0,1], (8)
rzeXy
i.e. the maximum value along a trajectory is less than the
infimum over the unsafe region and hence z(t) ¢ Xy, t =
[0,T] (notice that 2:(0) ¢ Xy holds since X; N Xy = ).
The latter implies that all trajectories that start in X; avoid
entering the unsafe set Xy, thus concluding the proof. M
To synthesise a certificate, we require complete knowledge
of the behaviour f of the dynamical system, to allow us to
evaluate the derivative %. This may be impractical, and we
therefore use data-driven techniques to learn a certificate.

III. DATA-DRIVEN CERTIFICATE SYNTHESIS

For our analysis, we will treat the initial state as random,
distributed according to P (an appropriate probability space
is defined; we gloss the technical details here in the interest
of space). The support of P will be the set of admissible
initial states (i.e. the initial set X7).

We consider N independent and identically distributed
(i.i.d.) initial conditions, sampled according to P, namely
{24(0)}Y; ~ PV. Initializing the dynamics from each of
these initial states, we unravel a set of continuous-time
trajectories {£'}Y |, also referred to as a multi-sample. Since
there is no stochasticity in the dynamics, we can equivalently
say that trajectories (generated from the random initial con-
ditions) are distributed according to the same probabilistic
law; hence, with a slight abuse of notation, we write & ~
P. We impose the following assumption, standard in the
scenario approach [16]. Intuitively, this assumption rules out
degenerate problem instances, where we could select the
same sample multiple times with nonzero probability.

Assumption 2 (Non-concentrated Mass): Assume
P{¢} =0, for any £ € =.

that



Since we are now dealing with a sample-based problem,
we construct probabilistic certificates and hence probabilistic
guarantees on the satisfaction of a given property.

A. The Discrete-Time Case

Designing safety certificates that enjoy probabilistic guar-
antees when it comes to new unseen trajectories has been re-
cently considered in [3], however, for discrete-time systems.
We review the main developments in this direction, extending
these to continuous-time ones. Consider a mapping .4 such
that By = A({¢'}Y,) as an algorithm that, based on N
samples, returns a certificate By. We call a compression
set of such an algorithm any subset of the input multi-
sample that returns the same certificate. That is, a sample
subset Cy C {¢'}Y, is a compression set if A(Cy) =

A{EIN ). In Algorlthm we provide a specific synthesis
procedure through which A (and hence the certificate By)
can be constructed. This algorithm is extended from [3] to
continuous-time systems and is discussed in the next section.

Theorem 1 (Probabilistic Guarantees [3]): Consider As-
sumption and let By and Cxy be the certificate and
compression set, respectively, returned by Algorithm (I} Fix
B € (0,1), and for k < N, let ¢(k, 3, N) be the (unique)
solution to the polynomial equation in the interval [k/N, 1]

ﬁNfl@l_ .
N0

c s W gevsy
6N N ’
m=N+1 (k)

while for k = N let (N, 3, N) = 1. We then have that
PN{{&}Y, e EN (10)
P{ € =: By [y AvR(E)} <e(Cn,B,N)} >1-5,

where C'y = |Cy| is the cardinality of the compression set.

Remark 1: Theorem [I] is not applicable to continuous-
time trajectories. In particular, the inner probability refers to
the probability of a new time-discretised trajectory £ being
(un)safe. As a result, states along the state trajectory & of the
continuous-time system under study may violate the safety
property (chiefly, between sampled states x(¢;) and x(t;+1)).

B. Extension to the Continuous-Time Case

In this section we show how to extend Theorem [I] to offer
guarantees on newly sampled continuous-time trajectories,
even though, to allow for practical applications, the barrier
certificate we will construct will still be based only on time-
discretised ones. To achieve this, we replace (B) by a dis-
cretised version based on a first-order Euler approximation.
Moreover, we tighten it to enforce a increase upper bound
condition between sample times. Denote this condition (over
discretised trajectories) as wdA(f), defined by the inequality

. BGi8) ~ Blalti) "
k=1,....M te —te—1
L t B B d
<., B6) ~ swp B@) ~d

where d € R is a tightening parameter. Define by L£p and
Ly the Lipschitz constants of the certificate derivative 8183 o
and of the dynamics f(z) respectively, by Mg, M ; bounds
on their norms, i.e. sup,, || 839* || < Mp and sup, || f(2)| <
My, and for t = maxk_l’m,M(tk — tg—_1), define d as

d:f./\/lf (MBEf—FMfﬁB).

12)

Theorem 2 (Continuous-Time Guarantees): Consider the
conditions of Theorem [T} Assumption [T]and (I2). Then,

PY{{g'}, e =Y (13)
P{¢ € Z: By £ ¢° A2 (€)} <e(Cn, B, N)} > 1- 8.
The proof of this is achieved by bounding the difference

between the safety of the continuous-time trajectories and
their time-discretised approximations; see Appendix.

IV. CERTIFICATE SYNTHESIS

To learn a barrier certificate from samples, we consider a
neural network, a well-studied class of function approxima-
tors that generalise well to a given task, although any other
function approximation mechanism could be chosen instead.
We consider a network with Nyayers layers, and Npeurons
neurons per layer. Denote all tunable neural network param-
eters by a vector § € RNaversVacurons  We then have that our
certificate By depends on 6. For the results of this section,

we write By and drop the dependency on IV to ease notation.

A. Certificate Synthesis Algorithm

We seek to minimise a loss function that encodes the
barrier certificate conditions, with respect to the neural
network parameters. For £eZand parameter vector 6, let

L(0,€) =12(0,8) +1°(9), (14)

represent an associated loss function comprised of sample-
dependent loss 2, and sample-independent loss [°

1°() := |X\ Z max{0, By(x)}

xeXr
max{0,0 — By(z)}.
P
. 1
A L e
17(0,6) = T(zlenggU By () sup Ba(l‘))
4 max Be(x(tk))*Be(x(tk—l))’
k=1,...,.M te —te—1

To instantiate these functions we consider a discrete set of
Ngtates grid-points on each sub-domain: A7 is the set of
points in the initial set, and A% is the set of points in
the unsafe set. These points are generated densely enough
across the domain of interest, and hence offer an accurate
approximation. Since they do not require access to the
dynamics, we consider them separately from {g’ N,

To see the choice of the loss functions, consider the first
summation in [*(6), and notice that if By(z) < 0 then
max{0, Byp(x)} = 0, i.e., no loss is incurred, implying satis-
faction of (@). Similar reasoning relates the other summation
and expression of 2(6,€) to @) and (TT), respectively.



Algorithm 1 Certificate Synthesis and Compression Set Computation

1: function A(6, D)

2: Set k + 1 > Initialise iteration index
3: Set C +— @ > Initialise compression set
4: Fix L1 < Ly with |Ly — Lo| > 7 > 7 is any fixed tolerance
5: while /*(6) > 0 do > While sample-independent state loss is non-zero
6: g < Vol*(0) > Gradient of loss function
7: 0+ 0—ag > Step in the direction of sample-independent gradient
8: while |y, —~Lk,1| > 7 do ~ > Iterate until tolerance is met
9: M+ {£eD: L6, > maxgce L(6,¢)} > Find maximal samples with loss greater than compression set loss
10: T — {VoL(6,€) Fe M > Subgradients of loss function for £ € M
11: o € arg maxgce L(9, 5) > Find a sample with maximum loss from C
12: Ge < VoL(0,&c) > Approximate subgradient of loss function for 5 =&
13: if 3G € G (,9c) <OAG#0 then o If there is a misaligned subgradient (take the maximum if multiple)
14: 0+ 0—ag > Step in the direction of misaligned subgradient
15: C+Ccuie} > Update compression set with sample corresponding to g
16: else

17: 00— age > Step in the direction of approximate subgradient
18: Lj, < min {Lk,l, maxgcp, L8, é)} > Update “running” loss value
19: k+—k+1 > Update iteration index
20: return 6,C

The following mild assumption ensures a minimiser of the
loss functions exists and hence our algorithm terminates.

Assumption 3 (Minimisers’ Existence): For any {3,
and any nonempty D C {£}Y,, the set of minimisers of
maxg.p, L(0,€), is nonempty.

Algorithm [I] provides an inexact subgradient methodology
to minimise the loss function, and to iteratively construct a
compression set C (initially empty; see step 3). We explain
the main steps of this algorithm with reference to Figure
[[} where each sample gives rise to a concave triangular
constraint. After an arbitrary initialization, we follow the
subgradient associated with the worst case sample and add
it to the compression set C (step 14-15, point M7). When
iterates get to point M, the subgradient step becomes
inexact, as for the same parameter there exists a sample
resulting in a higher loss (see asterisk). Such a sample is
in M, step 9 of Algorithm [I] However, the algorithm does
not “jump”, as the condition in step 13 of the algorithm
is not yet satisfied. Graphically, this is since the M, and
the red asterisk are on a side of the respective constraint
with the same slope. As such the algorithm performs inexact
subgradient descent steps up to point Ms; this is the first
instance where the condition in step 13 is satisfied (there
exists another constraint with opposite slope) and hence the
algorithm “Jumps” to a point with higher loss and subgradient
of opposite sign. This procedure is then repeated as shown
in the figure, with the red line indicating the iterates’ path.
The “jumps” serve as an exploration step to investigate the
non-convex landscape, while their number corresponds to
the cardinality of the returned compression set. This can
be thought of as a constructive procedure for the general

framework presented in [17] to construct compression sets.

The computational complexity of one iteration of the main
loop is O((M + Ntates) N - Nlayers Nisurons)- We can upper
bound the number of iterations by Ze=L ", where L* is the
value of the loss associated with one of the minimisers. To
terminate our algorithm we require knowledge of d (which

depends on 6*). To resolve this, we propose two approaches.

1) At every iteration j calculate d; using the current best
parameters 0;, terminate if max; [L(Hj, g’)} < —dj.

2) Choose a parameter set, and consider the supremum
across that set to determine an upper bound on
Lp, Mp. Use these upper bounds to calculate d.

The second option is likely to be conservative but removes
the need for calculating Lipschitz constants in the loop, hence
is computationally more efficient. To determine Lipschitz
constants for neural networks we refer to [18], [19].

B. Sample Discarding and Compression Computation

Due to the tightening introduced, to minimise the loss
function, we would like its value to be lower than or equal
to —d. However, in some cases, the parameter returned by
Algorithm |1| may result in a loss value greater than —d, thus
preventing us from verifying safety. To ensure the loss is
below that threshold, we employ a sampling-and-discarding
procedure [20], [21], and introduce Algorithm E] as an outer
loop around Algorithm [I] Algorithm [2] iterates as long the
desired loss value is not met (step 4), and progressively
discards samples (step 7). The samples that are discarded
are the ones identified as compression by Algorithm [I| (step
6), as removing these is bound to improve the solution.
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Fig. 1: Graphical illustration of Algorithm

Algorithm 2 Compression Set Update with Discarding

Fix {{'}Y,

Set C +— @ > Initialise compression set
Set D« {&1}N, > Initialise “running” samples
while (maerDlA(H,é) > —d)\/(1*(6) > 0) do

A A ol S s

0,C < A(0,D) > Call Algorithm [1]

C+CcucC_ > Update C

D+ D\C > Discard C from D
return 6, C

The samples that are discarded need to be added to the
compression set (step 6); intuitively this is the case as if we
repeat the procedure using only the compression samples we
need to follow the same solution path. A direct byproduct of
Algorithms [T] and [2] is that they calculate a compression set,
whose cardinality C'y is in turn used in Theorem [2]to provide
the desired probabilistic guarantees. The cardinality of that
set corresponds to the number of “jumps” in Algorithm
plus the number of discarded samples in Algorithm 2] This
cardinality is not necessarily greater for higher dimensional
problems, but is rather case dependent and depends on the
complexity of the problem. For example, a problem where
some trajectories approach or even enter the unsafe set
presents a more challenging synthesis problem than one
where trajectories all move in the opposite direction to the
unsafe set, thus we expect the former to have a larger
compression set even if the problem is smaller in dimension.

V. NUMERICAL RESULTS

We consider constructing a safety certificate for the nonlin-
ear, two-dimensional jet engine model as considered in [2],

#1(6) = —a(t) — 5a3(0) — 320, a(0) =01 (0), (19)

The codebase is available at https://github.com/lukearcus/
fossil scenario
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Fig. 2: Phase plane plot, ini-
tial and unsafe set for (13).
The zero-level set for our
certificate is dashed; level
sets that bound the initial and
unsafe sets in [2] are dotted.

Fig. 3: Surface plot of the
safety/barrier certificate, gen-
erated by our techniques, for
the system of Figure 2|

using a time horizon 7' = 5. Figure [2] provides a graphical
representation of the dynamics, subdomains under study, the
0-level set produced by our certificate, and the level sets
calculated by the methods in [2] (one lower bounding the
unsafe set, the other upper bounding the initial set). We
used 5 independent repetitions (each with different multi-
samples) of 1,000 sampled trajectories and 367 seconds
of computation time (standard deviation 139s), to obtain
€ = 0.01492 (standard deviation 0.00140) with confidence
0.99. The methodology of [2] required 257149 state pair
samples and 5123 seconds (standard deviation 449s) of
computation time to compute a barrier certificate with the
same confidence (however, this holds deterministically). We
estimate the Lipschitz constants using the methodology in
[22], noting that convergence is guaranteed asymptotically.
Figure [3] contains a 3D plot of the certificate.

Beyond these numerical results, we briefly discuss the
theoretical differences between our approach and [2]. The
results in [2] offer a guarantee that, with a certain confidence,
the safety property is always satisfied, in contrast to Theorem
[2) where we provide such guarantees in probability (up to
a quantifiable risk level ¢). However, these “always” guar-
antees, although very useful, come with some challenges.
Firstly, they are not applicable when part of the initial set is
unsafe, whereas we can still bound the probability of a new
trajectory being safe even if some of the sampled trajectories
were unsafe. Second, they implicitly require knowledge of
the underlying probability distribution to instantiate their
confidence bound and scale exponentially with respect to the
state space dimension.

Related to this last point, we performed a comparison on
the following four-dimensional system taken from [1].

() = o (6) + 371(15)5332(75) B Jia(t)2334(t)7

Za(t) = cos(xy(t)), (16)
z3(t) = 0.01y/]z1(t)],

i4(t) = —x1(t) — 22(t)? + sin(z4(t)),

using T" = 4. We applied also the approach of [2] which,
with 10! samples, returned a confidence 10~3°, an uninfor-
mative result as it is close to zero. With only 100 samples
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our techniques obtain a risk level ¢ = 0.21450 (standard
deviation 0.00910), confidence 1 — 10~° (close to one).

VI. CONCLUSION

We have proposed a method for synthesis of neural-
network certificates for continuous-time dynamical systems,
based only on a finite number of trajectories from a system.
Our numerical experiments demonstrate the efficacy of our
methods on a number of examples, involving comparison
with related methodologies in the literature. Current work
concentrates towards extending to controlled systems, thus
co-designing a controller and a certificate at the same time.

APPENDIX
I. PROOF OF THEOREM[2|

We aim at finding a bound on the discretisation gap
L(0,&)— L(0,¢) so that, for sufficiently small loss evaluated
on the time-discretised approximations L(6,¢), we also
achieve a negative loss on the continuous trajectories L(6, £).

L(eag) - L(evg) = lA(97£) - ZA(evg)
B(z(tk)) — Ba(tk-1))
=1,...M t — th—1

a7

Replace the first maximisation with one between time in-
stances, and exchange the order of the max operators,
dB

i 18
k:I{l,?j?fM teﬁf?fftk] dt (18)

z(t)
B — -
Bt = Bla(tir))
k=1,....M t — th—1
dB B — _
ax max 1Bl _ Bla(tk)) — B(a(te-1))
k=1,....M | t€[tp_1,tx] dt (1) tr — tp_1
(19)
We can now replace the difference term with an integral,
tr
ftkk,l MAXye(t 0] Gr w(t) o (1) dr
max
k=1,....M te — th—1

Letting £ = MpLs+ ML (refer to (I2) for the definition
of the various constants), the previous derivations lead to

L(6,€) — L(8,€)

t,
Jow, Nl2(7) = maxyepy, 0, #/|€ dr

ma.
T k=1,..,.M tr — -1
th—1
Mgty — ti—1) dr
< max 2ft’° AID) ) (20)
=1,...M tr — th—1
th—1 B
= maxM£ My dr =tEM;y. 2n
=1,..,, ty

where the second inequality is since sup, ||f(z)| < My,
and the last one since ¢ = maxyp—1... a(tx — tr—1).

This results then to a discretisation gap as in (I2)). By
Theorem [T} and noticing that violating the conditions with

¥4 in place of 12, is equivalent to L(6*, &) > —d, we have

PV (&Y PE: L(6*,) > —d} <e(Cn B N) | 2 1= B,

Since L(0*,€) < L(0*,€) + d, this then implies that
PV {{€}L,: P{&: L(8.6) > 0} <e(Cn. BN | 215,

thus concluding the proof. |
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