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Probabilistic Stabilizability Certificates for a
Class of Black-Box Linear Systems
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Abstract—We provide out-of-sample certificates on the
controlled invariance property of a given set with respect
to a class of black-box linear systems generated by a
possibly inexact quantification of some parameters in the
state-space matrices. By exploiting a set of realizations of
those undetermined parameters, verifying the controlled
invariance property of the given set amounts to a lin-
ear program, whose feasibility allows us to establish an
a-posteriori probabilistic certificate on the controlled invari-
ance property of such a set with respect to the unknown
linear time-invariant dynamics. We apply this framework to
the control of a networked system with unknown weighted
graph.

Index Terms—Randomized algorithms, statistical
learning, linear systems.

I. INTRODUCTION

GUARANTEEING the existence of a feedback control
law capable of enforcing state constraints is essen-

tial for many control systems. A well-established technique
in systems-and-control requires one to verify the controlled
invariance property of a certain set, thus certifying the exis-
tence of a controller that does not allow system trajecto-
ries, initialized within the set, to escape from that set (see,
e.g., [1], [2]).

In contrast with traditional model-based approaches, data-
driven and learning techniques for control invariance and
stabilizability problems have recently been attracting signifi-
cant attention [3]–[5]. Among them, a certain line of research
leverages randomized methods for (controlled) invariance set
estimation and set-membership verification [6]–[14].

Specifically, a data-driven algorithm to approximate the
minimal robust control invariant set w.r.t. an uncertain system,
albeit without invariance guarantees for unseen dynamics,
was proposed in [6]. In [7], the Koopman operator and
the dynamic mode decomposition were used to reconstruct
invariant sets for nonlinear systems by relying on a few
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data snapshots only. Following the same theme, data-driven
methods to compute invariant sets with probabilistic guaran-
tees for discrete-time (DT) black-box systems were presented
in [8], [9]. By relying on partial knowledge of the system
model, [10] proposed a procedure to compute probabilistic
reachable sets for linear systems affected by stochastic distur-
bances, while the concept of stochastic invariance for control
systems through probabilistic controlled invariant sets was
introduced and thoroughly investigated in [11]. Randomized
approaches to estimate chance-constrained sets with proba-
bilistic guarantees, frequently encountered in control, were
discussed in [12], [13]. Finally, a scenario-based set invari-
ance verification approach for black-box systems was proposed
in [14], where the observation of system trajectory snapshots
allowed to compute almost-invariant sets enjoying probabilis-
tic invariance certificates.

Similarly to [14], we investigate a scenario-based approach
for the verification of the controlled invariance property of a
given set. Unlike the aforementioned literature, we consider
a DT linear time-invariant (LTI) system whose dynamics,
described by the state-space matrices (Ā, B̄), is unknown,
though belonging to a certain family {(A(δ),B(δ))δ∈�} due to
a possibly inexact quantification of some parameters, encoded
by a vector δ ∈ � (Section III). By exploiting available
realizations of δ, we propose a data-based affine policy to
sample the space of feasible control inputs at the vertices
of the given set whose controlled invariance property is to
be verified. We are then able to translate the control invari-
ance property verification of the given set with a prescribed
affine policy into a linear program (LP) (Section IV). The fea-
sibility of such an LP, along with known results in scenario
theory [15], [16], typically characterizing decision-making
problems [14], [17]–[19], allow us to establish an a-posteriori
probabilistic bound on the controlled invariance property of a
given set w.r.t. any LTI dynamics realized by unseen scenar-
ios of δ, including the nominal one (Section V). We illustrate
our approach on a networked, multi-agent system with edge
weights in the underlying graph not deterministically known
(Sections II and VI).

II. MOTIVATING EXAMPLE: NETWORKED MULTI-AGENT

SYSTEM WITH UNKNOWN WEIGHTED GRAPH

To motivate the control problem addressed throughout this
letter, we consider a static network of n entities that exchange
information locally according to a connected and undirected
graph G := (N , E,W) with known topology. The set N :=
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{1, . . . , n} indexes the agents with scalar variable xi ∈ R,
E ⊆ {(i, j) ∈ N 2 | i �= j} denotes the information flow
links, while W ⊆ R

|E | the possible weights on the edges.
We consider an instance where the agents follow a weighted
agreement protocol that is also influenced by constrained
external inputs u ∈ U ⊆ R

m injected at m specific nodes.
We can therefore split the set N = NF ∪ NI into float-
ing (NF , nF := |NF|) and input nodes (NI , m := |NI |).
The incidence matrix D ∈ R

n×|E | associated to G can be
partitioned as D = col(DF,DI), with DF ∈ R

nF×|E | and
DI ∈ R

m×|E |, thus leading to the following (possibly con-
strained) DT LTI dynamics characterizing the floating node
states xF := col((xi)i∈NF ) ∈ X F [20]

x+
F = ĀFxF + B̄Fu, (1)

where ĀF := AF(w̄) = InF − DFW̄D�
F , B̄F := BF(w̄) =

−DFW̄D�
I , u := col((xi)i∈NI ), W̄ := diag(w̄) ∈ R

|E |×|E |,
and w̄ ∈ W is the vector of nominal weights associated
with the links. However, especially when arising from phys-
ical modelling, such an w̄ is not a-priori accessible, and
it is typically hard to quantify exactly. Therefore, we may
have available either a rough estimate of the weights on
the links, or some measurements [21]–[24] in the form of
scenarios {w(1), . . . ,w(K)}, where each w(j) ∈ W , j =
1, . . . ,K, and hence a finite family of state-space matrices
{(AF(w(j)),BF(w(j)))Kj=1} ⊆ {(AF(w),BF(w))w∈W }. However,
particularly when the set W allows for nonpositive weights,
each observed scenario gives rise to an LTI weighted consen-
sus protocols on a network as in (1), whose state evolution
can be very rich, including steady-state trajectories that are
synchronized, clustered, or even unstable [21], [23].

Therefore, establishing whether the unknown dynamics
in (1) is stabilizable in some given set of “safe” states SF ⊆
X F by means of suitable control inputs, i.e., if the closed-
loop trajectories of (1) satisfy xF(t) ∈ SF , t ∈ N0 := N ∪ {0},
becomes essential. In this letter, we adopt a probabilistic treat-
ment to answer the question: is SF controlled invariant if w̄
(and hence (ĀF, B̄F)) is not available a-priori, and we only
have access to scenarios {w(1), . . . ,w(K)}, giving rise to a set
of system matrices? Specifically, we distinguish between two
phases in constructing our controller:

i) The synthesis (or offline) step: only scenarios are avail-
able, but we have significant capacity for computation;

ii) The runtime (or online) step: we observe w̄ and then apply
our controller with invariance certificates for SF .

Note that, making available (ĀF, B̄F) at runtime does not allow
for standard methods requiring complicated calculations for
computing invariant controllers online. Instead, we work with
the best available information that we have a-priori, so that we
keep all computationally intensive design efforts offline, and
therefore requiring a probabilistic approach to make statements
about the quality of the controller we produce.

III. PROBLEM FORMULATION

We will consider general DT LTI systems in the form

x+ = Āx + B̄u, (2)

where x ∈ X ⊆ R
n and u ∈ U ⊆ R

m are the constrained
vectors of measurable state variables and control inputs, with

X be a C-set and U a C-polytope [2, Ch. 3]. The system
matrices Ā ∈ R

n×n and B̄ ∈ R
n×m are assumed to be a-priori

unknown, though belonging to a (possibly infinite) family of
matrices parametrized by a vector δ ∈ � ⊆ R

�, i.e.,

(Ā, B̄) ∈ {(A(δ),B(δ))δ∈�}, (3)

with A : R
� → R

n×n and B : R
� → R

n×m. In the rest of this
letter, we sometimes use x(t), t ∈ N0, as opposed to x, making
the time dependence explicit whenever required.

Remark 1: With the inclusion in (3) we do not assume (2)
to be uncertain in the sense that it follows the DT dynamics
x(t + 1) = A(δ(t))x(t) + B(δ(t))u(t), with a possibly time-
varying δ ∈ �. Instead, with (3) we mean that the system
in (2) evolves according to DT LTI dynamics, which however
is unknown at the control synthesis step due to a possibly
inexact quantification of some parameters, encoded by δ.

By following [8], [9], [14], we thus refer to (2) as a black-
box DT LTI system since the pair (Ā, B̄), which can be
associated with a realization δ̄ ∈ �, is not a-priori accessible.

A. Stabilizability of Discrete-Time LTI Systems

We recall some key notions in the deterministic case where
the state-space matrices (Ā, B̄), as well as U , are available.

Definition 1 (Controlled Invariance): A set S ⊆ X is a
controlled invariant w.r.t. (2) if there exists a C1-class feedback
control law κ : R

n → R
m, κ(x(t)) ∈ U , t ∈ N0, such that,

for any x(0) ∈ S, the trajectory originating from (2) with
u(t) = κ(x(t)) satisfies x(t) ∈ S, for all t ∈ N.

Next, we restate a fundamental result characterizing the con-
trolled invariance of a C-polytope S w.r.t. DT LTI systems as
in (2), which will be key in the rest of this letter.

Lemma 1 [2, Corollary 4.46]: A C-polytope S ⊆ X is
controlled invariant for the DT LTI system in (2) if and only
if, for all xi ∈ vert(S) (the set of vertices of S), there exists a
feasible control input u ∈ U such that Āxi + B̄u ∈ S.

A commonly used feedback control law guaranteeing the
stabilizability of DT LTI systems inside S is the piecewise
vertex control law [25], [26]. Specifically, since any state x ∈ S
can be decomposed as x = ∑

i∈V γixi for the N vertices {xi}i∈V
of S, V := {1, . . . ,N}, with 1�

Nγ ≤ 1, γi ≥ 0, i ∈ V , such a
control law amounts to [26, Th. 2]

u(t) =
∑

i∈V
γ �i (t)ui, (4)

where γ �(t) ∈ argminγ∈[0,1]N {1�
Nγ | ∑

i∈V γixi = x(t)}
depends on the current state x(t), while {ui}i∈V are arbitrary
admissible control values at the vertices of S, {xi}i∈V .

B. Stabilizability of LTI Systems With Unknown
Parameters

Since the system in (2) is assumed to be a black-box, we can
not directly apply the control law in (4) to stabilize it, albeit
the control values at the vertices u := col((ui)i∈V ) ∈ R

mN are
arbitrary in U N . Then, let some C-polytope S ⊆ X be given,
e.g., in the form of a set of “safe” states for (2). As discussed
in Section II, we wish to provide out-of-sample certificates
on the controlled invariance of S w.r.t. the black-box system
in (2) by exploiting observed realizations of the parameter
δ characterizing the matrix inclusion in (3), which may be
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available either from historical data (system’s signatures), or
generated by some probabilistic model.

Formally, we assume the parameter δ to live in some prob-
ability space (�,D,P), where � ⊆ R

� is the support set of δ,
D is the associated σ -algebra and P is a (possibly unknown)
probability measure over D. We consider δK := {δ(j)}j∈K =
{δ(1), . . . , δ(K)} ∈ �K , K := {1, . . . ,K}, as a finite collec-
tion of K ∈ N independent and identically distributed (i.i.d.)
realizations of δ (also called a K-multisample). We note that
any realization δ ∈ � is associated with pair of matrices
(A(δ),B(δ)), and we define the set of admissible control val-
ues at the vertices {xi}i∈V of S allowed by such a realization
δ ∈ � as

Uδ := {u ∈ U N | A(δ)xi + B(δ)ui ∈ S, ∀i ∈ V}. (5)

According to Lemma 1, as long as Uδ �= ∅, the set S is a con-
trolled invariant set for the LTI system x+ = A(δ)x + B(δ)u,
which is stabilizable by means of the control law (4) with
admissible control values contained in Uδ . Thus, aiming to
establish controlled invariance certificates to previously unseen
realizations of δ, we introduce the definition of violation
probability for a generic vector of input values u.

Definition 2 (Violation Probability): The violation proba-
bility associated with the input values u ∈ U N is given by

V(u) := P{δ ∈ � | u /∈ Uδ}. (6)

According to Lemma 1, V : U N → [0, 1] measures the
violation of the controlled invariance of the set S associated
with input values u w.r.t. an unseen pair (A(δ),B(δ)). In other
words, V(u) measures the realizations δ ∈ � such that, when
these are drawn, u can not guarantee the controlled invariance
of S w.r.t. the system induced by (A(δ),B(δ)).

IV. DEALING WITH THE UNCERTAINTY

Note that, given any K-multisample δK , solving an LP
allows us to compute a vector of input values at the vertices
{xi}i∈V , u�K ∈ UδK := ∩j∈K Uδ(j) , such that u�K ∈ U N , and

∀j ∈ K : A(δ(j))xi + B(δ(j))u�i,K ∈ S, ∀i ∈ V. (7)

We therefore wish to establish an a-posteriori bound on the
violation probability V(u�K), to claim with high confidence that
the probability u�K guarantees the controlled invariance of S
w.r.t. the family {(A(δ(j)),B(δ(j)))j∈K}∪{(A(δ),B(δ))} is above
a certain value. By Lemma 1, this is equivalent to concluding
that S is a controlled invariant set for the system in (2), with
the same high confidence.

A. General Control Policies

Note the conservatism inherent in (7). For any vertex i ∈ V ,
one would consider exactly the same admissible input value,
u�i,K , for all the observed K samples. To alleviate this conser-
vativism, we introduce a policy for each vertex, namely some
(possibly multi-valued) functional πi : � → R

m, which maps
any realization δ ∈ � to some input value in R

m. In fact,

according to Lemma 1, on each vertex it suffices to find an
admissible control value for every observed scenario δ(j), i.e.,
for every pair of matrices (A(δ(j)),B(δ(j))), j ∈ K. Given a
generic sample δ ∈ �, let 
δ := {π : � → R

mN | πi(δ) ∈
U ,A(δ)xi + B(δ)πi(δ) ∈ S, for all i ∈ V} be the set of map-
pings π(·) := col((πi(·))i∈V ) returning admissible inputs at
the vertices of S for the pair (A(δ),B(δ)). Note in addition
that 
δ �= ∅ guarantees that S is controlled invariant for the
DT LTI system described by the specific matrices (A(δ),B(δ))
associated with the scenario δ. However, looking for an ele-
ment in 
δ amounts to an infinite dimensional problem, as
such a set contains all possible mappings π(·).

B. Affine Control Policies

To make the problem computationally tractable, we focus on
a family of mappings with finite parametrization, i.e., the affine
ones. Thus, for each vertex i ∈ V , we define πi(δ) := Ciδ+di,
with Ci ∈ R

m×� and di ∈ R
m, which leads to π(δ) := Cδ+ d,

where C := col((Ci)i∈V ) and d := col((di)i∈V ) belong to
M := {(C, d) | Ci ∈ R

m×�, di ∈ R
m}. Then, the set of admis-

sible affine policies for a given δ ∈ � is Lδ := {(C, d) ∈ M |
Ciδ+di ∈ U ,A(δ)xi +B(δ)(Ciδ+di) ∈ S, ∀i ∈ V} ⊂ 
δ . The
fact that Lδ �= ∅ ensures that S is a controlled invariant for the
system induced by (A(δ),B(δ)). Given K observations δK ∈
�K , an optimal affine policy (C�K, d�K) ∈ LδK := ∩j∈K Lδ(j)
satisfies, for all j ∈ K,C�Kδ

(j) + d�K ∈ U N , and

A(δ(j))xi + B(δ(j))(C�i,Kδ
(j) + d�i,K) ∈ S,∀i ∈ V. (8)

For any vertex i ∈ V we now obtain a different admissible
input value depending on the sample δ(j) at hand, in contrast
with the conservative approach in (7). Moreover, unlike the
infinite dimensional problem introduced in Section IV-A, com-
puting a pair (C�K, d�K) amounts to finding a feasible solution to
an LP. The C-polytopes S and U are S := {x ∈ R

n | Fx ≤ 1p}
and U := {u ∈ R

m | Hu ≤ 1q}, where F ∈ R
p×n and

H ∈ R
q×m have full column rank [2, Sec. 3.3]. Manipulating

the inclusions in (8) with x := col((xi)i∈V ) leads directly to

LδK = ∩
j∈K

argmin
C,d

{0 | G(δ(j))(Cδ(j) + d) ≤ l(δ(j))}, (9)

where G(δ(j)) := col(H ⊗ IN,FB(δ(j)) ⊗ IN) and l(δ(j)) :=
col(1qN, 1pN − (FA(δ(j))⊗ IN)x). Via standard manipulations,
LδK in (9) can be rewritten compactly as in (10), shown
at the bottom of the page. This latter amounts to an LP,
thus efficiently solvable in polynomial time, with mN(� + 1)
free variables and (q + p)NK linear constraints character-
ized by known matrices F, H and the sample pair matrices
{(A(δ(j)),B(δ(j)))j∈K}.

V. A-POSTERIORI PROBABILISTIC CERTIFICATES OF

CONTROLLED INVARIANCE

A. Main Result

In case LδK �= ∅, an optimal pair (C�K, d�K) may not be
unique since (10) is a feasibility problem. We henceforward

LδK = argmin
C,d

{
0

∣
∣
∣ diag((G(δ(j)))j∈K)((C ⊗ IK)col((δ(j))j∈K)+ d ⊗ 1K) ≤ col((l(δ(j)))j∈K)

}
(10)
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assume that a tie-break rule guaranteeing the uniqueness of
the solution to (10) is in place. This allows us to introduce a
single-valued mapping �K : �K → M that, given any δK ∈
�K , satisfies �K(δK) := (C�K, d�K). We next recall the key
definition of support subsample to establish our probabilistic
certificate of controlled invariance for a given C-polytope S.

Definition 3 (Support subsample, [16, Definition 2]): Given
any δK ∈ �K , a support subsample S ⊆ δK is a p-tuple of
unique elements of δK , S := {δ(i1), . . . , δ(ip)}, with i1 < . . . <

ip, that gives the same solution as the original K-multisample,
i.e., �p(δ

(i1), . . . , δ(ip)) = �K(δ
(1), . . . , δ(K)).

Then, let ϒK :�K ⇒ K be any algorithm returning a p-tuple
i1, . . . , ip, i1 < . . . < ip, such that {δ(i1), . . . , δ(ip)} is a sup-
port subsample for δK , and let sK := |ϒK(δK)|. In this case,
a support subsample for δK can be identified as the subset of
samples that generates a minimal representation for the poly-
hedral feasible set of (10). The following result characterizes
the violation probability of (C�K, d�K), and hence establishes a
probabilistic certificate for the controlled invariance property
of S w.r.t. the black-box system in (2).

Theorem 1: Fix β ∈ (0, 1) and, for any K ∈ N, let
ε : K ∪ {0} → [0, 1] be a function such that ε(K) = 1
and

∑K−1
h=0 (

K
h )(1 − ε(h))K−h = β. Given any C-polytope

S ⊆ X , K-multisample δK ∈ �K with associated matrices
{(A(δ(j)),B(δ(j)))j∈K}, assume that LδK in (10) is nonempty.
Then, for any �K , ϒK and P, it holds that

P
K{δK ∈ �K | V(C�Kδ + d�K) > ε(sK)} ≤ β, (11)

namely, the probability that S is a controlled invariant set w.r.t.
the black-box system in (2) is at least 1−ε(sK) with confidence
greater than or equal to 1 − β.

Proof: Given any polyhedral C-set S and K-multisample
δK ∈ �K with associated pairs of matrices
{(A(δ(j)),B(δ(j)))j∈K}, assuming that LδK �= ∅ implies
that an optimal pair (C�K, d�K) solving (10) exists and,
assuming some tie-break rule, it is also unique. Therefore,
we have (C�K, d�K) ∈ LδK , which clearly entails the inclusion
(C�K, d�K) ∈ Lδ(j) , for all j ∈ K. By construction, this means
that, for every δ(j) ∈ δK , C�Kδ

(j) + d�K ∈ UδK (see (5)), and
hence that C�Kδ

(j) + d�K ∈ Uδ(j) , for all j ∈ K. These inclu-
sions correspond to the so-called consistency condition stated
in [16, Assumption 1] and, together with the uniqueness of the
solution, we can rely on [16, Th. 1] to obtain the probabilistic
bound in (11), i.e., P

K{δK ∈ �K | V(C�Kδ+d�K) > ε(sK)} ≤ β.

In view of Lemma 1, we recall that (C�K, d�K) ∈ LδK

is a necessary and sufficient condition for the affine
sampling policy to return feasible input values guaran-
teeing the controlled invariance property of S w.r.t. the
observed collection of DT LTI systems originated by
the pairs {(A(δ(j)),B(δ(j)))j∈K} ⊆ {(A(δ),B(δ))δ∈�}, since
A(δ(j))xi +B(δ(j))(C�Kδ

(j)+d�K) ∈ S, for all i ∈ V , j ∈ K. Thus,
the bound in (11) certifies that, with confidence at least 1−β,
V(C�Kδ+d�K) = P{δ ∈ � | C�Kδ+d�K /∈ Uδ} ≤ ε(sK), and there-
fore it turns out that P{δ ∈ � | C�Kδ + d�K ∈ Uδ} ≥ 1 − ε(sK)

with the same confidence. In view of Lemma 1, this means
that the affine policy computed in (10) returns feasible input
values at the vertices of S that guarantee the controlled
invariance property of S w.r.t. the DT LTI system originated
by the pair of matrices (A(δ),B(δ)) associated to any unseen
scenario δ ∈ �.

Remark 2: The bound in (11) can be theoretically improved
through i) a wait-and-judge analysis [27], where ε(j) = 1−t(j),
and t(j) ∈ (0, 1) is the unique solution to β

K+1

∑K
h=j(

h
j )t

h−j −
( K

j )t
K−j = 0. Such a bound can be employed if a non-

degeneracy assumption for (10) is imposed (see [27] for
a formal definition), which is however difficult to be veri-
fied; or ii) an a-priori assessment, in case a convex tie-break
rule is adopted to single-out an element from LδK [28].
This would provide a violation level ε ∈ (0, 1) satisfying∑s

h=0(
K
h )ε

h(1 − ε)K−h = β, where s is the number of vari-
ables in (10), i.e., mN(� + 1). However, this may lead either
to an unacceptably large number of samples or, for a given
number of samples, to a higher value of ε – see Section VI.

The following result characterizes in terms of probabilistic
stabilizability guarantees the vertex control law in (4).

Corollary 1: Under the same conditions of Theorem 1, the
probability that the vertex control law in (4), with input at
vertices {C�i,K δ̄+d�i,K}i∈V , makes the given C-polytope S con-
trolled invariant w.r.t. the DT LTI system in (2) is at least
1 − ε(sK) with confidence greater than or equal to 1 − β.

Proof: From Theorem 1, if (10) is feasible, then for any
unobserved sample δ ∈ �, the probability that the policy
π(δ) = C�Kδ+d�K returns admissible control values at the ver-
tices of S is at least 1−ε(sK) with confidence 1−β. Therefore,
with the same confidence, u(t) = ∑

i∈V γ �i (t)(C�i,K δ̄ + d�i,K),
γ �(t) ∈ argminγ∈[0,1]N {1�

Nγ | ∑
i∈V γixi = x(t)}, stabilizes (2)

with at least the same probability 1 − ε(sK).
Note that Theorem 1 certifies the controlled invariance of

S w.r.t. any DT LTI system associated to an unseen scenario
of δ ∈ �. Likewise, the vertex control law in (4) enjoys the
stabilizability guarantees in Corollary 1 for any unobserved
sample δ, i.e., with confidence at least 1 − β and input at
vertices {C�i,Kδ + d�i,K}i∈V , the control in (4) stabilizes x+ =
A(δ)x + B(δ)u with probability at least 1 − ε(sK).

B. On the Nonemptiness of LδK

To generalize Theorem 1 to the case where LδK = ∅, we
can restrict �K to the set of K-multisamples for which the LP
in (10) is feasible, i.e., FK := {δK ∈ �K | LδK �= ∅}. The
bound in (11) holds then with FK in place of �K , implying
that, with confidence at most β, if the resulting LP is feasible
then the probability of violation is at least ε(sK) [15], [17].
However, without restricting the entire set �K to FK , in case
the data matrices at hand can not guarantee LδK �= ∅, we can
not assess the controlled invariance property of S w.r.t. (2). In
fact, the LP in (10) builds upon the specific choice of an affine
sampling policy π(δ) = Cδ + d, which allows us to explore
only a portion of the space of feasible inputs, U NK .

We characterize next the feasibility of the LP in (9), with
K = 1, in terms of problem data, and then we discuss the
general case K ∈ N. To simplify notation, in the statement
and related proof, we omit the dependency on δ in G and l.
We also denote with (P)i (resp., yi) the i-th row (element) of
a matrix (vector) P ∈ R

n×m (y ∈ R
n). Given a set of indices

I ⊆ {1, . . . , n}, we indicate with PI (resp., yI ) a submatrix
(subvector) obtained by selecting the rows (elements) in I.

Lemma 2: Let n ≥ m, K = 1 and δ ∈ � be any given
sample with associated pair of matrices (A(δ),B(δ)). Given
any C-polytope S ⊆ X , the set Lδ in (9) is nonempty if
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Fig. 1. Graph topology with nominal weights on the edges (black lines).
The blue dots denote the floating nodes, while the red dots the input
ones.

and only if, for all i ∈ V , there exists an invertible submatrix
GQ∪P ∈ R

m×m of G, with row indices Q ⊂ {1, . . . , q}, P ⊂
{1, . . . , p}, and related subvector lQ∪P of l, such that

{
(H)kG−1

Q∪P lQ∪P ≤ 1, ∀k ∈ Q̄
(FB(δ))kG−1

Q∪P lQ∪P ≤ 1 − (FA(δ)xi)k, ∀k ∈ P̄ (12)

with Q̄ := {1, . . . , q} \ Q, and P̄ := {1, . . . , p} \ P .
Proof: See the Appendix.
Extending the conditions established in Lemma 2 to the gen-

eral case of K ∈ N is, however, nontrivial. In fact, from (10) it
is evident that, with the same pair (C, d), one has to satisfy the
inequality G(δ(j))(Cδ(j) + d) ≤ l(δ(j)) for all j ∈ K, and there-
fore (C ⊗ IK)col((δ(j))j∈K) + d ⊗ 1K ∈ ∏

j∈K Uδ(j) ⊆ U NK .
In terms of data matrices, the following statement provides
necessary conditions only for the existence of an optimal pair
(C�K, d�K) ∈ LδK , for some K ∈ N, as they essentially guarantee
that

∏
j∈K Uδ(j) �= ∅.

Proposition 1: Let n ≥ m, K ∈ N and δK ∈ �K be
any given K-multisample with associated pairs of matrices
{(A(δ(j)),B(δ(j)))j∈K}. Given any C-polytope S ⊆ X , the set
LδK in (10) is nonempty only if, for all (i, j) ∈ V × K, there
exists an invertible submatrix GQ∪P ∈ R

m×m of G(δ(j)), with
row indices as in Lemma 2, and subvector lQ∪P of l(δ(j)),
satisfying the conditions in (12).

Proof: See the Appendix.
Proposition 1 is only necessary for LδK �= ∅. In fact, if some

ũ := col((uj)j∈K) ∈ R
mNK satisfying diag((G(δ(j)))j∈K)ũ ≤

col((l(δ(j)))j∈K) exists, say ũ�, then this does not imply
that we are able to find a pair (C�K, d�K) such that (C�K ⊗
IK)col((δ(j))j∈K)+ d�K ⊗ 1K = ũ�.

VI. MOTIVATING EXAMPLE REVISITED

To illustrate our findings, we consider the graph topol-
ogy represented in Fig. 1, involving n = 6 agents, with
NF = {1, 3, 5, 6}, NI = {2, 4}, and |E | = 12 edges
with nominal weights w̄ specified on each link. In this
case, the autonomous dynamics in (1) associated with the
nF = 4 floating nodes (i.e., with B̄F = 0) is character-
ized by eig(ĀF) = {−1.34,−0.01, 0.46, 0.81}, hence unstable.
Additionally, we constraint m = 2 control inputs to the set
U = {u ∈ R

2 | ‖u‖∞ ≤ 1}. For simplicity, SF is taken as

Fig. 2. Time evolution of the Minkowski function associated to the
set SF .

the convex hull of random points in ±[0.1 2], sampled indi-
vidually on each axis of R

4, leading to a C-polytope with
N = 8 vertices. By assuming that the entire vector of weights
is not known, i.e., � = |E |, we treat w as a random vector
and draw K = 600 samples according to a uniform distribu-
tion supported on W = [0.6 1.4] × w̄ ⊂ R

12, i.e., a degree of
uncertainty on w̄ up to the 40%, and we compute (C�600, d�600)

by solving the LP in (10) on a laptop with a Quad-Core Intel
Core i5 2.4 GHz CPU, 8 Gb RAM with solver Gurobi [29].
With cost function ‖C‖2

F +‖d‖2, 208 free variables and 96000
linear constraints, this step takes around 2.42[s]. Then, run-
ning the greedy algorithm designed in [16, Sec. II] returns
a support subsample of cardinality s600 = 29, and therefore,
with β = 10−6, from Theorem 1 the probability that SF is a
controlled invariant for the floating dynamics in (1) is at least
0.7911, with confidence greater than or equal to 1−10−6. The
function ε(·) in Theorem 1 is analytically obtained by split-
ting β evenly among the 600 terms within the summation,
thus obtaining ε(29) = 0.2089. Note that to return the same
violation level with β = 10−6 the a-priori bound in Remark 2
needs K = 1324 samples. Conversely, with the available 600
samples, one obtains a violation level ε = 0.259 > 0.2089.

According to Corollary 1, the vertex control law in (4),
with input at the vertices {C�i,600w̄ + d�i,600}i∈V , also enjoys
the same certificate of SF . Figure 2 shows the time evolu-
tion of the Minkowski function [1, Sec. 3.3] associated to
the C-polytope SF , i.e., ψSF (xF) := minλ≥0 {λ | xF ∈ λSF}.
By randomly drawing 103 initial points in SF , we compute
ψSF (xF(t)), where xF(t) is the closed-loop trajectory orig-
inating from each initial state with control law in (4) and
admissible inputs {C�i,600w̄+d�i,600}i∈V . Since ψSF (xF(t)) ≤ 1,
for all t ∈ N, SF is not only invariant, but also a contractive
set for (1).

VII. CONCLUSION AND OUTLOOK

By combining results in system theory and the scenario
approach, we provide out-of-sample certificates on the con-
trolled invariance property of a given set with respect to a
black-box LTI system whose nominal parameters may not
be determined with certainty. We propose a data-based sam-
pling procedure to select feasible inputs at the vertices of the
given set, which allows us to verify the controlled invariance
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property of such a set through an LP. If the LP is feasible,
we establish probabilistic bounds on the controlled invariance
property of the given set w.r.t. the nominal LTI system.

Directions for future work include considering different
sampling policies and extending the controlled invariance
property verification of given sets w.r.t. broader classes of
systems, such as linear systems with polytopic uncertainty.

APPENDIX

Proof of Lemma 2: The Kronecker product in the matrix G
in (9) induces a decoupled structure that allows us to focus
on a single vertex i ∈ V at a time: the generalization to the
entire set S follows readily. For some v ∈ vert(S), consider
G = col(H,FB(δ)) ∈ R

(q+p)×m and l = col(1q, 1p−FA(δ)v) ∈
R

q+p. Since H and F are full column rank matrices, we also
have rank(G) = m, as m < q + p, and the vertical concate-
nation does not alter the rank (note that rank(FB(δ)) ≤ m,
as n ≥ m). From [30], a system of inequalities Gu ≤ l, with
rank(G) = m, admits a solution if and only if G has a minor
θm = det(GI) �= 0 of order m, with GI ∈ R

m×m being full
rank submatrix of G with row indices I ⊂ {1, . . . , q+p} =: A,
such that

− 1

θm
det

([
GI lI
(G)k lk

])

≤ 0, ∀k ∈ A \ I. (13)

Since GI is a full rank matrix, the determinant of the aug-
mented matrix in (13) can be rewritten as det(GI)× det(lk −
(G)kG−1

I lI) [31]. This then implies that (13) amounts to ver-
ify (G)kG−1

I lI ≤ lk, ∀k ∈ A \ I. Note that such inequalities
guarantee the existence of some u� that solves Gu� ≤ l.
In case K = 1, this is equivalent to guaranteeing the exis-
tence of some pair (C, d) satisfying G(Cδ + d) ≤ l, since
C = 0 and d = u� is always a feasible solution. This con-
sideration holds for each v ∈ vert(S), as C := col((Ci)i∈V )
and d := col((di)i∈V ). Therefore, in view of the structure of
G, we can rewrite the set of row indices as I := Q ∪ P ,
with Q ⊂ {1, . . . , q} and P ⊂ {1, . . . , p}. Then, GI =
col(HQ,FBP ) and lI = col(1|Q|, 1|P | − (FA(δ)v)P ), for any
v ∈ vert(S). Finally, the conditions in (12) follow by split-
ting inequalities (G)kG−1

I lI ≤ lk, ∀k ∈ A \ I, between the
two sets Q and P , and noting that (G)k = (H)k and lk = 1
for any k ∈ {1, . . . , q} \ Q, while (G)k = (FB(δ))k and
lk = 1 − (FA(δ)v)k), for any k ∈ {1, . . . , p} \ P .

Proof of Proposition 1: With ũ := col((uj)j∈K) ∈ R
mNK ,

a solution to diag((G(δ(j)))j∈K)ũ� ≤ col((l(δ(j)))j∈K) exists if
one can find an individual u�j ∈ R

mN for each LP in (9). Then,
the proof follows the same considerations adopted in the one
for Lemma 2, for each sample δ(j) ∈ δK .
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