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a b s t r a c t

We develop a data-driven approach to the computation of a-posteriori feasibility certificates for sets
of solutions of variational inequalities affected by uncertainty. Specifically, we focus on variational
inequalities with a deterministic mapping and an uncertain feasible set, and represent uncertainty by
means of scenarios. Building upon recent advances in the scenario approach literature, we quantify
the robustness properties of the entire set of solutions of a variational inequality, with feasibility set
constructed using the scenario approach, against a new unseen realization of the uncertainty. Our
results extend existing ones that typically impose that the solution set is a singleton and require certain
non-degeneracy properties: hence, we thereby offer probabilistic feasibility guarantees for any feasible
solution of the underlying variational inequality. We show that assessing the violation probability of
an entire set of solutions requires enumeration of the support constraints that ‘‘shape’’ this set, and
also propose a procedure to enumerate the support constraints that does not require a description of
the solution set. We illustrate our results through numerical simulations on a robust game involving
an electric vehicle charging coordination problem.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

VARIATIONAL INEQUALITIES (VIs) are a general purpose tool
ncompassing a broad variety of equilibrium problems such as
etwork and traffic problems, optimal control, economics and
emand-side management (see, e.g., Facchinei and Pang (2007),
iannessi and Maugeri (1995) for an extensive discussion). VIs
re formally defined by means of a feasible set X ⊆ Rn, and a
apping F : X → Rn. We denote by VI(X , F ) the problem of

inding some x⋆
∈ X such that (y − x⋆)⊤F (x⋆) ≥ 0, for all y ∈ X .

In this paper we focus on stochastic approaches to uncertain VIs,
in which the problem data may be affected by uncertainty. Specif-
ically, given a random variable δ ∈ ∆, we adopt a worst-case
formulation (Shanbhag, 2013) where the feasible set is modelled
as the intersection of sets Xδ , generated by every possible realiza-
tion of δ, and a deterministic set X . We define the worst-case VI
problem, VI(X∩Xδ, F ), as the problem of finding some x⋆

∈ X∩Xδ
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that satisfies

(y − x⋆)⊤F (x⋆) ≥ 0, for all y ∈ X ∩ Xδ, δ ∈ ∆. (1)

However, such a worst-case formulation imposes two main chal-
lenges: (i) the set ∆ may be unknown and the only information
available may come via data/scenarios for δ; (ii) even if ∆ is
known, it might be a set with infinite cardinality, thereby giving
rise to an infinite set of constraints in (1). To address these chal-
lenges, we adopt the data-driven approach proposed in Campi,
Garatti, and Ramponi (2018) to quantify a-posteriori the feasi-
bility of the entire set of solutions to the VI against previously
unseen realizations of the uncertainty. Using a set-oriented per-
spective, we recast our problem to the form of the abstract
decision-making problems considered in Campi et al. (2018). This
enables us to inherit the probabilistic feasibility results estab-
lished in Campi et al. (2018, Th. 1), and thereby characterize the
robustness properties of the entire solution set to the uncertain VI
in (1).

To the best of our knowledge, this work is the first to address
the problem of evaluating the robustness of the entire set of
solutions to an uncertain VI in a distribution-free fashion. The
present work is indeed complementary to the one in (Fele &
Margellos, 2019; Fele & Margellos, 2021), where VIs arising in
the computation of a Nash equilibrium problem (NEP) with an
uncertain mapping and a deterministic feasible set are (indirectly)
investigated. Conversely, a NEP with uncertain, yet affine, local

https://doi.org/10.1016/j.automatica.2021.110120
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2021.110120&domain=pdf
mailto:filippo.fabiani@eng.ox.ac.uk
mailto:kostas.margellos@eng.ox.ac.uk
mailto:paul.goulart@eng.ox.ac.uk
https://doi.org/10.1016/j.automatica.2021.110120


F. Fabiani, K. Margellos and P.J. Goulart Automatica 137 (2022) 110120

c
t
(
l
s
a
b
e
t
a
a
f
i
e
C
t
t
x
a

n
n
t
t

onstraints and deterministic cost functions is considered in Pan-
azis, Fele, and Margellos (2020). A contribution of Pantazis et al.
2020) is to provide robustness certificates for the constraint vio-
ation of any feasible point of the game considered. In contrast, we
how in Section 3 that assessing the robustness of an equilibrium
t a point inside the feasible set may lead to an over-conservative
ound compared to the one derived in this paper. In Fabiani
t al. (2020), instead, probabilistic bounds on the feasibility of
he entire set of variational generalized Nash equilibria (v-GNE)
ssociated to a generalized Nash equilibrium problem (GNEP) in
ggregative form are provided. We therefore consider a broad
amily of uncertain VIs in (1) rather than just VI problems arising
n computing v-GNE, thus complementing the results of Pantazis
t al. (2020) and Fabiani et al. (2020). Finally, Paccagnan and
ampi (2019) synthesized a-posteriori robustness certificates for
he solution to uncertain (quasi-)VI in (1), which amounts to
he problem of finding some x⋆

∈ ∩δ∈∆ Xδ(x⋆) such that (y −
⋆)⊤F (x⋆) ≥ 0, for all y ∈ ∩δ∈∆Xδ(x⋆) . However, in Paccagnan
nd Campi (2019) it is postulated that the VI admits a unique so-

lution, while certain non-degeneracy assumptions, typically hard
to verify (Campi & Garatti, 2018b; Fele & Margellos, 2021), are
imposed. To conclude, we summarize our main contributions as
follows:

• We provide a-posteriori robustness certificates for the en-
tire set of solutions to an uncertain VI. Our set-oriented
perspective is crucial for two reasons:

(1) We are able to bypass the uniqueness and non-
degeneracy assumptions postulated in Paccagnan and
Campi (2019);

(2) Compared to Pantazis et al. (2020), we show that
our bounds are, in general, less conservative (albeit
weaker than those in Paccagnan and Campi (2019) –
see Remark 1);

• In the case of affine constraints, we give a procedure to
enumerate the support subsamples, a key quantity for our
robustness certificates, that requires fewer iterations com-
pared to the one in Campi et al. (2018), Paccagnan and
Campi (2019).

We finally corroborate our findings through numerical simula-
tions on a GNEP modelling the charging coordination of a fleet
of plug-in electric vehicles (PEVs).

Notation: N, R, and R≥0 denote the set of natural, real, and
onnegative real numbers, respectively. N0 := N ∪ {0}. De-
ote vectors of appropriate dimensions with elements all equal
o 1 (0) as 1 (0). Given a matrix A ∈ Rm×n, A⊤ denotes its
ranspose. The operator ⊗ denotes the Kronecker product, col(·)
stacks its arguments in column vectors or matrices, while avg(·)
is the average operator. For vectors v1, . . . , vN ∈ Rn and I =

{1, . . . ,N}, we denote v := (v⊤

1 , . . . , v⊤

N )⊤ = col((vi)i∈I) and
v−i := col((vj)j∈I\{i}). For a given set S ⊆ Rn, |S| represents its
cardinality, and int(S), relint(S) and bdry(S) denote its topolog-
ical interior, relative interior and boundary, respectively. The set
aff(S) denotes its affine hull. We denote single-valued mappings
with ‘‘→’’ and set-valued mappings with ‘‘⇒’’. The mapping T :

X → Rn is pseudomonotone on S if for all x, y ∈ S , (x−y)⊤T (y) ≥

0 H⇒ (x − y)⊤T (x) ≥ 0; monotone if (T (x) − T (y))⊤(x − y) ≥ 0
for all x, y ∈ S; strongly monotone if there exists a constant c > 0
such that (T (x) − T (y))⊤(x − y) ≥ c∥x − y∥2 for all x, y ∈ S.

2. Problem statement and main result

2.1. Uncertain VIs and scenario-based formulation

We aim at providing out-of-sample feasibility certificates for
the entire set of solutions to the uncertain VI in (1) by exploiting
2

some scenarios of the uncertain parameter δ. Formally, let us
consider a probability space (∆,D,P), where ∆ ⊆ Rℓ represents
the set of values that δ can take, D is a σ -algebra and P is a
(possibly unknown) probability measure over D. We assume to
have available a finite collection of K ∈ N independent and
identically distributed (i.i.d.) observed realizations of δ, i.e., δK :=

{δ(i)}i∈K = {δ(1), . . . , δ(K )} ∈ ∆K , K := {1, 2, . . . , K }, hence-
forward called K -multisample. Note that every K -multisample is
defined over the probability space (∆K ,DK ,PK ), resulting from
the K -fold Cartesian product of the original probability space
(∆,D,P). Let Xδ(i) be a constraint set associated with the ith
sample, which constrains the decisions that are admissible for
the situation represented by δ(i). The scenario-based VI problem
VI(XδK , F ), with XδK := ∩i∈KXδ(i) ∩ X , is then the problem of
finding an x⋆

∈ XδK such that

(y − x⋆)⊤F (x⋆) ≥ 0, for all y ∈ XδK . (2)

Let us define the set of solutions to (2) as

ΩδK := {x ∈ XδK | (y − x)⊤F (x) ≥ 0, ∀y ∈ XδK }. (3)

Given the dependency on δK , the set ΩδK is itself a random
quantity. When K = 0, our problem reduces to a deterministic
VI problem, VI(X , F ), with solution set Ωδ0 . We introduce next a
key assumption for our results.

Standing Assumption 1. For any K ∈ N0, XδK ̸= ∅ is a compact
and convex set for all δK ∈ ∆K . The mapping F : X → Rn is
continuous and pseudomonotone.

Lemma 1. For all K ∈ N0, ΩδK is a nonempty, compact and convex
set.

Proof. It follows by combining Facchinei and Pang (2007,
Cor. 2.2.5, Th. 2.3.5), as F (·) is continuous and pseudomonotone
and XδK is a finite intersection (due to Standing Assumption 1) of
nonempty, compact and convex sets.

In the spirit of Campi et al. (2018), we then introduce ΘK :

∆K ⇒ X as the mapping that, given a set of realizations δK ,
K ∈ N0, returns the solution set to VI(XδK , F ), namely

ΘK (δ(1), . . . , δ(K )) = ΘK (δK ) := ΩδK . (4)

2.2. Robustness certificates for solution sets to VIs

Given any K -multisample δK , we are interested in evaluating
the robustness of the entire set of solutions ΩδK in (3) to a
previously unseen realization of δ. Before stating the main result
of this paper, we recall the following definition that will be crucial
for the remainder:

Definition 1 (Support Subsample (Campi et al., 2018, Def. 2)). Given
any δK ∈ ∆K , a support subsample S ⊆ δK is a p-tuple of unique
elements of δK , i.e., S := {δ(i1), . . . , δ(ip)}, i1 < · · · < ip, that gives
the same solution as the original sample, i.e., Θp(δ(i1), . . . , δ(ip)) =

ΘK (δ(1), . . . , δ(K )).

Here, let ΥK : ∆K ⇒ K be any algorithm returning a p-
tuple such that {δ(i1), . . . , δ(ip)} is a support subsample for δK ,
and let sK := |ΥK (δK )|. Note that sK is itself a random variable
since it depends on δK . Our main result characterizes the violation
probability of ΩδK , i.e., the solution set to the scenario-based VI
in (2), as follows:

Theorem 1. Fix β ∈ (0, 1), and let ε : K ∪ {0} → [0, 1] be a
function such that ε(K ) = 1 and

∑K−1
h=0

(
K
h

)
(1 − ε(h))K−h

= β .
Then, for any mappings ΘK , ΥK and distribution P, it holds that

PK
{δ ∈ ∆K

| V (Ω ) > ε(s )} ≤ β, (5)
K δK K
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Fig. 1. (a) Compared to Ωδ0 (red line), every realization of δ (dashed blue lines, while the shaded cyan area denotes a region excluded by any Xδ(i) , i = 1, 2, 3) results
n a solution set Ωδi , i = 1, 2, 3, that belongs to a different affine hull and/or on a space of lower dimension (green dots or line); (b) Schematic two-dimensional
onstruction of the proof of Lemma 2, part (ii). Due to the convexity, there always exists some ỹ ∈ XδK+1 , but ỹ /∈ int(ΩδK+1 ), that allows to construct a contradiction.
In this case, ỹ ∈ bdry(ΩδK+1 ); (c) The solution set to VI(XδK , F ), ΩδK (green region), can be ‘‘shaped’’ by the set of constraints, Xδ(i) , i ∈ K (dashed blue lines).
ccording to Definition 1, the number of support subsamples for δK w.r.t. ΩδK is, in general, smaller compared to |XδK | (dashed orange lines, whose intersections
re defined by orange dots). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
.

here V (ΩδK ) := P{δ ∈ ∆ | ΩδK ̸⊆ ΩδK∪{δ}} denotes the violation
robability.

Note that the bound in (5) is a distribution-free, a-posteriori
tatement since sK depends on the multisample extracted. In
ords, Theorem 1 implies that the probability that ΩδK∪{δ} differs

from ΩδK (as ΩδK ⊆ ΩδK∪{δ} necessarily implies that ΩδK =

δK∪{δ} — see also Lemma 2) is at most equal to ε(sK ), with
confidence at least 1 − β , for an arbitrarily small β ∈ (0, 1). We
give the proof of Theorem 1 in the next section, after first stating
and proving some ancillary results.

3. The scenario approach to uncertain VIs

The scenario approach theory was initially conceived to pro-
vide a-priori out-of-sample feasibility guarantees associated with
the solution to an uncertain convex optimization problem
(Calafiore, 2010; Calafiore & Campi, 2006; Campi & Garatti, 2018a)
It has recently been extended to abstract decision-making prob-
lems through an a-posteriori assessment of the feasibility risk
(Campi & Garatti, 2018b; Campi et al., 2018) by relying on the
following two conditions:

(i) The solution to the abstract decision-making problem is
assumed to be unique;

(ii) The decision taken while observing K realizations of the
uncertainty δ is consistent with respect to (w.r.t.) all the
extracted scenarios (Campi et al., 2018, Ass. 1).

Thus, we aim to follow the approach of Campi et al. (2018) by
focusing on a set of decisions see also Garatti and Campi (2019,
§5) for further clarifications on the concept of decision), extending
conditions (i)–(ii) above to the solution set for the uncertain VI
in (1). Since we focus on the entire set of solutions, for any
K -multisample δK ∈ ∆K , in view of Lemma 1 there naturally
exists a unique set of solutions to VI(XδK , F ) (not necessarily a
ingleton though), and therefore the uniqueness of the solution
eturned by ΘK in (4) holds by definition, thus addressing (i). In
he spirit of Margellos, Prandini, and Lygeros (2015, Def. 2), we
hen envision that the set-oriented counterpart of the sequence
f inclusions in Campi et al. (2018, Ass. 1) shall be translated into
consistency property of ΩδK , as defined next.

efinition 2 (Consistency of Solution Sets). Given some K ∈ N
nd δK ∈ ∆K , the solution set to VI(XδK , F ) is consistent with the

collected scenarios if Θ (δ ) = Ω ⊆ X , for all i ∈ K.
K K δK δ(i)

3

Definition 2 establishes that the set of solutions to VI(XδK , F ),
ΩδK , which is based on K scenarios, should be feasible for each of
the sets Xδ(i) , i ∈ K, corresponding to each of the K realizations
of the uncertain parameter. Thus, aiming to apply the bound
in Campi et al. (2018, Th. 1), we note that the mapping ΘK (·) in (4)
is consistent with the realizations observed in the scenario-based
VI in (2). For any K ∈ N and associated K -multisample δK ∈ ∆K ,
indeed, we have that ΘK (δK ) := ΩδK ⊆ ∩i∈KXδ(i) ∩ X , which
implies that ΘK (δK ) ⊆ Xδ(i) , for all i ∈ K, thus directly falling
within Definition 2. We will make use of these considerations in
the proof of Theorem 1, along with the following assumption on
the solution set ΩδK .

Standing Assumption 2. For all K ∈ N and δK ∈ ∆K , aff(ΩδK ) =

aff(Ωδ0 ).

If the uncertain VI in (1) is defined in Rn and ΩδK is a convex,
m-dimensional set, then Standing Assumption 2 allows form < n.
In this sense, assuming aff(ΩδK ) = aff(Ωδ0 ) for any δK ∈ ∆K , K ∈

N, is weaker than, e.g., assuming int(ΩδK ) ̸= ∅ for every possible
realization of δK . To clarify the role of Standing Assumption 2, we
then introduce and discuss the following example.

Example 1. Let us consider the two-dimensional case shown
in Fig. 1(a), where F = col(0, 1), is monotone and X has a
triangular shape. Here, Ωδ0 = {x ∈ R2

| x1 ∈ [0, 1], x2 =

0}, and its affine hull corresponds to the entire x1-axis. After
observing the first realization of δ, i.e., δ(1), which introduces the
set Xδ(1) = {x ∈ R2

| −[1/3 1]⊤ x ≤ −1/3}, the solution set
reduces to a singleton Ωδ1 = {x ∈ R2

| x = col(1, 0)}. Here,
Ω1 has a smaller dimension compared to Ωδ0 , despite its affine
hull, i.e., the singleton itself, being a subset of the x1-axis. Then,
drawing a new sample δ(2), which introduces the set Xδ(2) = {x ∈

R2
| [1/3 − 1]⊤ x ≤ 1/15}, we have Ωδ2 = {x ∈ R2

| x =

col(3/5, 2/15)}, which has the same dimension as Ωδ1 but its affine
hull is not a subset of aff(Ωδ0 ). Finally, the third sample, δ(3),
introduces the set Xδ(3) = {x ∈ R2

| [0 − 1]⊤ x ≤ −1/2}, and
hence we have Ωδ3 = {x ∈ R2

| x1 ∈ [1/4, 3/4], x2 = 1/2}. Here,
Ωδ3 has the same dimension of Ωδ0 but a different affine hull,
i.e., the x1-axis translated to x2 = 1/2. Standing Assumption 2 is
meant to rule out all these possible scenarios, allowing only for
samples that ‘‘shape’’ aff(Ωδ0 ) without altering its dimension.

Example 1 provides insight on translating Standing Assump-
tion 2 to a condition on the probability space ∆, as it represents



F. Fabiani, K. Margellos and P.J. Goulart Automatica 137 (2022) 110120

s
S

Ω

c

d

Ω

i
t
s
o

3

P
w
i
Ω

T
∆

Ω

a
i
t
ε

o
t

ε

R
ε

i
G
(
s

ituations that can generally happen with non-zero probability.
pecifically, let ∆ be a subset of R2 with δ = col(a, b), and let

a ∈ R parametrize the slope and b ∈ R the offset of the halfspaces
introduced by every scenario, i.e., Xδ = {x ∈ R2

| [a 1] x ≤ b}.
Then, for any distribution that admits a density, we can find non-
zero intervals for a and b such that the i.i.d. scenarios δ can be
extracted from some ∆′

⊆ ∆, determined by the values of a and b
themselves, in order to meet Standing Assumption 2, thus ruling
out the pathological cases shown in Example 1. In the case the
samples are extracted from ∆′, note that the guarantees would
hold for the probability measure that is induced by this restric-
tion. Alternatively, if Standing Assumption 2 is not satisfied for
all multisamples, then we can still claim that with confidence at
most β , if Standing Assumption 2 is satisfied, then the probability
of violation is greater than ε(sK ). To achieve this, in the state-
ment of Theorem 1, we can restrict the space of multisamples
to the ones for which Standing Assumption 2 is satisfied (see
how to treat infeasible problem instances in Calafiore (2010),
Calafiore and Campi (2006)). Moreover, by adopting restrictions
on ∆, Standing Assumption 2 allows us to address the strongly
monotone case, where VI(X ∩Xδ, F ) has a unique solution, for all
δ ∈ ∆.

Given some K ∈ N, let ΩδK+1 := ΩδK∪{δ(K+1)} be the solution
set to the scenario-based VI in (2) after observing the (K + 1)-th
realization of δ, i.e., the feasible set of the VI shrinks to XδK+1 :=

XδK ∩ Xδ(K+1) , for some δ(K+1)
∈ ∆. We have the following

preliminary result.

Lemma 2. For all K ∈ N0 and for all δK ∈ ∆K , ΩδK+1 =

δK ∩ Xδ(K+1) .

Proof. We split the proof into two different inclusions. Specifi-
ally, we first prove (i) that ΩδK ∩ Xδ(K+1) ⊆ ΩδK+1 , and then (ii)
that ΩδK ∩ Xδ(K+1) ⊇ ΩδK+1 .

(i) We show that if x⋆
∈ ΩδK and x⋆

∈ Xδ(K+1) , then x⋆
∈ ΩδK+1 .

In view of Standing Assumption 1, given an arbitrary K ∈ N0 and
related δK ∈ ∆K , XδK is a compact and convex set, as it is finite
intersection of convex sets. Then, a vector x⋆

∈ XδK is a solution
to VI(XδK , F ) if and only if x⋆

∈ argminy∈XδK
y⊤F (x⋆) (Facchinei

& Pang, 2007, §1.2). Since the uncertain parameter enters in
the constraints only, every sample δ(K+1)

∈ ∆ introduces an
additional set of convex constraints, i.e., XδK+1 = XδK ∩ Xδ(K+1) ⊆

XδK , which is compact and convex as well. Thus, it follows im-
mediately that, if x⋆

∈ Xδ(K+1) , then x⋆
∈ XδK+1 . Therefore,

x⋆
∈ argminy∈XδK ∩X

δ(K+1)
y⊤F (x∗), which by definition implies that

x⋆
∈ ΩδK+1 .
(ii) We first prove that, if x⋆

∈ relint(ΩδK+1 ), then x⋆
∈ ΩδK . The

case where x⋆
∈ bdry(ΩδK+1 ) will be treated in the sequel. Let us

recall that, in view of Rockafellar (1970, Cor. 1.6.1), for any given
m-dimensional convex set S in Rn, m ≤ n, there always exists
an affine transformation which carries aff(S) onto the subspace
V := {x = (z1, . . . , zm, zm+1, . . . , zn)⊤ ∈ Rn

| zm+1 = · · · =

zn = 0}. Therefore, as closures and relative interiors are preserved
under one-to-one affine transformations of Rn onto itself, we can
limit our attention to the case where ΩδK+1 , and hence ΩδK (since
aff(ΩδK+1 ) = aff(ΩδK ) = aff(Ωδ0 ) from Standing Assumption 2), is
n-dimensional so that relint(ΩδK+1 ) = int(ΩδK+1 ). Now, for the
sake of contradiction, let x⋆

∈ XδK ∩Xδ(K+1) be any point such that
x⋆

∈ int(ΩδK+1 ), but x
⋆ /∈ ΩδK . Since x⋆

∈ XδK , x
⋆ /∈ ΩδK implies

that there exists some ȳ ∈ XδK , with ȳ ̸= x⋆, such that the VI is
not satisfied, i.e., (ȳ − x⋆)⊤F (x⋆) < 0. Given the convexity of the
sets involved, there must exist some λ ∈ (0, 1) that allows one to
construct some ỹ = λx⋆

+ (1 − λ)ȳ such that ỹ ∈ XδK ∩ Xδ(K+1) ,
but ỹ /∈ int(ΩδK+1 ) (see Fig. 1(b) for a graphical representation).
Therefore, since x⋆

∈ int(ΩδK+1 ), it shall satisfy (ỹ−x⋆)⊤F (x⋆) ≥ 0,
which leads to (1 − λ)(ȳ − x⋆)⊤F (x⋆) ≥ 0 that clearly generates a
4

contradiction, since (1 − λ) > 0. It remains to show the claim
when x⋆

∈ bdry(ΩδK+1 ). Since relint(ΩδK+1 ) ̸= ∅ as ΩδK+1 is
nonempty, and since the involved sets are closed and convex, for
any x⋆

∈ bdry(ΩδK+1 ) we can construct a convergent sequence
{xt}t∈N such that, for all t ∈ N, xt ∈ relint(ΩδK+1 ) ⊆ ΩδK , and
{xt}t∈N → x⋆, implying that x⋆

∈ ΩδK . Specifically, given any
x̄ ∈ relint(ΩδK+1 ), in view of Rockafellar (1970, Th. 6.1), for all
t ≥ 1, any term of the sequence xt :=

1
t x̄+(1−

1
t )x

⋆
∈ ΩδK ∩Xδ(K+1)

belongs to relint(ΩδK+1 ). Therefore, the inclusion ΩδK+1 ⊆ ΩδK
irectly follows.

A consequence of Lemma 2 is that Θ0 =: Ωδ0 ⊇ Ωδ1 ⊇ . . . ⊇

δK =: ΘK (δK ). Moreover, the intrinsic consistency of the set ΩδK
mplies that by introducing additional constraints, the effect of
he uncertain parameter is to shrink the feasible set XδK of the
cenario-based VI in (2), and therefore the set of solutions can
nly shrink, accordingly (see Fig. 1(c) for a graphical illustration).

.1. Proof of Theorem 1 and discussion

roof. For any K ∈ N, δK ∈ ∆K , we know that ΩδK is consistent
.r.t. the collected scenarios, δK . In view of the definition in (4),

ndeed, we have that ΩδK ⊆ ∩i∈KXδ(i) ∩ X , which implies that
δK ⊆ Xδ(i) , for all i ∈ K, thus directly satisfying Definition 2.
hen, by applying Campi et al. (2018, Th. 1), we have that PK

{δK ∈
K

| P{δ ∈ ∆ | ΩδK ̸⊆ Xδ} > ε(sK )} ≤ β . However, by Lemma 2,
δ = ΩδK ∩ Xδ . Therefore, ΩδK ̸⊆ Xδ is equivalent to Ωδ ̸= ΩδK ,
nd since the set of solutions can only shrink once a new scenario
s added, this is in turn equivalent to Ωδ ̸⊆ ΩδK . Thus, in view of
he definition of V (·), we finally have that PK

{δK ∈ ∆K
| V (ΩδK ) >

(sK )} ≤ β .

A more direct expression of the critical parameter ε(·) can be
btained by splitting the confidence parameter β evenly among
he K terms within the summation, i.e.,

(h) =

⎧⎨⎩1 if h = K ,

1 −

(
β/

(
K
(
K
h

)))1/K−h
otherwise.

(6)

emark 1. In the case of a non-degenerate VI, the bound
(·) could be improved by means of the wait-and-judge analysis
n Campi and Garatti (2018b). Specifically, in view of Campi and
aratti (2018b, Th. 2), we can replace the expression for ε(·) in
6) with ε(h) = 1 − t(h), where t(h) is shown to be the unique
olution in (0, 1) to β

K+1

∑K
m=h

( m
h
)
tm−h

−
(
K
h

)
tK−h

= 0. However,
note that the non-degeneracy condition is in general difficult to
verify even in convex optimization settings (Campi & Garatti,
2018b; Fele & Margellos, 2021), a challenge that becomes more
involved for VIs.

Similarly to Υ (·), let us suppose to have available an algorithm
that allows us to compute a support subsamples for δK associated
with the feasible set XδK .

Proposition 1. Given any K ∈ N0 and δK ∈ ∆K , let sK and vK be
the cardinality of the support subsample for δK w.r.t. ΩδK and XδK ,
respectively. Then, sK ≤ vK .

Proof. For every K ∈ N0 and δK ∈ ∆K , by Definition 1 a sample
δ(k) is of support for δK w.r.t. XδK if Xδ(k) is active on bdry(XδK ),
i.e., bdry(Xδ(k) ) ∩ bdry(XδK ) ̸= ∅. On the other hand, δ(k) is of
support w.r.t. ΩδK if bdry(Xδ(k) ) ∩ ΩδK ̸= ∅ (see, e.g., Fig. 1(c)).
Since ΩδK ⊆ XδK := ∩k∈KXδ(k) ∩ X , those samples that are of
support for δK w.r.t. ΩδK , are necessarily of support w.r.t. XδK , but
not vice-versa, and hence s ≤ v .
K K
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Algorithm 1: Computation of the cardinality of the support
subsample w.r.t. ΩδK .

Initialization: Set sK := 0, identify AK := {k ∈ K |

dry(Xδ(k) ) ∩ bdry(XδK ) ̸= ∅}

teration (i ∈ AK ):

(S1) Run Φ(δK ,i) to solve VI(XδK ∩ bdry(Xδ(i) ), F )

(S2) If Φ(δK ,i) ̸= ∅, set sK := sK + 1

Under Proposition 1, Theorem 1 improves over Pantazis et al.
2020), where V (ΩδK ) > ε(vK ) was claimed with confidence at
most β . The latter is since ε(sK ) ≤ ε(vK ) as ε(·) is non-decreasing.
Moreover, within the set-oriented framework proposed in Sec-
tion 2, as evident from (5), to bound the feasibility risk V (·) of
the entire set of solutions ΩδK , one does not need an explicit
characterization of ΩδK , namely some mapping ΘK (·), but rather
the number of support subsamples sK , computed through an
algorithm Υ (·).

3.2. Computation of the support subsample: the case of affine con-
straints

The general setting considered so far, i.e., pseudomonotone
mapping F and convex constraint set XδK , for any δK ∈ ∆K , poses
several challenges in designing an efficient procedure to compute
the number of support subsamples w.r.t. ΩδK . We therefore intro-
duce the following additional assumption that restricts attention
to the class of linearly constrained, pseudomonotone VIs.

Assumption 3. Let X := {x ∈ Rn
| Cx ≤ d}, C ∈ Rm×n and

d ∈ Rm, with rank(C) = n, and, for all δ ∈ ∆, Xδ := {x ∈ Rn
|

A(δ)x ≤ b(δ)}, A : ∆ → Rr×n and b : ∆ → Rr .

Then, given any K -multisample δK , let Φ : ∆K ⇒ ΩδK be
any mapping that returns a (set of) solution(s) to VI(XδK , F ). The
procedure Φ(·) is run in (S1) to verify whether (at least) one
solution to the VI with constraints involving XδK ∩ bdry(Xδ(i) )
exists, thus increasing sK in case of affirmative answer in (S2).
The next result states that, even without knowing ΩδK , Algorithm
1 returns the cardinality of a support subsample for δK w.r.t. ΩδK .

Proposition 2. Let Assumption 3 hold true. Given any K ∈ N
and δK ∈ ∆K , Algorithm 1 returns s⋆K , the cardinality of a support
subsample δK w.r.t. ΩδK .

Proof. First note that, in view of Assumption 3, AK forms a
support subsample for δK w.r.t. XδK . Then, by following the con-
siderations adopted within the proof of Proposition 1, every δ(k),
k ∈ AK , is of support also w.r.t. ΩδK if and only if bdry(Xδ(k) ) ∩

ΩδK ̸= ∅. To determine this, it is sufficient to compute a solution
(if any) on the active region of XδK associated with Xδ(k) . Then, sK
increases only if Φ(δK ,k) ̸= ∅, excluding all those samples such
that Xδ(k) does not intersect ΩδK .

Remark 2. Algorithm 1 requires one to run the adopted solution
algorithm Φ(δK ) a total of |AK |-times, with |AK | ≤ K . This
improves w.r.t. the greedy algorithms proposed in Campi et al.
(2018, §II) and Paccagnan and Campi (2019, §III), which would
require one to run Φ(δK ) K -times. On the other hand, we remark
that the greedy algorithm applies more generally, i.e., not neces-
sarily only in the case of affine constraints. In addition, if reducing
5

computation time is a consideration one may skip (S1) and (S2)
in Algorithm 1 altogether, since by construction of Algorithm 1
s⋆K ≤ |AK |, thus exploiting Theorem 1 with |AK | in place of s⋆K .
The latter, however, may result in a more conservative bound.

From a computational point of view, we note that Assump-
tion 3 is needed for two main reasons: (i) Evaluating a solution
to the VI on the boundary of a convex set, i.e., (S1), may re-
quire solution of a VI defined over a nonconvex domain; (ii) The
initialization step requires one to identify the minimal number
of active constraints. While item (i) prevents us from trivially
extending Algorithm 1 to the case of general convex constraints
(the literature on solution algorithms with convergence guaran-
tees for the nonconvex case is not extensive), item (ii) can be
equivalently seen as a problem of removing redundant halfspaces,
an offline task that can be efficiently accomplished in polynomial
time (see, e.g., Avis and Fukuda (1992), Bremner, Fukuda, and
Marzetta (1998), Ziegler (2012)).

4. Case study: Charging coordination of PEVs

The problem of coordinating the day-ahead charging of a
fleet of PEVs, originally introduced in Ma, Callaway, and Hiskens
(2011), can be modelled as a noncooperative GNEP (Cenedese
et al., 2019; Deori, Margellos, & Prandini, 2018). Specifically, for
each PEV j ∈ J , we consider a discrete-time linear dynamical
system sj(t + 1) = sj(t) + bjxj(t), t ∈ N, where sj ∈ [0, 1] is
the State of Charge (SoC), i.e., sj = 1 represents a fully charged
battery, while sj = 0 a completely discharged one; xj(t) ∈ [0, 1]
is the charging control input at the specific time instant t , and
bj > 0 denotes the charging efficiency. The goal of each PEV
is to acquire a charge amount above γj within a finite charging
horizon T := {0, . . . , T − 1}, with T = 24, thus satisfying∑

t∈T xj(t) = 1⊤

T xj ≥ γj, xj := col((xj(t))t∈T ) ∈ RT , while
minimizing its charging cost, p(x)⊤xj. Here, p : RT

≥0 → RT
≥0,

enotes the electricity price function over T , which for simplic-
ty we assume to be affine in the aggregate demand of energy
ssociated with the set of PEVs, i.e., p(x) := ασ (x) + η, with
(x) :=

∑
j∈J xj ∈ RT , for some α > 0 and η ∈ RT

≥0. Moreover,
ue to the intrinsic limitations of the grid capacity dmax > 0, we
ssume that the amount of energy required in each single time
eriod by both the PEVs and uncertain non-PEV loads should not
e greater than dmax. This translates into a constraint on the total
emand of the PEVs, i.e., δ(t) +

∑
j∈J xj(t) ∈ [0, dmax], for all

∈ T , where δ is a random variable characterized by an unknown
upport set ∆ ⊆ RT and probability distribution P, although
e have direct access to K -multisamples from 2010–2019 daily
nergy profiles (National Grid, 2019). The (uncertain) GNEP thus
oincides with the following set of optimization problems

j∈J :

⎧⎪⎪⎨⎪⎪⎩
min

xj∈[0,1]T
(ασ (x) + η)⊤xj

s.t. δ+σ (x) ≤ 1Tdmax, ∀δ∈∆,

Ajxj ≤ cj, dnom + σ (x) ≤ 1Tdmax,

(7)

here Aj := col(−Bj, Bj, −1⊤

T ) ∈ R(2T+1)×T , Bj ∈ RT×T is matrix
with all entries in the lower triangular part equal to bj, cj :=

ol(1T sj(0), 1T (1 − sj(0)), −γj) ∈ R2T+1, sj(0) ∈ [0, 1] is a given
nitial SoC, and dnom ∈ RT

≥0 represents the nominal non-PEV daily
nergy demand that is inferred from available data (National Grid,
019). We note that the game mapping F (x) := col(∇xj ((ασ (x) +

)⊤xj)j∈J ), which allows us to define the VI whose solution set
etermines the v-GNE of the game (Facchinei & Kanzow, 2007,
ef. 3), turns out to be affine in x. Specifically, F (x) = Mx + q,
here M ∈ RNT×NT has entries all equal to α, while q := 1N ⊗η ∈
NT . Note that, for any α > 0, F (·) is a monotone mapping. Thus,
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Table 1
Simulation parameters.
Name Description Value

bj Charging efficiency [0.075, 0.25]
sj(0) Initial SoC of battery [0.1, 0.4]
sj(T ) Desired SoC of battery [0.7, 1]
γj Required charge amount [1.62, 7.49]
α Inverse of price elasticity 0.01
dnom Non-PEV demand Average over daily profiles in 2019 (National Grid, 2019)
dmax Grid power capacity 2 · max

t∈T
dnom(t)
d
h
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i
t
e
e
t
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e
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Fig. 2. The solid blue line represents the average of |Ω̃δ0 ∩ XδK |/|Ω̃δ0 | over 100
numerical experiments, while the vertical blue lines the standard deviation.

based on K observations of historical data, the GNEP in (7) admits
a scenario-based counterpart, i.e.,

∀j∈J :

⎧⎪⎪⎨⎪⎪⎩
min

xj∈[0,1]T
(ασ (x) + η)⊤xj

s.t. δ(i)+σ (x) ≤ 1Tdmax, ∀i ∈ K,

Ajxj ≤ cj, dnom + σ (x) ≤ 1Tdmax,

(8)

for which we aim at quantifying the robustness of ΩδK , solution
set to VI(XδK , F ). Here, XδK := X ∩i∈K Xδ(i) , X :=

∏
j∈J Xj ∩ {x ∈

RNT
| dnom + σ (x) ≤ 1Tdmax}, Xj := {xj ∈ [0, 1]T | Ajxj ≤ cj}, and

Xδ(i) := {x ∈ RNT
| δ(i) + σ (x) ≤ 1Tdmax}, i ∈ K.

4.1. Numerical simulations

The numerical simulations are run in Matlab by using Gurobi
(Gurobi Optimization, LLC, 2021) as a solver, on a laptop with a
Quad-Core Intel Core i5 2.4 GHz CPU and 8 Gb RAM.

We first support the consistency of ΩδK numerically. Specif-
ically, we estimate Ωδ0 by computing 103 different solutions to
VI(Xδ0 , F ), thus obtaining Ω̃δ0 , with the numerical parameters
reported in Table 1, N = 20 and η = 0T . Every solution is
computed by means of the projection-type method in Solodov
and Tseng (1996), initialized with different conditions, which
takes around 6.19[s] on average to compute a solution with a
precision in norm of 10−6. Given the linearity of the constraints,
this value is representative for solving (S1) in Algorithm 1. Thus,
as illustrated in Fig. 2, the average number of solutions contained
in Ω̃δK over 100 numerical experiments, normalized w.r.t. Ω̃δ0 ,
shrinks as K grows. An example of aggregate behaviour for the
PEVs is reported in Fig. 3.

For any K ∈ N0, the feasible set of the scenario-based coun-
terpart of (7) satisfies Assumption 3. Thus, in Table 2 we compare
 r

6

Fig. 3. Average behaviour of the fleet of PEVs, computed across the estimated
set of solutions Ω̃δ103

. The overall demand, affected by the uncertainty, meets
the grid limitations.

Table 2
Robustness certificate (5) and empirical violation probability.

K |AK | s⋆K ε(s⋆K ) Vmax(Ω̃δK ) avg(Vmax(Ω̃δK ))

101 24 18 0.305 0.016 0.013
102 24 20 0.055 1.9 · 10−3 1.3 · 10−3

103 24 24 7 · 10−3 0.8 · 10−3 0.5 · 10−3

the output of the procedure summarized in Algorithm 1 to com-
pute the cardinality s⋆K of the support subsample w.r.t. ΩδK , for
ifferent values of K , where AK gathers the indices of the active
yperplanes of ∩i∈KXδ(i) . The bound on the violation probability
s then computed by the function ε(·) in (6) with β = 10−6.
ote that Algorithm 1 requires us to run Φ(·) only |AK |-times,
hich represents a noticeable improvement compared to the
reedy algorithm proposed in Campi et al. (2018), Paccagnan and
ampi (2019), which would require running Φ(·) TK -times. On

the other hand, the offline initialization step with K = 103, which
ranslates into 25964 linear inequalities, takes around 5893[s] to
dentify the set of constraints defining Xδ103

, for a total of 6041[s]
o return s⋆K . The last two columns of Table 2 involve estimating
mpirically the violation probability. To achieve this, we first
stimate Ωδ0 , by computing 103 different solutions of VI(Xδ0 , F )
o get Ω̃δ0 , which takes around 6010[s]. We then intersect this
iscrete set with the constraints sets obtained with the K samples
f the offline initialization step, thus creating the estimate Ω̃δK =

˜
δ0 ∩XδK . We then generate new sets of constraints associated to
alidation samples and intersect them with Ω̃δK to estimate the
mpirical violation probability associated to such a set, which is,
s expected, lower than the theoretical bound in Theorem 1. In
he last two columns of Table 2, we report the maximum and the
verage value of this empirical quantity as computed across 100
epetitions of this procedure.
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.2. A comparison with Monte Carlo type validations

We now compare the proposed theoretical guarantees with
onte Carlo-like considerations. Specifically, given any K ∈ N and
ssociated K -multisample, δK ∈ ∆K , the bound in Theorem 1

:= P{δ ∈ ∆ | ΩδK ⊆ ΩδK∪{δ}}

= 1 − V (ΩδK ) ≥ 1 − ε(sK )
(9)

olds true with confidence at least 1 − β . The left-hand side of
9) admits a sample-based counterpart P̂Kv = 1 − V̂Kv (ΩδK ) :=

(1/Kv)
∑Kv

i=1 ιΩδK
(Xδ(i) ) (see Vidyasagar (2013, §3.1)), which is

computed on the basis of Kv new validation samples (i.e., in
addition to the K needed to compute ΩδK ), with ιΩδK

(Xδ(i) ) = 1
if ΩδK ⊆ Xδ(i) , 0 otherwise. Note that V̂Kv (·) coincides with the
empirical violation probability, estimated using the same proce-
dure as the one employed for the last two columns of Table 2,
using Kv validation samples. Then, by adopting, e.g., the Chernoff
bound for some ε̂, β̂ ∈ (0, 1), selecting Kv = ⌈

ε̂−2

2 ln 2
β̂
⌉ leads to

the following bound characterizing the empirical distribution P̂Kv :

PKv {δKv ∈ ∆Kv | |P̂Kv − P| ≤ ε̂} ≥ 1 − β̂

PKv {δKv ∈ ∆Kv | |V (ΩδK )−V̂Kv (ΩδK )| ≤ ε̂} ≥ 1−β̂

PKv {δKv ∈ ∆Kv | V (ΩδK ) ≤ V̂Kv (ΩδK ) + ε̂} ≥ 1 − β̂

(10)

namely the empirical violation probability V̂Kv (ΩδK ) differs at
most ε̂ from the actual violation probability V (ΩδK ), with con-
fidence at least 1 − β̂ . We are now able to contrast the bound
provided in Theorem 1 and the one in (10). Specifically, Theo-
rem 1 ensures that PK

{δK ∈ ∆K
| V (ΩδK ) ≤ ε(sK )} ≥ 1 − β ,

whereas (10) results in PKv {δKv ∈ ∆Kv | V (ΩδK ) ≤ V̂Kv (ΩδK )+ε̂} ≥

1− β̂ For instance, let us choose K = 103, β̂ = β = 10−6 and ε̂ =

6 ·10−3 such that V̂Kv (Ωδ103
)+ ε̂ = ε(s⋆

103
) = 7 ·10−3 from Table 2.

It turns out that the Monte Carlo approach provides the same
probabilistic statement but requires Kv = 201510 additional
validation samples to provide a bound on V (ΩδK ) comparable to
the theoretical one in (9). We conclude by summarizing the main
differences:

(i) To compute P̂Kv , one needs a formal characterization of
ΩδK , which is rarely available. Even if it is, since ΩδK is a
continuous set one would need to compute the probability
of violation for an uncountable number of points. This is
intractable, hence we can approximate P̂Kv numerically by
computing some estimate of ΩδK by gridding the space,
resulting in the discrete set Ω̃δK , and then computing the
probability of violation for each grid point, as performed to
fill the last two columns of Table 2. This is not required in
the probabilistic certificate of Theorem 1 however, which
requires computing x⋆

∈ ΩδK , and then applying the bound
in (9) (Khargonekar & Tikku, 1996) (which holds for any
point in ΩδK );

(ii) Different set of samples are needed to construct P̂Kv and
hence a bound on P, while in (9) the same set of samples
are adopted for both decision-making and validation. Note
that the ability to use real-world data is a distinct feature of
adopting (Campi et al., 2018). In some cases, a probabilistic
model to generate samples of the uncertainty might be
available, though we would only guarantee the bound in
Theorem 1 not w.r.t. the true probability with which data
was generated, but w.r.t. the probability induced by the
choice of such a model;

(iii) For β̂ = β , and to achieve V̂Kv (ΩδK )+ ε̂ = ε(s⋆K ), i.e., to offer
the same probabilistic statement, the Monte Carlo approach
tends to be more conservative, requiring a higher number of
7

samples. For the day-ahead charging coordination of PEVs,
Kv = 201510 amounts to 552 years of non-PEV daily energy
profiles for the validation process.

5. Conclusion

The scenario approach paradigm applied to uncertain VIs pro-
vides a numerically tractable framework to compute solutions
with quantifiable robustness properties in a distribution-free
fashion. In the specific family of uncertain VIs considered, we
are able to evaluate the robustness properties of the entire set of
solutions, thereby relaxing the requirement of a unique solution
as often imposed in the literature. We have shown that this
requires us to enumerate the active constraints that ‘‘shape’’ that
set. Future research directions involve synthesizing algorithms to
enumerate the number of support subsamples in a convex setting,
as well as investigating extensions of the proposed approach to
quasi-variational inequalities.
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