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Probably Approximately Correct Nash Equilibrium Learning
Filiberto Fele and Kostas Margellos

Abstract—We consider a multiagent noncooperative game with
agents’ objective functions being affected by uncertainty. Follow-
ing a data driven paradigm, we represent uncertainty by means
of scenarios and seek a robust Nash equilibrium solution. We
treat the Nash equilibrium computation problem within the realm
of probably approximately correct learning. Building upon recent
developments in scenario-based optimization, we accompany the
computed Nash equilibrium with a priori and a posteriori prob-
abilistic robustness certificates, providing confidence that the
computed equilibrium remains unaffected (in probabilistic terms)
when a new uncertainty realization is encountered. For a wide
class of games, we also show that the computation of the so
called compression set—which is at the core of scenario-based
optimization—can be directly obtained as a byproduct of the pro-
posed methodology. We demonstrate the efficacy of our approach
on an electric vehicle charging control problem.

Index Terms—Electric vehicles (EVs), Nash equilibria, robust
game theory, scenario approach, variational inequalities.

I. INTRODUCTION

Game theory has attracted significant attention and has found nu-
merous applications from smart grid [2]–[4], and electricity markets
[5], [6], to communication networks [7] and regulatory compliance [8],
[9]. Nash equilibrium (NE) computation has been an important concept
to characterize no-regret solutions for noncooperative agents [10], in
multiagent distributed and decentralized control architectures [11]–
[15]. Stochastic considerations were included in noncooperative games
for risk-averse [16]–[18], and expected value settings [19]–[21], by
imposing certain assumptions on the probability of the uncertainty re-
alizations. Alternatively, worst-case approaches relied on assumptions
on the geometry of the uncertainty set [16], [22], [23].

We consider a multiagent NE seeking problem with uncertainty
affecting agents’ objective functions. Here, we follow a data driven
methodology, where we represent uncertainty by scenarios that could
either be extracted from historical data, or by means of some prediction
model [24]. However, this poses a major challenge, since NE are
inherently random as they depend on the extracted scenarios. Therefore,
our objective is to investigate the sensitivity of the resulting NE to the
uncertainty, in a probabilistic sense. More specifically, our contributions
can be summarized as follows.

1) We treat the NE computation problem in a probably approximately
correct (PAC) learning framework [25]–[27], and employ the so called
scenario approach [28]. Building on [29] we first provide an a posteriori
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certificate on the probability that a NE remains unaltered upon a new
realization of the uncertainty. We then rely on [30] and provide an a
priori probabilistic certificate on the equilibrium sensitivity, under an
additional nondegeneracy assumption (see Section II for a definition).
The obtained results are distribution-free, and as such the probability
distribution of the uncertainty could be unknown and the only require-
ment is sample availability.

2) Under the additional assumption that the game under consid-
eration admits a unique NE, or for aggregative games with multiple
equilibria but a unique aggregate solution, we show that a compres-
sion set (see Section II for a definition) can be directly computed by
inspection of the solution returned by the proposed algorithm. This
feature has significant computational advantages as it prevents the use
of greedy mechanisms (see, e.g., [29]), which would require running
up to numerical convergence multiple times (possibly as many as the
number of samples) a NE seeking iterative algorithm.

The results presented in this article do not contemplate constraints
coupling agents’ strategies. The latter give rise to generalized NE
problems; we refer the reader to [11], [14], [31], and [32] for details.

It should be noted that similar results have recently and indepen-
dently appeared in our preliminary work [1] and in [33]. In particular,
Corollary 9 is directly related to Corollary 2 in [33] (as well as
Theorem 5 in [1]). However, Theorems 7 and 8 introduce a charac-
terization that does not appear in [33], which relies on a probabilistic
sensitivity notion [see (4)] that serves as the game theoretic counterpart
of the so called probability of violation (or equivalently cost deteri-
oration) that appears in e.g., [28], [34], and is also employed in [33]
(see Corollary 9 for further details). It should be noted that for all
our probabilistic statements, unlike [33], we do not require the NE
to be unique, and allow for degenerate problem instances in all our a
posteriori results. The latter circumvents the need for checking whether
the underlying game is nondegenerate which is in general a difficult
task. As a result, the resulting bound is more conservative with respect
to the one of [33]; we can retrieve that tighter bound by imposing a
nondegeneracy assumption, as discussed below Theorem 7. Note also
that the exposition of [33] allows for agent dependent uncertain terms
in agents’ objective functions; here we use the same term for all agents,
however, our main results are directly applicable to the case of different
terms (see Remark 10).

In Section II we present the main results of the article. Section III
contains the proof of the main results, while in Section IV we provide
for a wide class of games a methodology to determine a compression
set. Section V provides an electric-vehicle (EV) charging control case
study. Section VI concludes the article and provides some directions
for future work.

II. SCENARIO-BASED MULTIAGENT GAME

A. Gaming Set-Up

Let the set N = {1, . . . , N} designate a finite population of agents.
The decision vector, henceforth referred to as strategy, of agent i ∈ N is
denoted byxi ∈ Rn and satisfies the individual constraint setXi ⊂ Rn.
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We denote by x = (xi)i∈N ∈ X ⊂ RnN the collection of all agents’
strategies, where X = X1 × · · · × XN .

Let θ be an uncertain vector taking values in a set Θ, endowed
with a σ-algebra, and let P denote the associated probability measure.
Fix any M ∈ N, and let {θ1, . . . , θM} ∈ ΘM be a finite collection of
independently and identically distributed (i.i.d.) scenarios/realizations
of the uncertain vector θ, that we refer to as an M -multisample. For
given strategies of the remaining agents x−i, each agent i ∈ N aims at
minimizing with respect to xi the function

Ji(xi, x−i) = fi(xi, x−i) + max
m∈{1,...,M}

g(xi, x−i, θm) (1)

where fi : RnN → R expresses a deterministic objective, different for
each agent i but still dependent on the strategies of all agents, while g :
RnN ×Θ → R encodes a common component in the agents’ objective
function that depends on the uncertain vector. Agents are interested
in minimizing their local objective fi and the worst-case (maximum)
value g can take among a finite set of scenarios. The EV charging
control problem of Section V provides a natural interpretation of such a
set-up, where EVs are selfish entities each one with a possibly different
utility function fi; however, they could be participating in the same
aggregation plan or belonging to a centrally managed fleet, thus giving
rise to a common g. Here, the fact that g is influenced by uncertainty
accounts for price volatility.

We consider a noncooperative game among the N agents, described
by the tuple G = 〈N , (Xi)i∈N , (Ji)i∈N , {θm}Mm=1〉, whereN is the set
of agents/players, Xi, Ji are, respectively, the strategy set and the cost
function for each agent i ∈ N , and {θ1, . . . , θM} is a finite collection
of samples.

Definition 1 (Nash equilibrium): Let Ω ⊆ X denote the set of Nash
equilibria of G, defined as

Ω = {x∗ = (x∗
i)i∈N ∈ X :

x∗
i ∈ arg min

xi∈Xi

Ji(xi, x
∗
−i), ∀i ∈ N}. (2)

Assumption 2: 1) For any θ ∈ Θ, and any x−i ∈ X−i = Πj 
=i∈NXj ,
fi(·, x−i) + g(·, x−i, θ) is convex and continuous differentiable, while
the local constraint set Xi is nonempty, compact and convex for all
i ∈ N .

2) For any θ ∈ Θ, and for all i ∈ N , the functions g and fi are twice
differentiable on an open convex set containing X .

3) The pseudogradient (∇xi
fi(x))

N
i=1 is monotone with constant

χf ∈ R, while ∇xg(x, θ) is monotone with constant χg ∈ R for any
fixed θ, i.e., for any u, v ∈ RnN , and θ ∈ Θ

(u− v)�((∇ui
fi(u))

N
i=1 − (∇vifi(v))

N
i=1) ≥ χf‖u− v‖2

(u− v)�(∇ug(u, θ)−∇vg(v, θ)) ≥ χg‖u− v‖2 (3)

and χf + χg ≥ 0.
Notice that we only need that fi(·, x−i) + g(·, x−i, θ) is con-

vex for any fixed x−i, without requiring that both fi(·, x−i) and
g(·, x−i, θ) are simultaneously convex. Such monotonicity require-
ments have been also employed in [35] (see (4) therein), and do
not require both χf , χg to be non-negative, but only χf + χg

≥ 0.

B. Problem Statement

As every NE x∗ ∈ Ω is a random vector due to its dependency on the
M -multisample, a question that naturally arises is how sensitive a NE
is against a new realization of the uncertainty. More formally, let Ω be
the NE set of the game with M samples. Consider a new extraction θ ∈

Θ, and let G+ = 〈N , (Xi)i∈N , (Ji)i∈N , {θm}Mm=1 ∪ {θ}〉 be a game
defined over the M + 1 scenarios {θ1, . . . , θM , θ}; denote by Ω+ the
set of the associated NE. Then, for all x∗ ∈ Ω, let

V (x∗) = P{θ ∈ Θ : x∗ /∈ Ω+} (4)

denote the probability that a NE of G does not remain a NE of G+, i.e.,
of the game characterized by the extraction of an additional sample.
Note that V (x∗) is in turn a random variable, as its argument depends
on the multisample {θ1, . . . , θM}.

Within the realm of a PAC learning framework, with a given con-
fidence/probability with respect to the product measure PM (as the
samples are extracted in an i.i.d. fashion), we aim at quantifying
V (x∗). To achieve such a characterization we provide some basic
definitions. Let Φ : ΘM → Ω be a single-valued mapping from the
set of M -multisamples to the set of equilibria of G.

Remark 3: The game G, the set of NE Ω, the mapping Φ (as well as
of other associated quantities introduced in the sequel) depend on M
via the M -multisample employed. Therefore, they are parameterized
by M , giving rise to a family of games, NE sets and mappings.
To ease notation we do not show this dependency explicitly. Also,
the dimension of the domain of Φ is to be intended in accordance
with M .

Definition 4 (Support sample [30]): Fix any i.i.d. M -multisample
(θ1, . . . , θM ) ∈ ΘM , and let x∗ = Φ(θ1, . . . , θM ) be a NE of G. Let
x◦ = Φ(θ1, . . . , θs−1, θs+1, . . . , θM ) be the solution obtained by dis-
carding the sample θs. We call the latter a support sample if x◦ 
= x∗.

Definition 5 (Compression set — adapted from [29]): Fix any i.i.d.
M -multisample (θ1, . . . , θM ) ∈ ΘM , and let x∗ = Φ(θ1, . . . , θM ) be
a NE of G. Consider any subset C ⊆ {θ1, . . . , θM} and let x◦ = Φ(C).
We call C a compression set if x◦ = x∗.

The properties of the compression set have been studied in detail
in [29], where it is referred to as support subsample. Here we adopt
the term compression set as in [25] and [27] to avoid confusion with
Definition 4.

Let C(θ1, . . . , θM ) be the collection of all compression sets
associated with {θ1, . . . , θM}. For a given compression set C ∈
C(θ1, . . . , θM ) we refer to the compression cardinality as d∗ = |C|.
Note d∗ depends on C; we do not show this dependence explicitly to
ease notation. Also note C, hence d∗, is itself a random variable as it
depends on the M -multisample.

Definition 6 (Nondegeneracy — adapted from [36]): For any M ∈
N, with PM -probability equal to 1, the NE x∗ = Φ(θ1, . . . , θM ) co-
incides with the NE returned by Φ when the latter takes as argument
only the support samples. The corresponding game is then said to be
nondegenerate; otherwise it is called degenerate.

It follows that for nondegenerate problems the support samples form
a compression set with PM -probability one. For degenerate problems
the notions in Definitions 4 and 5 do not necessarily coincide (if only
the support samples are used as argument to Φ, the returned solution
might be different from x∗). In the latter case the support samples form
a strict subset of any compression set in C (see [34] and [36] for more
details).

C. Main Results

Under Assumption 2, it is shown in [1, Section IV] that a single-
valued mapping Φ : ΘM → Ω indeed exists, and can be computed
in a decentralized manner, thus ensuring that x∗ = Φ(θ1, . . . , θM ) in
Theorems 7 and 8 below is well defined.

1) A Posteriori Certificate: We provide an a posteriori quan-
tification of an upper bound for V (x∗).
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Theorem 7: Consider Assumption 2. Fix β ∈ (0, 1) and let ε :
{0, . . . ,M} → [0, 1] be a function satisfying

ε(M) = 1

and
M−1∑
k=0

(
M

k

)
(1− ε(k))M−k = β.

(5)

Let x∗ = Φ(θ1, . . . , θM ). Consider any compression set and denote by
d∗ ≤ M its cardinality. We then have that

PM{(θ1, . . . , θM ) ∈ ΘM : V (x∗) ≤ ε(d∗)} ≥ 1− β. (6)

Theorem 7 shows that with confidence at least 1− β the probability
that the NE x∗ ∈ Ω, computed on the basis of the randomly extracted
samples (θ1, . . . , θM ) ∈ ΘM , does not remain an equilibrium of the
game G+ when an additional sample θ ∈ Θ is considered, is at most
ε(d∗). Note that (6) captures the generalization properties of x∗, where
1− β accounts for the “probably” and ε(d∗) for the “approximately
correct” term used within a PAC learning framework.

The structure of ε(·) is determined in accordance with [29]. Its value
depends on d∗, which in turn depends on {θ1, . . . , θM} thus giving rise
to the a posteriori nature of the result. Hence, the level of conservatism
of the obtained certificate depends on d∗; the smaller the cardinality of
the computed compression set, the tighter the bound (see Section IV
for a detailed elaboration on the computation of d∗).

In the case of a nondegenerate game, the bound could be significantly
improved by means of the wait-and-judge analysis of [36]: specifically,
by Theorem 2 in [36], we can replace the expression for ε(·) in (5) with
ε(k) = 1− t(k), where t(k) is shown to be the unique solution in (0,1)
of

β

M + 1

M∑
m=k

(
m

k

)
tm−k −

(
M

k

)
tM−k = 0. (7)

We note that in [33, Cor. 2] a similar bound is derived on the related
quantity of cost deterioration (see Vc in Corollary 9). We wish to
emphasize, however, that nondegeneracy is a condition in general
difficult to verify even in convex optimization settings, a challenge
that becomes more prominent in games.

2) A Priori Certificate: We now provide an a priori quantifica-
tion of an upper-bound of V (x∗).

Theorem 8: Consider Assumption 2, and further assume that the
game is nondegenerate as in Definition 6. Fix β ∈ (0, 1) and consider
ε : {0, . . . ,M} → [0, 1] satisfying (5). Let x∗ = Φ(θ1, . . . , θM ). We
then have that

PM{(θ1, . . . , θM ) ∈ ΘM : V (x∗) ≤ ε((n+ 1)N)} ≥ 1− β. (8)

Although similar in form to Theorem 7, the bound onV (x∗)provided
by Theorem 8 is a priori and relies on the developments in [30] and
[34]. In this way, ε(·) is evaluated on the sample-independent quantity
(n+ 1)N , expressing the dimension nN of the agents’ decision space
plus N additional variables, explained by the epigraphic reformulation
introduced in the proof of Theorem 8. If we further assume that for
all i ∈ N , for every fixed x−i ∈ X−i and θ ∈ Θ, both fi(·, x−i) and
g(·, x−i, θ) are convex, we would only need one epigraphic vari-
able, hence the argument of ε(·) could be replaced by nN + 1 (see
Section III-C).

Since we strengthen here the assumptions of Theorem 8 by imposing
a nondegeneracy condition, (5) could be directly replaced by the tighter
expression in (7). We wish to emphasize that, even if the nondegeneracy
assumption holds, it may still be preferable to calculate the cardinality
d∗ in an a posteriori fashion, as in certain problems the latter might be
significantly lower compared to (n+ 1)N .

Corollary 9: Let x∗ = Φ(θ1, . . . , θM ) and consider

Vc(x
∗) = P{θ ∈ Θ : g(x∗, θ) > max

m∈{1,...,M}
g(x∗, θm)}. (9)

Under the assumptions of Theorems 7 and 8, respectively, (6) and (8)
hold with Vc(x

∗) in place of V (x∗).
Corollary 9 shows that with given confidence the probability that

g(x∗, θ), and hence also each agent’s objective function, deteriorates
when a new realization of the uncertainty is encountered can be bounded
as in Theorems 7 and 8, respectively. This statement is established
within the proofs of Theorems 7 and 8.

Remark 10: The results of Theorems 7 and 8 remain valid in the
case where the uncertain part of the objective function is different for
each agent, i.e., if g is replaced by gi, i ∈ N (such a setup is considered
in [33]). We keep our presentation with a common g since for this
case we are able to construct Φ in a decentralized manner; we refer the
reader to [1] for implementation details (see also [7], [37], and [38]). We
point out that a decentralized implementation of Φ for problems where
the uncertain part of the objective function is different for each agent
encompasses additional challenges (see [35, Rem. 1]) and is outside
the scope of our article.

III. PROOFS OF A POSTERIORI AND A PRIORI CERTIFICATES

A. Game Reformulation and Variational Inequalities

NE are commonly characterized as solutions to a variational inequal-
ity (VI) [39]. However, in G the presence of the max operator renders
agents’ objective functions (1) nondifferentiable. To circumvent the
computation of sub-gradients and exploit the wide range of algorithms
available to solve VIs in the differentiable case, we define the augmented
game Ĝ between N + 1 agents [35]. In Ĝ each player i ∈ N , given x−i

and y = (ym)Mm=1, computes

xi ∈ arg min
νi∈Xi

fi(νi, x−i) +

M∑
m=1

ymg(νi, x−i, θm)︸ ︷︷ ︸
ĝ(νi,x−i,y)

(10)

where ĝ(x, y) follows from the equivalence that for any x

max
m∈{1,...,M}

g(x, θm) = max
y∈Δ

M∑
m=1

ymg(x, θm) (11)

where

Δ =

{
y ∈ RM : y ≥ 0,

M∑
m=1

ym = 1

}
(12)

is a continuous set that forms a simplex in RM [40, Lemma 6.2.1], [35];
ym, m = 1, . . . ,M , are continuous variables. Notice that their number
increases with the number of samples M . The additional agent, given
x, will act instead as a maximizing player for the uncertain component
of Ji, i ∈ N , i.e.,

y ∈ arg max
ν∈Δ

ĝ(x, ν). (13)

We can now link the NE of the augmented game Ĝ to a VI. Following
[7], we consider the optimization problem

(x∗, y∗) = arg min
(x∗,y∗)∈X×Δ

1

2
‖(x∗, y∗)‖22

subject to ((x, y)− (x∗, y∗))�F (x∗, y∗) ≥ 0,

∀(x, y) ∈ X ×Δ. (14)
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The constraint in (14) is a VI, where F (x, y) : X ×Δ → R(nN+M) is
the pseudogradient [39, §1.4.1]

F (x, y) =

[
(∇xi

fi(x) +∇xi
ĝ(x, y))i∈N

− (∇ym ĝ(x, y))Mm=1

]
(15)

representing the first-order optimality conditions for the N + 1 indi-
vidual problems described by (10) and (13). Notice the slight abuse of
notation in (14), where by (x∗, y∗) we denote both the decision vector
and the resulting optimal solution.

Any algorithm that returns the optimal solution of (14) serves as a
construction ofΦ. The motivation of selecting the minimum norm NE in
(14) stems from our requirement (see Section II-B) that Φ : ΘM → Ω
is single-valued; any strictly convex objective function could be used
instead (see [7, Th. 21]). Such a tie-break rule is needed even if only
one NE is returned by the given algorithm, to prevent the case where
different initial conditions produce different NE.

The following proposition establishes a link between the optimal
solution of (14) (i.e., in fact this result holds for any feasible solution of
the VI) and the set of equilibria of the original game; its proof follows
from [39, Prop. 1.4.2] and [35, Th. 1], and can be found in [1, Prop. 7].

Proposition 11: Under Assumption 2, (14) is feasible. If (x∗, y∗) is
the solution to (14), then x∗ is a NE of G.

Since F is monotone but not strongly monotone (see, e.g., [7] for
a definition), a proximal decentralized algorithm based on [7, Algo-
rithm 4] is employed in [1]. A direct consequence of the algorithm
adopted in [1] is that x∗ in (14) satisfies the following fixed point
equation for τ > 0 “big” enough (see [7, Lemma 20] for a lower bound
on τ )

(x∗
i , γ

∗
i )i∈N = arg min

{xi∈Xi,γi∈R}i∈N

∑
i∈N

(
γi + τ‖xi − x∗

i‖22
)

subject to fi(xi, x
∗
−i) + g(xi, x

∗
−i, θm) ≤ γi,

∀i ∈ N , ∀m ∈ {1, · · · ,M} (16)

where γi, i ∈ N , are epigraphic variables, and we have equality as the
set of minimizers is a singleton due to the presence of the regulariza-
tion term τ‖xi − x∗

i‖22. Notice that at the NE the regularization term
vanishes.

Note that Φ is single-valued, hence the returned solution is indepen-
dent of the initial condition of the algorithm used. However, in the proof
of Theorem 8 it becomes insightful to make this dependency explicit.
Thus, for the analysis of Section III-C we will introduce the notation
Φx0

, with x0 ∈ X playing the role of the initial condition. Notice
that y implicitly depends on the M -multisample, which is already an
argument of Φ, hence we only include x0 as a subscript. It follows from
the fixed point equation (16) that x∗ = Φx∗(θ1, . . . , θm).

B. Proof of Theorem 7

Fix M ∈ N. Consider (θ1, . . . , θM ) ∈ ΘM , and let d∗ ≤ M be
the cardinality of any compression set of {θ1, . . . , θM} (recall that
it depends on the realization of the M -multisample). Let x∗ =
Φ(θ1, . . . , θM ) ∈ Ω, and γ∗ = maxm∈{1,...,M} g(x∗, θm). For any θ ∈
Θ, let

Hθ = {(x, γ) : g(x, θ) ≤ γ}. (17)

Fix β ∈ (0, 1) and consider ε(·) defined as in (5). Under
Assumption 2, Φ is single-valued as discussed in Section II-C. By [29,

Th. 1] we then have that

PM{(θ1, . . . , θM ) ∈ ΘM :

P{θ ∈ Θ : (x∗, γ∗) /∈ Hθ} ≤ ε(d∗)} ≥ 1− β (18)

if (x∗, γ∗) ∈ Hθm , ∀m ∈ {1, . . . ,M} (consistency condition in [27]).
To show this, notice that for each i ∈ N , by the NE definition (Defini-
tion 1), (x∗

i , γ
∗) will belong to the set of minimizers of the following

epigraphic reformulation of (2)

(x∗
i , γ

∗) ∈ arg min
xi∈Xi,γ∈R

fi(xi, x
∗
−i) + γ

subject to g(xi, x
∗
−i, θm) ≤ γ, ∀m ∈ {1, · · · ,M}. (19)

By (19) it follows that the consistency condition is satisfied, thus
establishing (18). Note that for the result of [29] to be invoked, the
aforementioned program is not required to be convex, hence the fact
that for each i ∈ N , for any θ ∈ Θ, only fi(·, x∗

−i) + g(·, x∗
−i, θ) is

assumed to be convex by Assumptions 2, is sufficient.
By the definition of γ∗ and Hθ , (18) implies that with confidence at

least 1− β

P{θ ∈ Θ : g(x∗, θ) > max
m∈{1,...,M}

g(x∗, θm)} ≤ ε(d∗) (20)

thus establishing the statement related to (6) in Corollary 9.
We now proceed to demonstrate the claim in (6). Recall that, by (14)

and (15), we can obtainx∗ ∈ Ω as solution of the following optimization
program:

min
(x∗,y∗)∈X×Δ

1

2
‖(x∗, y∗)‖2

subject to∑
i∈N

(xi − x∗
i)

�∇xi
(fi(x

∗) + ĝ(x∗, y∗))

−
M∑

m=1

(ym − y∗
m)∇ym ĝ(x∗, y∗) ≥ 0, ∀x ∈ X , y ∈ Δ (21)

where (x∗, y∗) is a NE of Ĝ. By definition of ĝ in (10), and since
∇ym(

∑M
m=1 y

∗
mg(x∗, θm)) = g(x∗, θm), the constraint in (21) can be

equivalently written as

∑
i∈N

(xi − x∗
i)

�∇xi
(fi(x

∗) +
M∑

m=1

y∗
mg(x∗, θm))

+
M∑

m=1

y∗
mg(x∗, θm)−max

y∈Δ

M∑
m=1

ymg(x∗, θm) (22)

where the presence of the maximum is due to the fact that (21) holds
for any y ∈ Δ. By (11) this is in turn equivalent to

∑
i∈N

(xi − x∗
i)

�∇xi
(fi(x

∗) +
M∑

m=1

y∗
mg(x∗, θm))

+
M∑

m=1

y∗
mg(x∗, θm)− max

m∈{1,...,M}
g(x∗, θm) ≥ 0. (23)

For a given θ ∈ Θ, recall from Section II-C the definition of the game
G+ associated with the samples {θ1, . . . , θM} ∪ {θ}, and the associ-
ated set of NE Ω+. Moreover, let Ĝ+ denote the associated augmented
game. Analogously to (23), any solution (x+, y+) ∈ X ×Δ+ (where
Δ+ is the simplex in RM+1) of the augmented game Ĝ+ will satisfy
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the following VI:

∑
i∈N

(xi − x+
i )

�∇xi

(
fi(x

+) +
M∑

m=1

y+
mg(x+, θm)

)

+
∑
i∈N

(xi − x+
i )

�∇xi

(
y+
M+1g(x

+, θ)
)

+

M∑
m=1

y+
mg(x+, θm) + y+

M+1g(x
+, θ)

−max

{
max

m∈{1,...,M}
g(x+, θm), g(x+, θ)

}
≥ 0. (24)

Note the analogy between (23) and (24), with the additional terms
corresponding to the new sample θ (yM+1 is the additional decision
variable corresponding to the new sample).

We are interested in quantifying the probability of x∗ ∈ Ω+. To this
end, notice that if g(x∗, θ) ≤ γ∗, then x+ = x∗ and y+ = (y∗�, 0)�

constitute a feasible pair for (24). This is due to the fact that under this
choice y+

M+1 = 0 and

max

{
max

m∈{1,...,M}
g(x∗, θm), g(x∗, θ)

}
= max {γ∗, g(x∗, θ)} = γ∗ = max

m∈{1,...,M}
g(x∗, θm) (25)

thus (24) reduces to (23). Applying Proposition 11 to G+ and Ĝ+, we
have that if (x+, y+) satisfies (24) (i.e., it is a NE of the augmented game
Ĝ+) then x+ ∈ Ω+. Therefore, x∗ ∈ Ω+ whenever g(x∗, θ) ≤ γ∗, or
in other words

P{θ ∈ Θ : (x∗, γ∗) ∈ Hθ} = P{θ ∈ Θ : g(x∗, θ) ≤ γ∗}
≤ P{θ ∈ Θ : x∗ ∈ Ω+}. (26)

By (18) and (26), (6) follows, thus concluding the proof. �

C. Proof of Theorem 8

Let C0 ⊆ {θ1, . . . , θM} be the minimal cardinality compression set
for the minimum norm NEx∗ of (14); note that under the nondegeneracy
assumption it will be unique and will coincide with the set of support
samples. Following the discussion at the end of Section III-A, denote
by Φx0

an algorithm that returns x∗, where we make explicit the de-
pendence on the initial condition x0 ∈ X . As Φ is single-valued, by the
definition of a compression set, we have that x∗ = Φx0

(θ1, . . . , θM ) =
Φx0

(C0), for all x0 ∈ X .
Consider now the fixed point characterization ofx∗ in (16), for which

we have thatx∗ = Φx∗(θ1, . . . , θM ). Also note that we have introduced
one epigraphic variable per agent i ∈ N ; we will invoke in the sequel
the fact that (16) is convex due to Assumption 2 . However, if we further
assume that for all i ∈ N , for every fixed x−i ∈ X−i and θ ∈ Θ, the
individual functions fi(·, x−i) and g(·, x−i, θ) are convex, we would
only need one epigraphic variable, as we could perform an epigraphic
reformulation only for g [this would give rise to the constraint in (19)],
which is common to all agents.

Let C denote a minimal cardinality compression set forx∗ in (16). We
claim that C0 ⊆ C. To show this, assume for the sake of contradiction
that there exists k ∈ {1, . . . ,M} such that θk ∈ C0 but θk /∈ C. Con-
sider the set {θ1, . . . , θM} \ {θk} ⊇ C, and notice that this has to be a
compression set forx∗ in (16) as it is a superset ofC. By Definition 5, this
implies that x∗ = Φx∗({θ1, . . . , θM} \ {θk}) (recall that the solution
of (16) is given by x∗ = Φx∗(θ1, . . . , θM )). However, θk ∈ C0, which
due to the imposed nondegeneracy assumption implies that it belongs

to the set of support samples (see Definition 4) for x∗, i.e., if removed
then the solution alters. Hence, x∗ 
= Φx∗({θ1, . . . , θM} \ {θk}), thus
establishing a contradiction, showing that C0 ⊆ C (hence |C0| ≤ |C|).

By Assumption 2, (16) is a convex scenario program, and admits
a unique solution due to the fact that the objective function in (16)
is strictly convex. Therefore, by [30], [34], we have that any minimal
cardinality compression set C has cardinality upper-bounded by (n+
1)N , i.e., the number of decision variables in (16). Therefore, |C0| ≤
|C| ≤ (n+ 1)N . As a result, |C0| can be upper-bounded by the a priori
known quantity (n+ 1)N . As Theorem 7 holds for any compression
cardinality d∗ ≥ |C0|, we can apply it with d∗ = (n+ 1)N . Hence,
Theorem 8 as well as the statement related to (8) in Corollary 9 directly
follow, concluding the proof. �

IV. COMPUTATION OF THE COMPRESSION SET CARDINALITY

The result of Theorem 7 relies on the computation of the compression
cardinality d∗. In [29, §II] a greedy procedure is outlined to estimate (an
upper bound to) the minimal compression cardinality. However, there
are two associated drawbacks: first, the computational cost is generally
high, as the algorithm Φ(·) employed to determine a NE should be
evaluated at leastM times, and this may involve an asymptotic scheme;
second, in practice, limited numerical accuracy makes the greedy
procedure amenable to numerical errors.

To alleviate these, we provide a computationally efficient way to
determine a compression set, and hence d∗, by direct inspection of the
NE. To achieve this, we impose certain NE uniqueness requirements.
However, it should be noted that for the wide class of aggregative games,
the additional structure required in the proposition below implies only
uniqueness of an aggregate strategy, and multiple equilibria may exist.

Proposition 12: Consider Assumption 2. Further assume that for all
M ∈ N, either
1) G admits a unique NE;
2) or, g depends on the aggregate strategy1 σ(x) : x �→∑

i∈N xi, and
G admits a unique NE aggregate σ(x).

Then, Y∗ � {m ∈ {1, . . . ,M} : y∗
m > 0} includes the indices of a

compression set, i.e., x∗ = Φ(θ1, . . . , θM ) = Φ({θm}m∈Y∗).
Proof: Part 1: Uniqueness of NE. Fix (θ1, . . . , θM ) ∈ ΘM and

notice that it forms a (trivial) compression set for x∗. Let (x∗, y∗) be a
solution of Ĝ, where y∗ = (y∗

m)Mm=1.
To prove that x∗ = Φ({θm}m∈Y∗) it suffices to show that the so-

lution returned by Φ remains unaltered after removing all samples
from {θ1, . . . , θM} whose associated component of y∗ is zero. To
this end, suppose that at least one such sample exists: without loss
of generality, assume y∗

M = 0 (i.e., that sample has index M ). We
will first show that {θ1, . . . , θM−1} is a compression set, i.e., x∗ =
Φ(θ1, . . . , θM−1). Let G− = 〈N , (Xi)i∈N , (Ji)i∈N , {θj}M−1

j=1 〉 be the

game with samples {θ1, . . . , θM−1}. Moreover, let Ĝ− denote the asso-
ciated augmented game, and Δ− the simplex in RM−1. Since (x∗, y∗)
is an NE of Ĝ, it will satisfy the VI in (23). At the same time, every
solution (x−, y−) ∈ X ×Δ− of the augmented game Ĝ− satisfies the
following VI:∑

i∈N
(xi − x−

i )
�∇xi

(
fi(x

−) +
M−1∑
m=1

y−
mg(x−, θm)

)

+

M−1∑
m=1

y−
mg(x−, θm)− max

m∈{1,...,M−1}
g(x−, θm) ≥ 0. (27)

1With a slight abuse of notation, in the second part of the proposition it is to
be understood that for all i ∈ N and for any given x−i, Assumption 2 refers to
the function fi(·, x−i) + g(σ(·, x−i), θ).
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Set x− = x∗ and y− = (y∗
m)M−1

m=1. Under this choice (x−, y−) satisfies
(27), as

max
m∈{1,...,M−1}

g(x∗, θm) ≤ max
m∈{1,...,M}

g(x∗, θm). (28)

Equivalently, (x∗, (y∗
m)M−1

m=1) is an NE for Ĝ−, and by applying Propo-
sition 11 to G− and Ĝ− we have that x∗ is an NE for G−. However, due
to the uniqueness assumption, x∗ has to be the only NE of G−, showing
that x∗ = Φ(θ1, . . . , θM−1).

Following the same procedure, removing one by one all samples
for which the associated elements of y∗ are zero, shows that x∗ =
Φ(θ1, . . . , θM ) = Φ({θm}m∈Y∗), thus concluding the proof of the first
part.

Part 2: Uniqueness of NE aggregate. The proof follows the same
arguments as in Part 1 with the following modifications. The derivation
until (28) remains unaltered, showing that (x∗, (y∗

m)M−1
m=1) is a NE

of Ĝ−. To prove that x∗ = Φ(θ1, . . . , θM−1) it suffices to show that
(x∗, (y∗)M−1

m=1) is the minimum norm NE of Ĝ−. We thus assume for
the sake of contradiction that (x̂, ŷ) ∈ X ×Δ− is the NE of Ĝ− that
achieves the minimum norm, i.e., ‖(x̂, ŷ)‖2 < ‖(x∗, (y∗)M−1

m=1)‖2. We
distinguish two cases:

Case 1: g(σ(x̂), θM ) ≤ maxm∈{1,...,M−1} g(σ(x̂), θm). Under this
condition observe that (x̂, (ŷ�, 0)�) satisfies the VI in (23) for the
game with M samples. However, as (x∗, y∗) is the minimum norm
equilibrium for that game, we have that

‖(x∗, y∗)‖2 ≤ ‖(x̂, (ŷ�, 0)�)‖2. (29)

Recalling that y∗
M = 0

‖(x∗, (y∗)M−1
m=1)‖2 = ‖(x∗, y∗)‖2

≤ ‖(x̂, (ŷ�, 0)�)‖2 = ‖(x̂, ŷ)‖2 (30)

thus establishing a contradiction. We can then show that x∗ =
Φ(θ1, . . . , θM ) = Φ({θm}m∈Y∗) as in the last paragraph of Part 1.

Case 2: g(σ(x̂), θM ) > maxm∈{1,...,M−1} g(σ(x̂), θm). We will
show that, under our assumptions, this case cannot occur. By the
uniqueness assumption we have that σ(x̂) = σ(x∗) for any equilibrium
x̂ 
= x∗ (the NE is not necessarily unique, but all equilibria have the
same aggregate). We then have

g(σ(x∗), θM ) = g(σ(x̂), θM )

> max
m∈{1,...,M−1}

g(σ(x̂), θm)

≥ g(σ(x̂), θm) = g(σ(x∗), θm) (31)

for any m ∈ 1, . . . ,M − 1. Since (31) holds for any m

g(σ(x∗), θM ) > max
m∈{1,...,M−1}

g(σ(x∗), θm). (32)

Consider now (19). By direct computation of the Karush-Kuhn-Tucker
(KKT) optimality conditions [40, §6.2.1] of (19) and (13), respec-
tively, it can be verified that the decision variable y ∈ Δ introduced
in (10)–(13) is a shadow price for the constraint (19). Then, by the
complementary slackness condition

y∗
m (g(σ(x∗), θm)− γ∗) = 0, ∀m ∈ {1, . . . ,M}. (33)

Since yM = 0 implies g(σ(x∗), θM ) ≤ γ∗ we obtain

max
m∈{1,...,M}

g(σ(x∗), θm) = max
m∈{1,...,M−1}

g(σ(x∗), θm). (34)

From (34) it follows that:

max
m∈{1,...,M−1}

g(σ(x∗), θm)

= max
m∈{1,...,M}

g(σ(x∗), θm) ≥ g(σ(x∗), θM ). (35)

This establishes a contradiction with (32), and concludes the
proof. �

Based on the shadow price interpretation of y notice that if
g(x∗, θm) < γ∗ (inactive constraint) then y∗

m = 0. Note that samples
with y∗

m = 0 can be removed without altering x∗ due to the imposed
uniqueness requirements; otherwise, the feasibility region of the VI in
(27) may enlarge, thus resulting in a different minimum norm NE.
Moreover, it should be noted that Proposition 12 does not provide
guarantees that a minimal cardinality compression set is determined;
this can be obtained by the greedy algorithm of [29].

V. CASE STUDY: EV CHARGING

We consider a stylised EV charging control game. Let {1, . . . , N}
index a finite population of EV vehicles/agents. We denote by xi ∈ Rn

the demand each EV seeks to determine over n time slots, where for
simplicity slots are taken to be of 1 h. Vehicles’ strategy is in response
to a pricing signal, which in turn depends on demand of all agents. We
consider price to be an affine function of the aggregate strategy σ(x) :
x �→∑

i∈N xi, but other choices are also supported by our analysis.
However, price is subject to uncertainty, e.g., externalities acting on the
energy spot market, encoded by θ ∈ Θ, which we model by means of
scenarios. In particular, each scenario is a realization of prices along the
considered n-slot interval. Note that these scenarios are i.i.d., however,
each of them is a finite horizon path, whose entries can be correlated.
Each agent i = 1, . . . , N aims at minimizing

fi(xi, x−i) + max
m∈{1,...,M}

g(xi, x−i, θm)

= x�
i (A0σ(x) + b0) +

1

N
max

m∈{1,...,M}
σ(x)�(Amσ(x) + bm)

where Am ∈ Rn×n, for m = 0, 1, . . . ,M , are diagonal matrices, and
bm ∈ Rn. Moreover, we assume the charging operations are subject to

Xi = {xi ∈ Rn : 1�xi ≥ Ei, 0 ≤ xij ≤ Pi,

∀j = 1, . . . , n} (36)

where Ei, Pi ∈ R denote the desired final state of charge (SoC) and
the maximum power deliverable by the charger, respectively.

We analyse the results of randomly generated cases, differing in
the parameters characterizing the EV constraints Xi, selected from a
uniform random distribution: specifically, Pi ∈ [6, 15] kW, and Ei is
chosen to be feasible in the specified time interval (∼0–35 kWh per
12 h interval). The entries of {Am, bm}Mm=1 are i.i.d. extracted from
a lognormal distribution for Am, and a uniform distribution for bm.
The nominal electricity price, i.e., the diagonal entries {at}nt=1 of the
matrix A0, have been derived by rescaling a winter weekday demand
profile in the UK [41], whereas b0 = 0.

To determine a NE we use the decentralized algorithm based on
regularization outlined in [1, Sec. IV]. Note that at each algorithm
iteration agents need to broadcast their strategies to a common author-
ity/aggregator, and receive updates about the aggregate agents’ strategy.
Even though this example fits in the class of aggregative games, it does
not necessarily meet the uniqueness requirement of Proposition 12.
However, we have empirically observed that the main conclusion of
the proposition still holds. Informally, this is due to the fact that for any
feasible instance the constraint 1�xi ≥ Ei will always be binding at
the optimum, and as result 1�σ(x) will be constant for any NE x (see
transparent plane in Fig. 1).

To validate the a posteriori result of Theorem 7, Table I shows the
average robustness performance of several solutions (with N = 20,
n = 24) obtained from different sets of M = 500 samples, grouped
according to the a posteriori observed compression cardinality d∗;
we have set β = 10−6. The violation rate V (x∗) of each solution is
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Fig. 1. Case with N = 20, n = 2: Uncertain cost component
Ng(x∗, θm) for a subset m ∈ {53, 72, 282, 566} of the M = 1000 sam-
ples used for the derivation of the NE x∗. In this case d∗ = 2, with
{θ53, θ282} supporting the solution together with the SoC constraint
which is binding in this case. This is the transparent plane, representing
all aggregate strategies fulfilling σ(x)|t=1 + σ(x)|t=2 =

∑
i∈N Ei over

the considered time interval. σ(x∗), visible in red, lies at the intersection
of the three surfaces.

TABLE I
EMPIRICAL VALIDATION OF THE A POSTERIORI RESULT OF THEOREM 7

Fig. 2. Empirical validation of the a priori result of Theorem 8. The
plot shows the average compression set cardinality d∗ observed over 50
trials, corresponding to different randomly generated cases correspond-
ing to different values of n and M . In all cases, d∗ is bounded by n, and
hence also by the theoretical bound (n+ 1)N .

empirically computed using 106 newly extracted samples (according
to the same aforementioned distributions) and counting the fraction of
them that result in a change of the computed NE. Consistently with [29],
we note that the observed value ofd∗ is indicative of the confidence level
on the equilibrium robustness. The experimental results are compared
with the theoretical bound provided by Theorem 7 (third row). For
nondegenerate problems, the conservatism of the latter can be reduced
by employing the tighter expression for ε(·) reported in (7), leading to
the fourth row of Table I. However, note that in general it is difficult to
verify whether a given problem is nondegenerate, thus preventing the
use of (7).

A visual representation of the compression set concept is given in
Fig. 1. The plot depicts the curves expressing the uncertain cost term
Ng(x∗, θm) associated to a subsetm ∈ {53, 72, 282, 566} of theM =
1000 samples used for the derivation of the NE x∗. Values are plotted as

a function of the aggregate demand (σ(x)|t=1, σ(x)|t=2) on an interval
around σ(x∗). In this case the compression cardinality is d∗ = 2, with
{θ53, θ282} supporting the solution together with the constraint on the
state of charge which is binding in this case (transparent plane). Note
that in this instance the constraints on the power rate Pi are not active,
and omitted from the plot for clarity.

Fig. 2 shows the average compression set cardinality d∗ observed
over 50 trials, corresponding to different randomly generated cases
corresponding to different values of n and M . In all cases, d∗ is
bounded by (n+ 1)N as suggested by Theorem 8 (solid line). In
fact, the empirically calculated cardinality d∗ is significantly lower,
suggesting that in this case study an a posteriori quantification is less
conservative. Moreover, in all our numerical investigations we noticed
that d∗ ≤ n (dashed line), i.e., the empirical compression set cardinality
is independent of the number of agents and is bounded by the individual
number of decision variables. We conjecture that for this example, the
so called support rank (see [42] for a definition) offers a tighter bound
on the compression set cardinality compared to (n+ 1)N .

VI. CONCLUSION

We considered the problem of NE computation in multiagent games
in the presence of uncertainty, and accompanied them with a priori and a
posteriori certificates regarding the probability that the NE equilibrium
remains unchanged when a new uncertainty realization is encountered.

Current article is concentrated towards relaxing the uniqueness
requirements underpinning the compression set quantification of
Section IV for the class of aggregative games. Moreover, we aim at
extending our results to the class of generalized games [11], [14], [31],
[32], and at investigating the use of distributed NE seeking algorithms
that require communication only among neighbouring agents [38].
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