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a b s t r a c t

We address the optimization of a large scale multi-agent system where each agent has discrete and/or
continuous decision variables that need to be set so as to optimize the sum of linear local cost functions,
in presence of linear local and global constraints. The problem reduces to a Mixed Integer Linear Program
(MILP) that is here addressed according to a decentralized iterative scheme based on dual decomposition,
where each agent determines its decision vector by solving a smallerMILP involving its local cost function
and constraint given some dual variable, whereas a central unit enforces the global coupling constraint by
updating the dual variable based on the tentative primal solutions of all agents. An appropriate tightening
of the coupling constraint through iterations allows to obtain a solution that is feasible for the original
MILP. The proposed approach is inspired by a recent paper to the MILP approximate solution via dual
decomposition and constraint tightening, but shows finite-time convergence to a feasible solution and
provides sharper performance guarantees by means of an adaptive tightening. The two approaches are
compared on a plug-in electric vehicles optimal charging problem.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we are concernedwith the optimization of a large-
scale system composed of multiple agents, each one characterized
by its set of decision variables that should be chosen so as to solve
a constrained optimization problem where the agents’ decisions
are coupled by some global constraint. More specifically, the goal
is to minimize the sum of local linear cost functions, subject to
local polyhedral constraints and a global linear constraint. As in
the inspiringwork (Vujanic, Esfahani, Goulart,Mariéthoz, &Morari,
2016), we consider a frameworkwhere decision variables can have
both continuous anddiscrete components, a feature thatmakes the
problem challenging.

Let m denote the number of agents. Then, the optimization
problem takes the form of the following Mixed Integer Linear
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Program (MILP):

min
x1,...,xm

m∑
i=1

ci⊤xi (P)

subject to:
m∑
i=1

Aixi ≤ b

xi ∈ Xi, i = 1, . . . ,m

where, for all i = 1, . . . ,m, xi ∈ Rni is the decision vector of agent
i, ci⊤xi its local cost, and Xi = {xi ∈ Rnc,i ×Znd,i : Dixi ≤ di} its local
constraint set defined by a matrix Di and a vector di of appropriate
dimensions, nc,i being the number of continuous decision variables
and nd,i the number of discrete ones, with nc,i + nd,i = ni. The
coupling constraint

∑m
i=1 Aixi ≤ b is defined by matrices Ai ∈

Rp
× Rni , i = 1, . . . ,m, and a p-dimensional vector b ∈ Rp.

Note that all inequalities involving vectors have to be intended
component-wise.

Despite the advances in numerical methods for integer opti-
mization, when the number of agents is large, the presence of
discrete decision variables makes the optimization problem hard
to solve, and calls for some decomposition into lower scale MILPs,
as suggested in Vujanic et al. (2016).

A commonpractice to handle problems of the formofP consists
in first dualizing the coupling constraint introducing
a vector λ ∈ Rp of p Lagrange multipliers and solving the dual
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program

max
λ≥0
−λ⊤b+

m∑
i=1

min
xi∈Xi

(ci⊤ + λ⊤Ai)xi, (D)

to obtain λ⋆, and then constructing a primal solution x(λ⋆) =
[x1(λ⋆)⊤ · · · xm(λ⋆)⊤]⊤ by solving m MILPs given by:

xi(λ) ∈ arg min
xi∈vert(Xi)

(ci⊤ + λ⊤Ai)xi, (1)

where the searchwithin the closed constraint polyhedral set Xi can
be confined to its set of vertices vert(Xi) since the cost function
is linear. Unfortunately, while this procedure guarantees x(λ⋆) to
satisfy the local constraints since xi(λ⋆) ∈ Xi for all i = 1, . . . ,m, it
does not guarantee the satisfaction of the coupling constraint. An
example illustrating this case is reported in Part 1 of Example 1 in
the Appendix.

A way to enforce the satisfaction of the coupling constraint is
to follow the approach in Shor (1985), where the dual program
D is solved via a particular iterative methodology, namely, the
subgradient algorithm. At each iteration of the subgradient algo-
rithm a tentative primal solution is generated by every agent. By
appropriately averaging the tentative solutions across iterations
(see Shor (1985, pag. 117)), one can obtain a solution that satisfies
the joint constraint. However, when discrete decision variables are
present, such solution does not necessarily satisfy also the local
constraints. Specifically, letting conv(Xi) denote the convex hull of
Xi, i = 1, . . . ,m, if we apply the above procedure to P , we obtain
an optimal solution x⋆

LP to the following Linear Program (LP):

min
x1,...,xm

m∑
i=1

ci⊤xi (PLP)

subject to:
m∑
i=1

Aixi ≤ b

xi ∈ conv(Xi), i = 1, . . . ,m.

This fact is true because the dual of the convexified PLP coincides
with the dual of P and is given by D (see Geoffrion (1974) for a
proof). Clearly x⋆

LP ∈ conv(X1)×· · ·×conv(Xm) does not necessarily
imply that x⋆

LP ∈ X1 × X2 × · · · × Xm. Therefore the solution x⋆
LP

recovered using (Shor, 1985) satisfies the coupling constraint but
not necessarily the local constraints. An alternative approach for
finding an optimal solution to the primal–dual pair PLP–D is to
exploit the column generation algorithm (see Jünger et al. (2009)).
Even in this case however the procedure converges to a solution
x⋆
LP of PLP, which is not guaranteed to be feasible for the local
constraints in P . An example in which the solution to PLP is not
feasible for the local constraints is reported in Part 2 of Example 1
in the Appendix.

For these reasons recovery procedures for MILPs are usually
composed of two steps: a tentative solution that is not feasible
for either the joint constraint or the local ones is first obtained
exploiting one of the two procedures described above, and then a
problem-specific heuristic is applied to recover a feasible solution
for P , see, e.g., Bertsekas, Lauer, Sandell, and Posbergh (1983),
Redondo and Conejo (1999).

Problems in the form of P arise in different contexts like power
plants generation scheduling (Yamin, 2004) where the agents are
the generation units with their on/off state modeled with binary
variables and the joint constraint consists in energy balance equa-
tions, or buildings energy management (Ioli, Falsone, & Prandini,
2015), where the cost function is a cost related to power con-
sumption and constraints are related to capacity, comfort, and
actuation limits of each building. Other problems that fit the struc-
ture of P are supply chain management (Dawande, Gavirneni, &
Tayur, 2006), portfolio optimization for small investors (Baumann

& Trautmann, 2013), and plug-in electric vehicles (Vujanic et al.,
2016). In all these cases it is of major interest to guarantee that
the derived (primal) solution is implementable in practice, which
means that it must be feasible for P .

Interestingly, a large class of dynamical systems involving both
continuous and logic components can be modeled as a Mixed Log-
ical Dynamical (MLD) system, using the terminology established
in Bemporad and Morari (1999), which are described by linear
equations and inequalities involving both discrete and continuous
inputs and state variables. Finite horizon control for multiple MLD
systems modeling interacting agents that are jointly optimizing a
linear objective function while sharing some resources could be
formulated as P . Designing an iterative decentralized algorithm
that is guaranteed to solveP in finite time is then important for the
development of decentralized model predictive control schemes
for multi-agent MLD systems, since P has to be repeatedly solved
online within some time interval in that context.

Finite-time convergence to a solution which is at least feasible
for P is a desirable feature for most of the aforementioned appli-
cations. The main goal of this paper is to provide such a guarantee,
which has up to now proven to be elusive.

1.1. Background

Problems in the form of P have been investigated in Aubin
and Ekeland (1976), where the authors studied the behavior of the
duality gap (i.e., the difference between the optimal value of P and
D) showing that it decreases relatively to the optimal value of P as
the number of agents grows. The same behavior has been observed
in Bertsekas et al. (1983). In the recent paper (Vujanic et al., 2016),
the authors explored the connection between the solutions x⋆

LP
to the linear program PLP and x(λ⋆) recovered via (1) from the
solution λ⋆ to the dual program D. They proposed a method to
recover a primal solution which is feasible for P by using the
dual optimal solution of a modified primal problem, obtained by
tightening the coupling constraint by an appropriate amount.

We now recall those parts of Vujanic et al. (2016) that are
relevant for the developments in this paper.

Let ρ ∈ Rp with ρ ≥ 0 and consider the following pair of
primal–dual problems:

min
x1,...,xm

m∑
i=1

ci⊤xi (PLP,ρ)

subject to:
m∑
i=1

Aixi ≤ b− ρ

xi ∈ conv(Xi), i = 1, . . . ,m

and

max
λ≥0
−λ⊤(b− ρ)+

m∑
i=1

min
xi∈Xi

(ci⊤ + λ⊤Ai)xi. (Dρ)

PLP,ρconstitutes a tightened version of PLP, whereas Dρ is the
corresponding dual. For all j = 1, . . . , p, let ρ̃ ∈ Rp be defined
as follows:

[ρ̃]j = p max
i∈{1,...,m}

{
max
xi∈Xi
[Ai]jxi −min

xi∈Xi
[Ai]jxi

}
, (2)

where [Ai]j denotes the jth row of Ai and [ρ̃]j the jth entry of ρ̃.
Define P̃LP and D̃ as the primal–dual pair of optimization prob-

lems that are given by setting ρ equal to ρ̃ in PLP,ρand Dρ .

Assumption 1 (Existence and Uniqueness, Vujanic et al. (2016)).
Problems P̃LP and D̃ have unique solutions x⋆

LP,ρ̃ and λ⋆
ρ̃
.
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Proposition 1 (Theorem 3.1 in Vujanic et al. (2016)). Let λ⋆
ρ̃
be the

solution to D̃. Under Assumption 1, we have that any x(λ⋆
ρ̃
) satisfying

(1), is feasible for P .

The proof of Proposition 1 rests on Theorem 2.5 in Vujanic et al.
(2016). Example 2.6 in Vujanic et al. (2016) shows how Theo-
rem 2.5 in Vujanic et al. (2016), and therefore also Proposition 1,
strongly depend on the uniqueness part of Assumption 1. Note,
however, that in case P̃LP has multiple solutions, then a small
perturbation in its cost coefficients will render its solution unique,
thus making Assumption 1 fulfilled again. We refer the reader
to Vujanic et al. (2016) for further details.

Let us define

γ̃ = p max
i∈{1,...,m}

{
max
xi∈Xi

ci⊤xi −min
xi∈Xi

ci⊤xi

}
. (3)

Consider the following assumption:

Assumption 2 (Slater, Vujanic et al. (2016)). There exist a scalar
ζ > 0 and x̂i ∈ conv(Xi) for all i = 1, . . . ,m, such that

∑m
i=1 Aix̂i ≤

b − ρ̃ − mζ1, where 1 ∈ Rp is a vector whose elements are equal
to one.

Then, the sub-optimality level of the approximate solution x(λ⋆
ρ̃
) to

P can be quantified as follows:

Proposition 2 (Theorem 3.3 in Vujanic et al. (2016)). Let λ⋆
ρ̃
be the

solution to D̃. Under Assumptions 1 and 2, we have that x(λ⋆
ρ̃
) derived

from (1) with λ = λ⋆
ρ̃
satisfies

m∑
i=1

ci⊤xi(λ⋆
ρ̃)− J⋆P ≤ γ̃ +

∥ρ̃∥∞

pζ
γ̃ , (4)

where J⋆P is the optimal cost of P .

Assumption 2 is used to estimate (through Lemma 1 in Nedić and
Ozdaglar (2009)) the norm of the optimal solution λ⋆

ρ̃
to the dual

problem,which is needed in the proof of Proposition 2 to derive the
performance bound. Assumption 2 is instead not needed to prove
feasibility.

Note that both Proposition 1 on feasibility and Proposition 2 on
optimality require knowledge of the dual solution λ⋆

ρ̃
. This may

pose some issues if λ⋆
ρ̃
cannot be computed centrally, which is

the case, e.g., when the agents are not willing to share with some
central entity their private information coded in their local cost and
constraint set. In those cases, the value of λ⋆

ρ̃
can only be achieved

asymptotically using a decentralized/distributed scheme to solve
D̃.

1.2. Contribution of this paper

In this paper, we propose a decentralized iterative procedure
which computes in a finite number of iterations a solution that
is feasible for the optimization P . We also provide performance
guarantees quantifying the sub-optimality level of our solution
with respect to the optimal one of P .

The proposed iterative method is inspired by the work in
Vujanic et al. (2016). As in Vujanic et al. (2016), we exploit some
tightening of the coupling constraint to enforce feasibility. The
amount of tightening introduced in our method is adaptively
chosen throughout the iterations, based on the explored candidate
solutions xi ∈ Xi, i = 1, . . . ,m, and is guaranteed to be lower than
or equal to the worst-case tightening ρ̃ adopted in Vujanic et al.
(2016) which is obtained by letting xi vary over the whole set Xi
(see Eq. (2)). Note that a large value of ρ̃ may prevent P̃LP to be fea-
sible thus hampering the applicability of the approach in Vujanic

et al. (2016). This is easy to understand if b in the coupling con-
straint is interpreted as the maximum available amount of some
(shared) resource: if such an amount is reduced by ρ and ρ is large,
then, itmight be that the remaining amount of resource b−ρ is not
enough to satisfy the local constraints of the agents, thus resulting
in infeasibility. A less conservative way of selecting the amount
of tightening as in our method may preserve the feasibility in the
tightened problem, thus making our approach applicable to cases
where the approach in Vujanic et al. (2016) is not. This is shown
in Section 5 where the plug-in electric vehicles charging problem
originally presented in Vujanic et al. (2016) is considered as a case
study: in the vehicle to grid setupwithm = 250 vehicles, when the
maximum power b that the network can deliver is reduced, then,
P̃LP becomes infeasible and, hence, the approach in Vujanic et al.
(2016) cannot be applied, whereas our method remains applicable
because it introduces a smaller tightening. We can then claim that
our method can be applied to a larger class of problems than the
method in Vujanic et al. (2016). Furthermore, when both methods
can be applied but the tightening of our method is smaller, perfor-
mance guarantees are better for our solution as quantified through
the bound on the obtained improvement derived in Remark 1 at
the end of Section 2. This is also demonstrated in Section 5: in all
the 1000 instances of the plug-in electric vehicles charging prob-
lem generated though some random perturbation of the involved
parameters, tightening is smaller and performance is better in our
method.

Finite-time convergence is certainly the main feature of our
approach, which makes it attractive for various applications and
for MPC in particular. Additionally, finite-time convergence has
a direct impact on computational complexity, which is alleviated
with respect to the approach inVujanic et al. (2016). This is clarified
next.

Bothmethods exploit the structural properties of theMILPP to
cope with its combinatorial complexity by decomposing it into
m smaller MILPs with fewer discrete decision variables. However,
from the point of view of the resolution of the dual program, a
different computational complexity arises in the two methods. In
the simulation section of Vujanic et al. (2016) a subgradient algo-
rithm that asymptotically converges to the dual optimal solution is
employed. Therefore, the approach in Vujanic et al. (2016) would
need, in principle, to solve the m MILPs for an infinite number of
iterations,whilstwe only have to solve themMILPs a finite number
of times. This clearly shows that the computational complexity
needed for our method to solve Pis lower compared to that
in Vujanic et al. (2016).

In summary, the differences between the approach proposed
here and the one presented in Vujanic et al. (2016) are:

(1) adaptive versus worst-case constraint tightening, with im-
plications in terms of applicability to a larger class of prob-
lems and better performance guarantees when both
approaches are applicable;

(2) finite-time versus asymptotic guarantees, with implications
in terms of computational complexity.

Notably, both methods allow agents to preserve privacy of their
local information, since they do not have to share either their cost
coefficients or their local constraints.

2. Proposed approach

We next introduce Algorithm 1 for decentralized computation
in a finite number of iterations of an approximate solution to
P that is feasible and improves over the solution in Vujanic et al.
(2016) both in terms of amount of tightening and performance
guarantees.
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Algorithm 1: Decentralized MILP.
1: λ(0) = 0
2: s̄i(0) = −∞, i = 1, . . . ,m
3:
¯
si(0) = +∞, i = 1, . . . ,m

4: k = 0
5: repeat
6: for i = 1 to m do
7: xi(k+ 1)← arg min

xi∈vert(Xi)
(ci⊤ + λ(k)⊤Ai)xi

8: end for
9: s̄i(k+ 1) = max{s̄i(k), Aixi(k+ 1)}, i = 1, . . . ,m

10:
¯
si(k+ 1) = min{

¯
si(k), Aixi(k+ 1)}, i = 1, . . . ,m

11: ρi(k+ 1) = s̄i(k+ 1)−
¯
si(k+ 1), i = 1, . . . ,m

12: ρ(k+ 1) = pmax{ρ1(k+ 1), . . . , ρm(k+ 1)}

13: λ(k+ 1) =
[
λ(k)+ α(k)

( m∑
i=1

Aixi(k+ 1)− b+ ρ(k+ 1)
)]
+

14: k← k+ 1
15: until some stopping criterion is met.

Algorithm 1 is a variant of the dual subgradient algorithm. As
the standard dual subgradient method, it includes twomain steps:
step 7 inwhich a subgradient of the dual objective function is com-
puted by fixing the dual variables and minimizing the Lagrangian
with respect to the primal variables, and step 13 which involves
a dual update step with step size equal to α(k), and a projection
onto the non-negative orthant (in Algorithm 1 [ · ]+ denotes the
projection operator onto the p-dimensional non-negative orthant
Rp
+). The operators max and min appearing in steps 9, 10 and

12 of Algorithm 1 with arguments in Rp are meant to be applied
component-wise. The sequence {α(k)}k≥0 is chosen so as to satisfy
limk→∞ α(k) = 0 and

∑
∞

k=0 α(k) = ∞, as requested in the stan-
dard dual subgradient method to achieve asymptotic convergence.
Furthermore, in order to guarantee that the solution to step 7 of
Algorithm 1 is well-defined, we impose the following assumption
on P:

Assumption 3 (Boundedness). The polyhedral sets Xi, i = 1, . . . ,m,
in P are bounded.

If argminxi∈vert(Xi)(ci
⊤
+λ(k)⊤Ai)xi in step 7 is a set of cardinality

larger than 1, then, a deterministic tie-break rule is applied to
choose a value for xi(k+ 1).

Algorithm 1 is conceived to be implemented in a decentralized
scheme where, at each iteration k, every agent i updates its local
tentative solution xi(k+ 1) and communicates Aixi(k+ 1) to some
central unit that is in charge of the update of the dual variable. The
tentative value λ(k+1) for the dual variable is then broadcast to all
agents. Note that agents do not need to communicate to the central
unit their private information regarding their local constraint set
and cost but only their tentative solution xi(k).

The tentative primal solutions xi(k+1), i = 1, . . . ,m, computed
at step 7 are used in Algorithm 1 by the central unit to determine
the amount of tightening ρ(k + 1) entering step 13. The value of
ρ(k + 1) is progressively refined through iterations based only on
those values of xi ∈ Xi, i = 1, . . . ,m, that are actually considered
as candidate primal solutions, and not based on the whole sets
Xi, i = 1, . . . ,m. This reduces conservativeness in the amount of
tightening and also in the performance bound of the feasible, yet
suboptimal, primal solution.

A further reduction in the level of conservativeness can be
achieved by assigning to [ρi(k + 1)]j in step 12 of Algorithm 1
the (less conservative) sum of the p-largest [ρi(k + 1)]j, for all
j = 1, . . . , p. Further discussion is provided after the proof of
Theorem 1. Although this is not discussed in Vujanic et al. (2016),

also the results in Vujanic et al. (2016) can be modified to use this
less conservative bound. For a fair comparison, this modification is
not included in Algorithm 1 as well.

Algorithm 1 terminates after a given stopping criteria is met at
the level of the central unit, e.g., if for a given number of subsequent
iterations x(k) = [x1(k)⊤ · · · xm(k)⊤]⊤ satisfies the coupling
constraint. As shown in the numerical study in Section 5, variants
of Algorithm 1 can be conceived to get an improved solution in
the same number of iterations of Algorithm 1. The agents should
however share with the central entity additional information on
their local cost, thus partly compromising privacy preservation.

As for the initialization of Algorithm 1, λ(0) is set equal to 0 so
that at iteration k = 0 each agent i computes its locally optimal
solution

xi(1)← arg min
xi∈vert(Xi)

ci⊤xi.

Since ρ(1) = 0, if the local solutions xi(1), i = 1, . . . ,m, satisfy the
coupling constraint (and they hence are optimal for the original
P), then, Algorithm 1 will terminate since λ will remain 0, and the
agents will stick to their locally optimal solutions.

Before stating the feasibility and performance guarantees of the
solution computed by Algorithm 1, we need to introduce some
further quantities and assumptions.

Let us define for any k ≥ 1

γ (k) = p max
i∈{1,...,m}

{
max
r≤k

ci⊤xi(r)−min
r≤k

ci⊤xi(r)
}
, (5)

where {xi(r)}r≥1, i = 1, . . . ,m, are the tentative primal solutions
computed at step 7.

Due to Assumption 3, for any i = 1, . . . ,m, conv(Xi) is a
bounded polyhedron. If it is also non-empty, then vert(Xi) is a
non-empty finite set (see Corollaries 2.1 and 2.2 together with
Theorem 2.3 in Bertsimas and Tsitsiklis (1997, Chapter 2)). As a
consequence, the sequence {γ (k)}k≥1 takes values in a finite set.
Since this is a monotonically non-decreasing sequence, it con-
verges in finite-time to some value γ̄ .

The same reasoning can be applied to show that the sequence
{ρ(k)}k≥1, iteratively computed in Algorithm 1 (see step 12), and
given by

[ρ(k)]j = p max
i∈{1,...,m}

{
max
r≤k
[Ai]jxi(r)−min

r≤k
[Ai]jxi(r)

}
,

for j = 1, . . . , p, converges in finite-time to some ρ̄ since it takes
values in a finite set and is (component-wise) monotonically non-
decreasing. Note that the limiting values ρ̄ and γ̄ for {ρ(k)}k≥1 and
{γ (k)}k≥1 satisfy ρ̄ ≤ ρ̃ and γ̄ ≤ γ̃ where ρ̃ and γ̃ are defined in
(2) and (3).

Define PLP andD as the primal–dual pair of optimization prob-
lems that are given by setting ρ equal to ρ̄ in PLP,ρand Dρ .

In order to state the feasibility and performance properties
of Algorithm 1, besides Assumption 3, the following two further
assumptions are needed.

Assumption 4 (Existence and Uniqueness). Problems PLP and D
have unique solutions x̄⋆

LP and λ̄
⋆.

Assumption 5 (Slater). There exists a scalar ζ > 0 and x̂i ∈
conv(Xi) for all i = 1, . . . ,m, such that

∑m
i=1 Aix̂i ≤ b− ρ̄ −mζ1.

Note that Assumptions 4 and 5 are similar to Assumptions 1 and
2, respectively. However, owing to the fact that ρ̄ ≤ ρ̃, imposing
Assumption 4 and 5 in place of Assumptions 1 and 2 makes Algo-
rithm 1 applicable to a larger class of problems with respect to the
approach in Vujanic et al. (2016).

The discussion about the necessity and plausibility of these
assumptions follows closely that related to Assumptions 1 and 2
in Section 1.1 and is here omitted.
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We are now in a position to state the two main results of the
paper.

Theorem 1 (Finite-time Feasibility). Under Assumptions 3 and 4,
there exists a finite iteration index K such that, for all k ≥ K, x(k) =
[x1(k)⊤ · · · xm(k)⊤]⊤, where xi(k), i = 1, . . . ,m, are computed by
Algorithm 1, is a feasible solution for P , i.e.,

∑m
i=1 Aixi(k) ≤ b, k ≥ K

and xi(k) ∈ Xi, i = 1, . . . ,m.

Theorem 2 (Performance Guarantees). Under Assumption 3–5, there
exists a finite iteration index K such that, for all k ≥ K, x(k) =
[x1(k)⊤ · · · xm(k)⊤]⊤, where xi(k), i = 1, . . . ,m, are computed by
Algorithm 1, is a feasible solution for P that satisfies the following
performance bound:

m∑
i=1

ci⊤xi(k)− J⋆P ≤ γ̄ +
∥ρ̄∥∞

pζ
γ̃ . (6)

By a direct comparison of (4) and (6) we can see that the bound in
(6) is no worse than (4) due to the fact that ρ̄ ≤ ρ̃ and γ̄ ≤ γ̃ .

In the following remark, performance improvement is quanti-
fied when both methods are applicable and ρ̄ < ρ̃.

Remark 1 (Performance Improvement Versus (Vujanic et al., 2016)).
Suppose that Assumption 1 (and, hence, Assumption 4) is satisfied.
Let ρ̄ < ρ̃.

Consider x̂i ∈ conv(Xi), i = 1, . . . ,m, such that Assumption 2
is satisfied with a given ζ̃ . Then, Assumption 5 is satisfied with the
same x̂i, i = 1, . . . ,m, and ζ̄ = ζ̃ + 1

m minj=1,...,p{[ρ̃]j − [ρ̄]j} > ζ̃ .
This implies that our performance bound in (6) is tighter than the
one in (4) by an amount equal to

γ̃ − γ̄ +
γ̃

p

[
∥ρ̃∥∞

ζ̃
−
∥ρ̄∥∞

ζ̄

]
> 0,

where we used the fact that ρ̄ < ρ̃, ζ̄ > ζ̃ and γ̄ ≤ γ̃ .

Note that if PLP is not feasible for the resulting ρ̄, then
∑m

i=1 Aixi
(k+ 1)− b+ρ(k+ 1) is bounded below by some positive constant
for a sufficiently high k given that ρ(k + 1) converges to ρ̄. Since∑
∞

k=0 α(k) = ∞, step 13 of Algorithm 1 will then produce a
{λ(k)}k≥0 sequence diverging toward +∞. Therefore, observing a
component of λ(k) which diverges as k increases is an indication
that the existence part of Assumption 4 is not satisfied.

3. Proof of the main results

3.1. Preliminary results

Proposition 3 (Dual Asymptotic Convergence). Under Assumptions 3
and 4, the Lagrange multiplier sequence {λ(k)}k≥0 generated by Algo-
rithm 1 converges to an optimal solution of D.

Proof. As discussed after Eq. (5), there exists a K ∈ N such that for
all k ≥ K we have that the tightening coefficient ρ(k) computed in
Algorithm 1 becomes constant and equal to ρ̄. Therefore, for any
k ≥ K , Algorithm 1 reduces to the following two steps

xi(k+ 1) ∈ arg min
xi∈vert(Xi)

(ci⊤ + λ(k)⊤Ai)xi (7)

λ(k+ 1) =

[
λ(k)+ α(k)

(
m∑
i=1

Aixi(k+ 1)− b+ ρ̄

)]
+

(8)

which constitute a gradient ascent iteration for D. According to
Bertsekas (1999), the sequence {λ(k)}k≥0 generated by the iterative
procedure (7)–(8) is guaranteed to converge to the (unique under
Assumption 4) optimal solution of D.

Note that this result requires only uniqueness of the optimal
solution of D. Uniqueness of the optimal solution to PLP is not
necessary. □

Lemma 1 (Robustness Against Cost Perturbation). Let P be a non-
empty bounded polyhedron. Consider the linear programminx∈P (c⊤+
δ⊤)x, where δ is a perturbation in the cost coefficients. Define the set
of optimal solutions as X (δ). There always exists an ε > 0 such that
for all δ satisfying ∥δ∥ < ε, we have X (δ) ⊆ X (0).

Proof. Let u(δ) = minx∈P (c⊤ + δ⊤)x. Since P is a bounded
polyhedron, the minimum is always attained and u(δ) is finite for
any value of δ. The set X (δ) can be defined as

X (δ) = {x ∈ P : (c⊤ + δ⊤)x ≤ u(δ)}, (9)

which is a non-empty polyhedron. As such, it can be described as
the convex hull of its vertices (see Theorem 2.9 in Bertsimas and
Tsitsiklis (1997, Chapter 2)), which are also vertices of P (Theo-
rem 2.7 in Bertsimas and Tsitsiklis (1997, Chapter 2)).

Let V = vert(P) and Vδ = vert(X (δ)) ⊆ V . Consider δ = 0.
If V0 = V , then, given the fact that, for any δ, X (δ) is the convex

hull of Vδ and Vδ ⊆ V = V0, we have trivially that X (δ) ⊆ X (0), for
any δ.

Suppose now that V0 ⊂ V . For any choice of x⋆
∈ V0 and

x ∈ V \V0, we have that c⊤x⋆ < c⊤x, or equivalently c⊤(x⋆
−x) < 0.

Pick

ε = min
x⋆∈V0
x∈V\V0

−
c⊤(x⋆

− x)
∥x⋆ − x∥

(10)

and let (x̄⋆, x̄) be the corresponding minimizer. By construction,
(10) is well defined since x̄⋆ is different from x̄. Since c⊤(x⋆

−x) < 0
for any x⋆

∈ V0 and x ∈ V \ V0, we have that ε > 0. Moreover, for
any x⋆

∈ V0 and x ∈ V \ V0, if δ satisfies ∥δ∥ < ε, then

(c⊤ + δ⊤)(x⋆
− x) = c⊤(x⋆

− x)+ δ⊤(x⋆
− x)

≤ c⊤(x⋆
− x)+ ∥δ∥∥x⋆

− x∥

< c⊤(x⋆
− x)+ ε∥x⋆

− x∥

≤ c⊤(x⋆
− x)+

(
−

c⊤(x⋆
− x)

∥x⋆ − x∥

)
∥x⋆
− x∥

= c⊤(x⋆
− x)− c⊤(x⋆

− x) = 0, (11)

where the first inequality is given by the fact that u⊤v ≤ vert u⊤v
vert together with the Cauchy–Schwarz inequality vert u⊤v vert ≤
∥u∥∥v∥, the second inequality is due to δ satisfying ∥δ∥ < ε, and
the third inequality is given by the definition of ε in (10).

By (9) and the definition of u(δ), for any point xδ in the set Vδ ,
we have that (c⊤+ δ⊤)xδ ≤ (c⊤+ δ⊤)x, for all x ∈ V , and therefore
(c⊤+ δ⊤)xδ ≤ (c⊤+ δ⊤)x⋆ for any x⋆

∈ V0 ⊂ V . By (11), whenever
∥δ∥ < ε, we have that (c⊤ + δ⊤)x⋆ < (c⊤ + δ⊤)x for any choice of
x⋆
∈ V0 and x ∈ V \ V0, therefore (c⊤+ δ⊤)xδ < (c⊤+ δ⊤)x for any

x ∈ V \ V0. Since the inequality is strict, we have that xδ ̸∈ V \ V0,
which implies xδ ∈ V0. Since this holds for any xδ ∈ Vδ , we have
that Vδ ⊆ V0.

Finally, given the fact that, for any δ,X (δ) is the convex hull ofVδ

and Vδ ⊆ V0, we have X (δ) ⊆ X (0), thus concluding the proof. □

Exploiting Lemma 1, we shall show next that each {xi(k)}k≥1
sequence, i = 1, . . . ,m, converges in finite-time to some set. Note
that, for the subsequent result, only uniqueness of the optimal
solution of D is required.
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Proposition 4 (Primal Finite-time Set Convergence). Under Assump-
tions 3 and 4, there exists a finite K such that for all i = 1, . . . ,m the
tentative primal solution xi(k) generated by Algorithm 1 satisfies

xi(k) ∈ arg min
xi∈vert(Xi)

(ci⊤ + λ̄
⋆⊤Ai)xi, k ≥ K , (12)

where λ̄
⋆ is the limit value of the Lagrange multiplier sequence

{λ(k)}k≥0.

Proof. Consider agent i, with i ∈ {1, . . . ,m}. We can characterize
the solution xi(k) in step 7 of Algorithm 1 by performing the
minimization over conv(Xi) instead of vert(Xi) since the problem is
linear and by enlarging the set vert(Xi) to conv(Xi) we still obtain all
minimizers that belong to vert(Xi). Adding and subtracting λ̄

⋆⊤Aixi
to the cost, we then obtain

xi(k) ∈ arg min
xi∈conv(Xi)

(ci⊤ + λ̄
⋆⊤Ai + (λ(k− 1)− λ̄

⋆)⊤Ai)xi. (13)

Set δi(k − 1)⊤ = (λ(k − 1) − λ̄
⋆)⊤Ai, and let Xi(δi(k − 1)) be the

set of minimizers of (13) as a function of δi(k− 1). By Lemma 1, we
know that there exists an εi > 0 such that if ∥δi(k− 1)∥ < εi, then
Xi(δi(k− 1)) ⊆ Xi(0).

Since, by Proposition 3, the sequence {λ(k)}k≥0 generated by
Algorithm 1 converges to λ̄

⋆, by definition of limit, we know that
there exists a Ki such that ∥δi(k− 1)∥ = ∥(λ(k− 1)− λ̄

⋆)⊤Ai∥ < εi
for all k ≥ Ki. Therefore, for every k ≥ K = max{K1, . . . , Km},
we have that xi(k) ∈ Xi(0) = argminxi∈conv(Xi)(ci

⊤
+ λ̄

⋆⊤Ai)xi, i =
1, . . . ,m. This property jointly with the fact that xi(k) ∈ vert(Xi),
i = 1, . . . ,m, leads to (12), thus concluding the proof. □

3.2. Proof of Theorems 1 and 2

Before discussing the proofs of Theorem 1 and 2 we shall em-
phasize that Theorem 2.5 in Vujanic et al. (2016) and Lemma 1
in Nedić and Ozdaglar (2009) are key for the following derivations.

Proof of Theorem 1. Theorem 2.5 of Vujanic et al. (2016) es-
tablishes a relation between the solution x̄⋆

LP of PLP and the one
recovered in (1) from the optimal solution λ̄

⋆ of the dual opti-
mization problem D. Specifically, it states that there exists a set
of indices I ⊆ {1, . . . ,m} of cardinality at least m − p, such that
[x̄⋆

LP]
(i)
= xi(λ̄

⋆) for all i ∈ I , where [x̄⋆
LP]

(i) is the subvector of x̄⋆
LP

corresponding to the ith agent. Therefore, following the proof of
Theorem 3.1 in Vujanic et al. (2016), we have that
m∑
i=1

Aixi(λ̄
⋆) =

∑
i∈I

Aixi(λ̄
⋆)+

∑
i∈Ic

Aixi(λ̄
⋆)

=

∑
i∈I

Ai[x̄⋆
LP]

(i)
+

∑
i∈Ic

Aixi(λ̄
⋆)

=

m∑
i=1

Ai[x̄⋆
LP]

(i)
+

∑
i∈Ic

Ai
(
xi(λ̄

⋆)− [x̄⋆
LP]

(i))
≤ b− ρ̄ + p max

i=1,...,m
{Aixi(λ̄

⋆)− Ai[x̄⋆
LP]

(i)
}, (14)

where Ic = {1, . . . ,m} \ I , and b − ρ̄ constitutes an upper bound
for
∑m

i=1 Ai[x̄⋆
LP]

(i) given that x̄⋆
LP is feasible for PLP.

According to Shor (1985, pag. 117), the component [x⋆
LP]

(i) of the
(unique, under Assumption 4) solution x̄⋆

LP to PLP is the limit point
of the sequence {x̃i(k)}k≥1, defined as

x̃i(k) =
∑k−1

r=1 α(r)xi(r + 1)∑k−1
r=1 α(r)

.

By linearity, for all k ≥ 0, we have that

Aix̃i(k) =
∑k−1

r=1 α(r)Aixi(r + 1)∑k−1
r=1 α(r)

≥ min
r≤k

Aixi(r)

= si(k)
≥ si,

where the first inequality is due to the fact that all α(k) are positive
and the second equality follows from step 10 of Algorithm 1. In the
final inequality, si(k) is lower bounded by si, that denotes the lim-
iting value of the non-increasing finite-valued sequence {si(k)}k≥0.
Recall that all inequalities have to be intended component-wise.
By taking the limit for k→∞, we also have that

Ai[x̄⋆
LP]

(i)
≥ si. (15)

By Proposition 4, there exists a finite iteration index K such that
xi(k) satisfies (12). Since (14) holds for any choice of xi(λ̄

⋆) which
minimizes (ci⊤+λ̄

⋆⊤Ai)xi over vert(Xi), if k ≥ K , thenwe can choose
xi(λ̄

⋆) = xi(k). Therefore, for all k ≥ K , (14) becomes
m∑
i=1

Aixi(k) ≤ b− ρ̄ + p max
i=1,...,m

{Aixi(k)− Ai[x⋆
LP]

(i)
}

≤ b− ρ̄ + p max
i=1,...,m

{
max
r≤k

Aixi(r)− Ai[x⋆
LP]

(i)
}

= b− ρ̄ + p max
i=1,...,m

{
s̄i(k)− Ai[x⋆

LP]
(i)}

≤ b− ρ̄ + p max
i=1,...,m

{
s̄i − si

}
= b, (16)

where the second inequality is obtained by taking the maximum
up to k, the first equality is due to step 9 of Algorithm 1, the
third inequality is due to the fact that s̄i is the limiting value of
the non-decreasing finite-valued sequence {s̄i(k)}k≥1 togetherwith
(15), and the last equality comes from the definition of ρ(k) =
pmax{ρ1(k), . . . , ρm(k)}where ρi(k) = s̄i(k)− si(k).

From (16) we have that, for any k ≥ K , the iterates xi(k), i =
1, . . . ,m, generated by Algorithm 1 provide a feasible solution for
P , thus concluding the proof. □

As mentioned in Section 2, we can make Algorithm 1 less con-
servative by assigning to [ρi(k + 1)]j in step 12 of Algorithm
1 the sum of the p-largest [ρi(k + 1)]j, for all j = 1, . . . , p.
To adapt the proof, it suffice to note that the jth component of
pmaxi=1,...,m{Aixi(λ̄

⋆)−Ai[x̄⋆
LP]

(i)
} in (14) can be substitutedwith the

sum of the p-largest values in the set {[Ai]jxi(λ̄
⋆) − [Ai]j[x̄⋆

LP]
(i)
}
m
i=1,

and the following derivations will remain unchanged. In the same
vein one can redefine γ̄ in (5) and change (18) in the proof of
Theorem 2 replacing pmaxi=1,...,m{ci⊤xi(λ̄

⋆) − ci⊤[x̄⋆
LP]

(i)
} with the

sum of the p-largest values in the set {ci⊤xi(λ̄
⋆) − ci⊤[x̄⋆

LP]
(i)
}
m
i=1 to

obtain a tighter bound also on the performance guarantees.

Proof of Theorem 2. Denote as J⋆P , J⋆PLP
, and J⋆PLP

the optimal cost
of P , PLP, and PLP, respectively. From Assumption 3 it follows that
J⋆P , J⋆PLP

, and J⋆PLP
are finite.

Consider the quantity
∑m

i=1 ci
⊤xi(k)− J⋆P .

As in the proof of Theorem 3.3 in Vujanic et al. (2016), we add
and subtract J⋆PLP

and J⋆PLP
to obtain

m∑
i=1

ci⊤xi(k)−J⋆P =
( m∑

i=1

ci⊤xi(k)− J⋆PLP

)
+ (J⋆PLP

− J⋆PLP
)+ (J⋆PLP

− J⋆P ). (17)

We shall next derive a bound for each term in (17).

Bound on
∑m

i=1 ci
⊤xi(k)− J⋆PLP

:
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Similarly to the proof of Theorem 1 for feasibility, due to The-
orem 2.5 in Vujanic et al. (2016), we have that there exists a set I
of cardinality at least m − p such that xi(λ̄

⋆) = [x̄⋆
LP]

(i), for all i ∈ I .
Therefore,
m∑
i=1

ci⊤xi(λ̄
⋆)− J⋆PLP

=

m∑
i=1

ci⊤xi(λ̄
⋆)−

m∑
i=1

ci⊤[x̄⋆
LP]

(i)

=

∑
i∈Ic

ci⊤xi(λ̄
⋆)− ci⊤[x̄⋆

LP]
(i)

≤ p max
i=1,...,m

{
ci⊤xi(λ̄

⋆)− ci⊤[x̄⋆
LP]

(i)} , (18)

where Ic = {1, . . . ,m} \ I .
According to Shor (1985, pag. 117), the components [x̄⋆

LP]
(i) of

the (unique, under Assumption 4) solution x̄⋆
LP to PLP is the limit

point of the sequence {x̃i(k)}k≥1, defined as

x̃i(k) =
∑k−1

r=1 α(r)xi(r + 1)∑k−1
r=1 α(r)

.

By linearity, for all k ≥ 1, we have that

ci⊤x̃i(k) =
∑k−1

r=1 α(r)ci⊤xi(r + 1)∑k−1
r=1 α(r)

≥ min
r≤k

ci⊤xi(r) ≥ γ
i
,

where the first inequality is due to the fact that all α(k) are positive
and the last one derives from the fact {minr≤k ci⊤xi(r)}k≥1 is a non-
increasing sequence that takes values in a finite set, and hence is
lower bounded by its limiting value γ

i
. Therefore, by taking the

limit for k→∞, we also have that

ci⊤[x̄⋆
LP]

(i)
≥ γ

i
. (19)

Since (18) holds for any choice of xi(λ̄
⋆) which minimize (ci⊤ +

λ̄
⋆⊤Ai)xi over vert(Xi), by Proposition 4 it follows that, for k ≥ K̄ ,

xi(λ̄
⋆) = xi(k) and, as a result

m∑
i=1

ci⊤xi(k)− J⋆PLP
≤ p max

i=1,...,m

{
ci⊤xi(k)− ci⊤[x̄⋆

LP]
(i)}

≤ p max
i=1,...,m

{
max
r≤k

ci⊤xi(r)− ci⊤[x̄⋆
LP]

(i)
}

≤ p max
i=1,...,m

{
max
r≤k

ci⊤xi(r)− γ
i

}
,

where the second inequality is obtained by taking the maximum
up to iteration k and the third inequality is due to (19).

Now if we recall the definition of γ (k) in (5) and its finite-time
convergence to γ̄ , jointly with the fact that γ

i
is the limiting value

of {minr≤k ci⊤xi(r)}k≥1, we finally get that there exists K ≥ K̄ , such
that for k ≥ K

p max
i=1,...,m

{
max
r≤k

ci⊤xi(r)− γ
i

}
= γ̄ ,

thus leading to
m∑
i=1

ci⊤xi(k)− J⋆PLP
≤ γ̄ , k ≥ K .

Bound on J⋆PLP
− J⋆PLP

:
Problem PLP can be considered as a perturbed version of PLP,

since the coupling constraint of PLP is given by
m∑
i=1

Aixi ≤ b− ρ̄

and that of PLP can be obtained by adding ρ̄ to its right-hand-
side. Fromperturbation theory (see Boyd andVandenberghe (2004,

Section 5.6.2)) it then follows that the optimal cost J⋆PLP
is related

to J⋆PLP
by:

J⋆PLP
− J⋆PLP

≤ λ̄
⋆⊤ρ̄. (20)

From Assumption 5, by applying Lemma 1 in Nedić and Ozdaglar
(2009) we have that for all λ ≥ 0

∥λ̄
⋆
∥1 ≤

1
mζ

(
m∑
i=1

ci⊤x̂i + λ⊤b−
m∑
i=1

min
xi∈Xi

(ci⊤ + λ⊤Ai)xi

)
. (21)

Substituting λ = 0 in (21) we get

∥λ̄
⋆
∥1 ≤

1
mζ

(
m∑
i=1

ci⊤x̂i −
m∑
i=1

min
xi∈Xi

ci⊤xi

)

≤
1
ζ

max
i=1,...,m

{
max
xi∈Xi

ci⊤xi −min
xi∈Xi

ci⊤xi

}
=

γ̃

pζ
, (22)

where the second inequality comes from the fact that ci⊤x̂i ≤
maxxi∈Xi ci

⊤xi and that
∑m

i=1 βi ≤ mmaxi βi for any βi, and the last
equality is due to (3). Using (22) in (20) we have

J⋆PLP
− J⋆PLP

≤ λ̄
⋆⊤ρ̄

≤ ∥λ̄
⋆
∥1∥ρ̄∥∞

≤
∥ρ̄∥∞

pζ
γ̃ ,

where the second inequality is due to the Hölder’s inequality.

Bound on J⋆PLP
− J⋆P :

Since PLP is a relaxed version of P , then J⋆PLP
− J⋆P ≤ 0.

The proof is concluded considering (17) and inserting the
bounds obtained for the three terms. □

4. Performance-oriented variant of Algorithm 1

While Algorithm 1 is able to find a feasible solution toP , it does
not directly consider the performance of the solution, whereas
the user is concerned with both feasibility and performance with
higher priority given to feasibility. This calls for a modification
to Algorithm 1 which also takes into account the performance
achieved.

Theorem 1 guarantees that there exists an iteration index K
after which the iterates stay feasible for P for all k ≥ K . Now,
suppose that the agents, together with the Aixi(k) also transmit
ci⊤xi(k) to the central unit, then the central unit can construct the
cost of x(k) = [x1(k)⊤, . . . , xm(k)⊤]⊤ at each iteration. When a
feasible solution is found, its cost may be compared with that of a
previously stored solution, and the central unit can decide to keep
the new tentative solution or discard it. This way we are able to
track the best feasible solution across iterations.

The modified procedure is summarized in Algorithm 2. Note
that, compared to Algorithm 1, each agent is required to transmit
also the cost of its tentative solution.

5. Application to optimal PEVs charging

In this section we show the efficacy of the proposed approach
in comparison to the one described in Vujanic et al. (2016) on
the Plug-in Electric Vehicles (PEVs) charging problem described
in Vujanic et al. (2016). This problem consists in finding an optimal
overnight charging schedule for a fleet of m vehicles, which has
to satisfy both local requirements and limitations (e.g., maximum
charging power and desired final state of charge for each vehicle),
and somenetwork-wide constraints (i.e.,maximumpower that the
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Algorithm 2: Performance-oriented version.
1: % Initialize variables
2: λ← 0, s̄i ←−∞, si ←+∞, i = 1, . . . ,m
3: J̌ ←+∞, δ← 0, k← 0
4: repeat
5: for i = 1 to m do
6: % Store tentative local solution
7: if δ = 1 then
8: x̌i ← xi
9: end if

10: % Update tentative local solution
11: xi ← argminxi∈vert(Xi)(ci

⊤
+ λ⊤Ai)xi

12: end for
13: % If solution is feasible and has better cost, then

tell agents to update their tentative solutions
14: if

∑m
i=1 Aixi ≤ b and

∑m
i=1 ci

⊤xi < J̌ then
15: J̌ ←

∑m
i=1 ci

⊤xi
16: δ← 1
17: else
18: δ← 0
19: end if
20: % Update tightening
21: s̄i ← max{s̄i, Aixi}, i = 1, . . . ,m
22: si ← min{si, Aixi}, i = 1, . . . ,m
23: ρi ← s̄i − si, i = 1, . . . ,m
24: ρ ← pmax{ρ1, . . . , ρm}

25: % Update dual variables
26: λ← [λ+ α(k)(

∑m
i=1 Aixi − b+ ρ)]+

27: % Update iteration counter
28: k← k+ 1
29: until time is over

network can deliver at each time slot). We consider both versions
of the PEVs charging problem, namely, the ‘‘charge only’’ setup in
which all vehicles can only draw energy from the network, and the
‘‘vehicle to grid’’ setupwhere the vehicles are also allowed to inject
energy in the network.

The improvement of our approach with respect to that in
Vujanic et al. (2016) is measured in terms of the following two
relative indices: the reduction in the level of conservativeness
∆ρ% and the improvement in performance achieved by the primal
solution ∆J% defined as

∆ρ% =
∥ρ̃∥∞ − ∥ρ̄∥∞

∥ρ̃∥∞
· 100 and ∆J% =

Jρ̃ − Jρ̄
Jρ̃
· 100,

where Jρ̃ =
∑m

i=1 ci
⊤xi(λ⋆

ρ̃
) and Jρ̄ =

∑m
i=1 ci

⊤xi(λ̄
⋆). A positive

value for these indices indicates that our approach is less conser-
vative.

For a thorough comparison we determined the two indices
while varying: (i) the number of vehicles in the network, (ii) the
realizations of the random parameters entering the system de-
scription (cost of the electrical energy and local constraints), and
(iii) the right hand side of the joint constraints. All parameters and
their probability distributions were taken from Table 1 in Vujanic
et al. (2016).

In Table 1we report the conservativeness reduction and the cost
improvement for the ‘‘vehicle to grid’’ setup. As it can be seen from
the table, the level of conservativeness is reduced by 50%while the
improvement in performance (witnessed by positive values of∆J%)
drops as the number of agents grows. This is due to the fact that
the relative gap between Jρ̃ and J⋆P tends to zero as m → ∞, thus
reducing the relative margin for performance improvement.

Table 1
Reduction in the level of conservativeness (∆ρ%) and improvement in performance
(∆J%) achieved by the primal solution obtained by the proposed method when
compared with the one proposed in Vujanic et al. (2016).
m 250 500 1000 2500 5000 10000

∆ρ% 50% 50% 50% 50% 50% 50%
∆J% 13.9% 3.1% 1.1% 0.15% 0.05% 0.02%

Fig. 1. Histogram of the performance improvement (∆J%) achieved by the primal
solution obtained by the proposed method with respect to the one proposed
in Vujanic et al. (2016) over 1000 runs.

We do not report the results for the ‘‘charge only’’ setup since
the two methods lead to the same level of conservativeness and
performance of the primal solution.

We also tested the proposed approach against changes of the
random parameters defining the problem. We fixed m = 250
and performed 1000 tests running Algorithm 1 and the approach
in Vujanic et al. (2016)with different realization for all parameters,
extracted independently. Fig. 1 plots an histogram of the values
obtained for∆J% in the 1000 tests. Note that the cost improvement
ranges from 3% to 15% and, accordingly to the theory, is always
non-negative. The reduction in the level of conservativeness is also
in this case 50%, suggesting that the proposed iterative scheme
exploits some structure in the PEVs charging problem that the
approach in Vujanic et al. (2016) overlooks. Also in this case, in
the ‘‘charge only’’ setup the two methods lead to the same level
of conservativeness and performance.

Finally, we compared the two approaches in the ‘‘vehicle to
grid’’ setup against changes in the joint constraints. If the number
of electric vehicles is m = 250 and we decrease the maximum
power that the network can deliver by 37%, then the ρ̃ that results
from applying the approach in Vujanic et al. (2016) makes P̃LP

infeasible, thus violating Assumption 1. Whereas PLP associated
with the limiting value ρ̄ for {ρ(k)}k≥1 in Algorithm 1 remains
feasible.

5.1. Comparison between Algorithms 1 and 2

To show the benefits of Algorithm2 in terms of performance,we
run 1000 test with m = 250 vehicles in the ‘‘charge only’’ setup,
where we are also able to compute the optimal solution of P , and
compare the performance of Algorithms1 and 2 in terms of relative
distance from the optimal cost J⋆P of P .

Fig. 2 shows the distribution of (Jρ̄ − J⋆P )/J⋆P · 100 obtained with
Algorithm 1 (blue) and (J̌ − J⋆P )/J⋆P · 100 obtained with Algorithm
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Fig. 2. Histogram of the relative distance from the optimal value of P achieved by
the primal solution obtained by Algorithm 1 (blue) and Algorithm 2 (orange), over
1000 runs . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

2 (orange) for the 1000 runs. As can be seen from the picture,
most runs of Algorithm 2 result in a performance very close to
the optimal one, while the runs from Algorithm 1 exhibit lower
performance.

6. Concluding remarks

We proposed a new method for computing a feasible solution
to a large-scale mixed integer linear program via a decentralized
iterative scheme that decomposes the program in smaller ones and
has the additional beneficial side-effect of preserving privacy of
the local information if the problem originates from a multi-agent
system.

This work improves over existing state-of-the-art results in
that feasibility is achieved in a finite number of iterations and
the decentralized solution is accompanied by a less conservative
performance guarantee. The application to a plug-in electric vehi-
cles optimal charging problem verifies the improvement gained in
terms of performance.

Our method was recently extended to a distributed setup with-
out any central unit in Falsone, Margellos, and Prandini (2018),
by integrating within the decentralized iterative scheme proposed
here a max-consensus algorithm on the tightening coefficient and
employing the distributed approach for updating the dual variables
proposed in Falsone, Margellos, Garatti, and Prandini (2017). Finite
convergence properties are retained in the distributed scheme.

Future research directions include the computation of an upper
bound on the number of iterations needed for convergence. This is
more critical in a distributed setupwhere no central unit exists that
can directly monitor feasibility and/or inspect performance. More-
over, we aim at exploiting the analysis of Udell and Boyd (2016)
to generalize our results to problems with nonconvex objective
functions.

Appendix

We provide an example illustrating that the two solution
methodologies outlined in Section 1, namely, using the optimal
dual solution to recover a primal one via (1), and using a subgradi-
entmethodology together with the averaging procedure described
in Shor (1985, pag. 117), may both lead to infeasible solutions.

Example 1. Consider the following problem

min
x

x

subject to: − x ≤ −0.5
x ∈ {0, 1, 2},

whose dual (dualizing only the inequality constraint) is given by

max
λ≥0

0.5λ+ min
x∈{0,1,2}

(1− λ)x.

We will now apply the two solution methodologies outlined in
Section 1.

Part 1 If we solve the dual up to optimality we get λ⋆
= 1 as the

unique solution. Using (1) with λ = 1 we get x(λ⋆) = 0 and
x(λ⋆) = 2 as possible solutions. Clearly, x(λ⋆) = 0 is feasible
for the local constraint but it is not feasible for the dualized
constraint x ≥ 0.5.

Part 2 If we employ the averaging procedure described in Shor
(1985, pag. 117) while solving the dual using the subgradient
method, then we will converge to the unique solution of the
following convexified program

min
x

x

subject to: − x ≤ −0.5
x ∈ conv({0, 1, 2}) = [0, 2],

which is x⋆
LP = 0.5. Clearly, x⋆

LP satisfies the dualized con-
straint but not the local one.
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