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a b s t r a c t

We consider the problem of optimal charging of plug-in electric vehicles (PEVs). We treat this problem as
a multi-agent game, where vehicles/agents are heterogeneous since they are subject to possibly different
constraints. Under the assumption that electricity price is affine in total demand, we show that, for any
finite number of heterogeneous agents, the PEV charging control game admits a unique Nash equilibrium,
which is the optimizer of an auxiliary minimization program.We are also able to quantify the asymptotic
behaviour of the price of anarchy for this class of games. More precisely, we prove that if the parameters
defining the constraints of each vehicle are drawn randomly from a given distribution, then, the value of
the game converges almost surely to the optimum of the cooperative problem counterpart as the number
of agents tends to infinity. In the case of a discrete probability distribution, we provide a systematic way
to abstract agents in homogeneous groups and show that, as the number of agents tends to infinity, the
value of the game tends to a deterministic quantity.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Electric vehicles obtain some or all of their energy from the
electricity grid, and are typically referred to as plug-in electric
vehicles (PEVs). Their penetration is expected to increase signifi-
cantly, since, not only they contribute to pollution reduction, but,
by charging over low electricity price periods, they also serve as
virtual dynamic storage, contributing to the stability of the electric
grid (see Callaway & Hiskens, 2011; Denholm & Short, 2006; Li,
Brocanelli, Zhang, & Wang, 2014; Rahman & Shrestha, 1993). In an
electric vehicle charging control context two cases can be distin-
guished. The first case refers to a set-up where vehicles are social
welfare maximizing entities and cooperate in view of minimizing
the overall population cost. Under this setting, Deori, Margellos,
and Prandini (2016), Deori, Margellos, and Prandini (2018) and
Gan, Topcu, and Low (2013) propose iterative schemes that involve

✩ Research was supported by the European Commission, H2020, under the
project UnCoVerCPS, grant number 643921, by EPSRC UK under the grant
EP/P03277X/1, and by a MathWorks professorship support. The material in this
paper was partially presented at IFACWorld Congress, Toulouse, France, 2018. This
paper was recommended for publication in revised form by Associate Editor Gurdal
Arslan under the direction of Editor Ian R. Petersen. Preliminary results related to
Sections 3.2 and 3.3 of the current manuscript can be found in Deori et al. (2017b).

* Corresponding author.
E-mail addresses: luca.deori@polimi.it (L. Deori),

kostas.margellos@eng.ox.ac.uk (K. Margellos), maria.prandini@polimi.it
(M. Prandini).

every vehicle solving a local minimization program, and show
convergence to the social welfare optimum. In the second case
vehicles act as selfish agents that seek to minimize their local cost,
without being concernedwith social welfare paradigms. This gives
rise to multi-agent non-cooperative games, and the main concern
is the computation of Nash equilibrium strategies. A complete
theoretical analysis is provided in Huang, Caines, and Malhame
(2007) and Lasry and Lions (2007) for stochastic continuous-time
problems, but in the absence of constraints. The deterministic,
discrete-time problem variant, was investigated in Ma, Callaway,
and Hiskens (2013), and was further extended in Grammatico,
Parise, Colombino, and Lygeros (2016) and Parise, Colombino,
Grammatico, and Lygeros (2014) to account for the presence of
constraints. However, for any finite number of agents, an approx-
imate Nash equilibrium is computed, while the exact Nash one is
reached only in the limiting casewhere the number of agents tends
to infinity. The recentwork of Paccagnan, Kamgarpour, and Lygeros
(2016) overcomes this issue under the assumption that vehicles
are aware of the way the total population consumption affects the
price that drives their behaviour.

One challenge associated with the aforementioned stream of
literature is that there is no common awareness on how the re-
sulting Nash equilibrium solution is related to the associated social
welfare optimum. In this paper we follow a pricing set-up similar
to the seminal paper by Arrow and Debreu (1954), and account for
constraint heterogeneity by assuming that the parameters defining
the constraints of each vehicle are drawn randomly from a given
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distribution. We consider a multi-stage variant of the problem,
however, we assume the price is an affine function of the total
consumption. Under this set-up, our paper provides the following
contributions:
(1)We quantify, to the best of our knowledge for the first time, the
limiting value of the price of anarchy (Koutsoupias & Papadimitriou,
2016) for this class of games. The price of anarchy provides the
means to quantify the efficiency of Nash equilibria, and is defined
as the ratio between the worst-case value of the game achieved by
a Nash equilibrium (in our setting there is a unique one) and the
social optimum. We prove that as the number of agents tends to
infinity this ratio tends to one for almost any choice of the random
heterogeneity parameters (Theorem 2). This result extends (Ma et
al., 2013) to the case of heterogeneous agents that are subject to
constraints, without resorting to approximate Nash equilibria and
primal–dual algorithms as in Li and Zhang (2016). As a byproduct
we show that, for any finite number of possibly heterogeneous
agents, the PEV charging control game admits a unique Nash
equilibrium, which is the minimizer of an auxiliary minimization
program (Proposition 4); see also Deori et al. (2017b). This is due to
the fact that the underlying game is potential (Facchinei, Piccialli,
& Sciandrone, 2011), however, our proof line is different and is
based on fixed-point theoretic results. This result opens the road
for the use of iterative algorithms for decentralized computation
of Nash equilibria (Deori et al., 2018; Gan et al., 2013; Paccagnan
et al., 2016).
(2) We provide the discrete time counterpart of the mean-field
game theoretic approach in Huang et al. (2007), treating hetero-
geneity in a probabilistic manner, thus complementing the de-
terministic approaches of Grammatico et al. (2016), Li and Zhang
(2016) and Paccagnan et al. (2016). In particular, we show that
if the distribution of the random parameters that render agents’
constraints heterogeneous is discrete, agents can be abstracted
in homogeneous groups and, for almost any realization of the
random heterogeneity parameters, as the number of agents tends
to infinity, the value of the game tends to a deterministic quantity
(Theorem 3).

It should be noted that our set-up exhibits similarities with
multi-participant market investigations in Caramanis and Foster
(2011), Caramanis, Goldis, Ruiz, and Rudkevich (2012), Caramanis,
Ntakou, Hogan, Chakrabortty, and Schoene (2016) and Huang,
Roozbehani, and Dahleh (2015). In particular, it is shown in Cara-
manis et al. (2012) that under current day-ahead operations partic-
ipants have the incentive to self-dispatch, and the resulting social
welfaremarket clearing prices are not practically viable. This is not
in contrast with our results, since we show that Nash equilibria
and social optima tend to coincide only in the limiting case of an
infinite number of agents, and may differ for finite populations.
Moreover, we consider a stylized architecture without including
a distribution network model.

Section 2 introduces the non-cooperative PEV charging control
game and its social welfare counterpart. Section 3 quantifies the
price of anarchy for the limiting case of an infinite number of
agents. In Section 4, we investigate the effect heterogeneity has in
the value of the game, while Section 5 provides some directions for
future work.

2. Electric vehicle charging control problem

2.1. Cooperative set-up

We first consider the case of m PEVs that seek to determine
their charging profile along some discrete time horizon [0, h − 1]
of arbitrary length h ∈ N so as to minimize the total charging cost
for the entire fleet. This corresponds to a cooperative set-up that is
likely to occur when vehicles belong to the same managing entity.

To this end, let H = {0, 1, . . . , h− 1} and I = {1, . . . ,m}. Consider
the following optimization program:

min
{xit∈R} t∈H

i∈I

∑
t∈H

pt
(∑

i∈I

xit + x0t
)2

(1)

subject to:
∑
t∈H

xit = γ i, for all i ∈ I, (2)

xit ∈ [xit , xit ], for all t ∈ H, i ∈ I, (3)

where xit ∈ R is the charging rate of vehicle i, i ∈ I , at time t , t ∈ H ,
and pt ≥ 0 is an electricity price coefficient at time t . For each
t ∈ H , we denote by x0t ≥ 0 the non-PEVdemandwhich, for a fixed
number of PEVsm, is treated as constant and not as an optimization
variable in the optimization programs below. Similarly to Ma et
al. (2013) and Parise et al. (2014), for all t ∈ H , we assume that
limm→∞x0t/m = x̂0t is constant, allowing the non-PEV demand to
grow linearly in the number of agentsm if x̂0t ̸= 0.

The price of electricity is given by pt (
∑

i∈Ix
it

+ x0t ), and is
assumed to depend linearly on the total PEV and non-PEV demand
through pt . Dependency of price on the PEV demand is affine
due the presence of x0t . Our choice for an affine price function
is a simplification over (Arrow & Debreu, 1954; Gan et al., 2013;
Ma et al., 2013) where convex monotone increasing functions are
allowed, and is motivated by Grammatico et al. (2016), where
an affine function is also employed, as well as by the numerical
investigations of Gharesifard, Basar, and Dominguez-Garcia (2016)
(in the corresponding theoretical analysis more general functions
are allowed). The slope of this function encodes the inverse of
the price elasticity of demand, and is motivated by the fact that
marginal prices in lossless unconstrained energy systems are affine
functions of the total production/demand (Caramanis et al., 2016).
The objective function in (1) encodes the total electricity cost over
[0, h − 1]. Constraint (2) represents a prescribed charging level
γ i

∈ R, γ i > 0, to be reached by each vehicle i at the end of
the considered time horizon H , whereas (3) imposes minimum
(xit ∈ R, xit ≥ 0) and maximum (xit ∈ R, xit < ∞) limits,
respectively, on xit .

For all i ∈ I , let xi = [xi0, . . . , xi(h−1)
]
⊤

∈ R|H|, where |·| denotes
the cardinality of its argument. Let also f : R|H|

× R(m−1)|H|
→ R

be such that, for all i ∈ I , for any (xi, x−i) ∈ Rm|H|,

f (xi, x−i) =

∑
t∈H

xitpt
(∑

j∈I
j̸=i

xjt + xit + x0t
)
, (4)

where by x−i
∈ R(m−1)|H| we imply a vector including the decision

variables of all vehicles except vehicle i (recall that x0t is constant
for any fixedm and hence not included in these vectors). Moreover,
for all i ∈ I , let

X i
=
{
xi ∈ R|H|

:

∑
t∈H

xit = γ i and

xit ∈ [xit , xit ], for all t ∈ H
}
, (5)

denote the constraint set corresponding to vehicle i. Let x =

(x1, . . . , xm) and X = X1
× · · · × Xm, and consider f0 : Rm|H|

→ R
such that f0(x) =

∑
t∈Hx

0tpt (
∑

j∈Ix
jt

+ x0t ), which represents the
cost of non-PEV demand. We can then rewrite (1)–(3) as

P : min
{xi∈X i}i∈I

f0(x) +

∑
i∈I

f (xi, x−i), (6)

and refer to its optimal solution as social optimum. Note that local
utility functions that depend only on the decision vector xi of each
vehicle i, i ∈ I , and are possibly different per vehicle, can be
incorporated in P by means of an epigraphic reformulation (see
Deori et al., 2016).
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Assumption 1. Fix anym ≥ 1 and let γ i > 0, i ∈ I .
(a) The sets X i, i ∈ I , are nonempty and compact.
(b) The price coefficient satisfies pt > 0, for all t ∈ H .

The second part of Assumption 1 is only needed for the proof
of Theorem 2, but is naturally satisfied in situations of practical
relevance.

Denote the set of social optimaM of P by

M = arg min
{xi∈X i}i∈I

f0(x) +

∑
i∈I

f (xi, x−i). (7)

Note that (7) involves minimizing a continuous function (as an
effect of being convex), over a compact set (which is convex)
due to Assumption 1. As such, the minimum is achieved due to
Weierstrass’ theorem in Bertsekas and Tsitsiklis (1989, Proposition
A.8, p. 625). Under a similar reasoning all subsequentminimization
problems are well defined. It should be emphasized that f0 is
introduced to facilitate the compact representation of (1) in (6) and
captures the cost of non-PEV demand,which does not appear in the
gaming formulation of the next subsection where, similarly to Ma
et al. (2013) and Parise et al. (2014), agents’ pay-off functions are
given by (4).

2.2. Non-cooperative set-up

We now consider the case where the m vehicles act in a non-
cooperative manner. In particular, each vehicle/agent i, i ∈ I ,
aims at determining a charging profile xi that minimizes its pay-
off function f (xi, x−i), as this is given by (4), which depends on its
own decision vector xi and on the other agents decision vector x−i,
subject to a local constraint xi ∈ X i. We say that for all i, i ∈ I ,
the tuple (xi, x−i) is a Nash equilibrium of the game, if each agent
i, given the strategies x−i of the other agents, has no interest in
changing its own strategy xi.

Definition 1. For all i ∈ I , each agent i has a pay-off function
f (·, x−i) and a constraint set X i. The set of Nash equilibria N of the
non-cooperative game is given by

N =
{
x ∈ X : f (xi, x−i) ≤ f (ζ i, x−i)

for all ζ i
∈ X i, i ∈ I

}
, (8)

where x = (x1, . . . , xm) and X = X1
× · · · × Xm.

Since each agent has a pay-off function of the same structure,
the resulting game is a potential game (Facchinei et al., 2011;
Voorneveld, 2000).

3. Nash equilibria versus social optima

3.1. Nash equilibria as fixed-points

The results of this subsection do not require the pay-off function
to exhibit the form of (4) and are more general; in fact each
agent could have a different pay-off function, convex with respect
to the decision vector of the particular agent, but possibly non-
differentiable.

For each i, i ∈ I , consider the mappings T i
: X → X i and

T̃ i
: X → X i, defined such that, for any x ∈ X ,

T i(x) = argmin
zi∈X i

∥z i − xi∥2 (9)

subject to

f (z i, x−i) ≤ min
ζ i∈X i

f (ζ i, x−i),

T̃ i(x) = argmin
zi∈X i

f (z i, x−i) + c∥z i − xi∥2, (10)

for any c > 0. Note that bothmappings are well defined since both
theminimizers of (9) and (10) are unique. As for themapping in (9),
a tie-break rule is implemented to select, in case f (·, x−i) admits
multiple minimizers over X i, the one closer to xi with respect to
the Euclidean norm. In contrast, the mapping T̃ i in (10) includes
in the objective function an additional term weighted by c > 0,
which penalizes the deviations from the current decision vector
xi and makes it strictly convex. Notice that, with a slight abuse
of notation, by T i(x) and T̃ i(x), we imply the minimizers of (9)
and (10), respectively, and not the corresponding (singleton due
to uniqueness) sets.

Define also the mappings T : X → X and T̃ : X → X ,
such that their components are given by T i and T̃ i, respectively,
for i ∈ I , i.e., T = (T 1, . . . , Tm) and T̃ = (̃T 1, . . . , T̃m). They can be
equivalently written as

T (x) = argmin
z∈X

∑
i∈I

∥z i − xi∥2 (11)

subject to

f (z i, x−i) ≤ min
ζ i∈X i

f (ζ i, x−i), ∀i ∈ I,

T̃ (x) = argmin
z∈X

∑
i∈I

[
f (z i, x−i) + c∥z i − xi∥2]. (12)

The set of fixed points for T and T̃ is given by

FT =
{
x ∈ X : x = T (x)

}
, (13)

FT̃ =
{
x ∈ X : x = T̃ (x)

}
. (14)

We first show that the set of Nash equilibria N and the set of
fixed-points FT of the mapping T in (11) coincide.

Proposition 1. Under Assumption 1(a), N = FT .

Proof. (1)N ⊆ FT : Fix any x ∈ N . For each i ∈ I , denote xby (xi, x−i).
The fact that x ∈ N implies that xi is a minimizer of f (·, x−i), for all
i ∈ I . Indeed, according to (8), f (xi, x−i) will be no greater than
the values that f may take if evaluated at (ζ i, x−i), for any ζ i

∈ X i,
i.e., f (xi, x−i) ≤ f (ζ i, x−i), for all ζ i

∈ X i. The last statement can be
equivalently written as f (xi, x−i) ≤ minζ i∈X i f (ζ i, x−i) whichmeans
that x satisfies the inequality in (11). Moreover, x is also optimal for
the objective function in (11), since it results in zero cost. Hence,
x = T (x), which by (13) implies that x ∈ FT .
(2) FT ⊆ N: Fix any x ∈ FT . By the definition of FT , and due to
the inequality in (11) that is embedded in the definition of T , we
have that for all i ∈ I , f (xi, x−i) ≤ minζ i∈X i f (ζ i, x−i). The last
statement implies that xi is a minimizer of f (·, x−i) over X i, and
hence f (xi, x−i) ≤ f (ζ i, x−i), ∀ζ i

∈ X i, ∀i ∈ I , which due to (8)
implies that x ∈ N . □

We next show that the set of fixed-points FT of T in (13) and the
set of fixed-points FT̃ of T̃ in (14) coincide.

Proposition 2. Under Assumption 1(a), FT = FT̃ .

Proof. (1) FT ⊆ FT̃ : Fix any x ∈ FT . By the definition of FT , and
due to the inequality in (11) that is embedded in the definition of
T , we have that for all i ∈ I , f (xi, x−i) ≤ minζ i∈X i f (ζ i, x−i). The
last statement implies that xi is a minimizer of f (·, x−i) over X i, and
hence f (xi, x−i) ≤ f (ζ i, x−i), ∀ζ i

∈ X i, ∀i ∈ I . Therefore, we would
also have that f (xi, x−i) ≤ f (ζ i, x−i) + c∥ζi − xi∥2, ∀ζ i

∈ X i, ∀i ∈ I .
The latter, due to (10) implies that xi = T i(x), for all i ∈ I , and hence
x ∈ FT̃ .
(2) FT̃ ⊆ FT : Fix any x ∈ FT̃ . By the definition of FT̃ , and due to (10),
the latter implies that xi = T̃ i(x) for all i ∈ I . We thus have that, for
all i ∈ I ,

f (xi, x−i) ≤ f (ζ i, x−i) + c∥ζ i
− xi∥2, ∀ζ i

∈ X i. (15)
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If in addition xi minimizes f (·, x−i) over X i, for all i ∈ I , then xi
would satisfy the inequality in (9), while resulting in zero cost. We
would thus have that xi = T i(x), for all i ∈ I , and hence x ∈ FT .

To show that, for all i ∈ I , xi minimizes f (·, x−i) over X i, assume
for the sake of contradiction that this is not the case and there exists
z i ∈ X i, z i ̸= xi, such that f (z i, x−i) < f (xi, x−i). For any α ∈ (0, 1),
let ζ i

= αz i + (1 − α)xi. Note that by convexity of X i, ζ i
∈ X i,

whereas by convexity of f (·, x−i) with respect to its first argument
we have that

f (ζ i, x−i) ≤ αf (z i, x−i) + (1 − α)f (xi, x−i), (16)

which, by rearranging some terms, can be rewritten as

f (ζ i, x−i) + α
(
f (xi, x−i) − f (z i, x−i)

)
≤ f (xi, x−i). (17)

Note that, since f (xi, x−i) − f (z i, x−i) > 0, ∥z i − xi∥ > 0 and
c > 0, there exists α ∈ (0, 1) such that

α(f (xi, x−i) − f (z i, x−i)) > cα2
∥z i − xi∥2

= c∥ζ i
− xi∥2, (18)

where the equality follows from the definition of ζ i (note that ζ i

depends on the choice of α). By (17) and (18) we have that there
exists α such that

f (ζ i, x−i) + c∥ζ i
− xi∥2 < f (xi, x−i). (19)

The last statement, together with (15), leads to a contradiction,
showing that xi minimizes f (·, x−i) over X i. □

An alternative proof for a result similar to Proposition 2 was
provided in Deori et al. (2018, Proposition 3), relying, however, on
the additional assumption that the objective functions involved are
differentiable. The following corollary is a direct consequence of
Propositions 1 and 2.

Corollary 1. Under Assumption 1(a), N = FT̃ .

3.2. Nash equilibria as social optima of an auxiliary problem

We show that the set of Nash equilibria N defined in (8) co-
incides with the set of optimizers of an auxiliary minimization
program. To this end, for all i ∈ I , let

Pa : min
{xi∈X i}i∈I

f0(x) +

∑
i∈I

[
f (xi, x−i) + fa(xi)

]
, (20)

where fa(xi) =
∑

t∈Hp
t (xit )2. Problem Pa is a centralized convex

optimization program. Let T̃a =
(̃
T 1
a , . . . , T̃m

a

)
(see also equation

(5) in Deori et al., 2018), where, for all i ∈ I , for any c > 0,

T̃ i
a(x) = argmin

zi∈X i
f0(z i, x−i) + f (z i, x−i) + fa(z i)

+

∑
k∈I
k̸=i

[
f (xk, (z i, x−{k,i})) + fa(xk)

]
+ 2c∥z i − xi∥2, (21)

where f (xk, (z i, x−{k,i})) =
∑

t∈Hx
ktpt (

∑
k∈I,k̸=ix

kt
+z it +x0t ), for all

k ∈ I , k ̸= i due to (4), encoding the fact that the decision vector
z i of agent i appears also in the terms with k ̸= i. By x−{k,i} we
mean the elements of x but for the ones corresponding to agents
k and i. By f0(z i, x−i) we imply f0(x1, . . . , xi−1, z i, xi+1, . . . , xm) =∑

t∈Hx
0tpt (

∑
k∈I,k̸=ix

kt
+ z it + x0t ). We then have the following re-

sult, adapted to the notation of the current paper, due to Corollary
1 of Deori et al. (2018).

Proposition 3 (Corollary 1 of Deori et al., 2018). Under Assump-
tion 1(a), the set of minimizers of Pa coincides with the set of fixed
points of the mapping T̃a.

Proposition 4. Under Assumption 1(a), the set of Nash equilibria N,
and minimizers of Pa coincide, i.e.,

N = arg min
{xi∈X i}i∈I

f0(x) +

∑
i∈I

[
f (xi, x−i) + fa(xi)

]
. (22)

Proof. By the definition of T̃ i
a(x) in (21) we have that

T̃ i
a(x) = argmin

zi∈X i

[∑
t∈H

z itpt
(∑

j∈I
j̸=i

xjt + z it + x0t
)

+

∑
t∈H

z itpt
(∑

k∈I
k̸=i

xkt + x0t
)

+

∑
t∈H

pt (z it )2
]

+ 2c∥z i − xi∥2, (23)

where the first term in the summation corresponds to f (z i, x−i)
as defined in (4), the second term corresponds to f0(z i, x−i) +∑

k∈I,k̸=if (x
k, (z i, x−{k,i}))where all terms that do not depend on the

decision vector z i have been dropped as they leave the minimizer
unaffected, and the third term is fa(z i) (fa(xk) is constant and has
been dropped). Rearranging terms, we obtain

T̃ i
a(x) = argmin

zi∈X i
2
∑
t∈H

z itpt
(∑

j∈I
j̸=i

xjt + z it + x0t
)

+ 2c∥z i − xi∥2

= argmin
zi∈X i

f (z i, x−i) + c∥z i − xi∥2
= T̃ i(x), (24)

where in the second equalityweused (4) and rescaled the objective
by a factor of 2, since this does not affect the resulting minimizer.
The last equality follows from the definition of T̃ i in (10). Eq. (24)
implies that T̃ i

a and T̃ i are identical. The latter, together with Corol-
lary 1 and Proposition 3, concludes the proof. □

If we impose also Assumption 1(b), the objective function in
(20) becomes strictly convex due to the presence of the auxiliary
term. Therefore, it admits a unique minimizer and, as a result
of Proposition 4, the game of Section 2.2 admits a unique Nash
equilibrium. By Corollary 1 this in turn implies that the mapping T̃
has a unique fixed-point. The uniqueness of the Nash equilibrium
is due to (22), which relies on the particular structure of the
objective functions in (4); for general convex pay-off functions
(22), however, this might not be the case.

The interpretation of (20) is that the auxiliary term acts like a
variance penalty in regularization methods (similar to overfitting
prevention in regression), promoting least norm solutions, thus
implicitly enforcing uniformity in the agents’ decisions, and shall
not be related to quadratic penalty terms in augmented Lagrangian
methods. The relative importance of this term becomes negligible
as the number of agents increases.

3.3. Price of anarchy

In this subsection we show that as the number of agents in-
creases, the Nash equilibrium of the game in Section 2.2 achieves
the social welfare optimum.

For our analysis we assume that the price coefficients {pt}t∈H
are deterministic quantities satisfying Assumption 1(b), whereas
the consumption level γ i, i ∈ I in (2) and the upper and lower
limits in (3) are random variables, extracted according to a given
probability distribution. We impose the following assumption on
the infinite sequence of random vectors {γ i, xi, xi}i≥1, where xi =

[xi0, . . . , xi(h−1)
], xi = [xi0, . . . , xi(h−1)

].
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Assumption 2. Let {γ i, xi, xi}i≥1 be an infinite sequence of random
vectors on a probability space (Ω,F,P).1 We assume that

(a) {γ i, xi, xi}i≥1 are a sequence of independent and identically
distributed (i.i.d.) random vectors.

(b) γ 1 is a positive random variable, while x1, x1 are non-
negative random vectors.

(c) E[γ 1
] < ∞ and E[(γ 1)2] < ∞, where E[·] denotes the ex-

pectation operator associated with the probability measure
P.

Due to the i.i.d. requirement of Assumption 2(a), the statement
of part (b) would also hold for all γ i, and {xi, xi}, i ≥ 1. By
Assumption 2(a)–(b), E[γ i

] > 0, for any i ≥ 1. We employ the
following law of large numbers type of argument, andwrite that an
event holds (P-a.s.)when it holdswith probability onewith respect
to P.

Theorem 1 ( Shiryaev, 1995, Chapter IV, §3, Theorem 3). Let {yj}j≥1
be a sequence of i.i.d. random variables such that E[|y1|] < ∞. For
any given index set Jm with cardinality |Jm| = m, we then have that

lim
m→∞

1
m

∑
j∈Jm

yj = E[y1], (P-a.s.) (25)

Consider any given index set H with |H| = h, h ≥ 1, and let
yt ∈ R, yt ≥ 0, for all t ∈ H . Let also ȳ ∈ R such that

∑
t∈Hy

t
= ȳ.

Due to norm equivalence we have that (∥y∥1/
√
h) ≤ ∥y∥2 ≤ ∥y∥1,

where y = (y1, . . . , yh), i.e.,

ȳ2

h
≤

∑
t∈H

(yt )2 ≤ ȳ2, (26)

which we exploit in the proof of Theorem 2. Denote by Fm(x) =

f0(x) +
∑

i∈I f (x
i, x−i) the objective function of P , and let Fm

a (x) =∑
i∈I fa(x

i). The objective function of Pa in (20) can be thus written
as Fm(x) + Fm

a (x). We introduce the superscript m in our notation
to emphasize the fact that the relevant objective functions corre-
spond to a set-up ofm agents, since in the sequel wewill letm tend
to infinity. Notice that, for any x ∈ X ,

Fm(x) =

∑
t∈H

pt
(∑

i∈I

xit + x0t
)2

≥ p
∑
t∈H

(∑
i∈I

xit + x0t
)2

≥ p
∑
t∈H

(∑
i∈I

xit
)2

≥ p

(∑
i∈I γ

i
)2

h
> 0, (27)

where the first inequality is obtained by setting p = mint∈Hpt , and
the second one by omitting the non-negative term x0t . To see the
third inequality notice that

∑
t∈H

(∑
i∈Ix

it
)

=
∑

i∈I

(∑
t∈Hx

it
)

=∑
i∈Iγ

i. The desired inequality follows then by the left-hand side
of (26) with

∑
i∈Ix

it ,
∑

i∈Iγ
i in place of yt and ȳ, respectively. The

last inequality is strict, due to the fact that p > 0 (H is a finite set)
as a result of Assumption 1(b), and the fact that γ i > 0, for all i ≥ 1,
due to Assumption 2(a).

By Koutsoupias and Papadimitriou (2016), we have the follow-
ing definition for the so called price of anarchy, which has mainly
appeared in the computer science literature, mostly focused on
problems with discrete decision variables.

1 Note that if {γ i, xi, xi}, i ≥ 1, is defined on a given set, by P we denote the
probability measure induced on the infinite Cartesian product of these sets. For
more details on the mathematical construction of such a measure the reader is
referred to Vidyasagar (2003, Section 2.4.1, p. 29).

Definition 2. For a given m, Fm(x⋆
a)/F

m(x⋆) is defined as the price
of anarchy for the game in Section 2.2.

Note that according to the discussion belowProposition 4 the game
under study admits a unique Nash equilibrium. In the opposite
case, the numerator of the ratio defined as the price of anarchy shall
be replaced by maxx∈NFm(x), where N is defined as the set of Nash
equilibria, to account for the worst-case value achieved by a Nash
equilibrium.

Theorem 2. Consider Assumptions 1 and 2. Let x⋆
∈ X, x⋆

a ∈ X be
any minimizer of P and Pa, respectively. We then have that

lim
m→∞

Fm(x⋆
a)

Fm(x⋆)
= 1, (P-a.s.), (28)

where Fm(x⋆) > 0, i.e., the price of anarchy tends to 1.

Proof. Let x, xa ∈ X be feasible solutions, possibly different, of P
and Pa, respectively. By the definition of Fm, Fm

a , and since Fm(x) >

0 for any x ∈ X , we have that

Fm
a (xa)
Fm(x)

=

∑
t∈H pt

∑
i∈I (x

it
a )

2∑
t∈H pt

(∑
i∈I xit + x0t

)2 . (29)

Let p = maxt∈Hpt and p = mint∈Hpt > 0, where the inequality is
strict due to Assumption 1(b). We have that

Fm
a (xa)
Fm(x)

≤
p
∑

t∈H
∑

i∈I (x
it
a )

2

p
∑

t∈H

(∑
i∈I xit + x0t

)2 . (30)

Since xita is feasible for Pa, we have that
∑

t∈Hx
it
a = γ i, for all

i ∈ I . By the right-hand side of (26) with xit , γ i in place of yt and ȳ,
respectively, we obtain that∑
t∈H

(xita )
2

≤ (γ i)2, for all i ∈ I. (31)

By the derivation of (27), we obtain that

∑
t∈H

(∑
i∈I

xit + x0t
)2

≥

(∑
i∈I γ

i
)2

h
. (32)

Employing (31), (32), and by exchanging the summation order in
the numerator of (30), we have that

Fm
a (xa)
Fm(x)

≤
ph
∑

i∈I (γ
i)2

p
(∑

i∈I γ
i
)2 =

ph
∑

i∈I (γ
i)2

m

pm
(∑

i∈I γ i

m

)2 . (33)

Applying Theorem 1 twice, once with γ i and once with (γ i)2 in
place of yi, we have that P-a.s.

lim
m→∞

∑
i∈I γ i

m = E[γ 1
]

lim
m→∞

∑
i∈I (γ

i)2

m = E[(γ 1)2]

However, since E[γ 1
] > 0 and E[(γ 1)2]/

(
E[γ 1

]
)2

< ∞ due to
Assumption 2(c),

lim
m→∞

ph
∑

i∈I (γ
i)2

m

pm
(∑

i∈I γ i

m

)2 = 0. (P-a.s.) (34)

Therefore, since (33) holds for any {γ i
}i∈I , we have that

lim
m→∞

Fm
a (xa)
Fm(x)

= 0, (P-a.s.) (35)
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Let now x⋆, x⋆
a ∈ X denote an optimal solution of P and Pa,

respectively. By optimality of x⋆
a we thus have that

Fm(x⋆
a) + Fm

a (x⋆
a) ≤ Fm(x⋆) + Fm

a (x⋆). (36)

Rearranging the terms in (36), and since Fm(x⋆) > 0 (see discussion
above Theorem 2), we obtain

Fm(x⋆
a) − Fm(x⋆)
Fm(x⋆)

≤
Fm
a (x⋆) − Fm

a (x⋆
a)

Fm(x⋆)
≤

Fm
a (x⋆)
Fm(x⋆)

, (37)

where the last inequality is due to the fact that Fm
a (x⋆

a) ≥ 0. Since
(35) holds for any x, xa ∈ X , it will also hold for x = xa = x⋆.
Therefore, (35) and (37) lead to

lim
m→∞

Fm(x⋆
a) − Fm(x⋆)
Fm(x⋆)

= 0, (P-a.s.) (38)

which in turn implies (28), thus concluding the proof. □

Informally speaking, the price of anarchy quantifies the gap
between the social optimum and the value of the non-cooperative
game; Theorem 2 implies that this gap tends to zero as the number
of agents increases.

Remark 1. In Theorem 2 we used the fact that the parameters
that give rise to a heterogeneous vehicle population are random
and satisfy Assumption 2. This offers a more flexible framework to
model agents’ heterogeneity, e.g., encoding prior information on
their distribution, and is in linewith themean-field game theoretic
approach adopted in Huang et al. (2007) for unconstrained, contin-
uous time quadratic games. However, if instead of Assumption 2
we assume that for all i ∈ I , γ i

∈ [γ , γ ] for given deterministic
quantities γ , γ ∈ R (similarly for xi, xi) with γ > 0, the result
of Theorem 2 remains valid not probabilistically, but for all γ i

∈

[γ , γ ]. In particular, the proof remains unchanged but for the
following modifications: The inequalities in (33) shall be replaced
by

Fm
a (xa)
Fm(x)

≤
ph
∑

i∈I (γ
i)2

p
(∑

i∈I γ
i
)2 ≤

phmγ 2

pm2γ 2 ≤
phγ 2

pmγ 2 , (39)

where the numerator of the second inequality follows from∑
i∈I (γ

i)2 ≤ mγ 2 and the denominator from (
∑

i∈Iγ
i)2 ≥ m2γ 2 >

0. Eq. (39) leads to limm→∞(Fm
a (xa)/Fm(x)) = 0 and from (36)

the proof of Theorem 2 remains unchanged, with the relevant
statements holding robustly for all γ i

∈ [γ , γ ], i ∈ I , instead of
P-a.s.

Note that the aggregate quantity 1
m

∑
i∈Ix

it exhibits the same
behaviour with the corresponding objective functions of P and Pa
in Theorem 2, since under Assumption 2(b) the latter are strictly
convex with respect to the agents aggregate.

To illustrate the result of Theorem 2, we performed a numerical
investigation parametric with respect to the number of agents m.
We considered a time horizon h = 12, and price coefficients
(p0, . . . , ph−1) = (0.1, 1, 1.9, 2.8, 3.7, 4.6, 5.5, 6.4, 7.3, 8.2, 9.1,
10). For simplicitywe assumed that the probabilitymass is concen-
trated to the lower and upper limits xit = 0 and xit = 1 for all i ∈ I ,
t ∈ H (assuming normalized charging rates) that are effectively
being treated as deterministic,whereas the charging levels γ i, i ∈ I ,
were extracted in an i.i.d. fashion from a uniform distribution with
support [0, 12]. We consider a zero non-PEV demand, i.e., x̂0t = 0
for all t ∈ H (see Section 2.1 for a definition of x̂0t ). For each
m, we performed 100 multi-extractions of {γ i

}i≥1, and calculated
the average of the ratio (Fm(x⋆

a) − Fm(x⋆))/Fm(x⋆). As shown in
Fig. 1, and following (28), this ratio tends to zero as the number
of agents increases for every set of heterogeneity parameters, but
not necessarily in a monotone way. Note that x⋆, x⋆

a depend on the

Fig. 1. Relative error (Fm(x⋆
a) − Fm(x⋆))/Fm(x⋆); ‘‘Blue stars’’ correspond to the

average value across 100 multi-extractions of {γ i
}i≥1 from a uniform distribution

and xit = 0, xit = 1 for all i ∈ I , t ∈ H , while for each m boxplots show the
distribution of the relative error for the different parameter extractions. On each
box, the ‘‘red line’’ indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively. The whiskers extend to
the most extreme data points not considered outliers, and the outliers are plotted
individually using the ‘‘+’’ symbol.

extracted {γ i
}i≥1; however, we suppress this dependence in the

notation for simplicity.
Fig. 2 investigates the case of a non-zero normalized non-

PEV demand, i.e., x0t/m = x̂0t ̸= 0 (green), and considers the
normalized total consumption profile (1/m)(

∑
i∈Ix

it
+ x0t ) =

(1/m)
∑

i∈Ix
it

+ x̂0t obtained by solving problem P (blue) and
problem Pa (red). Here we solved those problems by means of
the iterative algorithm proposed in Deori et al. (2018), but other
decentralized algorithms could be employed, e.g., Gan et al. (2013).
Both solutions have the so called valley filling property, i.e., the PEV
consumption tends to compensate for the over night drop in the
non-PEV consumption. By comparison of the figure panels, as m
increases the consumption corresponding to the Nash equilibrium
tends to the social optimum, as expected by the discussion below
Remark 1.

4. Effect of heterogeneity

Define the random vectors {ξ i
}i≥1 = {γ i, xi, xi}i≥1. For the

results of this section we assume that {ξ i
}i≥1 are extracted from

a discrete probability distribution.

Assumption 3. Let {ξ i
}i≥1 = {γ i, xi, xi}i≥1 be an infinite sequence

of positive, i.i.d. random variables on a discrete probability space
(Ω,F,P). We assume that P is supported on nξ masses located at
ξ̄ ℓ

= [γ ℓ, xℓ, xℓ
], ℓ ∈ L, where L = {1, . . . , nξ }, i.e.,

∑
ℓ∈LP{ξ =

ξ̄ ℓ
} = 1, for any ξ ∈ Ω .

4.1. Abstraction in homogeneous groups

In this subsection we focus on a finite number of agents and
show that, either when solving P or Pa, the decision vectors corre-
sponding to agents that form a homogeneous group are identical,
i.e., identical vehicles have the same charging profile. This naturally
provides away to abstract the overall problem, involving a possibly
high number of agents and hence decision vectors, to a problem of
smaller size where we only have one decision vector per group of
homogeneous agents.
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Fig. 2. Normalized total consumption profile (1/m)
∑

i∈Ix
it

+ x̂0t obtained by solving P (blue) and Pa (red); Normalized non-PEV consumption x̂0t shown in green. As m
increases these profiles tend to coincide.

For anym ≥ 1, denote by
∑

i∈I1{ξ i=ξ̄ℓ} the number of agents that
form a homogeneous groupwith parameter ξ̄ ℓ, where 1{ξ i=ξ̄ℓ} is an
indicator function that is 1 if ξ i

= ξ̄ ℓ and 0 otherwise. For all ℓ ∈ L,
denote by Iℓ = {i ∈ I : ξ i

= ξ̄ ℓ
} the set of indices corresponding

to agents belonging to the same homogeneous group. Note that
for the single agent case (i.e., m = 1) one of the sets Iℓ, ℓ ∈ L, is
singleton and all the others are empty. This implies that there is
only one term in the square in F̄m below.

Let x̄ℓ
= [x̄ℓ0, . . . , x̄ℓ(h−1)

]
⊤

∈ R|H|, ℓ ∈ L, x̄ = (x̄1, . . . , x̄nξ ),
X̄ = X1

×· · ·× X̄nξ , and consider the following variant of P , where
we only consider one decision vector per group of homogeneous
agents.

P̄ : min
x̄∈X̄

F̄m(x̄), (40)

where F̄m(x̄) =
∑

t∈Hp
t (
∑

ℓ∈L
∑

i∈I1{ξ i=ξ̄ℓ}x̄ℓt
+ x0t )2, and for all

ℓ ∈ L,

X̄ℓ
=
{
x̄ℓ

∈ R|H|
:

∑
t∈H

x̄ℓt
= γ ℓ and

x̄ℓt
∈ [xℓ, xℓ

], for all t ∈ H
}
. (41)

Let also P̄a denote the variant of P , defined similarly to P̄ with the
difference that its objective function is the sum of the objective
function in (40) and the term

∑
t∈Hp

t (x̄ℓt )2.

Proposition 5. Consider Assumptions 1(a) and 3. Let x̄⋆
∈ X̄ , x̄⋆

a ∈ X̄
be any minimizer of P̄ and P̄a, respectively. For all ℓ ∈ L, let

xi,⋆ = x̄ℓ,⋆, for all i ∈ Iℓ, (42)

xi,⋆a = x̄ℓ,⋆
a , for all i ∈ Iℓ. (43)

Vectors x⋆
= (x1,⋆, . . . , xm,⋆) and x⋆

a = (x1,⋆a , . . . , xm,⋆
a ) are minimiz-

ers of P and Pa, respectively.

Proof. For all ℓ ∈ L, for all i ∈ Iℓ, X i
= X̄ℓ. Therefore, since x̄⋆ is

optimal for P̄ , it will be also feasible, i.e., x̄ℓ,⋆
∈ X̄ℓ, for all ℓ ∈ L.

The last statement, together with (42), leads to xi,⋆ ∈ X i, for all
i ∈ I , which in turn implies that x⋆ is a feasible solution for P . Via
an analogous argument it can be shown that x⋆

a is a feasible solution
for Pa.

By the definition of F̄m we have that

F̄m(x̄⋆) =

∑
t∈H

pt
(∑

ℓ∈L

∑
i∈I

1{ξ i=ξ̄ℓ}x̄
ℓt,⋆

+ x0t
)2

=

∑
t∈H

pt
(∑

ℓ∈L

∑
i∈Iℓ

xit,⋆ + x0t
)2

=

∑
t∈H

pt
(∑

i∈I

xit,⋆ + x0t
)2

= Fm(x⋆), (44)

where the third equality is due to (42), and the last one is due to
(4). Let x = (x1, . . . , xm) ∈ X be an arbitrary feasible solution of
P , i.e., xi ∈ X i for all i ∈ I , and consider x̄ℓ

= (1/nℓ)
∑

i∈Iℓx
i, for all

ℓ ∈ L. For ℓ ∈ L, since x̄ℓ is a convex combination of {xi ∈ X i
}i∈Iℓ ,

X i
= X̄ℓ for all i ∈ Iℓ and X̄ℓ is convex, x̄ℓ

∈ X̄ℓ. Hence,

F̄m(x̄⋆)≤ F̄m(x̄) =

∑
t∈H

pt
(∑

ℓ∈L

∑
i∈I

1{ξ i=ξ̄ℓ}x̄
ℓt

+x0t
)2

≤

∑
t∈H

pt
(∑

ℓ∈L

∑
i∈Iℓ

xit + x0t
)2

=

∑
t∈H

pt
(∑

i∈I

xit + x0t
)2

= Fm(x), (45)

where the first inequality is due to optimality of x̄⋆ for P̄ , whereas
the second one is due to convexity of F̄m and the fact that it is
quadraticwith respect to x̄. By (44) and (45), we have that Fm(x⋆) ≤

Fm(x). Since x ∈ X was arbitrary, x⋆ is optimal for P . To show that
x⋆
a is optimal for Pa we follow the same derivation with (44) and
(45), appending to F̄m the term

∑
ℓ∈L
∑

t∈Hp
t (xℓt )2. □

Proposition 5 implies that it suffices to solve P̄ (similarly for
P̄a), which involves fewer decision variables compared to P , and
then construct a minimizer of P by means of the assignment in
(42). Note that (42) and (43) enforce the same decision vector
to all members of a homogeneous group. It should be noted that
the result of Proposition 5 is intuitive; as an effect of the price
being agent independent, all agents in a homogeneous group solve
exactly the same optimisation problem, thus resulting to the same
Nash equilibrium charging strategy.

4.2. Asymptotic effect of heterogeneity

Theorem 2 shows that the ratio between the optimal values of
P and Pa tends to one asm tends to infinity, for almost any {ξ i

}i≥1,
however, their individual valuesmay change for different values of
{ξ i

}i≥1. For the case of a discrete probability distribution, we show
in the following theorem that this is not the case and, as the num-
ber of agents tends to infinity, the optimal value of P (and hence
the one of the associated game) tends to a deterministic quantity,
i.e., variability averages out as the number of agents increases. For
that particular subclass of problems and distributions, this result
provides support to hypothesis H ′

3 in Huang et al. (2007).

Theorem 3. Consider Assumptions 1(a) and 3. For any m ≥ 1, let x⋆,
x̄⋆ be any minimizer of P and P̄ , respectively. We then have that

lim
m→∞

Fm(x⋆)
m2

=

∑
t∈H

pt
(∑

ℓ∈L

P{ξ = ξ̄ ℓ
}x̄ℓt,⋆

+ x̂0t
)2

, (P-a.s.) (46)
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Fig. 3. Empirical distribution of Fm(x⋆)/m2 , constructed by calculating the optimal
solution x⋆ of P for 100 multi-extractions of {γ i

}i≥1 from a discrete uniform
distribution and xit = 0 and xit = 1 for all i ∈ I , t ∈ H . As m increases the
distribution gets concentrated around the quantity in (46).

Proof. For all ℓ ∈ L, by Theorem 1 with 1{ξ i=ξ̄ℓ} in place of yi, and
since E[1{ξ=ξ̄ℓ}] = P{ξ = ξ̄ ℓ

}, for all ξ ∈ Ω ,

lim
m→∞

1
m

∑
i∈I

1{ξ i=ξ̄ℓ} = P{ξ = ξ̄ ℓ
}, (P-a.s.) (47)

By (44) we have that Fm(x⋆) = F̄m(x̄⋆), while by the definition of F̄m

we obtain that
Fm(x⋆)
m2 =

∑
t∈H

pt
(∑

ℓ∈L

∑
i∈I

1
m
1{ξ i=ξ̄ℓ}x̄

ℓt,⋆
+

x0t

m

)2
. (48)

Since (48) holds for any {ξ i
}i∈I , for any m ≥ 1, (47), (48), and the

fact that limm→∞x0t/m = x̂0t (see Section 2.1), lead to (46), and
hence conclude the proof. □

By Theorem 2 a similar statement holds for the optimal value of
Pa, as this tends to the one of P as the number of agents increases.
The implication of Theorem 3 is illustrated in Fig. 3. We consider
the same set-up with that of Fig. 1, where x̂0t = 0 for all t ∈ H ,
with the difference that the charging levels {γ i

}i≥1, i ∈ I , were
extracted in an i.i.d. fashion from a discrete uniform distribution in
[0, 12], withmasses centred uniformly in this intervalwith spacing
0.01. For different values ofm, we provide the empirical probability
distribution of Fm(x⋆)/m2, where x⋆ is calculated by solving P . As
m increases, the empirical distribution becomes concentrated at a
single value of Fm(x⋆)/m2, in agreement with Theorem 3.

5. Concluding remarks

We quantified the price of anarchy for a class of PEV charging
control games, showing that the limiting case of infinite agent
populations theNash equilibriumachieves the same valuewith the
social welfare optimum for almost any choice of the random het-
erogeneity parameter.Moreover, in the casewhere the agents’ het-
erogeneity parameters follow a discrete probability distribution,
we provided a systematic way to abstract agents in homogeneous
groups and showed that heterogeneity averages out as the number
of agents tends to infinity.

Several iterative algorithms for decentralized computation of
Nash equilibria could be employed, e.g., Deori et al. (2018), Gan

et al. (2013) and Paccagnan et al. (2016); in Deori, Margellos, and
Prandini (2017a) a detailed analysis using the regularized Jacobi
algorithm of Deori et al. (2018) is provided. Current work concen-
trates on relaxing the requirement for an affine price function to
allow for amore general class of games like in Gan et al. (2013), and
on incorporating distribution network models and intertemporal
charging costs in our formulation (Caramanis et al., 2012, 2016).
Moreover,we aimat investigating the effect of heterogeneity in the
case where the underlying probability distribution is continuous,
while the result of Theorem 3 could be exploited from a system
aggregator’s point of view to steer the aggregate value of large
fleets of vehicles to a given deterministic quantity.
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