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On the Convergence of a Regularized Jacobi Algorithm for
Convex Optimization

Goran Banjac , Kostas Margellos , and Paul J. Goulart

Abstract—In this paper, we consider the regularized version of
the Jacobi algorithm, a block coordinate descent method for con-
vex optimization with an objective function consisting of the sum
of a differentiable function and a block-separable function. Un-
der certain regularity assumptions on the objective function, this
algorithm has been shown to satisfy the so-called sufficient de-
crease condition, and consequently, to converge in objective func-
tion value. In this paper, we revisit the convergence analysis of
the regularized Jacobi algorithm and show that it also converges in
iterates under very mild conditions on the objective function. More-
over, we establish conditions under which the algorithm achieves
a linear convergence rate.

Index Terms—Block coordinate descent methods, decentralized
optimization, Jacobi algorithm, linear convergence.

I. INTRODUCTION

In this paper, we consider large-scale optimization problems in which
a collection of individual actors (or agents) cooperate to minimize
some common objective function while incorporating local constraints
or additional local utility functions. We consider a decentralized opti-
mization method based on block coordinate descent, an iterative coor-
dinating procedure that has attracted significant attention for solving
large-scale optimization problems [1]–[3].

Solving large-scale optimization problems via an iterative procedure
that coordinates among blocks of variables enables the solution of very
large problem instances by parallelizing computation across agents.
This enables one to overcome computational challenges that would
be prohibitive otherwise, without requiring agents to reveal their local
utility functions and constraints to other agents. Due to its pricing mech-
anism implications, decentralized optimization is also a natural choice
for many applications, including demand side management in smart
grids, charging coordination for plug-in electric vehicles, coordination
of multiple agents in robotic systems, etc. [4]–[6].

Based on the algorithms outlined in [2], two classes of iterative
methods have been employed recently for solving such optimization
problems in a decentralized way. The first covers block coordinate gra-
dient descent (BCGD) methods and it requires each agent to perform,
at every iteration, a local (proximal) gradient descent step [1], [6].
Under certain regularity assumptions (differentiability of the objective
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function and Lipschitz continuity of its gradient), and for an appropri-
ately chosen gradient step size, this method converges to a minimizer
of the centralized problem. This class of algorithms includes both se-
quential [7] and parallel [8], [9] implementations.

The second covers block coordinate minimization (BCM) meth-
ods, does not assume differentiability of the objective and is based on
minimizing the common objective function in each block by fixing
variables associated with other agents to their previously computed
values. Although BCM methods have a larger per iteration cost than
the BCGD methods in the case when there are no local utility functions
(constraints) in the problem, or when their proximal operators
(projections) have closed-form solutions, in the general case, both ap-
proaches require solutions of ancillary optimization problems. On the
other hand, iterations of BCM methods are numerically more stable
than gradient iterations, as observed in [10].

If the block-wise minimizations are done in a cyclic fashion across
agents, then the algorithm is known as the Gauss–Seidel algorithm
[3], [7], [11]. An alternative implementation, known as the Jacobi
algorithm, involves performing the block-wise minimizations in par-
allel. However, convergence of the Jacobi algorithm is not guaranteed
in general, even in the case when the objective function is smooth
and convex, unless certain contractiveness properties are satisfied
[2, Proposition 2.6 in Sec. 3.2 and Proposition 3.10 in Sec. 3.3].

The authors in [12] have proposed a regularized Jacobi algorithm
wherein, at each iteration, each agent minimizes the weighted sum of
the common objective function and a quadratic regularization term pe-
nalizing the distance to the previous iterate of the algorithm. A similar
regularization has been used in Gauss–Seidel methods [7], [11] which
are, however, not parallelizable. Under certain regularity assumptions,
and for an appropriately selected regularization weight, the algorithm
converges in objective value to the optimal value of the centralized
problem [12]. Recently, the authors in [13] have quantified the regu-
larization weighting required to ensure convergence in objective value
as a function of the number of agents and other problem parameters.
However, convergence of the algorithm in its iterates to an optimizer
of the centralized problem counterpart was not established, apart from
the particular case where the objective function is quadratic.

In this paper, we revisit the algorithm proposed in [12] and enhance
its convergence properties under milder conditions. By adopting an
analysis based on a power growth property, which is in turn sufficient
for the satisfaction of the so-called Kurdyka–Łojasiewicz (KL) condi-
tion [11], [14], we show that the algorithm’s iterates converge under
much milder assumptions on the objective function than those used
in [2] and [13]. A similar approach was used in [3] and [11] to establish
convergence of iterates generated by Gauss–Seidel type methods. We
also show that the algorithm achieves a linear convergence rate with-
out imposing restrictive strong convexity assumptions on the objective
function, in contrast to typical methods in the literature. Our analysis
is based on the quadratic growth condition, which is closely related
to the so-called error bound property [15], [16] that is used in [8] to
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establish linear convergence of parallel BCGD methods in objective
value.

The remainder of this paper is organized as follows. In Section II,
we introduce the class of problems under study, outline the regularized
Jacobi algorithm for solving such problems in a decentralized fashion,
and state the main convergence result of this paper. Section III provides
the proof of the main result. Section IV provides a convergence rate
analysis, while Section V concludes this paper.

Notation

Let N denote the set of nonnegative integers, R the set of real
numbers, R+ the set of nonnegative real numbers, R̃ := R ∪ {∞}
the extended real line, and Rn the n-dimensional real space equipped
with inner product 〈x, y〉 and induced norm ‖x‖. Consider a vector
x = (x1 , . . . , xm ) where xi ∈ Rn i , i = 1, . . . , m. We denote by x−i

the remainder of vector x when component xi is removed. Denote the
effective domain of f : Rn → R̃ as dom f := {x ∈ Rn | f (x) <∞}.
The directional derivative of f at x ∈ dom f in the direction d ∈ Rn is
denoted by f ′(x, d). The subdifferential of f at x is denoted by ∂f (x).
If f is continuously differentiable, then∇f (x) denotes the gradient of
f evaluated at x. We denote by [a ≤ f ≤ b] := {x ∈ Rn | a ≤ f (x) ≤
b} a set of points whose value of function f is between a and b;
similar notation will be used for strict inequalities and for one-sided
bounds. The set of minimizers of f is denoted by argminf := {x ∈
dom f | f (x) = min f}, where min f is the minimum value of f . We
say that a differentiable function f is strongly convex with convexity
parameter σ > 0 if

f (y) ≥ f (x) + 〈∇f (x), y − x〉+ σ

2
‖y − x‖2

holds for all x and y. The distance of a point x to a closed convex set
C is denoted by dist(x, C) := infc∈C ‖x− c‖, and the projection of x
onto C is denoted by projC(x) := {y ∈ C | ‖x− y‖ = dist(x, C)}.

II. PROBLEM DESCRIPTION AND MAIN RESULT

A. Regularized Jacobi Algorithm

We consider the following optimization problem:

min
{xi }m

i = 1

{
f (x1 , . . . , xm ) +

m∑
i=1

gi (xi )
}

(P)

where x := (x1 , . . . , xm ) ∈ Rn , xi ∈ Rn i , and n =
∑m

i=1 ni . To
simplify subsequent derivations, we define f (x) := f (x1 , . . . , xm ),
g(z) :=

∑m
i=1 gi (zi ) with dom g = dom g1 × · · · × dom gm , and the

combined objective function in P as

h(x) := f (x) + g(x). (1)

Problems in the form P can be viewed as multiagent optimization
programs wherein each agent has its own local decision vector xi and
agents cooperate to determine a minimizer of h, which couples the local
decision vectors of all agents through the common objective function
f . Since the number of agents can be large, solving the problem in a
centralized fashion may be computationally intensive. Moreover, even
if this were possible from a computational point of view, agents may
not be willing to share their local objectives gi , i = 1, . . . , m, with
other agents, since this may encode information about their local utility
functions or constraint sets.

For each i = 1, . . . , m, we let fi ( · ; x−i ) : Rn i → R be a function
of the decision vector of the ith block of variables, with the remaining
variables x−i ∈ Rn−n i treated as a fixed set of parameters, i.e.

fi (zi ; x−i ) := f (x1 , . . . , xi−1 , zi , xi+1 , . . . , xm ).

Algorithm 1: Regularized Jacobi Algorithm.

1: Initialization
2: k = 0.
3: Set xi

0 ∈ dom gi for all i = 1, . . . , m.
4: For i = 1, . . . , m repeat until convergence
5: xi

k+1 = argmin
z i

{
fi (zi ; x−i

k ) + gi (zi ) + c‖zi − xi
k ‖2

}
.

6: k ← k + 1.

We wish to solve P in a decentralized fashion using Algorithm 1. At
the (k + 1)th iteration of Algorithm 1, agent i solves a local optimiza-
tion problem accounting for its local function gi and the function fi

with the parameter vector set to the decisions x−i
k of the other agents

from the previous iteration. Moreover in the local cost function, an ad-
ditional term penalizes the squared distance between the optimization
variables and their values at the previous iteration xi

k . The relative im-
portance of the original cost function and the penalty term is regulated
by the weight c > 0, which should be selected large enough to guar-
antee convergence [12], [13]. We show in the Appendix that the fixed
points of Algorithm 1 coincide with optimal solutions of problem P .

A problem structure equivalent to P was considered in [13], with
the difference that a collection of convex constraints xi ∈ Xi for each
i = 1, . . . , m were introduced instead of the functions gi . We can
rewrite this problem in the form of P by selecting gi to be an indicator
function of a given convex set. On the other hand, problem P can
be written in epigraph form, and thus, reformulated in the framework
of [13]. The reason that we use the problem structure of P is twofold.
First, some widely used problems such as �1 -regularized least squares
are typically posed in the form P . Second, the absence of constraints
will ease the convergence analysis of Section III since many results in
the relevant literature use the same problem structure.

B. Statement of the Main Result

Before stating the main result, we provide some necessary definitions
and assumptions. Let h� denote the minimum value ofP . We then have
the following definition.

Definition 1 (Power-type growth condition): A function h : Rn

→ R̃ satisfies a power-type growth condition on [h� < h < h� + r]
if there exist r > 0, γ > 0, and p ≥ 1 such that for all x ∈ [h� < h <
h� + r]

h(x)− h� ≥ γ dist(x, argmin h)p . (2)

It should be noted that (2) is a very mild condition, since it requires
only that the function h is not excessively “flat” in the neighborhood
of the set argmin h. For instance, all polynomial, real-analytic and
semialgebraic functions satisfy this condition [14], [17].

We impose the following standing assumptions on problem P .
Assumption 1:

1) The function f is convex and differentiable.
2) The gradient∇f is Lipschitz continuous on dom g with Lipschitz

constant L, i.e.

‖∇f (x) −∇f (y)‖ ≤ L‖x− y‖ ∀x, y ∈ dom g.

3) The functions gi are all convex, lower semicontinuous and proper.
4) The function h is coercive, i.e.

lim
‖x‖→+∞

h(x) = +∞.

5) The function h exhibits the power-type growth condition of
Definition 1.
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Notice that we do not require differentiability of the functions gi .
Coerciveness of h implies the existence of some ζ ∈ R for which
the sublevel set [h ≤ ζ ] is nonempty and bounded, which is sufficient
to prove existence of a minimizer of h [18, Proposition 11.12 and
Th. 11.9].

We are now in a position to state the main result of this paper.
Theorem 1: Under Assumption 1, if

c >
m − 1
2m − 1

√
m − 1L (3)

then the iterates {xk }k∈N generated by Algorithm 1 converge to a min-
imizer of problem P , i.e., limk→∞ xk = x∗, where x∗ is a minimizer
of P .

The proof of Theorem 1 involves several intermediate statements
and is provided in the next section.

III. PROOF OF THE MAIN RESULT

Many results on convergence of optimization algorithms establish
only convergence in function value [2], [13], [19], without guaranteeing
convergence of the iterates {xk }k∈N as well. Convergence of iterates is
straightforward to show when h is strongly convex, or when {xk }k∈N

is Fejér monotone with respect to argmin h, which is true whenever the
operator underlying the iteration update is nonexpansive [18]. The latter
condition was used in [13] to establish convergence of the sequence
{xk }k∈N in the special case that f is a convex quadratic function.

In the single-agent case, i.e., when m = 1, Algorithm 1 reduces
to the proximal minimization algorithm whose associated fixed-point
operator is nonexpansive for any convex, lower semicontinuous and
proper function h. However, in the multiagent setting, the resulting
fixed-point operator is not necessarily nonexpansive, which implies
that the Fejér monotonicity based analysis cannot be employed to es-
tablish convergence of the sequence {xk }k∈N . To achieve this and
prove Theorem 1, we exploit the following result, which follows di-
rectly from [14, Th. 14].

Theorem 2 ([14, Th. 14]): Consider Assumption 1, with argmin h
�= ∅ and h� := min h. Assume that the initial iterate x0 of Algorithm 1
satisfies h(x0 ) < h� + r, where r is as in Definition 1. Finally, assume
that subsequent iterates {xk }k∈N generated by Algorithm 1 possess
the following properties.
1) Sufficient decrease condition

h(xk+1 ) ≤ h(xk )− a‖xk+1 − xk ‖2 (4)

where a > 0.
2) Relative error condition: There exists wk+1 ∈ ∂h(xk+1 ) such that

‖wk+1‖ ≤ b‖xk+1 − xk ‖ (5)

where b > 0.
Then, the sequence {xk }k∈N converges to some x� ∈ argmin h,

i.e., limk→∞ xk = x∗, and for all k ≥ 1

‖xk − x�‖ ≤ b

a

p

γ
1
p

(h(xk )− h� )
1
p

+

√
1
a

(h(xk−1 )− h� ).

(6)

It should be noted that Theorem 2 constitutes a relaxed version of
[14, Th. 14]. This is due to the fact that we impose the power-type
growth property as an assumption, which is in turn a sufficient condition

for the satisfaction of the so-called KL property1 [11], [17]. Specifically,
we could replace the last part of Assumption 1 with the KL property
and the conclusion of Theorem 2 would remain valid.

Notice that, under the assumptions of Theorem 2, {xk }k∈N

converges to some x� ∈ argmin h even if h(x0 ) ≥ h� + r. Since
{h(xk )}k∈N converges to h� (as a consequence of the sufficient de-
crease condition (4)), there exists some k0 ∈ N such that h(xk 0 ) <
h� + r, and hence, Theorem 2 remains valid if xk is replaced by
xk+ k 0 .

To prove Theorem 1, it suffices to show that, given Assumption 1,
the iterates generated by Algorithm 1 satisfy the sufficient decrease
condition and the relative error condition. To show this, we first provide
an auxiliary lemma.

Lemma 1: Under Assumption 1, for all x, y, z ∈ dom g

∥∥∥
m∑

i=1

∇fi (zi ; x−i )−
m∑

i=1

∇fi (zi ; y−i )
∥∥∥

≤ √m − 1L‖x− y‖.
Proof: The statement follows from [13, Lemma 1]. However,

by noticing that
∑m

i=1 ‖x−i − y−i‖2 = (m − 1)‖x − y‖2 instead of
m‖x− y‖2 , we obtain an improvement in the bound of [13, Lemma 1].

�
We can then show that the sufficient decrease condition is satisfied.
Proposition 1 (Sufficient decrease condition): Under Assumption 1,

if c is chosen according to (3), then Algorithm 1 converges to the
minimum of problem P in value, i.e., h(xk )→ min h, and for all k,
the sufficient decrease condition (4) is satisfied with

a =
(
c − (m − 1)(

√
m − 1L − 2c)

)
/m > 0. (7)

Proof: The result follows from [13, Th. 2], with the Lipschitz con-
stant established in Lemma 1. �

Note that the proofs of Lemma 1 and Proposition 1 do not require the
last part of Assumption 1 related to the power-type growth condition
of h.

If c is chosen according to Theorem 1, then (4) implies that xk+1 −
xk → 0. To show this, suppose that x0 ∈ dom h, and thus, h(x0 ) is
finite. Iterating the inequality (4) gives

a
∞∑

k=0

‖xk+1 − xk ‖2 ≤ h(x0 )− h� < +∞

which means that ‖xk+1 − xk ‖ converges to zero. Note, however, that
this does not necessarily imply convergence of the sequence {xk }k∈N .

Proposition 2 (Relative error condition): Consider Algorithm 1.
Under Assumption 1, there exists wk+1 ∈ ∂h(xk+1 ) such that the
relative error condition (5) is satisfied with

b = 2c +
√

m − 1L > 0. (8)

Proof: Iterate xk+1 in Algorithm 1 can be characterized via the
subdifferential of the associated objective function, i.e.

0 ∈
m∑

i=1

∇fi (xi
k+1 ; x

−i
k ) + ∂g(xk+1 ) + 2c(xk+1 − xk )

1This can be seen by choosing the so-called desingularizing function ϕ that
appears in the definition of the KL property [11], [17] such that

ϕ(s) = p (s/γ)
1
p .
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which ensures the existence of some vk+1 ∈ ∂g(xk+1 ) such that

0 =
m∑

i=1

∇fi (xi
k+1 ; x

−i
k ) + vk+1 + 2c(xk+1 − xk )

=

[
m∑

i=1

∇fi (xi
k+1 ; x

−i
k )−

m∑
i=1

∇fi (xi
k+1 ; x

−i
k+1 )

]

+
m∑

i=1

∇fi (xi
k+1 ; x

−i
k+1 ) + vk+1 + 2c(xk+1 − xk )

=

[
m∑

i=1

∇fi (xi
k+1 ; x

−i
k )−

m∑
i=1

∇fi (xi
k+1 ; x

−i
k+1 )

]

+∇f (xk+1 ) + vk+1 + 2c(xk+1 − xk ).

Notice that in the last equality, we used the identity∑m
i=1 ∇fi (xi ; x−i ) = ∇f (x).
Let us now define wk+1 := ∇f (xk+1 ) + vk+1 ∈ ∂h(xk+1 ). From

the aforementioned equality, we can bound the norm of wk+1 as

‖wk+1‖ =
∥∥∥

m∑
i=1

∇fi (xi
k+1 ; x

−i
k )−

m∑
i=1

∇fi (xi
k+1 ; x

−i
k+1 )

+ 2c(xk+1 − xk )
∥∥∥

≤
∥∥∥

m∑
i=1

∇fi (xi
k+1 ; x

−i
k )−

m∑
i=1

∇fi (xi
k+1 ; x

−i
k+1 )

∥∥∥

+ 2c‖xk+1 − xk ‖.

The last step follows from the triangle inequality, and due to Lemma 1,
we obtain

‖wk+1‖ ≤ (2c +
√

m − 1L)‖xk+1 − xk ‖.

�
Propositions 1 and 2 show that the conditions of Theorem 2 are satis-

fied. As a direct consequence the iterates generated by Algorithm 1 con-
verge to some minimizer ofP , thus concluding the proof of Theorem 1.

IV. CONVERGENCE RATE ANALYSIS

It is shown in [13] that if f is a strongly convex quadratic
function and gi are indicator functions of convex compact sets, then
Algorithm 1 converges linearly. We show in this section that
Algorithm 1 converges linearly under much milder assumptions. In
particular, if h has the quadratic growth property, i.e., if p in (2) is
equal to 2, then Algorithm 1 admits a linear convergence rate. This
property is employed in [20] to establish linear convergence of some
first-order methods in a single-agent setting, and is, according to [15]
and [16], closely related to the error bound, which was used in [21]
and [22] to establish linear convergence of feasible descent methods.
Note that the feasible descent methods are not applicable to problem
P since we allow for nondifferentiable objective functions.

Theorem 3: Consider Assumption 1, and further assume that
power-type growth property is satisfied with p = 2. Let the initial
iterate of Algorithm 1 be selected such that h(x0 ) < h� + r, where r
appears in Definition 1. Then, the iterates {xk }k∈N converge to some

x� ∈ argmin h, and for all k ≥ 1

h(xk )− h� ≤
(

1
1 + γab−2

)k

(h(x0 )− h� ) (9)

‖xk − x�‖ ≤M

(
1√

1 + γab−2

)k

(10)

where

M =

(
2b

γa
+

1√
a (1 + γab−2 )

) √
h(x0 )− h� .

Proof: The quadratic growth property and convexity of h, together
with the relative error condition (5) imply that for xk+1 /∈ argmin h
and x̄k+1 = projargm in h (xk+1 )

γ dist(xk+1 , argmin h)2 ≤ h(xk+1 )− h�

≤ 〈wk+1 , xk+1 − x̄k+1 〉
≤ ‖wk+1‖ ‖xk+1 − x̄k+1‖
= ‖wk+1‖ dist(xk+1 , argmin h)

≤ b‖xk+1 − xk ‖ dist(xk+1 , argmin h) (11)

where wk+1 ∈ ∂h(xk+1 ). Note that since h is lower semicontinuous,
the set argmin h is closed, and thus, the projection onto argmin h is
well defined. From the right-hand sides of the first and last inequality
in (11), we have

h(xk+1 )− h� ≤ b‖xk+1 − xk ‖ dist(xk+1 , argmin h).

Dividing the left-hand side of the first inequality and the right-hand
side of the last inequality in (11) by γ dist(xk+1 , argmin h) > 0, we
obtain

dist(xk+1 , argmin h) ≤ b

γ
‖xk+1 − xk ‖.

Substituting this inequality into the preceding one, we obtain

h(xk+1 )− h� ≤ b2

γ
‖xk+1 − xk ‖2

≤ b2

γa
(h(xk )− h(xk+1 ))

=
b2

γa
((h(xk )− h� )− (h(xk+1 )− h� ))

where the second inequality follows from the sufficient decrease con-
dition (4). Rearranging the terms, we have that

h(xk+1 )− h� ≤ 1
1 + γab−2 (h(xk )− h� )

for all k ≥ 0, or equivalently

h(xk )− h� ≤
(

1
1 + γab−2

)k

(h(x0 )− h� )

which proves (9). Substituting the aforementioned inequality into (6),
we obtain (10), which concludes the proof. �

A direct consequence of Theorem 3 is that Algorithm 1, with c se-
lected as in Theorem 1, converges linearly when h satisfies the quadratic
growth condition

h(x)− h� ≥ γ dist(x, argmin h)2 . (12)

This is the case when f is strongly convex with convexity parameter σf ,
implying that argmin h is a singleton and h has the quadratic growth
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property with γ = σf /2 for any x ∈ dom h. It is shown in [22] and
[23] that if f (x) = v(Ex) + 〈b, x〉 has a Lipschitz continuous gradient,
with v being strongly convex, and g being an indicator function of a
convex polyhedral set, then the problem exhibits the quadratic growth
property.

Note that if E does not have full column rank, then f is not strongly
convex. In [14] and [23], it is shown that a similar bound can be estab-
lished for the �1 -regularized least-squares problem. Here, we adopt an
approach from [14] and show that a similar result can be provided for
more general problems in which g can be any polyhedral function. The
core idea is to rewrite the problem in epigraph form for which such a
property is shown to hold.

We impose the following assumption.
Assumption 2:

1) The function f is defined as f (x) = v(Ex) + 〈b, x〉, with v(·)
being a strongly convex function with convexity parameter σv .

2) The component functions gi are all globally nonnegative convex
polyhedral functions whose composite epigraph can be represented
as

epi g :=
{
(x, t) ∈ Rn +1 | g(x) ≤ t

}

=
{
(x, t) ∈ Rn +1 |Cx + ct ≤ d

}

where C ∈ Rp×n , c ∈ Rp , and d ∈ Rp . Note that the inequality
Cx + ct ≤ d should be taken component-wise.

The conditions of Assumption 2 are satisfied when f is quadratic and
gi are indicator functions of convex polyhedral sets or any polyhedral
norms. Note that the dual of a quadratic program satisfies this assump-
tion. The Lipschitz constant of ∇f , which is required for computing
the appropriate parameter c for Algorithm 1, can be upper bounded by
‖E‖2Lv , where ‖E‖ is the spectral norm of E and Lv is the Lipschitz
constant of ∇v. We will now define the Hoffman constant that will be
used in the further analysis.

Lemma 2 (Hoffman constant, see e.g., [23]): Let X and Y be two
polyhedra defined as

X = {x ∈ Rn |Ax ≤ a} , Y = {x ∈ Rn |Ex = e}

where A ∈ Rm×n , a ∈ Rm , E ∈ Rp×n , e ∈ Rp , and assume that X ∩
Y �= ∅. Then, there exists a constant θ = θ(A, E) such that any x ∈ X
satisfies

dist(x, X ∩ Y ) ≤ θ ‖Ex− e‖.

We refer to θ as the Hoffman constant associated with matrix
[AT , ET ]T .

Let x0 be an initial iterate of the algorithm and let r = h(x0 ). Since
h is coercive, [h ≤ r] is a compact set and we can thus define the
following quantities:

Dr := max
x,y∈[h≤r ]

‖x− y‖

Dr
E := max

x,y∈[h≤r ]
‖Ex− Ey‖ ≤ D ‖E‖

V r := max
x∈[h≤r ]

‖∇v(Ex)‖.

Since Algorithm 1 generates a nonincreasing sequence {h(xk )}k∈N ,
for all k, we have xk ∈ [h ≤ r] and

g(xk ) ≤ g(x0 ) + f (x0 )− f (xk )

≤ g(x0 ) + v(Ex0 )− v(Exk ) + 〈b, x0 − xk 〉

≤ g(x0 ) + ‖∇v(Ex0 )‖ ‖Ex0 − Exk ‖
+ ‖b‖ ‖x0 − xk ‖

≤ g(x0 ) + V r Dr
E + ‖b‖Dr .

We conclude that argmin h ⊆ [h ≤ r] ⊂ [g ≤ R], for any fixed R >
g(x0 ) + V r Dr

E + ‖b‖Dr . For such a bound R, we have

min
{

v(Ex) + 〈b, x〉+ g(x) | x ∈ Rn
}

= min
{

v(Ex) + 〈b, x〉+ t | (x, t) ∈ Rn ×R

g(x) ≤ R, t = g(x)
}

= min
{

v(Ex) + 〈b, x〉+ t | (x, t) ∈ Rn ×R,

g(x) ≤ t, t ≤ R
}

= min
{

v(Ẽx̃) + 〈b̃, x̃〉︸ ︷︷ ︸
=:h̃ ( x̃ )

| x̃ ∈ Rn +1

X̃ := {Mx̃ ≤ R̃}
}

(13)

where x̃ = (x, t) and

Ẽ =
[
E 0

]
, b̃ =

[
b
1

]
, M =

[
C c
0 1

]
, R̃ =

[
d
R

]
.

It can be easily seen that x̃� = (x� , t� ) minimizes (13) if and only if
x� ∈ argmin h and t� = g(x� ). Using [23, Lemma 2.5], we obtain

dist(x̃, argmin h̃)2 ≤ κR

(
h̃(x̃)− h̃�

)
∀x̃ ∈ X̃ (14)

where κR = θ2 (‖b̃‖D̃R + 3Ṽ R D̃R
Ẽ

+ 2(( Ṽ R )2 +1)
σv

) and θ is the

Hoffman constant associated with matrix [MT , ẼT , b̃]T . Moreover

D̃R := max
x̃ , ỹ∈X̃

‖x̃− ỹ‖ ≤ max
x,y∈[g≤R ]

‖x− y‖+ max
t ,s∈[0 ,R ]

‖t− s‖

= DR + R

Ṽ R := max
x̃∈X̃
‖∇v(Ẽx̃)‖ = max

x∈[g≤R ]
‖∇v(Ex)‖ = V R

D̃R
Ẽ

:= max
x̃ , ỹ∈X̃

‖Ẽx̃− Ẽỹ‖ = max
x,y∈[g≤R ]

‖Ex− Ey‖ = DR
E .

Inequality (14) implies that for all x ∈ [g ≤ R] and for all t ∈ [0, R]

dist(x, argmin h)2 + ‖t− t�‖2

≤ κR (f (x) + t− f (x� )− t� ) .

Setting t = g(x), we then have that

dist(x, argmin h)2 ≤ dist(x, argmin h)2 + ‖t− t�‖2

≤ κR (h(x)− h� ) .

Lemma 3: Let r = h(x0 ) and fix any R > g(x0 ) + V r Dr
E +

‖b‖Dr . Under Assumptions 1 and 2, for all x ∈ [h ≤ r], we have

h(x)− h� ≥ κ−1
R dist(x, argmin h)2

where

κR = θ2

(
(‖b‖+ 1)(DR + R) + 3V R DR

E +
2

(
(V R )2 + 1

)
σv

)
.
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V. CONCLUSION

In this paper, we revisited the regularized Jacobi algorithm proposed
in [12], and enhanced its convergence properties. It was shown that
iterates generated by the algorithm converge to a minimizer of the
centralized problem counterpart, provided that the objective function
satisfies a power growth property. We also established linear conver-
gence of the algorithm when the power growth condition satisfied by
the objective function is quadratic.

APPENDIX

In this section, we show that the set of fixed points of Algorithm 1
coincides with the set of minimizers of problem P . The result follows
from [13, Sec. 3]; however, the proof is modified to account for the
presence of the nondifferentiable terms gi , i = 1, . . . , m. We first recall
the optimality condition for a nondifferentiable convex function h.

Proposition 3 ([18, Proposition 17.3]): Let the function h : Rn →
R̃ be proper and convex and let x� ∈ dom h. Then, x� ∈ argmin h if
and only if h′(x� , d) ≥ 0, for all d ∈ Rn .

Proposition 3 states that x� is a local minimizer of h if and only
if there is no local direction d along which the function attains lower
value. For convex functions, a local minimizer is also global.

Similarly to [13], we define an operator T such that

T (x)=argmin
z

{
m∑

i=1

fi (zi ; x−i ) + g(z) + c‖z − x‖2
}

(15)

and operators Ti (y−i ) such that

Ti (xi ; y−i )=argmin
z i

{
fi (zi ; y−i )+gi (zi )+c‖zi − xi‖2}

where y−i ∈ Rn−n i is treated as a fixed parameter. Observe that we
can characterize the operator T (x) via the operators Ti (xi ; x−i ) as
follows:

T (x) =
(
T1 (x1 ; x−1 ), . . . , Tm (xm ; x−m )

)
.

We define the sets of fixed points for these operators as

Fix T := {x |x = T (x)}
Fix Ti (y−i ) := {xi |xi = Ti (xi ; y−i )}, i = 1, . . . , m.

Note that, in the spirit of [24, Sec. 5], we treat T as a single-valued
function T : Rn → Rn since the quadratic term in the right-hand side
of (15) ensures that the set of minimizers is always single valued, with
an identical comment applying to the operators Ti (y−i ).

We now show that the sets argmin h and Fix T coincide.
Proposition 4: If Assumption 1 holds, then

argmin h = Fix T.

Proof: The proof is based on [13, proofs of Propositions 1–3].
We first show that argmin h ⊆ Fix T . Fix any x ∈ argmin h. If x
minimizes h, then it is also a block-wise minimizer of h at x, i.e., for
all i = 1, . . . , m, we have

xi ∈ argmin
z i

{
fi (zi ; x−i ) + gi (zi )

}
. (16)

Since xi minimizes both
{
fi ( · ; x−i ) + gi

}
and c‖( · )− xi‖2 , it is

also the unique minimizer of their sum, i.e.

xi = argmin
z i

{
fi (zi ; x−i ) + gi (zi ) + c‖zi − xi‖2}

implying that xi ∈ Fix Ti (x−i ), and thus, x = (x1 , . . . , xm ) is a fixed
point of T (x) =

(
T1 (x1 ; x−1 ), . . . , Tm (xm ; x−m )

)
.

We now show that Fix T ⊆ argmin h. Let x ∈ Fix T , and thus, for
all i = 1, . . . , m, xi ∈ Fix Ti (x−i ), i.e.

xi = argmin
z i

{
fi (zi ; x−i ) + gi (zi ) + c‖zi − xi‖2}.

According to Proposition 3, the aforementioned condition means that
for all zi ∈ Rn i , we have

〈∇fi (xi ; x−i ), zi − xi 〉+ g′i (x
i , zi − xi )

+ 〈(2c (xi − xi )︸ ︷︷ ︸
=0

), zi − xi 〉 ≥ 0

or equivalently for all di ∈ Rn i

〈∇fi (xi ; x−i ), di 〉+ g′i (x
i , di ) ≥ 0

which again by Proposition 3 implies that xi is a minimizer of{
fi ( · ; x−i ) + gi

}
. According to [25, Lemma 3.1], differentiabil-

ity of f and component-wise separability of g imply that any x =
(x1 , . . . , xm ) for which (16) holds for all i = 1, . . . , m, is also a
minimizer of

{
f + g

}
, i.e., x ∈ argmin h, thus, concluding the proof.

�
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[9] P. Richtárik and M. Takáč, “Parallel coordinate descent methods for big
data optimization,” Math. Programm., vol. 156, no. 1–2, pp. 433–484,
2016.

[10] D. Bertsekas, “Incremental proximal methods for large scale convex opti-
mization,” Math. Programm., vol. 129, no. 2, pp. 163–195, 2011.

[11] H. Attouch, J. Bolte, and B. Svaiter, “Convergence of descent methods
for semi-algebraic and tame problems: Proximal algorithms, forward-
backward splitting, and regularized Gauss-Seidel methods,” Math.
Programm., vol. 137, no. 1–2, pp. 91–129, 2013.

[12] G. Cohen, “Optimization by decomposition and coordination: A unified
approach,” IEEE Trans. Autom. Control, vol. 23, no. 2, pp. 222–232, Apr.
1978.

[13] L. Deori, K. Margellos, and M. Prandini, “Regularized Jacobi iteration for
decentralized convex optimization with separable constraints,” Apr 2017.
[Online]. Available: https://arxiv.org/abs/1604.07814

[14] J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter, “From error
bounds to the complexity of first-order descent methods for convex
functions,” Math. Programm., [Online]. Available: https://link.springer.
com/article/10.1007/s10107-016-1091-6

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on June 28,2020 at 12:38:59 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 4, APRIL 2018 1119

[15] H. Zhang, “The restricted strong convexity revisited: analysis of equiva-
lence to error bound and quadratic growth,” Optim. Lett., vol. 11, no. 4,
pp. 817–833, 2017.

[16] D. Drusvyatskiy and A. S. Lewis, “Error bounds, quadratic growth, and
linear convergence of proximal methods,” Jun. 2016. [Online]. Available:
https://arxiv.org/abs/1602.06661

[17] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, “Proximal alternating
minimization and projection methods for nonconvex problems: An ap-
proach based on the Kurdyka-Łojasiewicz inequality,” Math. Oper. Res.,
vol. 35, no. 2, pp. 438–457, 2010.

[18] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Spaces, 1st ed. New York, NY, USA: Springer,
2011.

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2010.

[20] I. Necoara, Y. Nesterov, and F. Glineur, “Linear convergence of first or-
der methods for non-strongly convex optimization,” Aug. 2016. [Online].
Available: https://arxiv.org/abs/1504.06298

[21] Z.-Q. Luo and P. Tseng, “On the linear convergence of descent methods
for convex essentially smooth minimization,” SIAM J. Control Optim.,
vol. 30, no. 2, pp. 408–425, 1992.

[22] P.-W. Wang and C.-J. Lin, “Iteration complexity of feasible descent
methods for convex optimization,” J. Mach. Learn. Res., vol. 15,
pp. 1523–1548, 2014.

[23] A. Beck and S. Shtern, “Linearly convergent away-step conditional gra-
dient for non-strongly convex functions,” Math. Programm., vol. 164, no.
1–2, pp. 1–27, Jul. 2017.

[24] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis. Berlin,
Germany: Springer-Verlag, 1998.

[25] P. Tseng, “Convergence of a block coordinate descent method for non-
differentiable minimization,” J. Optim. Theory Appl., vol. 109, no. 3,
pp. 475–494, 2001.

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on June 28,2020 at 12:38:59 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


