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a b s t r a c t

Westudy distributed optimization in a cooperativemulti-agent setting,where agents have to agree on the
usage of shared resources and can communicate via a time-varying network to this purpose. Each agent
has its own decision variables that should be set so as tominimize its individual objective function subject
to local constraints. Resource sharing is modeled via coupling constraints that involve the non-positivity
of the sum of agents’ individual functions, each one depending on the decision variables of one single
agent. We propose a novel distributed algorithm to minimize the sum of the agents’ objective functions
subject to both local and coupling constraints, where dual decomposition and proximal minimization
are combined in an iterative scheme. Notably, privacy of information is guaranteed since only the dual
optimization variables associated with the coupling constraints are exchanged by the agents. Under
convexity assumptions, jointly with suitable connectivity properties of the communication network, we
are able to prove that agents reach consensus to some optimal solution of the centralized dual problem
counterpart, while primal variables converge to the set of optimizers of the centralized primal problem.
The efficacy of the proposed approach is demonstrated on a plug-in electric vehicles charging problem.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

This paper addresses optimization in multi-agent networks
where each agent aims at optimizing a local performance criterion
possibly subject to local constraints, but yet needs to agreewith the
other agents in the network on the value of somedecision variables
that refer to the usage of some shared resources.

Cooperative multi-agent decision making problems have been
studied recently by many researchers, mainly within the control
and operational research communities, and are found in various
application domains such as power systems (Bolognani, Carli,
Cavraro, & Zampieri, 2015; Zhang & Giannakis, 2016), wireless and
social networks (Baingana, Mateos, & Giannakis, 2014; Mateos
& Giannakis, 2012), robotics (Martinez, Bullo, Cortez, & Frazzoli,
2007), to name a few.
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A possible approach to cooperative multi-agent optimization
consists in formulating and solving a mathematical program in-
volving the decision variables, objective functions, and constraints
of the entire network. Though this centralized perspective appears
sensible, itmay end up being impractical for large scale systems for
which the computational effort involved in the program solution
can be prohibitive. Also, privacy of information is not preserved
since agents are required either to share among them or to provide
to a central entity their performance criteria and constraints.

Distributed optimization represents a valid alternative to cen-
tralized optimization and, in particular, it overcomes the above
limitations by allowing agents to keep their information private,
while distributing the computational effort. Typically, an iterative
procedure is conceived, where at each iteration agents perform
some local computation based on their own information and on the
outcome of the local computations of their neighboring agents at
the previous iteration, till convergence to some solution, possibly
an optimal one for the centralized optimization problem counter-
part.

Effective distributed optimization algorithms have been pro-
posed in the literature for a general class of convex problems
over time-varying,multi-agent networks. In particular, consensus-
based optimization algorithms are formulated in Lee and Nedic
(2013), Nedic and Ozdaglar (2009b), Nedic, Ozdaglar, and Parrilo
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(2010), and Ram, Nedic, and Veeravalli (2012) and in our recent pa-
per Margellos, Falsone, Garatti, and Prandini (2016) for problems
where agents have their own objective functions and constraints
but decision variables are common.

In this paper, we address a specific class of convex optimiza-
tion problems over time-varying, multi-agent networks, which we
refer to as inequality-coupled problems for short-hand notation. In
this class of problems, each agent has its own decision vector,
objective function, and constraint set, and is coupled to the others
via a constraint expressed as the non-positivity of the sum of
convex functions, each function corresponding to one agent. We
propose a novel distributed iterative scheme based on a combina-
tion of dual decomposition andproximalminimization to dealwith
inequality-coupled problems. Under convexity assumptions and
suitable connectivity properties of the communication network,
agents reach consensus with respect to the dual variables, without
disclosing information about their optimal decision, local objective
and constraint functions, nor about the function encoding their
contribution to the coupling constraint. The proposed algorithm
converges to some optimal dual solution of the centralized prob-
lem counterpart, while for the primal variables, we show conver-
gence to the set of optimal primal solutions.

The contributions of our paper versus the existing literature are
summarized in the following.

Our scheme can be seen as an extension of dual decomposition
based algorithms to a distributed setting, accounting for time-
varying network connectivity. As a matter of fact, if the commu-
nication networks were time-invariant and connected, then, dual
decomposition techniques (see Yang and Johansson (2010), and
references therein) as well as approaches based on the alternating
directionmethod of multipliers (Boyd, Parikh, Chu, Peleato, & Eck-
stein, 2010; Shi, Ling, Yuan,Wu,&Yin, 2014) could be applied to the
set-up of this paper, since, after dualizing the coupling constraint,
the problem assumes a separable structure. However, in Boyd et
al. (2010) and Yang and Johansson (2010) a central update step
involving communication among all agents that are coupled via
the constraints is required for the dual variables, and this prevents
their usage in the distributed with time-varying connectivity set-
up of this paper. In Shi et al. (2014) no central update step is
needed but the constraints appearing in the dual problem cannot
be handled. An interesting distributed dual decomposition based
algorithmwhich overcomes the need for a central node and which
is more in line with our scheme has been proposed in Simonetto
and Jamali-Rad (2016). The main differences between Simonetto
and Jamali-Rad (2016) and our algorithm are as follows:

a. the algorithm of Simonetto and Jamali-Rad (2016) requires
that the communication network is time invariant, while
our algorithm admits time-variability;

b. in Simonetto and Jamali-Rad (2016) a constant step-size is
employed, while our algorithm uses a vanishing step-size.
The constant step-size has the advantage of enhancing a
faster convergence rate, but, at the same time, convergence
to a neighborhood of the optimal is guaranteed only. Our
algorithm instead is guaranteed to converge to the optimal
solution of the original problem;

c. the algorithm of Simonetto and Jamali-Rad (2016) requires
that a Slater point exists and is known to all agents, while
existence only is required in our algorithm. This relaxation
of the conditions for the applicability of the approach can
be crucial in those cases where a Slater point is not a-
priori available since the reconstruction of a Slater point in a
distributed set-up seems to be as challenging as the original
problem and requires extra synchronization among agents.

From another perspective, which is better explained later on in
the paper, our approach can be also interpreted as a subgradient
based algorithm for the resolution of the dual problem, equipped
with an auxiliary sequences that allows one to recover the solution
of the primal problem we are interested in. In this respect related
contributions are Bertsekas (2011), Bertsekas, Nedic, and Ozdaglar
(2003), and Nedic and Bertsekas (2001) where some incremental
gradient/subgradient algorithms that can be adopted as an al-
ternative to dual decomposition are proposed. These algorithms,
however, require that agents perform updates sequentially, in a
cyclic or randomized order, and do not really fit the distributed
set-up of this paper. The recent contributions Chang et al. (2014)
and Zhu and Martinez (2012) instead present primal–dual sub-
gradient based consensus algorithms that fit our set-up and are
comparable to our approach. The main differences are:

d. in Zhu andMartinez (2012) a global knowledge by all agents
of the coupling constraint in the primal is required and in
both Chang et al. (2014) and Zhu andMartinez (2012) infor-
mation related to the primal problem is exchanged among
agents while the algorithm is running. In the separable set-
up of this paper, the agents local information on the primal
problem (namely, the value of the local optimization vari-
ables, the local objective function, the local constraints, and
the contribution of the agent to the coupling constraint) can
be regarded as sensitive data and their exchange as in Chang
et al. (2014) and Zhu andMartinez (2012)may raise privacy
issues. In our algorithm, only the local estimates of the dual
variables are exchanged, and this secures maximum privacy
among agents;

e. the algorithms of Chang et al. (2014) and Zhu and Martinez
(2012) require that a Slater point exists and is known to all
agents, while existence only is required in our algorithm.
As commented before, requiring the knowledge of a Slater
point by the agents can hamper the usability of the algo-
rithm. Moreover, the convergence to the optimal solution
in Chang et al. (2014) is guaranteed only when each agents
objective function is differentiable;

f. to apply the algorithm of Zhu and Martinez (2012) to
our set-up, each agent has to generate local copies of the
optimization variables of all the other agents, which then
are optimized and exchanged. This often results in an un-
necessary increase of the computational and communica-
tion efforts, which indeed scale as the number of agents
in the network. In our approach instead agents need to
optimize the local variables only and exchange the estimate
of the dual variables, which are as many as the number
of coupling constraints. The required local computational
effort is thusmuch smaller. As for the communication effort,
our approach is particularly appealing when the number of
coupling constraints is low compared to the overall dimen-
sionality of primal decision variables.

Finally, note that the approaches to distributed optimization
in Lee and Nedic (2013), Margellos et al. (2016), Nedic and
Ozdaglar (2009b), Nedic et al. (2010) and Ram et al. (2012) which
do not resort to any dual problem, can be applied to inequality-
coupled problems by introducing a common decision vector col-
lecting all local decision variables. This, however, immediately
leads to the drawback of an increased computational and com-
munication effort as discussed in point f above. Moreover, these
approaches requires an exchange of information related to the
primal, which leads to the privacy issues outlined in point d above.

Table 1 summarizes the comparison between the proposed
methodology and themost significant approaches that apply to the
same set-up. In the table, algorithms are assessed each against the
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Table 1
Comparison against other approaches. Legend: + means ‘‘and’’, P stands for primal, D stands for dual, CC stands for convexity and compactness, SP stands for knowledge
of a Slater point by agents, DF stands for differentiability of the objective function, ≤ stands for inequality constraints,= stands for equality constraints, V stands for time-
varying, F stands for fixed, ni is the number of decision variables of agent i, and p is the number of coupling constraints/Lagrange multipliers.

Margellos et al.
(2016)

Zhu and Martinez
(2012)

Chang, Nedic, and
Scaglione (2014)

Simonetto and
Jamali-Rad (2016)

Algorithm 1

Convergence to optimal solution ✓ ✓ ✓ ✗ ✓

Exchange of info related to P P+D P+D D D
Required technical assumptions CC CC+ SP CC+ SP+DF CC+ SP CC
Type of coupling constraints ≤ ≤ ≤ ≤ ≤ + =

Network topology V V V F V
Number of decision variables in the local problem

∑
ini

∑
ini ni ni ni

Number of variables that need to be stored locally
∑

ini
∑

ini + p 3(ni + p) 2ni + p 2ni + p
Number of variables that are exchanged within
any communicating agents pair

∑
ini

∑
ini + p 2p p p

others based on several indices related to points a–f above. Per-
haps, it is worth mentioning that, since in Margellos et al. (2016)
and Zhu andMartinez (2012) local copies of the optimization vari-
ables of all agents are required, a further issue arises for these two
algorithms. Asmatter of fact, since agent ihas no constraints for the
variables of the other agents, the assumption, which is common to
all algorithms, of compactness of the overall optimization domain
is no longer verified. This issue can be prevented e.g. by forcing xj
to belong to an outer box to the constraints set Xj for each j ̸= i,
but in doing so some information about the local Xi is exchanged,
leading to further privacy issues.

The present paper significantly extends our preliminary
work Falsone, Margellos, Garatti, and Prandini (2016) from a
theoretical viewpoint, in that it contains the proofs of all the
results stated in the conference version and un upper bound for
the convergence rate of primal feasibility. Furthermore, a thorough
comparison with the literature has been added and an assessment
of the performance of the proposed approach has been carried out
through a concrete problem on plug-in electric vehicles charging,
where also guidelines on how to speed up numerical convergence
are provided.

2. Distributed constrained optimization

2.1. Problem statement and proposed solution

Consider the following optimization program

P : min
{xi∈Xi}mi=1

m∑
i=1

fi(xi)

subject to:
m∑
i=1

gi(xi) ≤ 0,

(1)

involving m agents that communicate over a time-varying net-
work. Each agent i, i = 1, 2, . . . ,m, has its own vector xi ∈ Rni of
ni decision variables, its local constraint set Xi ⊆ Rni and objective
function fi(·) : Rni → R, and it is contributing to the coupling
constraint

∑m
i=1gi(xi) ≤ 0 via function gi(·) : Rni → Rp. Note

that linear equality coupling constraints can be also dealt with by
means of P , by means of double-sided inequalities.

ProblemP could be solved, in principle, in a centralized fashion.
However, if the number m of agents is large, this may turn out
to be computationally prohibitive. In addition, each agent would
be required to share its own information (coded via fi(·), Xi, and
gi(·)) either with the other agents or with a central unit collecting
all information, which may be undesirable in some cases, due
to privacy issues. We next formulate a distributed strategy that
overcomes both the privacy and computational issues outlined
above by resorting to the dual of (1).

Algorithm 1 Distributed algorithm
1: Initialization
2: k = 0.
3: Consider x̂i(0) ∈ Xi, for all i = 1, . . . ,m.
4: Consider λi(0) ∈ Rp

+, for all i = 1, . . . ,m.
5: For i = 1, . . . ,m repeat until convergence
6: ℓi(k) =

∑m
j=1 a

i
j(k)λj(k).

7: xi(k+ 1) ∈ argminxi∈Xi fi(xi)+ ℓi(k)
⊤gi(xi).

8: λi(k+ 1) = argmaxλi≥0
{
gi(xi(k+ 1))⊤λi − 1

2c(k)∥λi− ℓi(k)∥
2
}

9: x̂i(k+ 1) = x̂i(k)+ c(k)∑k
r=0 c(r)

(xi(k+ 1)− x̂i(k)).

10: k← k+ 1.

Let us consider the Lagrangian function L(x, λ) : Rn
× Rp

+ → R
given by

L(x, λ) =
m∑
i=1

Li(xi, λ) =
m∑
i=1

{
fi(xi)+ λ⊤gi(xi)

}
,

where x = [x1⊤ . . . xm⊤]⊤ ∈ X = X1 × · · · × Xm ⊆ Rn, with
n =

∑m
i=1ni, whereas λ ∈ Rp

+ is the vector of Lagrange multipliers
(Rp
+ denotes the p-th dimensional non-negative orthant; in the

sequel we shall sometimes write λ ≥ 0 in place of λ ∈ Rp
+).

Correspondingly, we can define the dual function as

ϕ(λ) = min
x∈X

L(x, λ), (2)

which, due to the separable structure of objective and constraint
functions in problem P (see (1)), can be expressed as

ϕ(λ) =
m∑
i=1

ϕi(λ) =
m∑
i=1

min
xi∈Xi

Li(xi, λ), (3)

where each ϕi(·) is a concave function representing the dual func-
tion of agent i.

Given these definitions, the dual of problem P in (1) can be
expressed as maxλ≥0minx∈XL(x, λ), or, equivalently, as

D : max
λ≥0

m∑
i=1

ϕi(λ). (4)

The coupling between agents is given in (4) by the fact that λ is a
common decision vector and the agents should agree on its value.

Algorithm 1 is a distributed iterative scheme that aims at re-
constructing the solution to both the dual problem (4) and the pri-
mal problem (1) by exchanging a minimal amount of information
among agents. Its steps are explained hereafter.
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Each agent i, i = 1, . . . ,m, initializes the estimate of its local
decision vector with x̂i(0) ∈ Xi (step 3 of Algorithm 1), and the es-
timate of the common dual variables vector with a λi(0) ∈ Rp

+ that
is feasible for problem D (step 4 of Algorithm 1). A sensible choice
is to set λi(0) = 0, i = 1, . . . ,m so that x̂i(1) ∈ argminxi∈Xi fi(xi),
which corresponds to the solution of problem (1) when coupling
constraints are neglected. As for the initialization of x̂i(k), it can be
set arbitrarily since, at k = 0, it is canceled out in step 9.
At every iteration k, k ≥ 1, each agent i computes a weighted
average ℓi(k) of the dual variables vector based on the estimates
λj(k), j = 1, . . . ,m, of the other agents and its own estimate
(step 6). The weight aij(k) that agent i attributes to the estimate
of agent j at iteration k is set equal to zero if agent i does not
communicate with agent j at iteration k.
Then, Algorithm 1 alternates between a primal and a dual update
step (step 7 and step 8, respectively). In particular, step 7 performs
an update of the local primal vector xi(k + 1) by minimizing
Li evaluated at λ = ℓi(k) as in dual decomposition, whereas,
differently from dual decomposition, which would consists of the
maximization of Li evaluated at xi = xi(k+1), the update of the dual
vector in step 8 involves also the proximal term− 1

2c(k)∥λi−ℓi(k)∥
2

to foster consensus among the agents.
Steps 7 and 8 can be thought of as an approximation of the follow-
ing proximal maximization step

λi(k+ 1) = argmax
λi≥0

min
xi∈Xi

{
Li(xi, λi)−

1
2c(k)

∥λi − ℓi(k)∥2
}
, (5)

which would implement the distributed algorithm of Margellos
et al. (2016) for the dual problem (4). Steps 7 and 8 are however
preferred to (5) since the resolution of the max−min program in
(4) is very hard in general. Moreover, it is perhaps worth men-
tioning at the outset that step 8 in Algorithm 1 is equivalent to a
projected subgradient step. Indeed the constrained maximization
of a quadratic function in step 8 can be explicitly solved, leading to

λi(k+ 1) = [ℓi(k)+ c(k)gi(xi(k+ 1))]+, (6)

where [ · ]+ denotes the projection of its argument ontoRp
+. Then, it

can be shown that gi(xi(k+1)) is a subgradient of the dual function
ϕi(·) evaluated at ℓi(k) (see the proof of Theorem1 formore details),
while c(k) can be thought of as the subgradient step-size. Hence,
steps 7 and 8 can be also seen as an application of the distributed
subgradient algorithm of Nedic et al. (2010), which was originally
developed for primal problems though, to the dual problem (4).
Unfortunately, the local primal vector xi(k) does not converge to
the optimal solution x⋆i to (1) in general. Therefore, the auxiliary
primal iterates x̂i(k+ 1), defined as the weighted running average
of {xi(r + 1)}kr=0

x̂i(k+ 1) =
∑k

r=0 c(r)xi(r + 1)∑k
r=0 c(r)

, (7)

is computed in step 9 of Algorithm 1 in a recursive fashion. Such
an auxiliary variable shows better convergence properties as com-
pared to xi(k), and is often constructed in the so-called primal
recovery procedure of dual decomposition methods, Chang et al.
(2014), Nedic and Ozdaglar (2009a) and Zhu and Martinez (2012).

Note that in Algorithm 1 no local information related to the
primal is exchanged between the agents (as a matter of fact only
the estimates of the dual vector are communicated) so that our
algorithm is well suited to account for privacy requirements.

2.2. Structural and communication assumptions

The proposed distributed algorithm shows properties of con-
vergence and optimality, which hold under the following assump-
tions on the structure of the problem and on the communication
features of the time-varying multi-agent network.

Assumption 1 (Convexity). For each i = 1, . . . ,m, the function
fi(·) : Rni → R and each component of gi(·) : Rni → Rp are convex;
for each i = 1, . . . ,m the set Xi ⊆ Rni is convex.

Assumption 2 (Compactness). For each i = 1, . . . ,m, the set
Xi ⊆ Rni is compact.

Note that, under Assumptions 1 and 2, ∥gi(xi)∥ is finite for
any xi ∈ Xi: ∥gi(xi)∥ ≤ G, ∀xi ∈ Xi, where G =

maxi=1,...,mmaxxi∈Xi∥gi(xi)∥.

Assumption 3 (Slater’s Condition). There exists x̃ = [x̃1 . . . x̃m]⊤ ∈
relint(X), where relint(X) is the relative interior of the set X , such
that

∑m
i=1gi(x̃i) ≤ 0 for those components of

∑m
i=1gi(xi) that are

linear in x, if any, while
∑m

i=1gi(x̃i) < 0 for all other components.

As a consequence of Assumptions 1–3, we have that strong
duality holds and an optimal primal–dual pair (x⋆, λ⋆) exists,
where x⋆ = [x⋆1 . . . x

⋆
m]
⊤. Moreover, the Saddle-Point Theorem

holds, Boyd and Vandenberghe (2004), i.e., given an optimal pair
(x⋆, λ⋆), we have that

L(x⋆, λ) ≤ L(x⋆, λ⋆) ≤ L(x, λ⋆), λ ∈ Rp
+, x ∈ X . (8)

The reader should note that, differently from other approaches,
we require a Slater point to exists, butwe do not need the agents to
actually compute it, which, as discussed in the introduction, might
be impractical in a distributed set-up.

In the following we will denote by X⋆ the set of all primal
minimizers, and byΛ⋆ the set of all dual maximizers.

As for the time-varying coefficient c(k), we impose the follow-
ing assumptions that are similar to those in Nedic et al. (2010),
Margellos et al. (2016) and Zhu and Martinez (2012).

Assumption 4 (Coefficient c(k)). {c(k)}k≥0 is a non-increasing se-
quence of positive reals such that c(k) ≤ c(r) for all k ≥ r , with
r ≥ 0. Moreover, (1)

∑
∞

k=0c(k) = ∞, (2)
∑
∞

k=0c(k)
2 <∞.

One possible choice for {c(k)}k≥0 satisfying Assumption 4 is
c(k) = β/(k+ 1) for some β > 0.

As in Olshevsky and Tsitsiklis (2011), Tsitsiklis (1984) and Tsit-
siklis, Bertsekas, and Athans (1986) the communication network is
required to satisfy the following connectivity conditions.

Assumption 5 (Weight Coefficients). There exists η ∈ (0, 1) such
that for all i, j ∈ {1, . . . ,m} and all k ≥ 0, aij(k) ∈ [0, 1), a

i
i(k) ≥ η,

and aij(k) > 0 implies that aij(k) ≥ η. Moreover, for all k ≥ 0,
(1)

∑m
j=1a

i
j(k) = 1 for all i = 1, . . . ,m, (2)

∑m
i=1a

i
j(k) = 1 for all

j = 1, . . . ,m.

Note that, if we fix k ≥ 0, the information exchange between
the m agents can be coded via a directed graph (V , Ek), where
nodes in V = {1, . . . ,m} represent the agents, and the set Ek of
directed edges is defined as Ek =

{
(j, i) : aij(k) > 0

}
, i.e., at

time k the link (j, i) is present if agent j communicates with agent
i and agent i weights the information received from agent j with
aij(k). If the communication link is not active, then aij(k) = 0; if
aij(k) > 0 then agent j is said to be neighbor of agent i at time k. Let
E∞ =

{
(j, i) : (j, i) ∈ Ek for infinitely many k

}
denote the set of

edges (j, i) representing pairs of agents that communicate directly
infinitely often. We then impose the following connectivity and
communication assumption.

Assumption 6 (Connectivity and Communication). Graph (V , E∞)
is strongly connected, i.e., for any two nodes there exists a path of
directed edges that connects them. Moreover, there exists T ≥ 1
such that for every (j, i) ∈ E∞, agent i receives information from a
neighboring agent j at least once every consecutive T iterations.
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Details on the interpretation of Assumptions 5 and 6 can be
found in Margellos et al. (2016), Nedic and Ozdaglar (2009b) and
Nedic et al. (2010).

2.3. Statement of the main results

If Assumptions 1–6 are satisfied, then Algorithm 1 converges
and agents agree to a common vector of Lagrange multipliers.
Specifically, their local estimates λi(k) converge to some opti-
mal vector of Lagrange multipliers, while the vector x̂(k) =
[x̂1(k)⊤ . . . x̂m(k)⊤]⊤ approaches X⋆, the set of minimizers of the
primal problem. These results are formally stated in the following
theorems.

Theorem 1 (Dual Optimality). Under Assumptions 1–6, there exists
a λ⋆ ∈ Λ⋆ such that

lim
k→∞
∥λi(k)− λ⋆∥ = 0, for all i = 1, . . .,m. (9)

Theorem 2 (Primal Optimality). Under Assumptions 1–6, we have
that

lim
k→∞

dist(x̂(k), X⋆) = 0, (10)

where dist(y, Z) denotes the distance between y and the set Z,
i.e., dist(y, Z) = minz∈Z∥y− z∥.

3. Convergence and optimality analysis

This section is devoted to the convergence and optimality anal-
ysis of Algorithm 1. We will first prove Theorem 1 employing the
convergence result of the primal algorithm proposed in Nedic et
al. (2010) applied to (4). We will then provide some preliminary
results which are instrumental for the proof of Theorem 2, and
finally we will give the proof of Theorem 2.

3.1. Proof of Theorem 1

The structure of problem (4) fits the framework considered
in Nedic et al. (2010), and as already noted below Eq. (6), the
part of Algorithm 1 that pertains to the update of the dual vector
(namely, steps 6 and 7 and step 8 which is equivalent to (6)) is an
implementation of the subgradient algorithmof Nedic et al. (2010)
for the dual problem (4). In particular, referring to (6), the fact that
gi(xi(k+ 1)), with xi(k+ 1) computed as in step 7, is a subgradient
of ϕi(λ) = minxi∈Xi{fi(xi)+λ

⊤gi(xi)} evaluated at λ = ℓi(k) is a well-
known consequence of the Danskin’s theorem (see Proposition
B.25 in Bertsekas (1999)). Moreover, since fi are convex over the
whole domain Rni by Assumption 1 and since xi(k+ 1) ∈ Xi, which
is compact by Assumption 2, it holds that the subgradients of each
agent objective function evaluated at xi(k+1) are always bounded.
This latter observation along with Assumptions 1–6 allows one to
conclude that all requirements for Proposition 4 in Nedic et al.
(2010) to hold are verified, and then the result (9) of Theorem 1
follows by a direct application of Proposition 4 in Nedic et al.
(2010). This concludes the proof. □

By Theorem 1, for all i = 1, . . . ,m, the sequence {λi(k)}k≥0 is
converging to someλ⋆ ∈ Λ⋆. Therefore, {λi(k)}k≥0 is also a bounded
sequence, that is ∥λi(k)∥ ≤ D, with D = maxisupk≥0∥λi(k)∥ <∞.

3.2. Error relations

In this subsectionwe prove some preliminary relations that link
the dual variables local estimate λi(k) of agent i, i = 1, . . . ,m, with
their arithmetic average

v(k) =
1
m

m∑
i=1

λi(k), for all k ≥ 0. (11)

These relations are then used in Section 3.3 for the proof of Theo-
rem 2.

The following lemma establishes a link between ∥λi(k + 1) −
v(k+ 1)∥ and ∥ei(k+ 1)∥, i = 1, . . . ,m, where

ei(k+ 1) = λi(k+ 1)− ℓi(k) (12)

is the consensus error for agent i.

Lemma 1. Consider Assumptions 4–6. Fix any α1 ∈ R+ \ {0}. We
then have that for any N ∈ N+ \ {0},

2
N∑

k=1

c(k)
m∑
i=1

∥λi(k+ 1)− v(k+ 1)∥

< α1

N∑
k=1

m∑
i=1

∥ei(k+ 1)∥2 + α2

N∑
k=1

c(k)2 + α3, (13)

where α2 =
2m
α1

(
m2ψ2

(1−q)2
+ 4

)
and α3 =

α1
2

∑m
i=1∥ei(1)∥

2
+

2m3ψ2

α1(1−q)2
c(0)2+ 2mψq

1−q c(1)
∑m

i=1∥λi(0)∥, withψ = 2
(
1+η−(m−1)T

)
/
(
1

− η(m−1)T
)
∈ R+ \ {0} and q =

(
1− η(m−1)T

) 1
(m−1)T ∈ (0, 1).

Proof. See the proof of Lemma 3 in Margellos et al. (2016). □

It should be noted that for all i = 1, . . . ,m, ∥λi(0)∥ is finite as
λi(0) is the initialization of the algorithm, ℓi(0) is finite since it is
the convex combination of finite values, and xi(1) is finite thanks
to Assumption 2. By (12), and thanks to the fact that λi(k + 1) =
[ℓi(k)+c(k)gi(xi(k+1))]+ (Eq. (6)) and to the fact that the projection
operator is non-expansive, we have that ∥ei(1)∥ ≤ ∥c(0)gi(xi(1))∥,
i.e. ∥ei(1)∥2 is finite too. We then have the following lemma, which
is fundamental for the analysis of Section 3.3.

Lemma 2. Consider Assumptions 1–3 and 5. Fix any α1 ∈ R+ \ {0}.
For any k ∈ N+, and for any x ∈ X and λ ∈ Rp

+ we have,
m∑
i=1

∥λi(k+ 1)− λ∥2 ≤
m∑
i=1

∥λi(k)− λ∥2

− (1− α1)
m∑
i=1

∥ei(k+ 1)∥2 +
4G2m
α1

c(k)2

+ 2Gc(k)
m∑
i=1

∥λi(k+ 1)− v(k+ 1)∥

+ 2c(k)
(
L(x, v(k+ 1))− L(x(k+ 1), λ)

)
. (14)

Proof. Consider the quantity ∥ℓi(k) − λ∥2. Adding and subtracting
λi(k + 1) inside the norm and then expanding the square, we have
that

∥ℓi(k)− λ∥2 = ∥ℓi(k)− λi(k+ 1)∥2 + ∥λi(k+ 1)− λ∥2

+ 2(ℓi(k)− λi(k+ 1))⊤(λi(k+ 1)− λ)

= ∥ℓi(k)− λi(k+ 1)∥2 + ∥λi(k+ 1)− λ∥2

+ 2(ℓi(k)+ c(k)gi(xi(k+ 1))

− λi(k+ 1))⊤(λi(k+ 1)− λ)
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− 2c(k)gi(xi(k+ 1))⊤(λi(k+ 1)− λ), (15)

where the second equality is obtained by adding and subtracting
2c(k)gi(xi(k+1))⊤(λi(k+1)−λ). Consider now step 8 of Algorithm1. By
the optimality condition (Proposition 3.1 in Bertsekas and Tsitsiklis
1989, chap. 3), we have that, for any λ ∈ Rp

+,

2(ℓi(k)+ c(k)gi(xi(k+ 1))− λi(k+ 1))⊤(λi(k+ 1)− λ) ≥ 0, (16)

where the first term in the inner product above constitutes the gradient
of the objective function that appears at step 8 of Algorithm 1 (it is
quadratic, hence differentiable), multiplied by 2c(k). Using (16), we
can rewrite (15) as an inequality

∥ℓi(k)− λ∥2 ≥ ∥ℓi(k)− λi(k+ 1)∥2 + ∥λi(k+ 1)− λ∥2

− 2c(k)gi(xi(k+ 1))⊤(λi(k+ 1)− λ).

Now, recalling the definition of ei(k+ 1), and after rearranging some
terms, we have that

∥λi(k+ 1)− λ∥2 ≤ ∥ℓi(k)− λ∥2 − ∥ei(k+ 1)∥2

+ 2c(k)(λi(k+ 1)− λ)⊤gi(xi(k+ 1)), (17)

for any λ ∈ Rp
+. By adding and subtracting 2c(k)(fi(xi(k + 1)) +

ℓi(k)⊤gi(xi(k + 1))) in the right-hand side of the inequality above we
obtain

∥λi(k+ 1)− λ∥2 ≤ ∥ℓi(k)− λ∥2 − ∥ei(k+ 1)∥2

+ 2c(k)
(
(λi(k+ 1)− ℓi(k))⊤gi(xi(k+ 1))

+ fi(xi(k+ 1))+ ℓi(k)⊤gi(xi(k+ 1))

− fi(xi(k+ 1))− λ⊤gi(xi(k+ 1))
)
, (18)

for any λ ∈ Rp
+.

Consider now step 7 of Algorithm 1. By the optimality of xi(k+ 1)
we have that

fi(xi(k+ 1))+ ℓi(k)⊤gi(xi(k+ 1)) ≤ fi(xi)+ ℓi(k)⊤gi(xi), (19)

for any xi ∈ Xi. Combining the previous statement with (18), and by
adding and subtracting 2c(k)v(k+ 1)⊤gi(xi) and 2c(k)λi(k+ 1)⊤gi(xi),
we have that

∥λi(k+ 1)− λ∥2 ≤ ∥ℓi(k)− λ∥2 − ∥ei(k+ 1)∥2

+ 2c(k)
(
(λi(k+ 1)− ℓi(k))⊤gi(xi(k+ 1))

+ (ℓi(k)− λi(k+ 1))⊤gi(xi)

+ (λi(k+ 1)− v(k+ 1))⊤gi(xi)

+ fi(xi)+ v(k+ 1)⊤gi(xi)

− fi(xi(k+ 1))− λ⊤gi(xi(k+ 1))
)
, (20)

for any λ ∈ Rp
+ and any xi ∈ Xi. By summing (20) across i, i =

1, . . . ,m, rearranging some terms, and recalling the definition of the
Lagrangian function and of ei(k+ 1), we obtain

m∑
i=1

∥λi(k+ 1)− λ∥2

≤

m∑
i=1

∥ℓi(k)− λ∥2 −
m∑
i=1

∥ei(k+ 1)∥2

+ 2c(k)
m∑
i=1

ei(k+ 1)⊤(gi(xi(k+ 1))− gi(xi))

+ 2c(k)
m∑
i=1

(λi(k+ 1)− v(k+ 1))⊤gi(xi)

+ 2c(k)
(
L(x, v(k+ 1))− L(x(k+ 1), λ)

)
, (21)

for any λ ∈ Rp
+ and for any x ∈ X.

By the definition of ℓi(k) (step 6 of Algorithm 1), by the fact that,
under Assumption 5, ∥

∑m
j=1a

i
j(k)λj(k) − λ∥

2
= ∥

∑m
j=1a

i
j(k)(λj(k) −

λ)∥2, and by convexity of ∥ · ∥2, we have that
m∑
i=1

∥ℓi(k)− λ∥2 ≤
m∑
i=1

∥λi(k)− λ∥2. (22)

Now, from inequality 2a⊤b ≤ ∥a∥2 + ∥b∥2, where we set a =
√
α1ei(k+ 1) and b = c(k)(gi(xi(k+ 1))− gi(xi))/

√
α1, we obtain

2c(k)
m∑
i=1

ei(k+ 1)⊤(gi(xi(k+ 1))− gi(xi))

≤

m∑
i=1

α1∥ei(k+ 1)∥2 +
m∑
i=1

∥gi(xi(k+ 1))− gi(xi)∥2

α1
c(k)2

≤

m∑
i=1

α1∥ei(k+ 1)∥2 +
m∑
i=1

4G2

α1
c(k)2

= α1

m∑
i=1

∥ei(k+ 1)∥2 +
4G2m
α1

c(k)2, (23)

where the second inequality is given by the fact that ∥gi(xi(k+ 1))−
gi(xi)∥ ≤ 2G. By the Cauchy–Schwarz inequality we have that

2c(k)
m∑
i=1

(λi(k+ 1)− v(k+ 1))⊤gi(xi)

≤ 2Gc(k)
m∑
i=1

∥λi(k+ 1)− v(k+ 1)∥. (24)

Finally, by using (22)–(24) together with (21), inequality (14) follows,
thus concluding the proof. □

The relations established in Lemmas 1 and 2 can be exploited to
prove the following proposition.

Proposition 3. Under Assumptions 1– 6, we have that

(1)
∑
∞

k=1
∑m

i=1∥ei(k)∥
2 <∞,

(2) limk→∞∥ei(k)∥ = 0, for all i = 1, . . . ,m,
(3)

∑
∞

k=1c(k)
∑m

i=1∥λi(k+ 1)− v(k+ 1)∥ <∞.

Proof. Consider (14) with λ = λ⋆ and x = x⋆, where (x⋆, λ⋆) is an
optimal primal–dual pair. By (8)we have that L(x⋆, v(k+1))−L(x(k+
1), λ⋆) ≤ 0, and hence we can drop this term from the right-hand side
of (14). Fixing N ∈ N+ and summing across k, k = 1, . . . ,N, we have
that

N∑
k=1

m∑
i=1

∥λi(k+ 1)− λ⋆∥2 ≤
N∑

k=1

m∑
i=1

∥λi(k)− λ⋆∥2

− (1− α1)
N∑

k=1

m∑
i=1

∥ei(k+ 1)∥2 +
4G2m
α1

N∑
k=1

c(k)2

+ 2G
N∑

k=1

c(k)
m∑
i=1

∥λi(k+ 1)− v(k+ 1)∥. (25)

By Lemma 1, after some cancellations, and after neglecting some
negative terms on the right-hand side, we get

(1− α1(1+ G))
N∑

k=1

m∑
i=1

∥ei(k+ 1)∥2

≤

m∑
i=1

∥λi(1)− λ⋆∥2 +
(
4G2m
α1
+ α2G

) N∑
k=1

c(k)2 + α3G. (26)
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Since (26) holds for any α1 > 0, one can always choose α1 such that
(1−α1(1+G)) > 0. Let then N →∞. By point (2) of Assumption 4,
and since ∥λi(1)−λ⋆∥2 is finite as an effect of λi(1) and λ⋆ being finite
(see discussion after the proof of Theorem 1), the right-hand side of
(26) is finite, leading to point (1) of the proposition. Point (2) then
follows directly, while point (3) follows from point (1) together with
Lemma 1 by letting N →∞ in (13). This concludes the proof. □

Based on the previous results, we can also prove (see Appendix)
that
∞∑
k=1

c(k)
m∑
i=1

|ϕi(ℓi(k))− ϕi(v(k))| <∞. (27)

3.3. Proof of Theorem 2

The proof of Theorem2below is inspired by Nedic andOzdaglar
(2009a), where the convergence of a running average sequence
similar to {x̂i(k)}k≥0 is studied in a non-distributed setting. Note
that x̂i(k + 1) is a convex combination of past values of xi(k + 1),
therefore, for all k ∈ N+ we have that x̂i(k + 1) ∈ Xi. Consider the
quantity

∑m
i=1gi(x̂i(k+1)). By (7), under the convexity requirement

of Assumption 1, we have
m∑
i=1

gi(x̂i(k+ 1)) ≤
m∑
i=1

∑k
r=0 c(r)gi(xi(r + 1))∑k

r=0 c(r)

=

∑k
r=0

∑m
i=1 c(r)gi(xi(r + 1))∑k

r=0 c(r)
, (28)

where the inequality (aswell as the subsequent ones) is to be inter-
preted component-wise. Step 8 of Algorithm 1 can be equivalently
written as λi(k + 1) = [ℓi(k) + c(k)gi(xi(k + 1))]+, where [ · ]+
denotes the projection of its argument on Rp

+ (see also discussion
at the end of Section 2.1). Therefore,

λi(k+ 1) ≥ ℓi(k)+ c(k)gi(xi(k+ 1)). (29)

Summing (29) with respect to agents and steps, and then substi-
tuting in (28) gives

m∑
i=1

gi(x̂i(k+ 1)) ≤
∑k

r=0
∑m

i=1(λi(r + 1)− ℓi(r))∑k
r=0 c(r)

=

∑k
r=0

∑m
i=1(λi(r + 1)−

∑m
j=1 a

i
j(k)λj(r))∑k

r=0 c(r)

=

∑k
r=0

(∑m
i=1 λi(r + 1)−

∑m
j=1
∑m

i=1 a
i
j(k)λj(r)

)
∑k

r=0 c(r)

=

∑k
r=0

(∑m
i=1 λi(r + 1)−

∑m
j=1 λj(r)

)
∑k

r=0 c(r)

=

∑m
i=1(λi(k+ 1)− λi(0))∑k

r=0 c(r)
, (30)

where the first equality follows from the definition of ℓi(r), the
second inequality involves an exchange on the summation order,
the third equality is due to Assumption 5, and the last one is ob-
tained after some term cancellations. Since {λi(k)}k≥0 is a bounded
sequence (see the discussion after the proof of Theorem1), and due
to the fact that

∑
∞

r=0c(r) = ∞, taking the limit superior in (30) we
obtain that

lim sup
k→∞

m∑
i=1

gi(x̂i(k+ 1)) ≤ 0. (31)

Consider now the quantity 2
∑m

i=1Li(x̂i(k+ 1), λ⋆) for any λ⋆ ∈ Λ⋆.
By (7), under Assumption 1, we have that

2
m∑
i=1

Li(x̂i(k+ 1), λ⋆) ≤ 2
m∑
i=1

∑k
r=0 c(r)Li(xi(r + 1), λ⋆)∑k

r=0 c(r)

=

∑k
r=0 2c(r)L(x(r + 1), λ⋆)∑k

r=0 c(r)
. (32)

By (14) in Lemma 2 with x = x⋆ and λ = λ⋆, for any (x⋆, λ⋆) ∈
X⋆×Λ⋆, with r in place of k, and after neglecting the negative term
−(1− α1)

∑m
i=1∥ei(k+ 1)∥2, we have that

2c(r)L(x(r + 1), λ⋆)

≤2c(r)L(x⋆, v(r + 1))+
m∑
i=1

∥λi(r)− λ⋆∥2

−

m∑
i=1

∥λi(r + 1)− λ⋆∥2 +
4G2m
α1

c(r)2

+ 2Gc(r)
m∑
i=1

∥λi(r + 1)− v(r + 1)∥

≤2c(r)L(x⋆, λ⋆)+
m∑
i=1

∥λi(r)− λ⋆∥2

−

m∑
i=1

∥λi(r + 1)− λ⋆∥2 +
4G2m
α1

c(r)2

+ 2Gc(r)
m∑
i=1

∥λi(r + 1)− v(r + 1)∥, (33)

where the second inequality follows from the fact that L(x⋆,
v(r + 1)) ≤ L(x⋆, λ⋆) due to (8). Substituting (33) in (32) we have
that

2L(x̂(k+ 1),λ⋆) ≤
∑k

r=0 2c(r)L(x
⋆, λ⋆)∑k

r=0 c(r)

+
1∑k

r=0 c(r)

(
4G2m
α1

k∑
r=0

c(r)2

+

m∑
i=1

∥λi(0)− λ⋆∥2 −
m∑
i=1

∥λi(k+ 1)− λ⋆∥2

+ 2G
k∑

r=0

c(r)
m∑
i=1

∥λi(r + 1)− v(r + 1)∥

)
.

Using Assumption 4 point (2), the boundedness of {λi(k)}k≥0, and
Proposition 3 part (3), we know that all terms inside the parenthe-
ses are finite as k → ∞. Therefore, lim supk→∞L(x̂(k + 1), λ⋆) ≤
L(x⋆, λ⋆). However, by (8) we have that L(x̂(k + 1), λ⋆) ≥ L(x⋆, λ⋆),
hence

lim
k→∞

L(x̂(k+ 1), λ⋆) = L(x⋆, λ⋆). (34)

For the sake of contradiction suppose now that (10) does not hold.
Then, there exists a subsequence {x̂(kj)}j≥0 such that

dist(x̂(kj), X⋆) ≥ ε > 0 ∀j ≥ 0. (35)

Knowing that x̂(kj) ∈ X , which is a compact set by Assumption 2,
we have that {x̂(kj)}j≥0 admits a convergent subsequence whose
limit point must be feasible and achieve the optimal value because
of (31) and (34). Thus, this limit point belongs toX⋆, which however
contradicts (35). This proves the desired result. □
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Fig. 1. Network of m = 100 agents.

4. Numerical example

In this section we demonstrate the efficacy of the proposed
approach on a modified version of the Plug-in Electric Vehicles
(PEVs) charging problem described in Vujanic, Mohajerin, Goulart,
Mariethoz, and Morari (2016). This problem consists in finding
an optimal overnight charging schedule for a fleet of m vehicles,
which has to be compatible with local requirements and limita-
tions (e.g., desired final state of charge and maximum charging
power for each vehicle), and must satisfy some network-wide
constraints (e.g., maximum power that the network can deliver).
Specifically, we hereby consider a slight modification of the ‘‘only
charging’’ problem in Vujanic et al. (2016), in that we allow for
the optimization of the vehicles charging rate at each time slot,
instead of deciding whether to charge or not to charge the vehicle
at some fixed charging rate. The overall charging problem can be
formalized as the following optimization program

min
{xi∈Xi}mi=1

m∑
i=1

ci⊤xi

subject to:
m∑
i=1

(
Aixi −

b
m

)
≤ 0

(36)

which is a linear program (Xi are indeed bounded convex polytopic
sets) having the same structure of (1) and satisfying Assumption 1–
3. In (36) the components of the optimization vector xi represent
the charging rate for vehicle i in given time slots, vector ci gives
the costs for charging vehicle i with unitary charging rate, Xi
expresses local requirements and limitations for vehicle i such
as desired final state of charge and battery rated capacity, while∑m

i=1 (Aixi − b/m) ≤ 0 encodes network-wide power constraints.
We refer the reader to Vujanic et al. (2016) for the precise formu-
lation of all quantities in (36).

In our simulation we considered a fleet of m = 100 vehicles.
According to the ‘‘only charging’’ set-up in Vujanic et al. (2016),
each vehicles has ni = 24 decision variables and a local constraint
set defined by 197 inequalities. There are p = 48 coupling inequal-
ities, and therefore we have 48 Lagrange multipliers to optimize
for the dual problem. The communication network is depicted in
Fig. 1 and corresponds to a connected graph, whose edges are
divided into two groups: the blue and the red ones, which are
activated alternatively; this way Assumption 6 is satisfied with
a period of T = 2. For each set of edges we created a doubly
stochasticmatrix so as to satisfy Assumption 5. Finally, we selected
c(k) = 10−3

k+1 .
We ran Algorithm 1 for 1000 iterations with λi(0) = 0 for

all i = 1, . . . ,m, as suggested in Section 2.1. Fig. 2 shows the

Fig. 2. Evolution of the agents’ estimatesλi(k), i = 1, . . . ,m. Red triangles represent
the optimal dual solution.

evolution of the agents’ estimates λi(k), i = 1, . . . ,m across
iterations. As expected, all agents gradually reach consensus on
the optimal Lagrange multipliers of (36) (red triangles). Note that,
for the problem at hand, only 3 multipliers are positive, while all
the remaining 45 are equal to zero (in the figure, there are 45 red
triangles in 0 each one on top of the other). Fig. 3 instead shows the
evolution of the primal objective value

∑m
i=1ci

⊤xi (upper plot), and
constraint violation in terms of max{

∑m
i=1(Aixi − b/m), 0} (lower

plot), where xi is replaced by twodifferent sequences: x̂i(k) (dashed
lines), and x̃i(k) (solid lines), x̃i(k) being defined as

x̃i(k+ 1) =

⎧⎪⎨⎪⎩
x̂i(k+ 1) k < ks,i∑k

r=ks,i
c(r)xi(r + 1)∑k
r=ks,i

c(r)
k ≥ ks,i

(37)

where ks,i ∈ N+ is the iteration index related to a specific event,
namely, the ‘‘practical’’ convergence of the Lagrangemultipliers, as
detected by agent i. Specifically, in the proposed example ks,i is the
first iteration step atwhich the quantity ∥λi(k+1)−ℓi(k)∥2 has kept
below a certain threshold (10−5 in our simulation) for m = 100
consecutive iterations. Being x̃i(k) a refresh of x̂i(k), it is easy to
show via the same argument used for x̂i(k) that Theorem 2 holds
also for {x̃i(k)}k≥0, i = 1, . . . ,m.

An upper bound for our auxiliary sequence to be feasible is
given by 2D/

∑
∞

i=0c(k) ∼ O(1/log(k)) as a consequence of (30) and
the boundedness of {λi(k)}k≥0 (see the discussion below the proof
of Theorem 1). In fact, as can be seen from Fig. 3, the rate of con-
vergence of the cost and the constraint violation computed with
the {x̂i(k)}k≥0 sequence appears to be logarithmic in this example.
In Simonetto and Jamali-Rad (2016) the convergence rate is in-
stead O(1/k). We believe that this difference between Algorithm 1
and Simonetto and Jamali-Rad (2016) might be primarily due to
the constant vs. vanishing step-size. Having a vanishing step-size,
however, allows us to provide optimality guarantees, while, as
discussed in the introduction, in Simonetto and Jamali-Rad (2016)
only convergence to a neighborhood of the optimal solution is
guaranteed. The motivation for introducing the modified auxiliary
sequence (which has the same asymptotic convergence rate of the
original one) is mainly to counteract the fact that the convergence
of x̂i(k) is also adversely affected by the bad estimates of the
Lagrange multipliers obtained at the early stages of the algorithm.
By the re-initialization mechanism, x̃i(k) for k ≥ ks,i depends only
on estimates of the Lagrange multipliers that are very close to λ⋆
and, as such, it presents a much better numerical behavior than
x̂i(k).
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Fig. 3. Evolution of primal objective
∑m

i=1ci
⊤xi (upper plot) and constraint violation

max{
∑m

i=1(Aixi−b/m), 0} (lower plot) as a function of x̂i(k) (dashed lines), and x̃i(k)
(solid lines).

5. Concluding remarks

In this paper we proposed a novel distributed algorithm for a
certain class of convex optimization programs, over time-varying
multi-agent networks. More precisely, an iterative scheme com-
bining dual decomposition and proximal minimization was con-
ceived, which converges to some optimal dual solution of the
centralized problem counterpart, while primal iterates generated
by the algorithm converge to the set of primal minimizers. A
realistic example on electric vehicles charging over a network
was also provided to better illustrate the features of the proposed
methodology.
Future work will focus on the analysis of the convergence rate,
and on the relaxation of the convexity assumption by extending
the results of Vujanic et al. (2016) and Udell and Boyd (2016)
to a distributed set-up and quantifying the duality gap incurred
in case of mixed-integer programs. From an application point of
view, our goal is to apply the proposed algorithm to the problem of
optimal energy management of a building network (Ioli, Falsone,
& Prandini, 2015).

Appendix

Proof of (27). By Theorem 1, {∥λi(k)∥}k≥0 is bounded (see the
discussion after the proof of Theorem 1), whereas by the definition
of ℓi(k) (step 6 of Algorithm 1) and v(k) in (11), it follows that
{∥v(k)∥}k≥0 and {∥ℓi(k)∥}k≥0 are also bounded, for all i = 1, . . . ,m.
Let D̄ ∈ R+ denote a uniform upper bound for these sequences.
Due to compactness of Xi, i = 1, . . . ,m,ϕi(λ̄) is finite for any λ̄ ∈ D,
with D = {λ ∈ Rp

+ : ∥λ∥ ≤ D̄}. Therefore, ϕi(·) is concave (being a
dual function) on the compact set D, hence it will also be Lipschitz
continuous on Dwith Lipschitz constant Ci ∈ R+, i.e.,

|ϕi(λ1)− ϕi(λ2)| ≤ Ci∥λ1 − λ2∥, ∀λ1, λ2 ∈ D. (A.1)

By the definition of D̄ we have that ℓi(k), v(k) ∈ D, for all k ∈ N+,
for all i = 1, . . . ,m, hence

m∑
i=1

|ϕi(ℓi(k))− ϕi(v(k))| ≤ C
m∑
i=1

∥ℓi(k)− v(k)∥, (A.2)

where C = maxi=1,...,mCi. Multiplying both sides by 2c(k), fixing
N ∈ N+ and summing across k, k = 1, . . . ,N , we have that

2
N∑

k=1

c(k)
m∑
i=1

|ϕi(ℓi(k))− ϕi(v(k))|

≤ 2C
N∑

k=1

c(k)
m∑
i=1

∥ℓi(k)− v(k)∥

≤ 2C
N∑

k=1

c(k)
m∑
i=1

∥λi(k)− v(k)∥, (A.3)

where the second inequality follows from

m∑
i=1

∥ℓi(k)− v(k)∥ =
m∑
i=1


m∑
j=1

aij(k)(λj(k)− v(k))


≤

m∑
i=1

m∑
j=1

aij(k)∥λj(k)− v(k)∥ =
m∑
j=1

∥λj(k)− v(k)∥,

where the first equality is obtained by the definition of ℓi(k) (step 6
of Algorithm 1) and by Assumption 5, the inequality is due to
the triangle inequality for ∥ · ∥, and the last equality is obtained
exchanging the two summations and using Assumption 5. Letting
N →∞ in (A.3), and due to Proposition 3 part 3, (27) follows, thus
concluding the proof. □

References

Baingana, B., Mateos, G., & Giannakis, G. (2014). Proximal-gradient algorithms for
tracking cascades over social networks. IEEE Journal of Selected Topics in Signal
Processing , 8(4), 563–575.

Bertsekas, D. (2011). Incremental proximal methods for large scale convex opti-
mization.Mathematical Programming , 129(6), 163–195.

Bertsekas, D. P. (1999). Nonlinear programming. Athena scientific.
Bertsekas, D., Nedic, A., & Ozdaglar, A. (2003). Convex analysis and optimization.

Athena Scientific.
Bertsekas, D., & Tsitsiklis, J. (1989). Parallel and distributed computation: Numerical

methods. Athena Scientific, (republished in 1997).
Bolognani, S., Carli, R., Cavraro, G., & Zampieri, S. (2015). Distributed reactive power

feedback control for voltage regulation and lossminimization. IEEE Transactions
on Automatic Control, 60(4), 966–981.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2010). Distributed optimization
and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning , 3(1), 1–122.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge university
press.

Chang, T.-H., Nedic, A., & Scaglione, A. (2014). Distributed constrained optimization
by consensus-based primal-dual perturbation method. IEEE Transactions on
Automatic Control, 59(6), 1524–1538.

Falsone, A., Margellos, K., Garatti, S., & Prandini, M. (2016). Distributed constrained
convex optimization and consensus via dual decomposition and proximalmini-
mization. In Proceedings of the 55th conference on decision and control (CDC 2016)
(pp. 1889–1894). Nevada, USA: Las Vegas.

Ioli, D., Falsone, A., & Prandini, M. (2015). An iterative scheme to hierarchically
structured optimal energy management of a microgrid. In IEEE 54th annual
Conference on Decision and Control (CDC) (pp. 5227–5232).

Lee, S., & Nedic, A. (2013). Distributed random projection algorithm for convex
optimization. IEEE Journal on Selected Topics in Signal Processing , 7(2), 221–229.

Margellos, K., Falsone, A., Garatti, S., & Prandini, M. (2016). Distributed constrained
optimization and consensus in uncertain networks via proximal minimization.
IEEE Transactions on Automatic Control, under Review, 1–15 arXiv:1603.02239.

Martinez, S., Bullo, F., Cortez, J., & Frazzoli, E. (2007). On synchronous robotic
networks - Part I: Models, tasks, and complexity. IEEE Transactions on Automatic
Control, 52(12), 2199–2213.

Mateos, G., & Giannakis, G. (2012). Distributed recursive least-squares: Stability and
performance analysis. IEEE Transactions on Signal Processing , 60(7), 3740–3754.

Nedic, A., & Bertsekas, D. (2001). Incremental subgradientmethods for nondifferen-
tiable optimization. SIAM Journal on Optimization, 12(1), 109–138.

http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb1
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb2
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb2
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb2
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb2
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb2
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb2
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb2
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb2
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb2
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb2
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb2
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb3
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb3
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb3
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb3
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb3
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb3
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb3
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb3
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb4
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb4
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb4
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb4
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb4
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb4
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb4
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb4
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb4
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb4
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb4
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb4
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb5
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb5
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb5
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb5
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb5
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb5
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb5
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb5
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb5
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb5
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb5
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb5
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb5
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb6
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb7
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb8
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb8
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb8
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb8
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb8
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb8
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb8
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb8
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb8
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb8
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb8
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb8
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb8
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb9
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb10
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb12
http://arxiv.org/1603.02239
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb14
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb15
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb16


158 A. Falsone et al. / Automatica 84 (2017) 149–158

Nedic, A., & Ozdaglar, A. (2009a). Approximate primal solutions and rate analysis
for dual subgradient methods. SIAM Journal on Optimization, 19(4), 1757–1780.

Nedic, A., & Ozdaglar, A. (2009b). Distributed subgradient methods for multi-agent
optimization. IEEE Transactions on Automatic Control, 54(1), 48–61.

Nedic, A., Ozdaglar, A., & Parrilo, P. (2010). Constrained consensus and optimization
in multi-agent networks. IEEE Transactions on Automatic Control, 55(4), 922–
938.

Olshevsky, A., & Tsitsiklis, J. (2011). Convergence speed in distributed convergence
and averaging. SIAM Review, 53(4), 747–772.

Ram, S., Nedic, A., & Veeravalli, V. (2012). A new class of distributed optimization
algorithm: Application of regression of distributed data. Optimization Methods
& Software, 27(1), 71–88.

Shi, W., Ling, Q., Yuan, K., Wu, G., & Yin, W. (2014). On the linear convergence of
the ADMM in decentralized consensus optimization. IEEE Transactions on Signal
Processing , 62(7), 1750–1761.

Simonetto, A., & Jamali-Rad, H. (2016). Primal recovery from consensus-based
dual decomposition for distributed convex optimization. Journal of Optimization
Theory and Applications, 168(1), 172–197.

Tsitsiklis, J. (1984). Problems in decentralized decisionmaking and computation (Ph.D.
dissertation), Cambridge, MA: MIT.

Tsitsiklis, J., Bertsekas, D., & Athans, M. (1986). Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms. IEEE Transactions on
Automatic Control, 31(9), 803–812.

Udell,M., & Boyd, S. (2016). Bounding duality gap for separable problemswith linear
constraints. Computational Optimization and Applications, 64(2), 355–378.

Vujanic, R., Mohajerin, P., Goulart, P., Mariethoz, S., &Morari, M. (2016). A decompo-
sition method for large scale MILPs, with performance guarantees and a power
system application. Automatica, 67(5), 144–156.

Yang, B., & Johansson, M. (2010). Distributed Optimization and Games: a Tutorial
Overview. In Chapter in networked control systems, (pp. 109–148). London:
Springer.

Zhang, Y., & Giannakis, G. (2016). Distributed stochastic market clearing with high-
penetration wind power and large-scale demand response. IEEE Transactions on
Power Systems, 31(2), 895–906.

Zhu, M., &Martinez, S. (2012). On distributed convex optimization under inequality
and equality constraints. IEEE Transactions on Automatic Control, 57(1), 151–
164.

Alessandro Falsone received the Bachelor of Science in
2011 and theMaster of Science cum laude in 2013, both in
Automation and Control Engineering from Politecnico di
Milano. From November 2013 to October 2014 he worked
as a research assistant at the Dipartimento di Elettronica,
Informazione e Bioingegneria at Politecnico di Milano.
Since November 2014 he is a Ph.D. student in the System
and Control division of the same department. His current
research interests include distributed optimization and
control, optimal control of stochastic hybrid systems, ran-
domized algorithms, and nonlinear model identification.

Kostas Margellos received the Diploma in electrical en-
gineering from the University of Patras, Greece, in 2008,
and the Ph.D. in control engineering from ETH Zurich,
Switzerland, in 2012. He spent 2013, 2014 and 2015 as
a postdoctoral researcher at ETH Zurich, UC Berkeley and
Politecnico di Milano, respectively. In March 2016 he
joined the Control Group, Department of Engineering Sci-
ence, University of Oxford, where he is now an Associate
Professor. His research interests include optimization and
control of complex uncertain systems,with applications to
generation and load side control for power networks.

Simone Garatti is an associate professor at the Dipar-
timento di Elettronica, Informazione e Bioingegneria of
the Politecnico di Milano. He received the Laurea degree
and the Ph.D. in Information Technology Engineering in
2000 and 2004, respectively, both from the Politecnico
di Milano, Milano, Italy. He has been a visiting scholar
at the Lund University of Technology, Lund, Sweden, at
the University of California San Diego (UCSD), San Diego,
CA, USA, and at the Massachusetts Institute of Technology
and the Northeastern University, Boston, MA, USA. He is
a member of the IEEE Technical Committee on Computa-

tional Aspects of Control System Design and of the IFAC Technical Committee on
Modeling, Identification and Signal Processing. His research interests include sys-
tem identification andmodel quality assessment, identification of interval predictor
models, and stochastic and databased optimization for problems in systems and
control.

Maria Prandini received her laurea degree in Electrical
Engineering (summa cum laude) from Politecnico di Mi-
lano (1994) and her Ph.D. degree in Information Technol-
ogy from Università degli Studi di Brescia, Italy (1998).
From 1998 to 2000 she was a postdoctoral researcher at
the Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley. She also held
visiting positions at Delft University of Technology (1998),
Cambridge University (2000), University of California at
Berkeley (2005), and Swiss Federal Institute of Technol-
ogy Zurich (2006). In 2002, she started as an assistant

professor in systems and control at Politecnico di Milano, where she is currently
an associate professor. Her research interests include stochastic hybrid systems,
randomized algorithms, constrained control, system abstraction and verification,
nonlinear identification, distributed optimization, and the application of control
theory to air traffic management and energy systems. She serves on the editorial
board of Cyber–Physical Systems, and previously of European Journal of Control,
IEEE Transactions on Automatic Control, IEEE Transactions on Control Systems
Technology and Nonlinear Analysis: Hybrid Systems. From 2013 to 2105, she has
been editor for Electronic Publications of the IEEE CSS. She ismember of the IEEE CSS
Board of Governors, and since January 2016 she is CSS VicePresident for Conference
Activities.

http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb17
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb18
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb19
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb20
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb21
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb22
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb23
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb24
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb24
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb24
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb24
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb24
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb24
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb24
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb24
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb24
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb24
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb24
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb24
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb24
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb25
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb26
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb27
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb28
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb29
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30
http://refhub.elsevier.com/S0005-1098(17)30329-1/sb30

	Dual decomposition for multi-agent distributed optimization with coupling constraints
	Introduction
	Distributed constrained optimization
	Problem statement and proposed solution
	Structural and communication assumptions
	Statement of the main results

	Convergence and optimality analysis
	Proof of Theorem 1
	Error relations
	Proof of Theorem 2

	Numerical example
	Concluding remarks
	Appendix
	References


