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a b s t r a c t

We discuss the computational complexity and feasibility properties of scenario sampling techniques for
uncertain optimization programs. We propose an alternative way of dealing with a special class of stage-
wise coupled programs and compare it with existing methods in the literature in terms of feasibility and
computational complexity. We identify trade-offs between different methods depending on the problem
structure and the desired probability of constraint satisfaction. To illustrate our results, an example from
the area of approximate dynamic programming is considered.
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1. Introduction

One way of dealing with data uncertainty in robust optimiza-
tion is to allow the optimal decision to violate problem constraints
on a set of pre-specified measure. The authors in [1,2] provide ex-
plicit solutions to such problems under assumptions on the prob-
ability distribution of the uncertainty. To avoid such assumptions
one can make use of uncertainty samples and construct decisions
that only satisfy system constraints on the sampled uncertainty in-
stances. The scenario approach [3,4] can be used to provide feasi-
bility generalization statements for convex optimization problems,
i.e., how likely it is for a sample-based decision to satisfy the prob-
lem constraints for a new realization of the uncertainty that was
not included in the samples. Beyond feasibility guarantees, [5–7]
provide bounds on the amount of constraint violation and are con-
cerned with probabilistic performance issues.

We focus on scenario based convex optimization problems
using the scenario approach [3,4,8,9]. We illustrate that the same
guarantees on the feasibility of a scenario based solution may
be obtained by formulating alternative scenario programs, each
with a potentially different number of decision variables and
constraints and hence different computational complexity. We

∗ Corresponding author.
E-mail addresses: nkarioto@ethz.ch (N. Kariotoglou),

kostas.margellos@eng.ox.ac.uk (K. Margellos), lygeros@ethz.ch (J. Lygeros).

http://dx.doi.org/10.1016/j.sysconle.2016.05.009
0167-6911/© 2016 Elsevier B.V. All rights reserved.
argue that in the case of multi-stage scenario programs, stage-
wise coupled via the constraint functions, it is often challenging to
decide which algorithm to use and illustrate how different choices
give rise to a significant trade-off in the total computation time.
Motivated by such cases, we provide a framework to compare
approaches in terms of computational complexity, while sharing
the same joint constraint feasibility properties. In this context,
our contributions are: (1) We show how the scenario approach
paradigm can be deployed in stage-wise coupled programs and
analyze the feasibility properties of the associated solutions
(Sections 3.3 and 3.4). (2) We illustrate how the violation and
confidence parameters can be treated as additional degrees of
freedom and be selected by means of a convex program in view
of reducing the computational complexity (Section 3.5). This is
fundamentally different to the existing literature where violation
and confidence levels are typically considered as fixed parameters
when computing sample size bounds. (3)We compare alternatives
with respect to computational complexity and identify underlying
trade-offs (Section 4). (4) We demonstrate the results on an
approximate dynamic programming (ADP) algorithm developed
for reachability problems (Section 5). Applications are not limited
to this algorithm since most ADP approaches based on [10] result
in a sequence of coupled scenario programs.

Section 2 presents the general problem under consideration
and Section 3 the different scenario based alternatives and their
properties. In Section 4we discuss the trade-off between feasibility
and computational complexity of each alternative while Section 5
illustrates our results with a numerical example in ADP.
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Let R, N, N+ denote the real, natural and positive natural num-
bers. Uncertainty samples are extracted from a possibly unknown
set ∆ according to a possibly unknown probability measure P. PS

with S ∈ N+ denotes the corresponding product measure. We use
i.i.d for identically and independently distributed. Operator | · | de-
notes the cardinality of its argument, dim(A) the dimension of a
linear space A, and x |= y that x satisfies statement y.

2. Programs with multiple robust constraints

Consider a compact convex set X ⊆ Rd, a possibly unbounded
uncertainty set ∆ ⊆ Rw , a convex cost function f : X → R
and a set of M ∈ N+ convex constraint functions gi : X × ∆ →

R, i = 1, . . . ,M . We deal with robust convex optimization prob-
lems (RCP) of the form:

RCP :


min
x∈X

f (x)

s.t gi (x, δ) ≤ 0, ∀δ ∈ ∆, ∀i ∈ {1, . . . ,M}.
(1)

The set ∆ may be infinite and possibly unbounded, rendering (1) a
convex, semi-infinite optimization program. A common approach
to approximate the solution is to impose the constraints on a fi-
nite number of uncertainty instances. Consider S ∈ N+ i.i.d sam-
ples {δj

}
S
j=1 extracted from ∆ according to some underlying prob-

ability distribution, and a collection {∆i}
M
i=1 of M subsets of {δj

}
S
j=1

such that for each δ ∈ {δj
}
S
j=1 there exists i so that δ ∈ ∆i, i.e., the

sets may be overlapping but each δ belongs in at least one of them.
The interpretation is that for each i = 1, . . . ,M , the corresponding
constraint gi(x, δ) should be satisfied for all δ ∈ ∆i, but not neces-
sarily for all δ ∈ ∆. Problem (1) is then approximated by a scenario
convex optimization program (SCP) of the form:

SCP[∆1, . . . , ∆M ] :


min
x∈X

f (x)

s.t gi (x, δ) ≤ 0, ∀δ ∈ ∆i,
∀i ∈ {1, . . . ,M}

(2)

and can be solved to optimality by various solvers. We impose the
following assumption on SCP[∆1, . . . , ∆M ]:

Assumption 1. For any set {δj
}
S
j=1 and collection of subsets {∆i}

M
i=1

with S,M ∈ N+, SCP[∆1, . . . , ∆M ] is feasible, its feasibility region
has a non-empty interior and its minimizer x∗

[∆1, . . . , ∆M ] :

∆S
→ X is unique.

We refer to [3,11] for details on how Assumption 1 can be
relaxed. Measurability of x∗

[∆1, . . . , ∆M ] is assumed as needed
[7,12]. Same as the standard literature on the scenario approach
[3,4] we focus on the feasibility properties of x∗ as a function of the
algorithm used to construct it; performance issues are discussed
in [6,7].

3. Feasibility of scenario convex programs

We introduce four different approaches to formulate the
SCP: the standard scenario approach, the multi-stage scenario
approach, the stage-wise coupled scenario approach using the
same samples at every step and the stage-wise coupled scenario
approach using different samples at every step. Due to differences
in the generation of samples, each approach provides different
design choices. In particular, whenever the constraints in the
SCP are sampled separately, additional degrees of freedom are
introduced, allowing to choose different feasibility properties for
each constraint. We compare all approaches on the same metric
of jointly satisfying all of the constraints in (2), and exploit their
structure to reduce computational complexity.
3.1. The standard scenario approach

Let ∆̄ = {δj
}
S
j=1 and assume that ∆1 = · · · = ∆M = ∆̄, i.e.,

enforce each constraint on all elements in ∆̄. Let dbe the dimension
of the decision space X and denote by SCP[∆̄], x∗

[∆̄] the resulting
instance of SCP[∆1, . . . , ∆M ] and its minimizer, respectively.
According to [4, Theorem 2.4], one can choose violation and
confidence levels ε, β ∈ (0, 1), sample

S ≥ S(ε, β, d) (3)

with S(ε, β, d) := min

N ∈ N

 d−1
i=0

N
i


εi(1 − ε)N−i

≤ β


points from the constraint set of (1) according to P and formulate
SCP[∆̄] where ∆1 = · · · = ∆M = ∆̄ are constructed using
the extracted samples. Under Assumption 1, the minimizer of the
resulting problem, x∗

[∆̄], satisfies

CCPε : P[∃i ∈ {1, . . . ,M}, gi(x∗
[∆̄], δ) > 0] ≤ ε (4)

with confidence (measured with respect to PS) at least 1 − β . The
final statement can be compactly written as PS

[x∗
[∆̄] |= CCPε] ≥

1−β . The computational complexity associated with constructing
x∗

[∆̄], along with its feasibility properties depend on the choice
of ε, β and the number of decision variables d that implicitly
affect the number of constraints (inspect (3)). Note that the result
remains unaffected if d in (3) is replaced by any upper bound
on the number of the so-called support constraints (see [3] for a
precise definition) other than the dimension of the decision space.
Refinements along this direction are discussed in [8,13,14] where
the authors present a tighter bound, defined as the constraint
support rank.

3.2. The multi-stage scenario approach

We impose additional structure on the RCP by assuming that for
any δ ∈ ∆ and each i = 1, . . . ,M , the constraint function gi(·, δ)
does not necessarily depend on all decision variables. The set-up is
then similar to the structure considered in [8], where the authors
studied optimization programs with multiple chance constraints.
For each i = 1, . . . ,M , let Xi ⊆ X denote the domain of each
gi(·, δ) and di = dim(Xi), where dim(Xi) denotes the dimension
of the smallest subspace of Rd containing Xi. We further assume
that di < d for at least one i = 1, . . . ,M to exclude the case where
all constraint functions depend on all decision variables; if this
is not the case the subsequent analysis reduces to the standard
scenario approach of Section 3.1. It was shown in [8, Theorem
4.1] that one can choose different violation and confidence levels
εi, βi ∈ (0, 1) for each i = 1, . . . ,M , extract

Si ≥

M
i=1

S(εi, βi, di) (5)

with

S(εi, βi, di) := min


N ∈ N

 di−1
j=0


N
j


ε
j
i(1 − εi)

N−j
≤ βi


samples i.i.d from ∆ according to a probability measure P,
construct {∆i}

M
i=1 as in Section 2 with |∆i| = Si and formulate

SCP[∆1, . . . , ∆M ]. Under Assumption 1, it holds that for each
i = 1, . . . ,M , the minimizer x∗

[∆1, . . . , ∆M ] of SCP[∆1, . . . , ∆M ]

satisfies the chance constraint,

CCPεi : P[gi

x∗

[∆1, . . . , ∆M ], δ


> 0] ≤ εi, (6)

with confidence (measured with respect to PSi ) at least 1 −

βi. As with the standard scenario approach in Section 3.1, each
di can be replaced by a tighter upper bound on the support
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constraints of gi. The condition in (6) establishes the feasibility
properties of x∗

[∆1, . . . , ∆M ] for each separate constraint. In the
following proposition, we provide guarantees on the probability
that x∗

[∆1, . . . , ∆M ] satisfies all constraints simultaneously, i.e.,
CCPε in (4).

Proposition 1. Fix ε, β ∈ (0, 1) and select εi, βi ∈ (0, 1), for i =

1, . . . ,M, such that
M

i=1 εi = ε and
M

i=1 βi = β . Under the set-up
of [8, Theorem4.1] andAssumption1wehavePS

[x∗
[∆1, . . . , ∆M ] |=

CCPε] ≥ 1 − β , with CCPε from (4).

Proof. The proof of Proposition 1 is an application of the
Boole–Bonferroni inequalities [15]. By [8, Theorem 4.1] we have
that PS

[x∗
[∆1, . . . , ∆M ] |= CCPεi ] ≥ 1 − βi, for all i =

1, . . . ,M . By the subadditivity of PS we get PS
[x∗

[∆1, . . . , ∆M ] |=

CCPεi , for all i = 1, . . . ,M] ≥ 1 −
M

i=1 βi = 1 − β . To com-
plete the proof it suffices to show that x∗

[∆1, . . . , ∆M ] |= CCPεi
for all i = 1, . . . ,M , implies that x∗

[∆1, . . . , ∆M ] |= CCPε ,
where CCPε is given in (4). By the subadditivity of P, and since
the statement x∗

[∆1, . . . , ∆M ] |= CCPεi is equivalent to the state-
ment P[gi(x∗

[∆1, . . . , ∆M ], δ) > 0] ≤ εi, we have that P[∃i ∈

{1, . . . ,M}such that gi(x∗
[∆1, . . . , ∆M ], δ) > 0] ≤

M
i=1 εi = ε.

Since g(x, δ) := maxi=1,...,M gi(x, δ), the last statement implies that
P[g(x∗

[∆1, . . . , ∆M ], δ) > 0] ≤ ε, and hence x∗
[∆1, . . . , ∆M ] |=

CCPε . �

Note that the proof of Proposition 1 is based on measure
subadditivity, hence the result is conservative. The complex-
ity associated with obtaining x∗

[∆1, . . . , ∆M ] with the proper-
ties of Proposition 1, depends on {di}Mi=1 and the choices for
{εi}

M
i=1, {βi}

M
i=1. We elaborate on these choices in Section 3.5.

3.3. Stage-wise coupled scenario approach without re-sampling

We now consider RCP problems with constraint functions
that allow tackling SCP[∆1, . . . , ∆M ] in a sequential manner. We
assume that for i = 1, . . . ,M−1 the constraint functions gi(·, ·, ·) :

Xi × Xi+1 × ∆ → R are pairwise coupled and convex with
respect to their first argument but may have an arbitrary, possibly
non-convex, dependency with respect to the other arguments. For
i = M, gM(·, ·) : XM ×∆ → R is not coupled and is assumed to be
convex on XM . The pairwise coupling structure can be relaxed to
any form of stage-wise coupling as long as the constraint function
at every stage is convex with respect to the decision variables.
Consequently, we have by construction of RCP thatX = X1×· · ·×

XM , which is a special case of the structure assumed in Section 3.2.
Let x = (x1, . . . , xM) where xi ∈ Xi, for each i = 1, . . . ,M .
We further assume that the objective function is separable, i.e.,
f (x) =

M
i=1 fi(xi). Sincewe are only concernedwith the feasibility

properties of the associated scenario program, the assumption on
the objective function is not restrictive; any separable function can
be employed at the expense of a suboptimal solution. A similar
approachof selecting arbitrary cost functionswhenonly concerned
with feasibility properties has been employed in [12]. As will be
demonstrated in Section 5, ADP algorithms based on [10] exhibit
this structure and cover a wide range of control problems that can
be solved via dynamic programming.

The separable structure assumed, motivates the decomposition
of SCP[∆1, . . . , ∆M ] into a sequence of coupled scenario programs.
For each i = 1, . . . ,M − 1 we define a parametric scenario
program:

SCPi[xi+1, ∆i] :


min
xi∈Xi

fi(xi)

s.t gi (xi, xi+1, δ) ≤ 0, ∀δ ∈ ∆i
(7)
and SCPM [∆M ] analogously, with gM(xM , δ) ≤ 0 for all δ ∈ ∆M ,
replacing the corresponding constraint in (7). We assume that all
stage problems in (7) satisfy Assumption 1 for any fixed xi+1 ∈

Xi+1; weaker assumptions are discussed in [16, Section IV]. Note
that the indexing chosen to formulate SCPi[xi+1, ∆i] is arbitrary;
one can define an identical sequence of problems starting with a
problem depending only on x1 ∈ X1, letting SCPi depend on xi−1
and∆i. In thisway the structure resembles that of stochasticmodel
predictive control (SMPC) problems where the system dynamics
couple the constraints of stage i with the solution (system state
and control input) of stage i − 1 [13]. However, since each stage
is handled separately, the approach is myopic and may cause
suboptimal performance by not exploiting the coupling when
minimizing the total cost. It does, however, achieve significantly
reduced computational times (see Sections 4 and 5) and may be
preferred in case of computational time limitations or of problems
with inaccurate predictionmodels. The situation is different in ADP
algorithms based on [10] which exhibit a structure that naturally
fits the framework of (7) without sacrificing optimality.

Consider now the sequence of M pairwise coupled programs
SCPi[xi+1, ∆i] and let all sets ∆i be identical, i.e., ∆1 = · · · =

∆M = ∆̄. Such optimization problems were referred to as cas-
cading programs in [16], where the authors study the feasibility
properties of a solution generated by sequentially solving a pair of
coupled problems using the same set of uncertain scenarios. Let
di = dim(Xi) be the dimension of the smallest subspace of Rd

containing Xi and d̄ =
M

i=1 di. As a direct consequence of [16,
Theorem 5], we infer that one can select overall violation and con-
fidence levels ε, β ∈ (0, 1) and a sample number S ≥ S(ε, β, d̄),
where S(ε, β, d̄) is given by (3) and construct x∗

:= (x∗

1, . . . , x
∗

M),
where each x∗

i [∆̄] is computed from (7) with ∆i = ∆̄ for i =

1, . . . ,M . We then have that PS
[x∗

[∆̄] |= CCPε] ≥ 1 − β . More-
over, if x∗

:= (x∗

1, . . . , x
∗

M) is constructed in this way, for any fixed
xi+1 ∈ Xi+1, with probability at least 1 − βi, x∗

i [xi+1, ∆̄] satisfies
P[gi(x∗

i [xi+1, ∆̄], xi+1, δ) > 0] ≤ εi, for any εi, βi ∈ (0, 1) satisfy-
ing the equation S(εi, βi, di) ≤ S. Note that, in general, no ordering
between S(β, ε, d̄), S(εi, βi, di) can be made. Moreover, the values
of εi and βi are not set a-priori and are not design choices; they
are implicitly determined by the number of decision variables di of
each subproblem and the number of samples S. Consequently, the
computational complexity of the stage-wise coupled scenario ap-
proach without re-sampling only depends on d̄ and the choice of
ε, β . As in Sections 3.1 and 3.2, each di can be replaced by a tighter
upper bound on the support constraints of gi.

3.4. Stage-wise coupled scenario approach with re-sampling

Consider the structure of Section 3.3 and note that for a fixed
xi+1 ∈ Xi+1, SCPi[xi+1, ∆i] is in the form of SCP[∆̄] considered in
Section 3.1. Fix εi and βi and let the number of samples Si, i =

1, . . . ,M be chosen according to (5). For any xi+1 ∈ Xi+1, ∆i ∈

∆Si , let x∗

i [xi+1, ∆i] : Xi+1 × ∆Si → Xi be the minimizer of
SCPi[xi+1, ∆i]. The result in Section 3.1 implies that for all i = 1,
. . . ,M −1, x∗

i [xi+1, ∆i] satisfies the chance constraint CCPεi [xi+1] :

P[gi(x∗

i [xi+1, ∆i], xi+1, δ) > 0] ≤ εi,withprobability at least 1−βi,
while for i = M , x∗

M [∆M ] satisfies CCPεM with probability at least
1 − βM .

Using the parameterized problems in (7) we can construct a
decision vector x∗

:= (x∗

1, . . . , x
∗

M), where for each i = 1, . . . ,M −

1 the optimizer x∗

i [xi+1, ∆i] can be written as x∗

i [∆i, . . . , ∆M ] :

∆Si × · · · × ∆SM → Xi, satisfying

PSi

x∗

i [∆i, . . . , ∆M ] |= CCPεi


x∗

i+1[∆i+1, . . . , ∆M ]


≥ 1 − βi,

(8)
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and for i = M, PSM [x∗

M |= CCPεM ] ≥ 1 − βM . Note that due to
the stage-wise coupled process, x∗

i depends implicitly on all sets
∆i, . . . , ∆M .

Proposition 2. Fix ε, β ∈ (0, 1) and select εi, βi ∈ (0, 1), for i =

1, . . . ,M, such that
M

i=1 εi = ε and
M

i=1 βi = β . Construct x∗
:=

(x∗

1, . . . , x
∗

M), where each x∗

i [∆i, . . . , ∆M ] is computed from (7),
satisfying (8). Let S =

M
i=1 Si with {Si}Mi=1 chosen according to (5).

We then have that PS
[x∗

[∆1, . . . , ∆M ] |= CCPε] ≥ 1 − β .

Proof. Let S̄i =
M

k=i Sk, ε̄i =
M

k=i εk, β̄i =
M

k=i βk, ∆̄i = (∆i,

. . . , ∆M) and x̄∗

i = (x∗

i , . . . , x
∗

M). The statement PS
[x∗

[∆1, . . . ,
∆M ] |= CCPε] ≥ 1 − β , is then equivalent to

PS̄i

P

gM(x∗

M [∆̄M ], δ) > 0 or ∃k ∈ N+, i ≤ k < M :

gk(x∗

k [∆̄k], x∗

k+1[∆̄k+1], δ) > 0


≤ ε̄i


≥ 1 − β̄i

(9)

for i = 1. We will show that (9) holds for any i = 1, . . . ,M using
induction. For i = M , (9) holds since ∆̄M = ∆M and SCPM [∆M ] is
in the form considered by [4, Theorem 2.4]. Assume now that (9)
holds for some index i where 1 < i < M . The statement in (8) is
then equivalent to

PSi−1

P

gi−1(x∗

i−1[∆̄i−1], x∗

i [∆̄i], δ) > 0


≤ εi−1


≥ 1 − βi−1.

(10)

Since samples are extracted independently, and (9), (10), hold for
any uncertainty realization not in ∆̄i and ∆̄i−1, respectively, we can
replace PS̄i and PSi−1 with PS̄i−1 . By the subadditivity of PS̄i−1 and
P, we can show analogously to the proof of Proposition 1 that (9)
holds with i − 1 in place of i which is equivalent to PS̄i−1 [x̄∗

i−1 |=

CCPε̄i−1 ] ≥ 1 − β̄i−1 and concludes the inductive claim. �

The computational complexity associated with obtaining
x∗

[∆1, . . . , ∆M ]with the feasibility properties of Proposition 2 de-
pends on {di}Mi=1 and the choices for {εi}

M
i=1, {βi}

M
i=1. Again, the re-

sult remains the same if the value of each di is replaced by a tighter
upper bound than the dimension of the relevant decision space.
Notice that unlike the stage-wise coupled scenario approach with-
out re-sampling, {εi}Mi=1 and {βi}

M
i=1 are again design parameters for

i = 1, . . . ,M and can be chosen to reduce the computational com-
plexity of the algorithm used to solve the corresponding optimiza-
tion problems (see Section 3.5).

3.5. Complexity optimization

The complexity of solving optimization problems depends on
the number of decision variables and constraints. For Sections 3.2
and 3.4, the overall violation and confidence are chosen a priori but
the stage-wise levels {εi}

M
i=1 and {βi}

M
i=1 are typically not fixed by

problem data and are design choices that affect the computational
complexity due to the polynomial dependence of solvers on the
total number of constraints and decision variables. Since the values
of {di}Mi=1 are fixed by problem data and generating samples
from ∆ can be hard, we minimize the total number of samples
(and hence constraints) as an approximation to minimizing the
total complexity. Throughout this section we replace the implicit
sample size bound used in (5) to upper bound the required sample
size by the explicit bound e

e−1
1
εi
(di − 1 + ln( 1

βi
)) due to [17]. For

simplicity, we treat the right-hand-side as an integer. Using this
explicit bound is more conservative than employing the implicit
one and performing numerical inversion to compute the required
number of samples [11], as demonstrated in Section 5. It allows
however to select violation and confidence levels by means of a
standard form convex optimization program (Proposition 4). Note
that the resulting values are not guaranteed to remain optimal if
the implicit bound is considered instead.
Proposition 3. Consider the setup of Sections 3.2 and 3.4 where for
each i = 1, . . . ,M the values of di = dim(Xi) and d = dim(X)
are fixed by the problem data. Fix ε, β ∈ (0, 1). The problem of
selecting {εi, βi ∈ (0, 1)}Mi=1 with

M
i=1 εi ≤ ε,

M
i=1 βi ≤ β that

minimize the sample number
M

i=1
e

e−1
1
εi
(di−1+ln( 1

βi
)), is a convex

optimization program of the form:

min
{εi,βi}

M
i=1

M
i=1

e
e−1

1
εi


di − 1 + ln


1
βi



subject to :

M
i=1

εi ≤ ε,

M
i=1

βi ≤ β,

εi, βi > 0.


∀i ∈ {1, . . . ,M}.

(11)

Proof. The function e
e−1

1
εi
(di − 1 + ln( 1

βi
)) is convex with respect

to εi, βi since the Hessianmatrix is positive definite for any εi, βi ∈

(0, 1). Hence, the cost function is the sum of convex functions. �

Note that in place of di in (11) one could employ the support
rank [8]. In that case, the sample size computed via Proposition 3
will not be higher than the one computed in [8]. The objective
function of problem (11) is not in a standard form compatible
with all commercially available optimization software. As a result,
one needs to implement a first or second order method to solve
(11) (e.g., [18]) taking advantage of the fact that both the gradient
and Hessian matrix of the objective function are bounded with
respect to εi, βi in [µ, 1) for any µ > 0. Alternatively, a nonlinear
optimization solver should be employed. It is, however,more likely
for such solvers to exhibit numerical issues, in certain cases even
failing to identify the global optimum. We thus relax (11) to a
problem that is in standard SDP form, allowing the use of efficient
solvers for semi-definite programming. To achieve this we fix the
confidence levels βi, e.g., βi = β/M , for all i = 1, . . . ,M . The
performance deterioration incurred by fixing βi, i = 1, . . . ,M , is
negligible, since they are typically set to values very close to zero
and appear inside the logarithm in (11), hence their difference from
the optimal values returned by the optimization program in (11)
will have a minor effect on the total number of samples that need
to be extracted.

Proposition 4. Choose β ∈ (0, 1) and fix the stage-wise confidence
levels {βi ∈ (0, 1)}Mi=1 such that

M
i=1 βi = β . Fix ε ∈ (0, 1). For

ci =
e

e−1 (di − 1 + ln( 1
βi

)), i = 1, . . . ,M, the following SDP is
equivalent to (11)

min
{ti,εi}Mi=1

M
i=1

ti

subject to:


ti

√
ci√

ci εi


< 0,

M
i=1

εi ≤ ε, εi > 0.

 ∀i ∈ {1, . . . ,M}.

(12)

Proof. The objective function in (11) can be written as
M

i=1 ci/εi.
Writing the problem in standard epigraph form and using Schur’s
complement we end up with the constraints in (12). �

4. Discussion and trade-offs

4.1. Structure and feasibility properties

In contrast to the standard scenario approach of Section 3.1,
the multi-stage variant of Section 3.2 assumes that the domain
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Table 1
Complexity characteristics of the methods presented in Sections 3.1–3.4.

Section 3.1 Section 3.2 Section 3.3 Section 3.4

Number of problems 1 1 M M

Samples per problem S ∼ (3) Si ∼ (5) S ∼ (3), d =
M

i=1 di Si ∼ (5)

Total number of samples S
M

i=1 Si S
M

i=1 Si
Decision variables per problem d = dim(X) d = dim(X) di = dim(Xi) di = dim(Xi)

Constraints per problem MS
M

i=1 Si S Si

Total complexity (SOCP) O((d + MS)3) O

(d +

M
i=1 Si)

3
 M

i=1 O

(di + S)3

 M
i=1 O


(di + Si)3



of each constraint function in RCP is restricted to a subset of
X. By investigating each constraint separately, the latter method
provides guarantees on the probability that x∗

[∆1, . . . , ∆M ]

satisfies every individual constraint, something that cannot be
achieved with the standard scenario approach. In the stage-wise
coupled methodologies of Sections 3.3 and 3.4 we further restrict
the structure of RCP by requiring the constraint functions to be
pairwise coupled. In this way we relax the assumption regarding
the convexity, requiring gi(xi, xi+1, δ) to be convex only with
respect to xi.

All results in Section 3 lead to feasibility statements in the
form of PS

[x∗
[∆1, . . . , ∆M ] |= CCPε] ≥ 1 − β . Each method

however requires a different number of samples to construct a
solution and in turn the space on which the confidence related
to the probability of constraint satisfaction is measured differs. In
the standard scenario approach the total number of samples S is
fixed by the value of d and the choice of violation and confidence
levels ε, β (inspect (3)). Assuming the same choice of ε and β ,
the total number of samples in the multi-stage scenario approachM

i=1 Si can be greater or less than S depending on the values
of {di}Mi=1 (inspect (5) and the first two columns in Table 1). In
general, if each di is significantly smaller than d, the total number
of samples is smaller in the multi-stage scenario approach. The
situation is analogous between the stage-wise coupled scenario
approach without and with re-sampling, where the total number
of samples will be generally higher in the latter depending on the
values of {di}Mi=1 and the choices of {εi}

M
i=1, {βi}

M
i=1 (see the last

two columns in Table 1). Note that for the multi-stage scenario
approach and the stage-wise coupled scenario approach with re-
sampling we can use the methods of Section 3.5 to optimize over
{εi}

M
i=1 and {βi}

M
i=1 but there is no guarantee that this will lead to a

smaller number of total samples since {di}Mi=1 is fixed by problem
data.

4.2. Complexity

We compare the computational complexity of different meth-
ods when a primal–dual interior point algorithm is used to solve
second-order cone programs (SOCPs). Methods designed to ad-
dress such problems require solving linear systems of size (n+m)3

that are known to be of O

(n + m)3


complexity [19], where n,m

denote the number of decision variables and constraints. The com-
plexity of eachmethod is reported in Table 1. Both the standard and
multi-stage scenario approach of Sections 3.1 and 3.2 require solv-
ing a single problem with the same number of decision variables
but a potentially different number of constraints. The number of
decision variables d is given by problem data, while the number of
constraints depends on d, {di}Mi=1 and the chosen ε, β and {εi}

M
i=1,

{βi}
M
i=1. In the standard scenario approach, we use the same sam-

ples S (see (3)) for each constraint function leading to a total ofMS
constraints. In the multi-stage scenario approach, we use different
samples Si (see (5)) for each constraint function leading to

M
i=1 Si

constraints, a number that can be minimized over {εi}
M
i=1, {βi}

M
i=1
using the methods of Section 3.5. Depending on the ratio between
the minimum value of

M
i=1 Si and MS, either of the two meth-

ods might be preferable. Note that, in contrast to other studies, we
measure the computational efficiency of eachmethod based on the
complexity of the underlying algorithm, and not on the relevant
sample size.

The computational complexity of the methodologies in Sec-
tions 3.3 and 3.4 depends on the number of decision variables
and constraints per subproblem. Each subproblem involves a sin-
gle constraint function and hence the number of samples coin-
cides with the number of constraints. In the stage-wise coupled
scenario approach without re-sampling, we use the same number
of samples S in every subproblem which depends on d̄ =

M
i=1 di

and the choice of ε, β (see Section 3.3). If d̄ = d (for example in
some ADP problems, see Section 5), the number of samples coin-
cides with that of the standard scenario approach. In general how-
ever, it might be that d̄ > d (as is the case, for example, in some
SMPCproblems). In the stage-wise coupled scenario approachwith
re-sampling, the number of samples Si in each subproblem coin-
cides with the number of samples used in the multi-stage scenario
approach and depends on di and the choice of εi, βi (see Propo-
sition 2). As in the multi-stage scenario approach,

M
i=1 Si can be

minimized over {εi}
M
i=1, {βi}

M
i=1 using the methods in Section 3.5.

Whenever applicable, the stage-wise coupledmethods can provide
significant computational advantages, as illustrated in the next
section.

5. Example: approximate dynamic programming

Dynamic programming (DP) recursions are generally in-
tractable even for systems ofmoderate dimensions. An established
methodology for approximate dynamic programming (ADP) is the
linear programming approach [10] which projects the value func-
tion on the span of a selected set of functions. The authors in [20,21]
developed an algorithm along the lines of Section 3.4 to approxi-
mate the value function of stochastic reachability DP recursions.
We use this algorithm here and compare with the alternative for-
mulations from Sections 3.1–3.3. We consider a simplified planar
unicycle model with additive noise

δ1(i + 1)
δ2(i + 1)


=


δ4(i) cos(δ3(i)) + δ1(i)
δ4(i) sin(δ3(i)) + δ2(i)


+ wi (13)

where δ1, δ2 denote linear position, δ3 yaw angle and δ4 linear
velocity. We use δ3 and δ4 as control inputs to the system and
δ1 and δ2 as states. The noise wi ∈ R2 is assumed to be i.i.d
according to a multivariate normal distribution N (0, Σ) with
diagonal covariance matrix. The combined state-action space is
denoted by ∆ = ∆x × ∆u = R2

× ([−0.5, 0.5] × [−2π, 2π ])
where for δ = (δ1, δ2, δ3, δ4) = (δx, δu) ∈ ∆, δx corresponds to
spatial coordinates while δu to control inputs. The symbol δ is used
for the state-input variables to match the notation of Section 3.
For a target set T = [0.8, 1]2, an avoid set A = [−0.45, 0.25] ×
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Table 2
Results of ADP for reach-avoid using the methods presented in Sections 3.1–3.4.

Step ε ε̂ 1 − β d Constraints Constraints (implicit) Optimal value Solver (s) Sampling (s)

Section 3.1

i = 3 – 0.017 – – – – 0.903e+03 – –
i = 2 – 0.032 – – – – 0.396e+03 – –
i = 1 – 0.049 – – – – 0.121e+03 – –
Overall 0.1 0.093 0.97 450 21528 14718 1.42e+03 73 0.509

Section 3.2

i = 3 0.023 0.021 0.99 100 7126 5419 1.433e+03 – 0.546
i = 2 0.035 0.026 0.99 250 11463 8229 2.422e+03 – 0.797
i = 1 0.042 0.030 0.99 350 13319 9397 2.936e+03 – 0.879
Overall 0.1 0.076 0.97 450 31995 23045 6.791e+03 105 2.22

Section 3.3

i = 3 – 0.009 – 100 7159 4906 0.202e+03 1.15 –
i = 2 – 0.036 – 150 7159 4906 0.599e+03 2.05 –
i = 1 – 0.049 – 200 7159 4906 1.225e+03 6.91 –
Overall 0.1 0.069 0.97 – – – 2.026e+03 10.11 0.4812

Section 3.4

i = 3 0.0276 0.019 0.99 100 5938 4515 4.32e+03 1.12 0.399
i = 2 0.0336 0.033 0.99 150 7232 5351 2.83e+03 4.066 0.473
i = 1 0.0387 0.036 0.99 200 8323 6050 2.23e+03 7.57 0.538
Overall 0.1 0.08 0.97 – – – 9.38e+03 12.756 1.41
[−0.2, 0.15] and a collection of time indexed safe sets defined as
{Si}3i=1 = {[−1, 1]2, [−0.3, 1]2, [0.4, 1]2}, the three step reach-
avoid problem is to maximize the probability that (13) reaches T
while staying in the corresponding safe region Si \ A for i = 1, 2, 3
(see Fig. 1). It can be solved for all states via the DP recursion [22]:

V ∗

i (δx) = sup
δu∈∆u

1T (δx) + 1(Si\A)\T (δx)


∆x

V ∗

i+1(y)Q (dy|δ)  
h(δx,δu)


initialized byV ∗

4 (δx) = 1T (δx)whereV ∗

i denotes the value function
at stage i, Q denotes the transition kernel of the process in (13)
and 1T , 1(Si\A)\T denote the indicator functions of the sets T and
(Si \A)\T respectively.We follow the ADPmethod for reach-avoid
problems from [20,21] to approximate the recursion. We express
each V ∗

i as the solution to an infinite dimensional linear program:

V ∗

i ∈ arg inf
V (·)∈F


∆x

V (δx)ν(dδx)

subject to V (δx) ≥ h(δx, δu), ∀δ ∈ ∆

(14)

where ν is a (positive) measure supported on ∆x and F denotes
the space of Borel-measurable functions in which V ∗

i resides [20].
Problems in the form of (14) are generally intractable and it is
common in the literature to restrict the decision space to a finite
dimensional subspace of F to approximate V ∗

i . We restrict the
decision space to Gaussian radial basis functions (RBFs) with fixed
centers and variances and use their span to approximate each
V ∗

i . Let {di}3i=1 = {200, 150, 100} denote the cardinality of each
basis set over the horizon and x = {xi}3i=1 with xi ∈ Rdi vectors
corresponding to the weights of each RBF in the set. The reduction
in the number of basis elements over time is motivated by the
shrinking of the safe sets Si (Fig. 1). We denote by Li : Rdi ×Rdi+1 ×

∆ → R the functions (linear in the first and second arguments)
that for i = 1, 2 and each δ ∈ ∆ return the difference between
the approximate value function at time i and the one-step-ahead
reward at time i + 1 (see (14)). Each Li implicitly depends on
the safe, avoid and target sets at time i and the weights xi, xi+1
completely determine its value over ∆. For i = 3, the function is
defined as L3 : Rd3 × ∆ → R since the reach-avoid value function
at i = 4 is known. The approximate reach-avoid value functions
can be then computed via a sequence of programs:

min
xi∈Rdi

x⊤

i Ii

subject to: Li(xi, xi+1, δ) ≥ 0, ∀δ ∈ ∆
(15)
where Ii denotes the element-wise ν-weighted integral over ∆x of
each RBF in the basis set. The problems in (15) can be combined:

min
x∈Rd1+d2+d3

3
i=1

x⊤

i Ii

subject to: Li(xi, xi+1, δ) ≥ 0, ∀δ ∈ ∆, i = 1, 2
L3(x3, δ) ≥ 0, ∀δ ∈ ∆.

(16)

For the implementation, we used di to bound the number of
support constraints since one can show that the support rank
of each constraint is equal to the number of decision variables
using the linear independence betweenbasis functions [8, Example
3.5(b)]. Using the optimal weights, we construct the approximate
value function of the stochastic reach-avoid problem for each i =

1, 2, 3.
We solved the problem with all methods and Table 2 com-

pares the theoretical guarantees (ε)with the empirical ones (ε̂) and
the associated complexities (‘‘Sampling’’ and ‘‘Solver’’). The empir-
ical violation values were calculated by uniformly sampling 1000
realizations from ∆, other than those used in the optimization
process, and computing the ratio of violations to 1000. The bold
parameters can be chosen by the user and are not fixed by prob-
lemdata; for themulti-stage scenario approach and the stage-wise
coupled scenario approachwith re-sampling, the violation levels εi
at each stage are chosen using (12). The associated confidence lev-
els 1− βi, i = 1, 2, 3 were fixed to 0.99 to achieve an overall con-
fidence 1−β of at least 0.97. The basis centers and variances were
sampled uniformly from each safe set and (0, 0.01] respectively.
Computations were carried out on a 1.73 GHz CPU with 16 GB of
memory, using the Gurobi software. Fig. 1 shows level sets of the
approximation at i = 1 restricted on [−1, 1]2, constructed using
the stage-wise coupled scenario approach with re-sampling. The
values of the approximation go above 1 since the algorithm in [20]
provides an upper bound to the reach-avoid probability.

Table 2 suggests that for ADP it is favorable to solve problems
in a stage-wise coupled manner since the same overall violation
levels are respected while computation times are smaller. The
number of constraints is calculated as the number of constraints
for a given δ multiplied by the number of scenarios/realizations
of δ. Consider for example the table entries corresponding to
Section 3.1. Since problem (16) has three stages and one scalar-
valued constraint per stage, we have three constraints for a given
δ. According to ε, β and d reported in the corresponding entries
of Table 2, 7176 samples were generated. The total number of
constraints is then 3 × 7176 = 21 528. The structure exhibited
by the problem in the standard scenario approach, where we have
the same samples for all stages, appears to be exploited by the
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Fig. 1. Level sets of the approximate value function at i = 1 restricted on [−1, 1]2 ,
constructed using the method in Section 3.4.

solverwhen comparing to themulti-stage scenario approach (both
methods solve the problem in one-shot) where different sample
numbers are used for each constraint by employing the different
support rank of the constraint of each stage. Sampling each
constraint separately also consumes more time as observed in the
multi-stage and stage-wise coupled approach with re-sampling.
Differences in the reported sampling times are a consequence of
the hit and run algorithmused to generate them [23].We have also
reported the sample numbers computed by inverting the implicit
bound (see (3), (5)) to highlight the conservatism introduced
by using the explicit bound in Section 3.5. Note that the same
feasibility guarantees will hold if one uses the sample number
obtained by inverting the implicit bound using the optimizers
computed with the methods of Section 3.5. However, the optimal
violation and confidence levels that minimize complexity may
be different if the implicit bound is used in the corresponding
complexity optimization problems.

From the optimal values reported by the solver, we notice that
the stage-wise coupled scenario approach without re-sampling
is achieving the best complexity/optimal value trade-off since it
requires smaller problem instances than the standard and multi-
stage variants while exploring more of the uncertainty set at each
horizon step than the stage-wise coupled scenario approach with
re-sampling. In terms of performance alone, the standard scenario
approach achieves the best value since it optimizes over allweights
in one-shot, as opposed to the stage-wise coupled methods, and
the samples used for every step are taken from the union of all
safe sets, as opposed to the multi-stage and stage-wise coupled
approach with re-sampling where we only use samples from the
safe set of the corresponding time-steps. All numbers have been
averaged over 10 runs of each method.

6. Conclusion

We introduced an alternative way of dealing with a sequence
of scenario programs with coupled constraints and compared its
feasibility properties with the literature. Moreover, we showed
how confidence and violation levels can be treated as optimization
assets and selected by means of convex optimization problems to
reduce computation time. We verified with a numerical example
that the stage-wise coupled structure, often encountered in
sequential decision making, can lead to computational savings.
Current work involves probabilistic performance considera-
tions, extending the results of [5–7] to the class of scenario pro-
grams considered in this paper. Another promising research di-
rection is developing a constructive algorithm to decompose the
constraints of a robust convex problem into a sequence of stage-
wise coupled constraints enabling one to take advantage of the
proposed methodologies. In terms of applications, we expect sim-
ilar computational advantages in stochastic model predictive con-
trol problems and more generally in control problems for multi-
agent systems where the decisions of one agent depend on the de-
cisions of another; in such cases using different samples between
agents can have a significant impact on the required communica-
tion bandwidth.
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