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Abstract—Randomized optimization is an established tool for
control design with modulated robustness. While for uncertain
convex programs there exist efficient randomized approaches, this
is not the case for non-convex problems. Methods based on statis-
tical learning theory are applicable to non-convex problems, but
they usually are conservative in achieving the desired probabilistic
guarantees. In this paper, we derive a novel scenario approach
for a wide class of random non-convex programs, with a sample
complexity similar to that of uncertain convex programs and with
probabilistic guarantees that hold not only for the optimal solution
of the scenario program, but for all feasible solutions inside a set
of a-priori chosen complexity. We also address measure-theoretic
issues for uncertain convex and non-convex programs. Among
the family of non-convex control-design problems that can be
addressed via randomization, we apply our scenario approach to
stochastic model predictive control for chance constrained nonlin-
ear control-affine systems.

Index Terms—Chance constrained programs (CCPs), model
predictive control (MPC), scenario program (SP).

I. INTRODUCTION

MODERN control design often relies on the solution of
an optimization problem, for instance in robust control

synthesis [1], Lyapunov-based optimal control [2], [3], and
Model Predictive Control (MPC) [4]. In almost all practical
control applications, the data describing the plant dynamics are
uncertain. The classic way of dealing with the uncertainty is the
robust, also called min-max or worst-case, approach in which
the control design has to satisfy the given specifications for all
possible realizations of the uncertainty, for instance in robust
quadratic Lyapunov synthesis problems for uncertain linear
systems [5]. The worst-case approach is often formulated as a
robust optimization problem, which is however difficult to solve
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in general [6]. Moreover, from an engineering perspective,
robust solutions generally tend to be conservative in terms of
closed-loop performance.

To reduce the conservativism of robust solutions, stochastic
programming [7] offers an alternative methodology. Unlike the
worst-case approach, the constraints of the problem are treated
in a probabilistic sense via chance constraints [8], allowing
for constraint violations with chosen low probability. The main
issue of Chance Constrained Programs (CCPs) is that, without
assumptions on the underlying probability distribution, they
are in general intractable because multi-dimensional probability
integrals must be computed.

Among the class of chance constrained programs, uncertain
convex programs have received particular attention [9]; unfortu-
nately, even for uncertain convex programs, the feasible set of a
chance constrained program is in general non-convex, which
makes optimization under chance constraints problematic
[9, Section 1, p. 970].

An established and computationally-tractable approach to
approximate chance constrained problems is the scenario ap-
proximation. A feasible solution to the CCP is found with high
confidence by solving an optimization problem, called Scenario
Program (SP), subject to a finite number of randomly drawn
constraints (scenarios). The scenario approach is particularly
effective whenever it is possible to generate samples from the
uncertainty, since it does not require any further knowledge on
the underlying probability distribution. From a practical point
of view, this is generally the case for many control-design
problems where historical data and/or predictions are available.

The scenario approach for general uncertain (so-called ran-
dom) convex programs was first introduced in [10], and many
control-design applications are outlined in [11]. The fundamen-
tal contribution in these works is the characterization of the
number of scenarios, i.e., the sample complexity, needed to
guarantee that, with high confidence, the optimal solution of
the SP is a feasible solution to the original CCP. The sample
complexity bound was refined in [12] where it was shown to be
tight for the class of fully-supported problems, and in [13]–[15]
where the concept of Helly’s dimension is exploited to reduce
the conservativism for non-fully-supported problems. In [13]
and [16], the possibility of removing sampled constraints (sam-
pling and discarding) is studied to improve the cost function at
the price of decreased feasibility; specifically, if the constraints
of the SP are removed optimally, then the solution of the
SP approaches, at explicit rates, the optimal solution of the
original CCP.

While feasibility and sample complexity of random con-
vex programs are well characterized, scenario approaches for
random non-convex programs are less developed. One family
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of methods comes from statistical learning theory, based on the
Vapnik-Chervonenkis (VC) theory [17], and it is applicable to
many non-convex control-design problems [18]–[20]. Contrary
to scenario approximations of uncertain convex programs [12],
[13], the aforementioned methods provide probabilistic guar-
antees for all feasible solutions of the sampled program and
not just for the optimal solution. This feature is fundamental
because the global optimizer of non-convex programs is not
efficiently computable in general. Moreover, having probabilis-
tic guarantees for all feasible solutions is of interest in many
applications, for instance in [21]. However, the more general
probabilistic guarantees of VC theory usually require a very
large number of randomly generated samples [11, Section I,
p. 792], and they depend on the so-called VC dimension, in
general difficult to compute or even infinite, in which case VC
theory is not applicable [10, Section 1].

The aim of this paper is to propose a scenario approach for
a wide class of random non-convex programs, with moderate
sample complexity, providing probabilistic guarantees for all
feasible solutions in a set of a-priori chosen complexity. In the
spirit of [10]–[13], our results are only based on the decision
complexity, while no assumption is made on the underlying
probability structure. The main contributions of this paper with
respect to the literature are listed next.

• We formulate a scenario approach for the class of random
non-convex programs with (possibly) non-convex cost, de-
terministic (possibly) non-convex constraints, and chance
constraints containing convex functions. For this class of
programs, we show via a counterexample that the stan-
dard scenario approach is not directly applicable, because
Helly’s dimension (associated with the global optimum)
can be unbounded. This motivates the development of our
technique.

• We provide a sample complexity bound similar to the one
of random convex programs for all feasible solutions in a
set of a-priori chosen degree of complexity.

• We apply our scenario approach methodology to random
non-convex programs in the presence of mixed-integer
decision variables, with graceful degradation of the asso-
ciated sample complexity.

• We apply our scenario approach to stochastic Model Pre-
dictive Control for nonlinear control-affine systems sub-
ject to probabilistic constraints.

• We address the measure-theoretic issues regarding the
measurability of the optimal value and optimal solutions
of random (convex and non-convex) programs, including
the well-definiteness of the probability integrals, under
minimal measurability assumptions.

The paper is structured as follows. Section II presents the
technical background and the problem statement. Section III
presents the main results and Section IV presents further
technical extensions. Section V proposes a scenario approach
for stochastic MPC of nonlinear control-affine systems. We
conclude the paper in Section VI. For ease of reading, the
Appendices contain: The example with unbounded Helly’s
dimension (Appendix A), the technical proofs (Appendix B),
and the measure-theoretic results (Appendix C).

Notation: R and Z denote, respectively, the set of real and
integer numbers. The notation Z[a, b] denotes the integer inter-
val {a, a+ 1, . . . , b} ⊆ Z. conv(·) denotes the convex hull.

II. TECHNICAL BACKGROUND AND PROBLEM STATEMENT

We consider a Chance Constrained Program (CCP) with
cost function J : Rn → R ∪ {∞}, constraint function g : Rn ×
R

p → R, constraint-violation tolerance ε ∈ (0, 1), and admissi-
ble set X ⊂ R

n

CCP(ε) :

{
min
x∈X

J(x)

s.t. P ({δ ∈ Δ|g(x, δ) ≤ 0}) ≥ 1− ε.
(1)

In (1), x ∈ X is the decision variable and δ ∈ Δ ⊆ R
p is a ran-

dom variable defined on a probability space (Δ,F ,P). The fact
thatΔ⊆R

p [10, Section 1], [11, Assumption 1], [13, Section 3]
simplifies the measure-theoretic arguments associated with the
probability measure P addressed in Appendix C; however, it
can be relaxed in our main results.

Throughout the paper, we make the following assumption,
partially adapted from [13, Assumption 1].

Standing Assumption 1 (Regularity): The set X ⊂ R
n is

compact and convex. For any fixed δ̄ ∈ Δ, the mapping x 
→
g(x, δ̄) is convex and lower semicontinuous. For any fixed
x̄ ∈ R

n, the mapping δ 
→ g(x̄, δ) is measurable. The function
J is lower semicontinuous. �

The compactness assumption on X , typical of any problem
of practical interest, avoids technical difficulties by guarantee-
ing that any feasible problem instance attains a solution [13,
Section 3.1, p. 3433]. Measurability of g(x, ·) and lower semi-
continuity of J are needed to avoid well-definiteness issues, see
Appendix C for technical details.

Note that unlike the standard setting of random convex
programs [10], the cost function J can be non-convex. Since
our results presented later on provide probabilistic guarantees
for an entire set, rather than for a single point, we next give the
set-based counterpart of [11, Definitions 1, 2].

Definition 1 (Probability of Violation and Feasibility of a Set):
The probability of violation of a set X ⊆ X is defined as

V (X) := sup
x∈X

P ({δ ∈ Δ|g(x, δ) > 0}) . (2)

For any given ε ∈ (0, 1), a set X ⊆ X is feasible for CCP(ε) in
(1) if V (X) ≤ ε. �

In view of Definition 1, which accounts for the worst-case
violation probability on an entire set, our developments are
partially inspired by the following key statements, proved in
Appendix B, regarding the violation probability of the convex
hull of a given set.

Theorem 1: For given X ⊆ R
n and ε ∈ [0, 1], if V (X) ≤ ε,

then V (conv(X)) ≤ (n+ 1)ε. For given x1, x2, . . . , xM ∈ R
n

and ε ∈ [0, 1], if V ({x1, x2, . . . , xM}) ≤ ε, then
V (conv({x1, x2, . . . , xM})) ≤ min{n+ 1,M}ε. �

An immediate consequence of Theorem 1 is that the feasibil-
ity set

Xε := {x ∈ X |P ({δ ∈ Δ|g(x, δ) ≤ 0}) ≥ 1− ε}

of CCP(ε) in (1) satisfies

Xε ⊆ conv(Xε) ⊆ X(n+1)ε.

Associated with CCP(ε) in (1), we consider a Scenario
Program (SP) obtained from N independent and identi-
cally distributed (i.i.d.) samples {δ̄(1), δ̄(2), . . . , δ̄(N)} drawn
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according to P [10, Definition 3]. For a fixed multi-sample
ω̄ := (δ̄(1), δ̄(2), . . . , δ̄(N)) ∈ ΔN , we consider the SP

SP[ω̄] :

{
min
x∈X

J(x)

s.t. g(x, δ̄(i)) ≤ 0 ∀i ∈ Z[1, N ].
(3)

A. Known Results on Scenario Approximations of
Chance Constraints

In [12] and [13], the case J(x) := c�x is considered. Under
the assumption that, for every multi-sample, the optimizer is
unique [12, Assumption 1], [13, Assumption 2] or a suitable
tie-breaking rule is adopted [10, Section 4.1] [12, Section 2.1],
the optimizer mapping x�(·) : ΔN → X of SP[·] is such that

P
N
({

ω ∈ ΔN |V ({x�(ω)}) > ε
})

≤ Φ(ε, n,N)

:=
∑n−1

j=0

(
N

j

)
εj(1− ε)N−j . (4)

The above bound is tight for fully-supported problems [12,
Theorem 1, Equation (7)], while for non-fully-supported prob-
lems it can be improved by replacing n with the so-called
Helly’s dimension ζ ∈ Z[1, n] [13, Theorem 3.3], or with an
upper bound ζ̄ ∈ [ζ, n] to Helly’s dimension ζ. To satisfy the
implicit bound (4) with right-hand side equal to β ∈ (0, 1), it is
sufficient to select a sample size [13, Corollary 5.1]

N ≥ 2

ε

(
n− 1 + ln

(
1

β

))
. (5)

We emphasize that the inequality (4) holds only for the proba-
bility of violation of the single-valued mapping x�(·).

Although the only explicit difference between the SP in (3)
and convex SPs (i.e., with J(x) := c�x) is the possibly non-
convex cost J , we show in Appendix A that Helly’s dimension
ζ for the globally optimal value of SP in (3) can in general
be unbounded. Therefore, even for the apparently simple non-
convex SP in (3) it is impossible to directly apply the classic
scenario approach based on Helly’s theorem [22], [23].

For general non-convex programs, VC theory provides upper
bounds for the quantity P

N ({ω ∈ ΔN |V (X(ω)) > ε}), where
X(ω) ⊆ X is the entire feasible set of SP[ω], see the discussions
in [24, Section 3.2], [18, Sections IV, V].

In particular, [17, Theorem 8.4.1] shows that it suffices to
select a sample size

NVC ≥ 4

ε

(
ν ln

(
12

ε

)
+ ln

(
2

β

))
(6)

to guarantee with confidence 1− β that any feasible solution
to SP[ω̄] has probability of violation no larger than ε. In (6), ν
is the so-called VC dimension [20, Definition 10.2], which en-
codes the richness of the family of functions {δ 
→ g(x, δ)|x ∈
X} which however may be hard to estimate, or even infinite
[10], [11].

III. RANDOM NON-CONVEX PROGRAMS: PROBABILISTIC

GUARANTEES FOR AN ENTIRE SET

A. Main Results

We start with a preliminary intuitive statement. We consider
a finite number of mappings x�

1, x
�
2, . . . , x

�
M : ΔN → X , each

one with given probabilistic guarantees, and let us upper bound
their worst-case probability of violation.

Assumption 1: For a given ε ∈ (0, 1), the mappings x�
1, x

�
2,

. . . , x�
M : ΔN → X are such that, for all k ∈ Z[1,M ],

P
N ({ω ∈ ΔN |V ({x�

k(ω)}) > ε}) ≤ βk ∈ (0, 1). �
Lemma 1: Consider SP[ω̄] in (3). If Assumption 1 holds,

then

P
N
({

ω ∈ ΔN |V ({x�
1(ω), . . . , x

�
M (ω)}) > ε

})
≤

M∑
k=1

βk.

�
The proof is given in Appendix B.

Note that each x�
k can be the optimizer mapping of a convex

SP and hence satisfy (4) according to [12], [13]. In such a
case, with probability no smaller than 1−Mβ, the set {x�

1(ω),
x�
2(ω), . . . , x

�
M (ω)} is feasible with respect to Definition 1, that

is: PN ({ω ∈ ΔN |V ({x�
1(ω), . . . , x

�
M (ω)}) ≤ ε})≥ 1−Mβ.

We may consider the meaning of Lemma 1 in view of the
result in [17, Section 4.2], where the decision variable x lives
in a set X of finite cardinality. The main difference here is
that Lemma 1 instead relies on a finite number of mappings
x�
k(·), rather than on a finite number of decisions. Each of these

mappings is associated with a given upper bound βk on the
probability of violating the chance constraint.

We now proceed towards our main results, whose proofs
are all given in Appendix B. We address the CCP(ε) in
(1) through a family of M distinct convex SPs, each with
Helly’s dimension ζk ∈ Z[1, n], upper bounded by some inte-
ger ζ̄ ≥ maxk∈Z[1,M ] ζk. Namely, we consider M cost vectors
c1, c2, . . . , cM ∈ R

n, and for each k ∈ Z[1,M ], we define the
following convex SP, where ω̄ := (δ̄(1), δ̄(2), . . . , δ̄(N))

SPk[ω̄] :

{
min

x∈Ck∩X
c�kx

s.t. g(x, δ̄(i)) ≤ 0 ∀i ∈ Z[1, N ].
(7)

We assume that, for all k ∈ Z[1,M ], SPk[·] in (7) is feasible
with probability 1. The additional convex constraint x ∈ Ck ⊆
R

n allows us to uniformly upper bound Helly’s dimension by
some ζ̄ ∈ Z[1, n], and its choice is hence discussed later on.

Let x�
k(ω̄) be the optimizer of SPk[ω̄] and assume that it is

unique, or a suitable tie-break rule is considered [10, Section 4.1].
Note that the optimizer x�

k(ω̄) ∈ X is always finite, due to the
compactness assumption on X .

For all ω ∈ ΔN , let us consider the convex-hull set

XM (ω) := conv ({x�
1(ω), x

�
2(ω), . . . , x

�
M (ω)}) (8)

where, for all k ∈ Z[1,M ], x�
k(·) is the optimizer mapping of

SPk[·] in (7).
The role of the directions {ck}Mk=1 is to explore the decision

space R
n to construct the set XM as illustrated in Fig. 1.

We in fact approximate the feasibility set of the non-convex
program S̃P[ω̄] in (11) with the convex hull set XM (ω̄) in (8).
Therefore, we are interested in getting a large XM (ω̄) through
the problems {SPk[ω̄]}Mk=1. One possible approach is hence to
choose linear costs c�kx in (7), k = 1, . . . ,M , as the optimal so-
lution x�

k(ω̄) of SPk[ω̄] belongs to the boundary of the (convex)
feasibility set X(ω̄) := {x ∈ X |g(x, δ̄(i)) ≤ 0 ∀i ∈ Z[1, N ]},
and so do the extreme points of the convex-hull set XM in (8),
as shown in Fig. 1. The selection of each direction ck affects
the actual size and shape of the convex hull set XM (ω̄) in (8),
which however is hard to a-priori estimate. Without specific
knowledge on the optimization problem, the vectors {ck}Mk=1
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Fig. 1. The set XM is the convex hull of the points x�
1 , x�

2, . . . , x
�
M , where

each x�
k is the optimizer of SPk in (7) with linear cost c�k x.

can be chosen randomly or uniformly distributed on the unit
ball.

We can now state our main result about an upper bound to
the probability of violation of the constructed convex-hull set.

Theorem 2: Let {x�
k}Mk=1 be the optimizer mappings of

{SPk}Mk=1 in (7), respectively, and let XM be as in (8); let
ζ̄ ∈ Z[1, n] be a uniform upper bound to the Helly’s dimensions
of {SPk}Mk=1. Then, for all ε ∈ (0, 1)

P
N
({

ω ∈ ΔN |V (XM (ω)) > ε
})

≤ MΦ

(
ε

min{n+ 1,M} , ζ̄, N
)
. (9)

�
Following the lines of [25, Proof of Theorem 2], we can also

slightly improve the implicit bound of Theorem 2 as follows.
Corollary 1: Let {x�

k}Mk=1 be the optimizer mappings of
{SPk}Mk=1 in (7), respectively, M ≥ n+ 1, and let XM be as
in (8); let ζ̄ ∈ Z[1, n] be a uniform upper bound to the Helly’s
dimensions of {SPk}Mk=1. Then, for all ε ∈ (0, 1)

P
N
({

ω ∈ ΔN |V (XM (ω)) > ε
})

≤
(

M

n+ 1

)
Φ
(
ε, ζ̄(n+ 1), N

)
. (10)

�
After solving all the M SPs from (7) for the given multi-

sample ω̄ ∈ ΔN , we can solve the following approximation of
CCP(ε) in (1):

S̃P[ω̄] :

{
min
x∈X

J(x)

s.t. x ∈ XM (ω̄)
(11)

and explicitly establish the required sample complexity.
Corollary 2: Let {x�

k}Mk=1 be the optimizer mappings of
{SPk}Mk=1 in (7), respectively, and let XM be as in (8); let
ζ̄ ∈ Z[1, n] be a uniform upper bound to the Helly’s dimensions
of {SPk}Mk=1. Then, for all ε, β ∈ (0, 1), if

N ≥ 2min{n+ 1,M}
ε

(
ζ̄ − 1 + ln

(
M

β

))
(12)

then, with probability no smaller than 1− β, any feasible
solution to S̃P[ω̄] in (11) is feasible for CCP(ε) in (1), i.e.,
P
N ({ω ∈ ΔN |V (XM (ω)) ≤ ε}) ≥ 1− β. �
The number M of preliminary search directions determines

the complexity and consequently the size of XM in (8), which is
the convex hull of M points. The computational cost to enlarge
the approximate feasibility set XM is however modest, since M
affects the sample size in (12) logarithmically.

We emphasize that the probabilistic guarantees in (2) hold for
any feasible solution to S̃P[ω̄] in (11), not just for the optimal
solution. This is of practical importance, because S̃P[ω̄] is non-
convex and hence computing its optimal solution is numerically
intractable in general.

B. On the Preliminary Random Convex Programs

In this subsection we discuss the choice of the M random
convex programs {SPk[ω̄]}Mk=1 in (7).

The additional constraint x ∈ Ck in (7) can be used to upper
bound Helly’s dimension ζk of SPk[ω̄]. Many choices of Ck are
admissible to compute (possibly conservative) estimates of the
feasible region of (3) by means of XM (ω) in (8). For instance,
Ck :=R

n in general only provides the upper bound ζk≤ ζ̄=n.
The minimum upper bound on Helly’s dimension for SPk[ω̄]

in (7), i.e., ζ̄ = 1, is obtained whenever the decision variable
x is constrained to live in a convex subspace of dimension
one [14, Lemma 3.8]. For instance, assume to a-priori know
a feasible point x0 for CCP(0) in (1), which is the case in
many situations of practical interest [26, Section 1.1], [27],
[28]. Then, for all k ∈ Z[1,M ], take ck ∈ R

n and define

Ck :=
{
x0 + λck ∈ R

n|λ ∈ R
}
. (13)

With such a choice of Ck, SPk is equivalent to the optimization
problem

min
λ∈R

−λ

s.t. (x0 + λck) ∈ X , g(x0 + λck, δ
(i)) ≤ 0 ∀i ∈ Z[1, N ]

(14)

whose Helly’s dimension is upper bounded as ζk ≤ ζ̄ = 1,
since the constraints are convex and the decision variable λ is
1-dimensional. In this case, the required sample size from (12)
is 2min{n+ 1,M}/ε ln(M/β), which grows linearly in the
number n of decision variables.

More generally, any selection of the convex problems
SPk[ω̄], and hence their associated optimizers x�

k(ω̄), for k =
1, 2, . . . ,M , is supported by our technical results.

IV. EXTENSIONS TO MORE GENERAL RANDOM

NON-CONVEX PROGRAMS AND TO

SAMPLING AND DISCARDING

A. Separable Non-Convex Constraints

Let us notice that the CCP formulation in (1) implicitly
includes the more general CCP

CCP′(ε) :⎧⎨
⎩

min
x∈X

J(x)

s.t. P ({δ ∈ Δ|g(x, δ) + f(x)ϕ(δ) ≤ 0}) ≥ 1− ε
h(x) ≤ 0

(15)
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for possibly non-convex functions f, h : Rn → R, ϕ : Rp →
R, at the only price of introducing one extra variable. Specif-
ically, we can follow the lines of [29, Section 1.A, pp. 6-7]
and consider y = f(x) ∈ Y := f(X ). The probabilistic con-
straint then becomes P({δ ∈ Δ|g(x, δ) + yϕ(δ) ≤ 0}) ≥ 1−
ε, while the deterministic constraint becomes max{h(x), |y −
f(x)|} ≤ 0. We now define the indicator function χ : X ×
R → {0,∞} as χ(x, y) := 0 if max{h(x), |y − f(x)|} ≤ 0,
∞ otherwise, so to get the CCP formulation{

min(x,y)∈X×Y J(x) + χ(x, y)
s.t. P ({δ ∈ Δ|g(x, δ) + yϕ(δ) ≤ 0}) ≥ 1− ε

which has the same form as CCP(ε) in (1).
More generally, we can allow for “separable” non-convex

probabilistic constraint of the kind

P

({
δ ∈ Δ|g(x, δ) +

∑
i

fi(x)ϕi(δ) ≤ 0

})
≥ 1− ε

for possibly non-convex functions {fi(·)}i.
Furthermore, the set X is assumed convex without loss of

generality. In fact, if X is not convex, let X ′ ⊃ X be a compact
convex superset of X . Then we can define the indicator function
χ : Rn → {0,∞}, see [29, Section 1.A, p. 6-7] as χ(x) := 0 if
x ∈ X , ∞ otherwise. Then we define the new cost function J +
χ, which is lower semicontinuous as well, and finally consider
the CCP with convex feasibility set X ′, namely{

minx∈X ′ J(x) + χ(x)
s.t. P ({δ ∈ Δ|g(x, δ) ≤ 0}) ≥ 1− ε

which has the same form as CCP(ε) in (1).

B. Mixed-Integer Constraints

The results in Lemma 1 and Theorem 2 can be further
exploited to provide probabilistic guarantees for the following
class of mixed-integer CCPs

CCPm−i(ε) :

{
min

(x,j)∈X×Z[1,L]
J(x)

s.t. P ({δ ∈ Δ|gj(x, δ) ≤ 0}) ≥ 1− ε
(16)

where the functions g1, g2, . . . , gL : Rn × R
p → R satisfy the

following assumption.
Assumption 2: For any fixed (j̄, δ̄) ∈ Z[1, L]×Δ, the map-

ping x 
→ gj̄(x, δ̄) is convex and lower semicontinuous. �
Notice that unlike [30], we also allow for possibly non-

convex objective function J .
We also define the probability of violation (of any set X ⊆

X ) associated with CCPm−i(ε) in (16) as

V m−i(X) :=supx∈X P
({

δ ∈ Δ|minj∈Z[1,L] gj(x, δ) > 0
})

.
(17)

Note that, for all j ∈ Z[1, L], it holds V m−i(X) ≤ supx∈X
P({δ ∈ Δ|gj(x, δ) > 0}).

We can proceed similarly to Section III-A. For fixed
multi-sample ω̄ ∈ ΔN , we consider the M cost vectors
c1, c2, . . . , cM ∈ R

n and the convex sets C1, C2, . . . , CM ⊆ R
n,

so that, for all (j, k) ∈ Z[1, L]× Z[1,M ] we define

SPm−i
j,k [ω̄] :

{
min

x∈Ck∩X
c�kx

s.t. gj(x, δ̄(i)) ≤ 0 ∀i ∈ Z[1, N ]
(18)

with optimizer x�
j,k(ω̄). Then we can define the set Xj(ω) as in

(7), (8), i.e.,

Xj(ω) := conv
({

x�
j,k(ω)|k ∈ Z[1,M ]

})
. (19)

If ζ̄ ∈ Z[1, n] is an upper bound to Helly’s dimension of the
convex programs {SPm−i

j,k }(j,k), then it follows from Theorem 2
and (17) that, for all j ∈ Z[1, L], we have

P
N
({

ω ∈ ΔN |V m−i (Xj(ω)) > ε
})

≤ P
N

({
ω ∈ Δ| sup

x∈Xj(ω)

P ({δ ∈ Δ|gj(x, δ)}) > ε

})

≤ MΦ

(
ε

min{n+ 1,M} , ζ,N
)
. (20)

We can then establish the following upper bound on the
probability of violation of the union of the convex-hull sets
constructed above, whose proof is given in Appendix B.

Theorem 3: Suppose Assumption 2 holds. Let {x�
j,k}

L,M
j,k=1

be the optimizer mappings of {SPm−i
j,k }L,M

j,k=1 in (18), respec-
tively, and let {Xj}Lj=1 be as in (19); let ζ̄ ∈ Z[1, n] be a uni-

form upper bound to the Helly’s dimensions of {SPm−i
j,k }L,M

j,k=1.
Then

P
N
({

ω ∈ ΔN |V m−i
(
∪L
j=1Xj(ω)

)
> ε

})
≤ LMΦ

(
ε

min{n+ 1,M} , ζ̄, N
)
. (21)

�
We can now approximate the CCPm−i(ε) in (16) by

S̃P
m−i

[ω̄] :

{
min

(x,j)∈X×Z[1,L]
J(x)

s.t. x ∈ Xj(ω̄)
(22)

and establish the following lower bound on the sample size.
Corollary 3: Suppose Assumption 2 holds. Let {x�

j,k}
L,M
j,k=1

be the optimizer mappings of {SPm−i
j,k }L,M

j,k=1 in (18), re-
spectively, and let {Xj}Lj=1 be as in (19); let ζ̄ ∈ Z[1, n]
be a uniform upper bound to the Helly’s dimensions of
{SPm−i

j,k }L,M
j,k=1. If

N ≥ 2min{n+ 1,M}
ε

(
ζ̄ − 1 + ln

(
LM

β

))
(23)

then, with probability no smaller than 1− β, any feasible

solution to S̃P
m−i

[ω̄] in (22) is feasible for CCPm−i(ε) in (16),
i.e., PN ({ω ∈ ΔN |V m−i(∪L

j=1Xj(ω)) > ε}) ≥ 1− β. �
Let us comment on the sample size N given in Corollary 3,

relative to the SP in (22). The formulation in (16) subsumes
the one in [30]. In fact, we show that it is possible to derive
a sample size N which grows linearly with the dimension
d of the integer variable y ∈ (Z[−l/2, l/2])d, so that L :=
(l + 1)d in (16). In addition to [30], [31], here we can also
deal with non-convex objective functions J(x) and non-convex
deterministic constraints h(x) ≤ 0 according to Section IV-A,
still maintaining a sample size with logarithmic dependence on
L, i.e., linear dependence on d, while [30, Theorem 3] presents
an exponential dependence on d.
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C. Sampling and Discarding

The problem SPk in (7) is also suitable for a sampling-and-
discarding approach [13], [16], here with the aim to reduce the
optimal value of each (convex) SPk in (7), and hence enlarge
the set XM in (8). Technically, the optimal objective value of the
chance-constrained counterpart of SPk in (7) can be approached
at will, provided that the sampled constraints are optimally
removed [16, Theorem 6.1]. While the optimal constraint re-
moval is of combinatorial complexity, probabilistic feasibility
can be obtained via any constraint removal algorithm, including
greedy ones [13, Section 6.1].

The approach consists in a-priori deciding to discard r of the
N samples of the uncertainty. If N and r are taken such that(
ζ̄ + r − 1

r

)
Φ
(
ε, ζ̄ + r,N

)

=

(
ζ̄ + r − 1

r

) ζ̄+r−1∑
i=1

(
N

i

)
εi(1− ε)N−i ≤ β (24)

where ζ̄∈Z[1, n] is a uniform upper bound on the Helly’s di-
mensions of the problems {SPk}Mk=1 in (7), then, for all k∈Z[1,
M ], the optimizer mapping x�

k(·) of SPk[·] in (7) (where only
N − r constraints are imposed) is such that P

N ({ω ∈ ΔN |
V ({x�

k(ω)} > ε)}) ≤ β [13, Theorem 4.1], [16, Theorem 2.1].
Explicit bounds on the sample and removal couple (N, r) are
given in [13, Section 5], [16, Section 4.3].

It then follows from (24) that, with r removals overN samples,
the optimizer mappings x�

1, x�
2, . . . , x

�
M satisfy Assumption 1

with βk :=
(
ζ̄+r−1

r

)
Φ(ε, ζ̄ + r,N) for all k ∈ Z[1,M ]. There-

fore, in view of Lemma 1, we get that the probabilistic guaran-
tees established in Theorem 2 become

P
N
({

ω ∈ ΔN |V (XM (ω)) > ε
})

≤ M

(
ζ̄ + r − 1

r

)
Φ

(
ε

min{n+ 1,M} , ζ̄ + r,N

)
.

Since the above inequality is with respect to P
N , we empha-

size that it is possible to remove different sets of r samples
from each SPk in (7). Namely, for all k ∈ Z[1,M ], let Ik ⊆
Z[1,M ] be a set of indices with cardinality |Ik| = r. Thus, we
can discard the samples {δ̄(i)|i ∈ Ik} from SPk, possibly with
Ik �= Ik′ for k �= k′.

V. STOCHASTIC MODEL PREDICTIVE CONTROL OF

NONLINEAR CONTROL-AFFINE SYSTEMS

In this section we extend the results of [32], [33] to uncertain
nonlinear control-affine systems of the form

x+ = f(x, v) + g(x, v) u (25)

where x ∈ R
n is the state variable, u ∈ R

m is the control
variable, and v ∈ V ⊆ R

p is the uncertain random input. We
consider state constraints x ∈ X ⊆ R

n, where X is a compact
convex set. We further assume the availability of i.i.d. samples
{v̄(1), v̄(2), . . .} of the uncertain input, drawn according to a
possibly unknown probability measure P [10, Definition 3].

For a horizon length K, let u := [u0;u1; . . . ;uK−1] ∈
R

mK and v := [v0; v1; . . . ; vK−1] ∈ VK denote a control-input

and a random-input sequence, respectively. We denote by
φ(k;x,u,v) the state solution of (25) at time k ≥ 0, starting
from the initial state x, under the control-input sequence u and
the random-input sequence v. Likewise, given a control law
κ : Rn → R

m, we denote by φκ(k;x,v) the state solution of
the system x+ = f(x, v) + g(x, v)κ(x) at time k ≥ 0, starting
from the initial state x, under the random-input sequence v. The
solution φ(k;x,u,v), as well as φκ(k;x,v), is a random vari-
able itself1 because it depends on the random-input sequence v.

Let  : Rn × R
m → R≥0 be the stage cost, and f : Rn →

R≥0 be the terminal cost. We consider the random finite-
horizon cost function

J(x,u,v) := f (φ (K;x,u,v)) +

K−1∑
k=0

(φ (k;x,u,v), uk) .

(26)

Following [33, Section 3.1], we formulate the multi-stage
Stochastic MPC (SMPC) problem:⎧⎨
⎩

min
u∈RmK

E [J(x,u, ·)]
s.t. Pk

({
v ∈ Vk|φ (k;x,u,v) ∈ X

})
≥ 1− ε

∀k ∈ Z[1,K].

(27)

For its randomized (non-convex) counterpart, let us consider
three different sets of samples, indexed by the disjoint sets
I0, I1, I2 ⊂ Z[1,∞), to approximate the expected cost func-
tion E[J(·)], the first-stage constraint f(·) + g(·)u ∈ X and the
later-stage constraints φ(k; ·) ∈ X, respectively

SPMPC[v̄(1); v̄(2); . . .] :⎧⎪⎨
⎪⎩

min
u∈RmK

∑
i∈I0 J(x,u, v̄

(i))

s.t. φ(1;x,u, v̄(i)) ∈ X ∀i ∈ I1
φ(k;x,u, v̄(i)) ∈ X ∀i ∈ I2, ∀k ∈ Z[2,K].

(28)

The receding horizon control policy is defined as follows.
For each time step, we measure the state x and let u�(x) :=
[u�

0; . . . ;u
�
K−1](x) be the solution of SPMPC in (28), for some

drawn samples {v̄(1), v̄(2), . . .}. The control input u is set
to the first element of the computed sequence, namely u =
κ(x) := u�

0(x), which implicitly also depends on the samples
[v̄(1); v̄(2); . . .] extracted to construct the optimization program
in (28) and hence is random itself.

We next focus on a suitable choice for the sample size, so
that the average fraction of closed-loop constraint violations
“{x1 �∈ X, x2 �∈ X, . . . , xt �∈ X, . . .}” is below a desired level
ε ∈ (0, 1). It follows from [33, Section 3] that this property can
be made independent from the cardinalities of I0 and I2, i.e.,
on the number of samples used for the cost function and for the
later stages. In fact, under proper assumptions introduced later
on, the closed-loop behavior in terms of constraint violations
is only influenced by the first-stage constraint, namely by the
number N of samples indexed in I1 [33, Section 3]. Without
loss of generality, let I1 := Z[1, N ] for ease of notation. We

1Random solutions, both φ(k;x,u, ·) and φκ(k;x, ·), exist under the as-
sumption that for all x ∈ R

n, the mapping δ �→ f(x, δ) + g(x, δ) is mea-
surable and that κ is measurable, see [34, Section 5.2] and Appendix C for
technical details.
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refer to [35] for a discussion on the role of I0 and I2 in terms
of closed-loop performance.

In particular, we next show that our main results of
Section III-A are directly applicable because the sampled non-
linear MPC program SPMPC in (28) has non-convex cost,
due to the nonlinear dynamics in (25), and convex first-stage
constraint. Since the program in (28) is non-convex, and hence
the global optimizer is in general not computable efficiently,
we use the following set-based definition of probability of
violation.

Definition 2 (First-Stage Probability of Violation): For given
x ∈ X, U0 ⊆ R

m, the first-stage probability of violation is

V MPC(x,U0) : = sup
u∈U0

P ({v ∈ V|f(x, v) + g(x, v)u �∈ X}) .

�
Analogously to Section III-A and III-B, we then consider

M directions c1, c2, . . . , cM ∈ R
m, and an arbitrary û0 ∈ R

m.
For instance, û0 may be a known robustly feasible solution.
For all j ∈ Z[1,M ], we define the following SP, where v̄0 :=

[v̄
(1)
0 ; v̄

(2)
0 ; . . . ; v̄

(N)
0 ]:

SP1
j [v̄0] :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
λ∈R

−λ

s.t. f(x, v̄
(i)
0 )+g(x, v̄

(i)
0 ) (û0+λcj) ∈ X

∀i∈Z[1, N ]
û0+λcj ∈U.

(29)

Let λ�
j (v̄0) be the optimizer mapping of SP1

j [v̄0]. Then, we
define

UM (v̄0) := conv ({û0 + λ�
i (v̄0)ci|i ∈ Z[1,M ]}) . (30)

Finally, we solve the following approximation of SPMPC

in (28):

S̃P
MPC

[v̄(1); v̄(2); . . . ; v̄(N)] :⎧⎪⎨
⎪⎩

min
u∈RmK

∑
i∈I0 J(x,u, v̄

(i))

s.t. u0 ∈ UM (v̄0)
φ(k;x,u, v̄(i)) ∈ X ∀i ∈ I2, ∀k ∈ Z[2,K].

(31)

We can now characterize the required sample complexity for
the probability of violation to be, with high confidence, below
the desired level.

Theorem 4: For all x ∈ X and j ∈ Z[1,M ], let λ�
j be the

optimizer mapping of SP1
j in (29), let UM be as in (30), and

ε, β ∈ (0, 1). Then

P
N
({

v0 ∈ VN |V MPC(x,UM (v0)) > ε
})

≤ MΦ

(
ε

min{m+ 1,M} , 1, N
)
. (32)

Consequently, if

N ≥ 2min{m+,M}
ε

ln

(
M

β

)
(33)

then, with probability no smaller than 1− β, any feasible

solution to S̃P
MPC

in (31) satisfies the state constraint in (27),
i.e., PN ({v0 ∈ VN |V MPC(x,UM (v0)) ≤ ε}) ≥ 1− β. �

The result of Theorem 4 can be exploited to charac-
terize the expected closed-loop constraint violation as in
[33, Theorem 14], under the recursive feasibility assumption
[33, Assumption 5].

Corollary 4: Suppose that SPMPC in (28) is recursively fea-
sible almost surely. For all x ∈ X and v := [v(1); . . . ;v(N)] ∈
VKN , let u(x) := [u0(x); . . . ;uK−1(x)] be any feasible so-

lution to S̃P
MPC

[v] in (31), and define κ(x) := u0(x). Let
UM (k;v) be defined as the set UM in (30) relative to
φκ(k;x,v). If N satisfies

1∫
0

min

{
1,MΦ

(
μ

min{m+ 1,M} , 1, N
)}

dμ ≤ ε (34)

then, for all k ≥ 0, it holds that

E
[
V MPC (φκ(k;x, ·),UM (k; ·))

]
:=

∫
VKN

V MPC (φκ(k;x,v),UM (k;v))PKN (dv) ≤ ε.

�
The meaning of Corollary 4 is that the expected closed-loop

constraint violation, which can be also interpreted as time-
average closed-loop constraint violation [35, Section 2.1], is
upper bounded by the specified tolerance ε whenever the sample
size N satisfies (34). A similar result was recently shown
in [33, Section 4.2] for uncertain linear systems and hence
here extended to the class of uncertain nonlinear control-affine
systems in (25).

Numerical simulations of the proposed randomized nonlin-
ear MPC approach are provided in [35] for a nonholonomic
control-affine system, where we show the benefits with respect
to randomized linear MPC.

VI. CONCLUSION

A. Conclusion

We have considered a scenario approach for the class of
random non-convex programs with possibly non-convex cost,
deterministic possibly non-convex constraints, and chance con-
straints containing functions with separable non-convexity. For
this class of programs, Helly’s dimension can be unbounded.
We have derived probabilistic guarantees for all feasible solu-
tions inside a convex set with a-priori chosen complexity, which
affects the sample size logarithmically.

Our scenario approach also extends to the case with mixed-
integer decision variables. We have applied our scenario ap-
proach to stochastic model predictive control for nonlinear
control-affine systems with chance constraints.

Finally, we show well-definiteness of the probability in-
tegrals and measurability of the optimal value and optimal
solutions of random (convex and non-convex) programs.

B. Outlook

The results in this paper can be extended in many ways. Since
the probabilistic guarantees hold for any feasible solution inside
a certain convex hull set, therefore it would be important to
develop a scenario approach relative to the set of local minima
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Fig. 2. The constraints of the problem SPex[ω̄] with N = 5 are represented.

The blue surface is the set of points such that z = −
√

x2 + y2, while the red

hyperplanes are the sets of points such that z = cos(δ̄(i))x+ sin(δ̄(i))y − 1,
for i = 1, 2, . . . , 5. The feasible set is the region above the plotted surfaces and
the minimization direction is the vertical one, pointing down.

only. The reason is that, under mild regularity conditions,
numerical solvers for non-convex programs typically ensure
convergence to a local minimum. Future work should also
refine the construction of the approximate feasibility set XM ,
including specific choices of the search directions {ck}Mk=1 and
of the sets {Ck}Mk=1 to upper bound Helly’s dimension of the
programs {SPk}Mk=1.

Our scenario approach is suitable for many non-convex con-
trol design problems, such as robust analysis and control synthe-
sis [18]. For instance, [36] addresses typical Lyapunov control
design problems via uncertain Bilinear Matrix Inequalities
(BMIs), and shows comparisons with the sample complexity
based on statistical learning theory [37]. Many practical control
problems also rely on an uncertain non-convex optimization
[19], for instance in aerospace control [38], network control
[39], fault detection and isolation [40].

APPENDIX A
COUNTEREXAMPLE WITH UNBOUNDED NUMBER

OF SUPPORT CONSTRAINTS

We present an SP, derived from a CCP of the form (15),
in which Helly’s dimension [13, Definition 3.1] is unbounded.
Namely, the number of constraints (“support constraints” [13,
Definition 2.1]) needed to characterize the global optimal value
equals the number N of samples

SPex[ω̄] :

⎧⎪⎪⎨
⎪⎪⎩

min(x,y,z)∈R3 z

s.t. z ≥ −
√

x2 + y2

z ≥ cos(δ̄(i))x+ sin(δ̄(i))y − 1
∀i ∈ Z[1, N ].

(35)

The problem can be also written in the form (3), with
non-convex cost J(x, y) := −

√
x2 + y2 and non-convex con-

straints −
√
x2 + y2 ≥ cos(δ̄(i))x+ sin(δ̄(i))y − 1. We use the

form in (35) to visualize the optimizing direction −z, as shown
in Fig. 2.

Let the drawn samples be δ̄(i) = (i− 1)(2π/N), for i =
1, 2, . . . , N . Namely, we divide the 2π-angle into N parts,
so that δ̄(1) = 0 and δ̄(i+1) = δ̄(i) + (2π/N) for all i ∈
Z[1, N − 1]. We take N ≥ 5 as (2π/N) ∈ (0, π/2) simplifies
the analysis.

We show that all the sampled constraints z ≥ cos(δ̄(i))x+
sin(δ̄(i))y, for i = 1, 2, . . . , N , are support constraints, making
it impossible to bound Helly’s dimension by some ζ < N .

We first compute the optimal value J�
ex[ω̄] of SPex[ω̄] in

(35). By symmetry and regularity arguments (i.e., continuity of
both the objective function and the constraints in the decision
variable), an optimizer (x�

N , y�N , z�N ) can be computed as the
intersection of any two adjacent hyperplanes, say {(x, y, z) ∈
R

3|z = cos(δ̄(i))x+ sin(δ̄(i))y − 1} for i = 1, 2, and the sur-
face {(x, y, z) ∈ R

3|z = −
√

x2 + y2}. Since δ̄(1) = 0 and
δ̄(2) = (2π/N) =: θN ∈ (0, π/2), the optimal value and an
optimizer can be computed by solving the system of equations

z = −
√

x2 + y2 = x− 1 = cos(θN )x+ sin(θN )y − 1.
(36)

From the second and the third equations in (36), we can get
the solution x�

N , and then the optimal cost is J�
ex[ω̄] = z�N =

x�
N − 1.
We then remove the sample δ̄(2) = 2π/N , and hence con-

sider the problem SPex[ω̄ \ δ̄(2)]. The optimizer is now unique
and lies in the intersection of the hyperplanes {(x, y, z) ∈
R

3|z = cos(δ̄(i))x+ sin(δ̄(i))y − 1}, for i = 1, 3, and the sur-
face {(x, y, z) ∈ R

3|z = −
√

x2 + y2}. We just need to solve
the system of equations (36), but with δ̄(3) := 2θN = 4π/N in
place of θN in the third equation. Therefore, we obtain almost
the same solution in (36), but with 2θN in place of θN . Since
the optimal cost J�

ex[ω̄ \ δ̄(2)] is strictly smaller than J�
ex[ω̄] (as

x�
N+1 < x�

N for all N ≥ 5), it follows that the constraint asso-
ciated with δ̄(2) is a support constraint. Because of the symme-
try of the problem with respect to rotations around the z-axis,
we conclude that all the N affine constraints z ≥ cos(δ̄(i))x+
sin(δ̄(i))y − 1, for i = 1, 2, . . . , N , are support constraints
as well, i.e., J�

ex[ω̄ \ δ̄(i)] < J�
ex[ω̄] for all i ∈ Z[1, N ]. This

proves that Helly’s dimension cannot be upper bounded by
any ζ̄ < N .

Finally, in view of [12, Theorem 1], it suffices to find at
least one probability measure so that the extraction of the above
samples δ̄(1), δ̄(2), . . . , δ̄(N) happens with non-zero probability.
For instance, this holds true if P is such that P({δ̄(i)}) = 1/N
for all i ∈ Z[1, N ]. Moreover, it is also possible to have a
distribution about the above points δ̄(1), δ̄(2), . . . , δ̄(N) that has
a density, but is narrow enough to preserve the property that
J�[ω̄ \ δ̄(2)] < J�[ω̄].

APPENDIX B
PROOFS

Proof of Theorem 1: By assumption, we have that
P({δ ∈ Δ|g(x, δ) > 0}) ≤ ε for all x ∈ X. Take any arbitrary
y ∈ conv(X). It follows from Caratheodory’s Theorem [41,
Theorem 17.1] that there exist x1, x2, . . . , xn+1 ∈ X such that
y ∈ conv({x1, x2, . . . , xn+1}), i.e. y =

∑n+1
i=1 αixi for some

α1, α2, . . . , αn+1 ∈ [0, 1] such that
∑n+1

i=1 αi = 1.
In the following inequalities, we exploit the convexity of

the mapping x 
→ g(x, δ) for each fixed δ ∈ Δ from Standing
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Assumption 1:

P ({δ ∈ Δ|g(y, δ) > 0})

= P

({
δ ∈ Δ|g

(
n+1∑
i=1

αixi, δ

)
> 0

})

≤ P

({
δ ∈ Δ|

n+1∑
i=1

αig(xi, δ) > 0

})

≤ P

({
δ ∈ Δ| max

i∈Z[1,n+1]
αig(xi, δ) > 0

})

= P

(
n+1⋃
i=1

{δ ∈ Δ|g(xi, δ) > 0}
)

≤
n+1∑
i=1

P ({δ ∈ Δ|g(xi, δ) > 0}) ≤ (n+ 1)ε. (37)

The last inequality follows from the fact that x1, x2, . . . ,
xn+1 ∈ Xε. Since y ∈ conv(X) has been chosen arbitrarily, it
follows that V (conv(X)) ≤ (n+ 1)ε. The proof for the case
X = {x1, x2, . . . , xM} is analogous, with the only difference
that if M < n+ 1, then we can just take y =

∑M
i=1 αixi, and

(37) holds with min{n+ 1,M} in place of n+ 1. �
Proof of Lemma 1:

P
N
({

ω ∈ ΔN |V ({x�
1(ω), . . . , x

�
M (ω)}) > ε

})

= P
N

⎛
⎝ M⋃

j=1

{
ω ∈ ΔN |V

(
{x�

j (ω)}
)
> ε

}⎞⎠

≤
M∑
k=1

P
N
({

ω ∈ ΔN |V ({x�
k(ω)}) > ε

})
≤

M∑
k=1

βk

where the last inequality follows from Assumption 1. �
Proof of Theorem 2: It follows from Theorem 1 that,

for all ω ∈ ΔN , V ({x�
1(ω), x

�
2(ω), . . . , x

�
M (ω)}) ≤ ε im-

plies that V (XM (ω)) ≤ min{n+ 1,M}ε, since XM (ω) =
conv({x�

1(ω), x
�
2(ω), . . . , x

�
M (ω)}).

Therefore, we then get that V (XM (ω))>ε implies V ({x�
1(ω),

x�
2(ω), . . . , x

�
M (ω)}) > (ε/min{n+ 1,M}) for all ω ∈ ΔN .

This yields {ω ∈ ΔN |V (XM (ω)) > ε}⊆{ω∈ΔN |V ({x�
1(ω)

x�
2(ω), . . . , x

�
M (ω)}) > (ε/min{n+ 1,M})} and

P
N
({

ω ∈ ΔN |V (XM (ω)) > ε
})

≤ P
N

({
ω ∈ ΔN |

V ({x�
1(ω), . . . , x

�
M (ω)}) > ε

min{n+ 1,M}

})
. (38)

Since for all k ∈ Z[1,M ], x�
k(·) is the optimizer map-

ping of SPk[·] in (7), and ζ̄ is a uniform upper bound to
the Helly’s dimensions of {SPk}Mk=1, from [12, Theorem 1],
[13, Theorem 3.3] we have that PN ({ω ∈ ΔN |V ({x�

k(ω)}) >

ε}) ≤ Φ(ε, ζ̄, N). We now use Lemma 1 with βk := Φ(ε/
min{n+ 1,M}, ζ̄, N) for all k ∈ Z[1,M ], so that

P
N
({

ω ∈ ΔN |V (XM (ω)) > ε
})

≤ P
N

({
ω∈ΔN|V ({x�

1(ω), . . . , x
�
M (ω)})> ε

min{n+1,M}

})

≤ MΦ

(
ε

min{n+ 1,M} , ζ̄, N
)
.

�
Proof of Corollary 1: It follows from Carathéodory’s

Theorem [41, Theorem 17.1] that, for each ω ∈ ΔN , there
exist the sets X

(i)
M (ω) := conv({x�

k(ω)|k ∈ Ii}), for i = 1, 2,

. . . ,
(

M
n+1

)
, where each Ii is a set of indices of cardinality

min{n+ 1,M}, such that XM (ω) =
⋃( M

n+1)
i=1 X

(i)
M (ω). There-

fore we can write

P
N
({

ω ∈ ΔN |V (XM (ω)) > ε
})

= P
N

({
ω ∈ ΔN | sup

x∈XM (ω)

V ({x}) > ε

})

= P
N

({
ω ∈ ΔN | max

i∈Z[1,( M
n+1)]

× sup
x∈X(i)

M
(ω)

V ({x}) > ε

})

= P
N

⎛
⎜⎝( M

n+1)⋃
i=1

{
ω ∈ ΔN |V (X

(i)
M (ω)) > ε

}⎞⎟⎠

≤
( M
n+1)∑
i=1

P
N
({

ω ∈ ΔN |V (X
(i)
M (ω)) > ε

})

≤
(

M

n+ 1

)
P
N
({

ω ∈ ΔN |V (X
(1)
M ) > ε

})

where in the last inequality we consider the first set of in-
dices without loss of generality, similarly to [13, Proof of
Theorem 3.3, p. 3435]. It finally follows from [25, Proof of
Theorem 2, Equations (22-24)] that:

P
N
({

ω ∈ ΔN |V (XM (ω)) > ε
})

≤
(

M

n+ 1

)
P
N
({

ω ∈ ΔN |V (X
(1)
M ) > ε

})

≤
(

M

n+ 1

)
Φ
(
ε, ζ̄min{n+ 1,M}, N

)
.

�
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Proof of Corollary 2: If follows from (10) that we need
to find N such that Φ(ε/min{n+ 1,M}, ζ̄, N) ≤ β/M . The
proof follows similarly to [13, Proof of Corollary 5.1]. �

Proofs of Theorem 3 and Corollary 3: The proofs are sim-
ilar to the proofs of Theorem 2 and Corollary 2, respectively.�

Proof of Theorem 4: For each j∈Z[1,M ], we consider the
random convex problem SP1

j [·] in (29), with unique optimizer
mapping λ�

j (·). Since the dimension of the decision variable is
1, i.e. u�

j (·) := û0 + λ�
j (·)cj , it follows from [12, Theorem 1],

[13, Theorem 3.3] that, for all j ∈ Z[1,M ], we have

P
N
({

ω ∈ VN |V MPC({u�
j (ω)}) > ε

})
≤ Φ(ε, 1, N).

Then, from Lemma 1 we have that: P
N ({ω ∈ VN |

V MPC ({u�
1(ω), u

�
2 (ω), . . . , u

�
M (ω)}) > ε}) ≤ MΦ(ε, 1, N).

We now notice that the CCP in (27) is of the same form of
(15), with the constraints Pk({v ∈ Vk|φ(k;x, ·,v) �∈ X}) ≤ ε,
for k ≥ 2, in place of h(·) ≤ 0. Therefore to conclude the
proof we just have to follow the steps in Section IV-A and
the proof of Theorem 2 with {u�

1(ω), . . . u
�
M (ω)} in place

of {x�
1(ω), . . . x

�
M (ω)}, and finally derive the sample size N

according to (34). �
Proof of Corollary 4: Since the sample size N satisfies

(34), the proof follows from [33, Section 4.2]. �

APPENDIX C
MEASURABILITY OF THE OPTIMAL VALUE

AND OPTIMAL SOLUTIONS

In this section, we adopt the following notion of measur-
ability from [34, Section 2]. Let B(Rp) denote the Borel
field, the subsets of R

p generated from open subsets of R
p

through complements and finite countable unions. A set F ⊂
R

p is measurable if F ∈ B(Rp). A set-valued mapping M :
R

p ⇒ R
n is measurable [29, Definition 14.1] if for each open

set O ⊂ R
n the set M−1(O) := {v ∈ R

p|M(v) ∩ O �= ∅} is
measurable. When the values of M are closed, measurability
is equivalent to M−1(C) being measurable for each closed set
C ∈ R

n [29, Theorem 14.3]. Let (Ω,F ,P) be a probability
space, where P is a probability measure on R

p. A set F ⊂ R
p is

universally measurable if it belongs to the Lebesgue completion
of B(Rp). A set-valued mapping M : Rp ⇒ R

n is universally
measurable if the set M−1(S) is universally measurable for all
S ∈ B(Rn) [42, Section 7.1, p. 68]. If ϕ : Rp → R ∪ {±∞} is
a (universally) measurable function, then the integral I[ϕ] :=∫
Rp ϕ(ω)P(dω) is (nearly) well defined [29, Chapter 14,

p. 643].
The following result shows (near) well definiteness of the

stated probability integrals.
Theorem 5: For all x ∈ X , the probability integral P({δ ∈

Δ|g(x, δ) ≤ 0}) is well defined. For any measurable set-valued
mapping X : ΔN ⇒ R

n and ε ∈ (0, 1), the probability integral
P
N ({ω ∈ ΔN |V (X(ω)) > ε}) is nearly well defined. �

Proof: From Standing Assumption 1, we have that g is
a lower semicontinuous convex integrand, and hence a normal
integrand [29, Proposition 14.39]. Therefore, for all x ∈ X , the
set {δ ∈ Δ|g(x, δ) ≤ 0} is measurable [29, Proposition 14.33]
and in turn the probabilistic measure P({δ ∈ Δ|g(x, δ) ≤ 0})
is well defined.

For the second statement, we show that, for all set-valued
measurable mappings X, the mapping ω 
→ supx∈X(ω) V ({x})
is universally measurable. Since g is a normal integrand, for
any finite non-negative measure μ on X ⊆ R

n, we have that
g is jointly (P⊗ μ)-measurable [29, Corollary 14.34]. In-
deed, the set A := {(x, δ) ∈ X ×Δ|g(x, δ) ≤ 0} is (P⊗ μ)-
measurable [29, Proof of Corollary 14.34], and in turn the
mapping (x, δ) 
→ 1lA(x, δ) is measurable. It then follows from
Fubini’s Theorem [43, Theorem 8.8 (a)] that the mapping
x 
→

∫
Δ 1lA(x, δ)P(dδ) = P({δ ∈ Δ|g(x, δ) ≤ 0}) is measur-

able, and in turn x 
→ V ({x}) = 1− P({δ ∈ Δ|g(x, δ) ≤ 0})
is measurable as well [29, Proposition 14.11 (c)]. Since V is
measurable, it follows from [44, Theorem 2.17 (a)] that ω 
→
supx∈X(ω) V ({x}) is analytic and hence universally measurable
[44, Fact 2.9]. �

Remark 1: According to the proof of Theorem 5, the map-
ping ω 
→ V (X(ω)) is not necessarily measurable, but just
nearly measurable. However, near measurability is sufficient for
the purposes of most applications, for instance in game-theory
and econometrics, see [44] and the references therein.

Notice that the upper closure of V , i.e. V̄ ({x}) :=
lim supy→x V ({y}), is such that the integral P

N ({ω ∈
ΔN |V̄ (X(ω)) > ε}) is well defined. In fact, since V̄ is up-
per semicontinuous by construction, −V̄ is an autonomous,
lower semicontinuous, normal integrand [29, Example 14.30].
Then it follows from [29, Example 14.32, Theorem 14.37]
that the mapping ω 
→ V̄ (X(ω)) := supx∈X(ω) V̄ ({x}) is
measurable. �

We can now show the following result on the measurability
of optimal value and of optimal solutions of SP[ω] in (3), which
means that they are random variables.

Theorem 6: Let J� : ΔN → R and X � : ΔN ⇒ X be the
mappings such that, for all ω ∈ ΔN , J�(ω) and X �(ω) are, re-
spectively, the optimal value and the set of optimizers of SP[ω]
in (3). Then J� is measurable, and X � is closed-valued and
measurable. Moreover, X � admits a measurable selection, i.e.,
there exists a measurable mapping x� : ΔN → X such that
x�(ω) ∈ X �(ω) for all ω ∈ ΔN . �

Proof: Since the mapping x 
→ g(x, δ) is convex
and lower semicontinuous for each δ, and the mapping
δ 
→ g(x, δ) is measurable for each x, we have that g is a lower
semicontinuous integrand and hence a normal integrand [29,
Definition 14.27, Proposition 14.39]. For all i ∈ Z[1, N ], we
consider the lower semicontinuous convex, and hence normal
[29, Proposition 14.39], integrand gi : X ×ΔN → R defined
as gi(x, ω) = gi(x, (δ1, δ2, . . . , δN )) := g(x, δi). Then
we consider the mapping ḡ : X ×ΔN → R defined
as ḡ(x, ω) := maxi∈Z[1,N ] gi(x, ω), which is a normal
integrand because the pointwise maximum of the
normal integrands g1, g2, . . . , gN [29, Proposition
14.44 (a)]. We now consider the set-valued mapping
C :ΔN ⇒ X defined as C(ω) := {x ∈ X |ḡ(x, ω) ≤ 0}.
Since ḡ is a normal integrand, it follows from [29,
Proposition 14.33] that the level-set mapping C is closed-valued
and measurable. Thus, we can define the indicator integrand
1lC :X×ΔN →{0,∞} as 1lC(x, ω)=1lC(ω)(x) :={0 if x∈C(ω),
∞ otherwise}. Since C is closed-valued and measurable, the
mapping 1lC is a normal integrand [29, Example 14.32]. Now,
the problem SP[ω] in (3) can be written as minx∈X c�x sub-
ject to x ∈ C(ω), which is equivalent [29, Section 1.A] to
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minx∈Rn J(x)+1lC(x, ω). We notice that the mapping (x, ω) 
→
ϕ(x, ω) := J(x) + 1lC(x, ω) is a normal integrand as J is
lower semicontinuous [29, Example 14.30, Example 14.32,
Proposition 14.44 (c)]. It finally follows from [29,
Theorem 14.37] that the optimal value mapping ω 
→
J�(ω) := infx∈Rn ϕ(x, ω) is measurable; also, the set-valued
mapping ω 
→X �(ω) := argminx∈Rn ϕ(x, ω) is closed-valued
and measurable. Moreover, the set {ω ∈ ΔN |X �(ω) �= ∅} is
measurable, and it is possible for each ω ∈ ΔN to select a
minimizing point x�(ω) in such a manner that the mapping
ω 
→x�(ω) is measurable [29, Corollary 14.6, Theorem 14.37].

�
In the following result, we show that if the set of optimizers

X � of SP in (3) is not a singleton, convex and lower semicontin-
uous tie-break rules ϕ are sufficient to guarantee measurability
of the optimizer x� (whenever it is unique). Applying a tie-
break rule ϕ basically means to solve the following program,
where J�(ω) is the optimal value of SP[ω] in (3)

SPt−b[ω] :

⎧⎨
⎩

minx∈X ϕ(x)
s.t. g

(
x, δ(i)

)
≤ 0 ∀i ∈ Z[1, N ]

J(x) ≤ J�(ω).
(39)

Corollary 5: Let ϕ : Rn → R be a convex and lower semi-
continuous function. Let J� : ΔN → R and x�

t−b : ΔN → X
be such that, for all ω ∈ ΔN , J�(ω) and x�

t−b(ω) are the
optimal value of SP[ω] in (3) and the unique optimal solution
of SPt−b[ω] in (39), respectively. Then x�

t−b is measurable. �
Proof: We first define the normal integrand

ḡ(x, ω) = ḡ(x, (δ1, δ2, . . . , δN )) := maxi∈Z[1,N ] gi(x, ω) =
maxi∈Z[1,N ] g(x, δi), as in the proof of Theorem 6. Since J
is lower semicontinuous, it is an autonomous integrand and
hence a normal integrand [29, Example 14.30]; moreover,
since J� is measurable from Theorem 6, it is a (Carathéodory)
normal integrand as well [29, Example 14.29]. Therefore
also the mapping (x, ω) 
→ J(x)− J�(ω) is a normal
integrand [29, Proposition 14.44 (c)], and in turn, the mapping
¯̄g(x, ω) := max{ḡ(x, ω), J(x)− J�(ω)} is a normal integrand
as well. Then, we can just follow the proof of Theorem 6 with
¯̄g in place of ḡ. �

Remark 2: In (39), if J is convex and ϕ is strictly convex
then x�

t−b(ω) is the unique optimal solution of SPt−b[ω]. �
We finally show that the convex hull of measurable singletons

is measurable, so that PN ({ω ∈ ΔN |V (XM (ω)) > ε}) is well
defined from Theorem 5.

Corollary 6: The set-valued mapping XM in (8) is
measurable. �

Proof: According to Theorem 6 and Remark 2, the unique
optimal solutions x�

1, . . . , x
�
M , respectively of SP1, . . . ,SPM ,

are measurable mappings. Then the proof directly follows as
XM is the convex-hull set-valued mapping of a countable
union of measurable mappings [29, Proposition 114.11 (b),
Example 14.12 (a)]. �
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