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Capacity Controlled Demand Side Management:
A Stochastic Pricing Analysis
Kostas Margellos, Member, IEEE, and Shmuel Oren, Fellow, IEEE

Abstract—We consider a novel paradigm for demand side man-
agement, assuming that an aggregator communicates with a house-
hold only at the meter, imposing a capacity constraint, i.e., a re-
striction on the total power consumption level within a given time
frame. Consumers are then responsible to adjust the set-points of
the individual household devices accordingly to meet the imposed
constraint.We formulate the problem as a stochastic household en-
ergy management program, with stochasticity arising due to local
photovoltaic generation.We show how a demand bidding curve for
capacity increments can be constructed as a by-product of the de-
veloped problem and provide a rigorous pricing analysis that re-
sults in a probabilistic “shadow” price envelope. To evaluate the
efficacy of the proposed approach, we compare it with an idealized
real-time market price set-up and show how our analysis can pro-
vide guidelines to consumers when selecting a service contract for
load curtailment.
Index Terms—Aggregated demand response, demand side man-

agement, duality theory, pricing, stochastic optimization.

NOMENCLATURE:

Number of uncontrollable loads.
Number of controllable loads.
Number of photovoltaic (PV) generators.
Number of storage devices.
Number of grid points for the discretized
capacity profile.
Optimization horizon.
Granularity of capacity profile.
Power of uncontrollable load
at time .
Power of controllable load at
time .
Baseline power of controllable load

at time .
Power of PV generator at
time .
Power exchanged with storage device

at time .
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Energy content of storage device
at time .

Stored energy degradation related to device
.

Minimum and maximum storage limits for
device .
Charging/discharging efficiency of storage
device .
Capacity limit at time .
Discretized capacity profile including
values of .
Forecast error related to PV generator

at time .
Positive and negative forecast error allocation
coefficients for , .
Power dispatch policy for load
at time , contingent on .
Disutility of load at time

contingent on .
Baseline power deviation penalty coefficient
for , .
Probability measure with support .
Risk metric.
Number of PV forecast error scenarios
extracted according to .
Discrete set including PV forecast error
scenarios.
“Shadow” price associated to scenario set
and capacity limit .
Average “shadow” price associated to scenario
set and capacity limit .
Violation level taking values in .
Confidence level taking values in .
Number of service contracts.
Purchase price ($/KW/year) related to contract

.
Probability of curtailment (hours/year) related
to contract .

I. INTRODUCTION

P OWER systems are one of the most critical infrastructures
in modern society. To ensure reliable system operation,

control services of a different nature need to be provided. This
task has become more challenging due to the increased level of
uncertainty as a result of the increasing penetration of renewable
energy sources. To account for this uncertainty, not only conven-
tional scheduling and regulation problems need to be revisited,
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but also conceptually different modeling and control schemes
have to be designed.
The conventional approaches involve mainly generation side

control. This control method requires adjusting the output of the
generators and includes various operational challenges which
span different time scales [1]. To account for the intermittent
nature of the renewable generation, as well as for other uncer-
tainty sources in the system, research has focused on formu-
lating the stochastic counterparts of the aforementioned prob-
lems. Representative work in this context, including stochastic
reserve scheduling and unit-commitment under security and/or
market constraints, can be found in [2]–[6].
An alternative approach, in a sense dual to generation side

control, is the so-called load side control or demand side man-
agement. While controlled loads offer an additional degree of
freedom when solving regulation or planning problems in the
presence of uncertainty, they can also provide a reliable resource
to the power network without any disruption of service to the
consumers [7], [8]. Toward this direction different approaches
for demand side management have been proposed in the lit-
erature. Following [8], we can distinguish between price and
direct load control. The first approach is based on providing
real-time price signals to consumers [9], which will then re-
spond to those signals by appropriately adjusting their power
consumption level. Such a set-up, however, imposes challenges
related to power system stability [10]. Direct load control offers
an alternative approach for demand side management. Direct
control of devices and appliances in the household such as ther-
mostatically controlled loads, electric vehicles, water heaters,
etc., at an individual or population basis, has attracted signifi-
cant attention in the literature [11]–[18].
Another paradigm, which falls between price and direct load

control, is discussed in [19]. In this framework an aggregator
communicates with a household or a residential area only at the
meter by imposing a capacity constraint, i.e., a restriction on
the aggregated power consumption level within a specific time
frame. Consumers are then free to satisfy this constraint by ap-
propriately adjusting the set-points of the individual household
devices as they choose. This approach is less intrusive than di-
rect load control since it enables consumers to meet their con-
tract obligation in many ways that reflect changes in valuation,
and does not raise stability issues as in price based control [10].
A conceptually similar work, but following a completely dif-
ferent formulation, is presented in [20]. In that paper the authors
provide necessary and sufficient conditions for a supply profile
to be adequate for meeting an energy requirement for an aggre-
gation of consumers. This energy requirement parallels the ca-
pacity constraint we consider in the this paper. Our work is also
complimentary to [21], where the author considers capacity con-
straints from a mechanism design point of view and motivated
by priority of service pricing advancements [22]–[25], proposes
a capacity subscription mechanism to deal with the problem of
matching supply and peak demand.
In this paper we focus on the capacity control paradigm and

formulate the household energy management problem as a disu-
tility minimization stochastic optimization program subject to
the capacity constraint, with stochasticity arising due to local
photovoltaic (PV) power generation (load uncertainty can be
included similarly). To simplify our analysis we first present

our results without including storage devices. We then show
in Appendix A how our framework can be extended to include
storage dynamics as well. Household energy management prob-
lems or mathematically similar formulations have attracted sig-
nificant attention in the literature [26]–[28]. In the same context
and in the presence of a budget constraint that is similar to the
capacity constraint considered here, [29] proposes a Stackelberg
game to deal with the utility revenue and end-user pay-off max-
imization problem.
We build on such models and extend them appropriately so

that they are included in a scenario based stochastic optimiza-
tion set-up, where the computed optimal solution is accompa-
nied with an a-priori probabilistic certificate regarding the sat-
isfaction of the problem constraints. Moreover, instead of using
only open loop decisions (first-stage variables), we introduce
recourse functions of the uncertainty (second-stage variables),
that offer additional degrees of freedom, leading to more op-
timal solutions in terms of cost. We also show that a demand
curve for capacity increments, which consumers can reveal to
the aggregator explicitly or through contract selection, can be
constructed as a by-product of the developed problem. This de-
mand curve can then be used by the aggragator to create de-
mand side offers. We provide a rigorous analysis and construct
an envelope around the demand curve related to the determin-
istic variant of the proposed problem that encloses the demand
curve corresponding to the stochastic problem. To quantify the
disutility due to load curtailment when using the constructed
curve for bidding in the market, we compare our approach with
a real-time market price set-up. We also show how the proposed
scheme can be used to provide guidelines when selecting a ser-
vice contract for load curtailment.
Section II formulates the household stochastic optimiza-

tion program arising under the proposed capacity controlled
demand side management paradigm. In Section III we show
how a demand curve for capacity increments can be con-
structed and provide a pricing analysis in a stochastic set-up.
Section IV includes a simulation based analysis, whereas
Section V concludes the paper and provides directions for
future work. Appendix A shows how the developed framework
can be extended to include storage devices, whereas all proofs
can be found in Appendix B.

II. CAPACITY CONTROLLED DEMAND SIDE MANAGEMENT

A. Problem Statement

Consider a household comprising uncontrollable loads,
controllable loads that will be used to provide demand re-

sponse services and photovoltaic (PV) generators. Note
that in a single household it is more likely to have only one PV
generator, i.e., . However, we consider here multiple
PV units to allow for a more general formulation that is not nec-
essarily limited at a household level, but is applicable to the load
management problem of an entire residential area. Following
[26] we show in Appendix A how to extend our framework to
include storage devices.
We consider a set-up where an aggregator interacts with the

household only at the household meter. Specifically, the house-
hold is subscribed to a capacity limit, that is activated remotely
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by the aggregator. In general, the capacity limit may be con-
tingent on some exogenous state variable defined in the service
contract. Once this capacity limit is imposed, the household is
responsible to optimize the schedule of the individual devices in
the most cost efficient way by adjusting their set-points, while
the aggregator is not involved in this process. These set-points
will then be tracked by some low level controller with which
we assume each device is equipped. Therefore, when computing
the load set-points, the particular consumer type does not need
to be known. For more details on possible implementations of
this paradigm we refer to [19].
Let denote an optimization horizon with unitary steps.

Every steps a capacity limit is imposed, representing a budget
constraint that requires the total net load in the household not to
exceed this limit. Assume that are such that is an
integer, and let be a vector that includes
the capacity limits and will be referred to as capacity profile
for the rest of the paper. Moreover, for each ,

, denotes the power of the uncon-
trollable load in time-step , and is treated as a constant in
our analysis. Similarly, for , ,

denotes the power of the controllable load in
time-step .
For , , let represent

the PV power forecast of generator in time-step . Since
forecasts are in general inaccurate, we will perform a sto-
chastic analysis, taking forecast errors into account. For each

, let be a vector
including the forecast error of each PV unit. Moreover, let

be distributed according to an
absolutely continuous distribution with compact support .
This distribution may be unknown, but we assume that we are
able to extract, or we are provided with, samples from this
distribution (e.g., historical data). The continuity assumption
is only needed in the proof of Theorem 1. Since all forecast
errors for the individual units and the different time-steps, are
collectively included in , spatial and temporal correlation is
respected once a sample is extracted from according to .
We treat the household response to the imposed capacity

limits as a disutility minimization problem, where the objective
is to find the optimal dispatch for the household loads that
minimizes the deviation from a baseline load profile, which
is assumed to be fixed (e.g., it may correspond to the solu-
tion of the deterministic variant of the problem). Specifically,
we seek to determine a load dispatch policy that minimizes

, where is any given risk
metric. For example, it can represent the expected value of its
argument or its worst case value (take ,
where is the first or the Euclidean norm). For ,

denotes the disutility of load .
We consider , to
penalize the deviation of the load dispatch policy ,
whose structure will be defined next, from a baseline load level

, i.e., we assign a penalty to load curtailment.
Coefficient is a penalty factor, possibly different
for each , . Notice that, even not
shown explicitly, depends on the decision variables

that constitute the load dispatch policy
and will be defined in the sequel.

We thus have the following family of problems, parameter-
ized by the uncertainty set and the capacity profile, and we will
refer to each of them as .

(1)

subject to:
1) Capacity Constraint: For each , the total

net load in the household should be restricted to the corre-
sponding element of the capacity profile, for all , i.e.,

(2)

where is the sum of a deterministic component
which is the dispatch of the controllable loads, and two
terms that depend on the uncertain error and are mutually ex-
clusive. Specifically, we assume a piecewise affine control rule,
represented by

(3)

Note that can be thought of as a first stage decision,
whereas can be thought of as the coeffi-
cients of an affine recourse action. In particular, the stochastic
terms imply that if an uncertain error is realized, it should be
allocated to the controllable loads according to the coefficients

, adjusting their set-point . If the total fore-
cast error is positive, the loads should increase their power con-
sumption, while if it is negative they should decrease it. To en-
code this error allocation protocol, we impose the following set
of constraints on the coefficients .
Despite the structural similarities, (2) is a power and not an

energy constraint, imposing a limit on the sum of the net house-
hold power consumption taken over consecutive time steps,
thus offering additional flexibility in satisfying the constraint
compared to a limit on the instantaneous power. Taking ,
(2) reduces to a limit on the net power consumption at every
time step.
2) Allocation Constraints: For each , the allo-

cation coefficients should satisfy

(4)

which imply that they should be positive and sum up to one. The
positivity of the allocation coefficients is required only in the
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proof of Proposition 2. If constructing a “shadow” price enve-
lope is not desirable, we could allow the allocation coefficients
to be also negative, since this may lead to more profitable solu-
tions for some choices of the objective function.
3) Controllable Load Limits: For each ,

, the set-point of each load together with its adjustment
in case of a forecast error should satisfy

(5)

where is given by (3) and characterizes
the flexibility margins of each load. Note that we only allow
loads to be curtailed compared to the baseline profile; flexibility
in increasing load consumption from the baseline level can be
modeled analogously.
Problem , given by (1)–(5), is a con-

strained minimization problem. Since we do not have coupling
constraints between consecutive time-steps, we could con-
sider and solve the optimization problem for every
steps in parallel. This can also simplify the averaging procedure
of Section III-A; this is not the case, however, if we include
storage dynamics as in Appendix A.
Note that loads are typically fluctuating, therefore, for a

more realistic model we could represent them by stochastic
processes, i.e., superimpose to a stochastic term. This
could be easily included in the proposed framework. Given
any stochastic time-series model for the load consumption or
availability of historical data, we could treat load stochasticity
in a similar manner as stochasticity in PV power and generate
scenarios (see Section II-B) for the load uncertainty error as
well. However, it should be noted that since the uncertainty
error due to load fluctuations is typically smaller that the error
in PV power production, it is reasonable to assume that the
former is dominated by the latter, thus justifying our choice to
represent as a deterministic quantity.
It should be also noted that in practice loads change their

consumption in discrete amounts and cannot be controlled con-
tinuously. This is in contrast with our formulation where, fol-
lowing [9], [14], [20], and [26], we assume load curtailment
to be a continuous action. To implement the resulting dispatch
policy, a “closest neighbor” approximation could be employed,
dispatching each load to the value among the discrete set of ad-
missible dispatches that is closer to the solution of the proposed
program that involves continuous decisions. The more loads are
included in the aggregation, the less frequent it will be for such a
scheme to result in feasibility or optimality issues, since the ap-
proximation errors would average out among the different loads.

B. Problem Reformulation
By inspection of (2) and (4), it can be shown that

is equivalent to a problem that involves
minimizing the same objective function (1) subject to (3)–(5),
but with the uncertain capacity constraints being replaced by
deterministic constraints.
Proposition 1: Problem is equivalent to a

problem that involves minimizing (1) subject to (3)–(5) and

(6)

Note that the introduction of the allocation coefficients, which
are crucial for the proof of Proposition 1, is inspired by the
analysis of [6], where such coefficients were introduced to al-
locate the generation-load mismatch among the various gener-
ating units. Proposition 1 parallels the fact that in [6], only a
deterministic power balance constraint has to be imposed.
Problem is then given by (1)–(5), with

(2) replaced by (6). However, (5) should be satisfied for all
. may be an infinite set, rendering a

semi-infinite optimization program, which is not easy to solve
in general. Therefore, we relax (5) and impose the load limit
constraints not for every , but for any

, where is a discrete set containing identi-
cally and independently distributed realizations of the uncertain
error. This gives rise to a linear program with constraints that
should be satisfied only for a finite number of uncertainty sce-
narios. Due to the decoupled structure of the problem, for any

, it suffices to enforce (5) only for the extreme
values of , among the samples in . Moreover,
the risk metric is substituted by .
The resulting family of optimization programs can be de-

noted as . We assume throughout the paper
that is feasible, its feasibility region has
a non-empty interior, and it admits a unique optimal solution.
Fix and extract

samples to construct . Following [30], with
confidence at least , the minimizer of
satisfies (3)–(6) with probability at least . This implies that
we can accompany our solution with an a-priori (probabilistic)
certificate regarding the satisfaction of the system constraints.
The sample size bound scales logarithmically with respect

to , which implies that we can select very close to zero (
in the example of Section IV) without an unaffordable

increase in the number of samples that need to be extracted.
Therefore, the feasibility statement can be provided with confi-
dence close to one. Note that the number of samples that need
to be extracted for the aforementioned probabilistic feasibility
statement to hold, depends linearly on the total number of un-
certain variables due to [30]. Other sample size bounds
can be used as well [31], [32].

III. PRICING ANALYSIS

A. Demand Curve for Capacity Increments
In Section II-B, we formulated a family of problems

parameterized by and .
For any given capacity profile, provides
the load dispatch that minimizes the total load disutility. For
each , the dual variable associated with each
constraint in (2) shows the effect in the disutility of an incre-
mental change in . Let denote this
dual variable. Variable should be interpreted as a
“shadow” price. This intuitive interpretation is due to the fact
that we have uncertainty independent capacity constraints, as
an effect of the use of the allocation vectors. This is in contrast
to other stochastic scheduling approaches that introduce a dif-
ferent set of decision variables (increasing on the same time the
computational burden) and enforce different constraints in the
form of (6) per uncertainty sample. This results in a different
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dual variable per sample and it is then unclear which of them
(or their expected value) should be selected as “shadow” price.
In the proposed framework, we assume that participation of

retail customers in the day-ahead and real-time market is han-
dled through a third party aggregator or through the retail sup-
plier by offering customers load control contracts that allow the
aggregator or retail supplier to bundle contracted load control
options at the retail level into wholesale demand response prod-
ucts that can be offered into the wholesale markets as day-ahead
energy, real-time energy or ancillary service products. We do
not consider injection by consumers into the grid and local PV
power is only assumed to meet local consumption. Under this
set-up, we aim at constructing a demand curve that will then be
revealed to the aggregator. The revelation of the demand curve
to the aggregator is implicit through a mechanism that invokes
the revelation principle [33]. The mechanism design is outside
the scope of this paper, but the core idea is that the demand curve
will be revealed by the consumer through the selection of a con-
tract for each load increment out of a menu of contracts offered
by the aggregator. According to the revelation principle, such an
indirect mechanism is equivalent to direct revelation and hence
its performance can be analyzed as if the consumers directly re-
vealed the demand function to the aggregator.
Consider the vector containing a finite number of

values that may take as an effect of some discretization
process assuming for example a uniform grid over the possible
values of with discrete points, and construct the
different capacity profiles that may occur. For each of them, we
solve and record . For
each distinct value of , average among the recorded dual
variables that correspond to this capacity value and denote by

the resulting average dual variable. Since every
steps are decoupled, it suffices to consider here only the

profiles for which the capacity limit is constant across the opti-
mization horizon to , .
The quantity is based on the forecast and PV

power error values for a given optimization horizon. We can
repeat the entire process for different PV power forecasts
and error realizations, and then compute the average among
all . With a slight abuse of notation, in the se-
quel, we use the same symbol to represent the
resulting average quantity. Note that there are two different
averaging procedures involved: the first is when constructing

from , and the second is
when averaging among the “shadow” prices of problems that
correspond to different PV power forecasts. The latter can be
thought of as averaging among different representative days in
a given time frame.
Therefore, corresponds to an average “shadow”

price according to which the aggregator will bid for supplying
load reduction in the wholesale day-ahead market. Having

as a function of , for each
and for the numerical values of Section IV, we can com-
pute the demand bidding curve as shown in Fig. 1 (solid
line), which as expected is non-increasing. Notice that, due
to the complementarity slackness optimality condition for

, having non-zero “shadow” prices implies
that the corresponding capacity constraints are binding. This is
expected due to the structure of .

Fig. 1. Demand curve for the stochastic problem (solid line); demand curve
for the deterministic problem (dashed line); demand curve envelope (shaded
region), inside which the deterministic and stochastic curves are confined to lie.

B. Stochastic vs. Deterministic “Shadow” Prices

The “shadow” price , , is related
to the dual variables associated with the capacity constraints
(2). Even though these constraints are deterministic (Proposi-
tion 1), the dual variables depend on the uncertainty since (2)
and (5) are coupled through the decision variables. Therefore,
if we consider the deterministic counterpart
of , we get different “shadow” prices

, and hence a different demand curve. This
deterministic curve is shown in Fig. 1 (dashed line).
Determining how different the stochastic and the determin-

istic curves are is not straightforward. We construct an envelope
around the deterministic curve, inside which the stochastic one
is confined to lie. To this end, let be constructed from
such that for any sample , , any element

of is replaced by . Define similarly,
with replaced by . That way, , have
only non-negative and non-positive elements, respectively.
Let and be the cor-
responding dispatch problems and ,
the associated “shadow” prices computed according to the
averaging procedure of the previous subsection, when is
substituted with and , respectively.
Proposition 2: For any and

(7)
(8)

Proposition 2 shows that the “shadow” price corresponding to
(6) for problems in the form of is monotone
with respect to the uncertainty error. In particular, if we expect
that the uncertain error will only increase ( ) or will only
decrease ( ), then the demand curve should be shifted
towards the left and right, respectively. If or is empty,
then the corresponding “shadow” price coincides with the one
of the deterministic problem. The price envelope is depicted in
Fig. 1 and its boundaries correspond to the cases where
and (if the uncertain error was bounded, the enve-
lope boundaries would correspond to the error extrema). Since
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“shadow” prices depend on the uncertainty, the computed enve-
lope shows how an uncertain error is translated in the “shadow”
price domain. Whether , , is lower
or higher than cannot be decided a priori and de-
pends on the maximum value of among the ,

, indices that correspond to inactive constraints.
A direct consequence of the proof of Proposition 2, is that

the “shadow” price in the stochastic set-up will be equal to the
“shadow” price of the deterministic one only if the maximum
value admitted by among the indices of the inactive
constraints is the same in both problems. This is due to the fact
that the dual variable of each capacity constraint is equal to the
maximum value attained by the penalty factor among all

indices that correspond to inactive constraints (see proof
of Proposition 2). Our analysis depends on the structure of (5),
where the uncertainty appears multiplied by the allocation co-
efficients [see (3) and (5)], which all have the same sign due to
(4); the validity of these results for other problems needs further
investigation.
The economic interpretation is that if the error is expected to

be non-negative (similarly for negative error), the total power
consumption level is expected to increase, and hence the prices
will be lower, as if we had a problem with a capacity limit higher
by the amount of the forecast error. Then the expectation about
the evolution of prices changes compared to the deterministic
case. Therefore, for a given “shadow” price, the consumers are
willing to purchase a lower quantity, leading to a shift in the
demand curve towards left.
To generalize this statement, we quantify the probability

with which the computed envelope remains unchanged if a new
sample is realized. This can be though of as a probabilistic
sensitivity analysis. Consider and
let , be the associated “shadow” prices. To
simplify the statement of the following theorem, assume that
the aforementioned “shadow” prices correspond to the exact
dual variables and are not average quantities.
Theorem 1: Assume that is any absolutely contin-

uous probability measure. Fix . If
, then for

all , with confidence at least ,
with

probability at least , i.e.,

(9)

denotes the product probability measure. Theorem 1
offers a probabilistic sensitivity analysis. The interpretation is
that for a sufficiently high number of scenarios , with confi-
dence at least , the “shadow” price
that we would obtain by appending one additional uncertainty
realization in our scenario set would lie in the envelope

that is constructed using only the
scenarios of with probability at least . In particular,

as shown in the proof of Theorem 1, with certain confidence,
an additional realization leaves the “shadow” price unchanged,
i.e., , with probability at

least . As we can claim that, with confidence one,
almost

surely. On the contrary, if or , then the outer
or the inner statement, respectively, in (9) would hold with
probability zero, making the conclusion of Theorem 1 trivial
and hence of no practical use. Typically, one selects and to
be close to zero; in particular, can be set to very small values
since it appears inside the logarithm in the sample size bound of
Theorem 1 (see also the discussion at the end of Section II-B ).
If were average quantities, com-

puted based on a finite number of “shadow” prices, the result of
Theorem 1 would hold with the following modification: Since
for every individual “shadow” price that contributes in the av-
erage, (9) would be satisfied with possibly different and , (9)
would also hold for the average “shadow” prices with and
replaced by the sum of the individual .

C. Gap Between the Semi-Infinite and the Sampled Program
The average dual variables , have a

“shadow” pricing interpretation for , how-
ever, it is not straightforward how they are related to the dual
variables of the semi-infinite program .
Let , be the dual of
the sampled and the semi-infinite program, and denote by

and the optimal primal and dual objective
values of the sampled and semi-infinite program, respectively.
If Slater's condition [34] holds for ,

then for both the semi-infinite and the sampled program we
have zero duality gap. The latter implies that the dual vari-
ables of each problem have a “shadow” price interpretation.
However, the solution of is not nec-
essarily such that , thus implying that the gap
between and the semi-infinite problem

might not be zero. Theorem 2 shows that
for a sufficiently high number of samples , with certain
confidence, the gap between and approaches zero as

(i.e., ), and remains bounded by a pre-specified
threshold if the number of samples is finite. This supports the
fact that we interpret as “shadow” prices.
Theorem 2: Assume that Slater's condition holds

for . Fix . If
, then with confidence

at least , , i.e.,

(10)
where is such that and is given in [35,
Theorem 3.6].
Note that as , then the gap belongs to

almost surely, whereas as the probability that
is zero. For a given confidence , as

, then , implying that the gap between the
semi-infinite and the sampled program tends to zero, i.e.,

. On the other hand, as , then , and the
result of Theorem 2 becomes trivial and hence of no practical
use.
The proof of Theorem 2 follows from [35] and the duality

analysis for semi-infinite programs of [36]. Typically, the de-
pendence of on is exponential in the number of uncer-
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Fig. 2. PV power output for four representative days. For each day, the solid
line corresponds to the forecast, whereas the shaded lines show the forecast plus
the forecast errors.

tainty variables , thus increasing rapidly the number of
samples that need to be extracted for a given to keep
small enough.

IV. SIMULATION STUDY
We consider the problem described in Section II with
, and . The planning horizon was chosen to
be and we assumed that the capacity limit is commu-
nicated every steps. Every step of the planning horizon
corresponds to a 15-min interval, which implies that the capacity
profile has granularity of one hour. Note that our choice for the
optimization horizon (i.e., considering the first 8 h and not the
entire day) is motivated by the fact that after that time uncer-
tainty vanishes, so the solution of our formulation approaches
the one of the deterministic variant of the problem, and it is
not due to computational limitations. The risk metric in (1) was
chosen to be the worst case metric based on the first norm.
For the sake of this study, we selected from a uniform
distribution in the interval . To compute ,

, we selected values starting from 1250
KW with granularity of 10 KW, and averaged (see discussion in
Section III-A) across four representative days in the course of
one summer month. For each day, the forecast (solid line) and
the forecast plus errors (shaded lines) are shown in Fig. 2. The
forecast values correspond to normalized data taken from [9].
The PV power output is zero during the hours of no irradiation.
Following [37], to generate forecast error time series for the

PV power output, we simulated the stochastic process

(11)

with , until the time-step that corresponds to the peak
power production in Fig. 2. After that time, we assumed that the
error follows a mirrored pattern so that it degrades until the time
of zero production. Variable is extracted from a normal
distribution with zero mean and standard devia-
tion. In case of multiple PV units, ,
could be extracted from a multivariate normal distribution to
take into account spatial correlation as well. The op-
erator is introduced to ensure that the forecast power plus the

generated error does not take negative values. A more involved
time-series model, based for example on regression or Markov
chains, is outside the scope of this paper. The number of sam-
ples we generated was according to Theorem 1, for
and .
All simulations were carried out using the solver LINPROG

(all the resulting scenario based optimization problems are
linear programs) under the MATLAB interface YALMIP [38].

A. Comparison With a Real-Time Market Price Set-Up
We assume that the demand curve constructed in

Section III-A is revealed to the aggregator through some mech-
anism and is used by the aggregator to bid for load reduction
in the day-ahead market. For a given day-ahead market price
signal (with granularity of one hour), the disutility due to load
curtailment [i.e., ]for
each hour is related to the point on the vertical axis in Fig. 1 that
corresponds to this price value along the solid line. This point
is a specific capacity limit. Since was
parametric with respect to the capacity profile, similarly to the
way we computed the average prices , we
can compute the average disutility that corresponds to each

, , and then perform linear interpolation
to compute the disutility and any specific capacity limit. Fol-
lowing this procedure we can construct the curve shown in
Fig. 3, which shows the average disutility that corresponds to
each of the “shadow” prices in Fig. 1. As expected, the higher
the “shadow” price, the higher is the disutility due to load
curtailment.
To compare the disutility due to load curtailment that oc-

curs when using our capacity control approach, we used as a
benchmark a set-up where the loads in the household respond
directly to real-time market prices. In other words, the set-point
of each device is adjusted dynamically so that the marginal disu-
tility is equal to the real time price. To formulate this real-time
price tracking problem, consider the following deterministic op-
timization program:

(12)

(13)

Note that the second term in (12) corresponds to the load
disutility evaluated at , unlike the objective function of

where a risk metric was employed due to
the presence of uncertainty. Constraint (13) is the deterministic
variant of (5). Parameter corresponds to the value of the
real-time market price signal at time-step . Once problem

is solved, we can compute the disutility ,
, evaluated at the resulting optimal solution. By

inspection of , some fraction of load will be curtailed at
time-step only if .
The real-time market price signal used corresponds to nor-

malized data, taken from [39] for the period May 1–28, 2014
with granularity of 15 min. The day-ahead market price signal
is constructed by averaging across the real-time one for the same
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Fig. 3. Average disutility due to load curtailment vs. “shadow” price.

Fig. 4. Day-ahead (solid line) and real-time (shaded line) market price signals
for the period May 1–28, 2014.

period but for different years; since we are interested in the disu-
tility per hour we also averaged among the intra-hour values to
determine an hourly profile. The market price signals are shown
in Fig. 4; the solid line indicates the day-ahead market price
signal and the shaded line the real-time one.
Fig. 5 shows the resulting disutility due to load curtailment

for the proposed approach (solid line) and the real-time price
set-up (shaded line). The expected disutility (averaged across
all hours of the price profiles) is $1042.2 when using capacity
controlled and $912.8 for the case where real-time prices are
employed, i.e., 14.2% higher disutility. The difference in disu-
tility between the two approaches is a measure for the efficiency
loss due to the hierarchical nature of the capacity controlled de-
mand management concept. A moderate difference implies that
the proposed approach offers an efficient alternative to real-time
price control, without raising stability issues [10], and while of-
fering the consumers the possibility to select a demand response
contract (see Section IV-B). Notice that the disutility due to load
curtailment follows closely the market price patterns of Fig. 4.
For the rest of this subsection, we validate, for a confidence

level , the statement in (9) empirically (without av-
eraging the “shadow” prices; see also discussion below The-
orem 1). To achieve this, for a given , we performed 10 000
Monte Carlo simulations corresponding to different realizations

Fig. 5. Average disutility due to load curtailment for the proposed capacity
controlled demand side management (solid line) and the real-time (shaded line)
price set-up.

. For each , the empirical probability that
can be then

computed as the number of simulations out of the 10 000 runs
for which the inclusion constraint is satisfied. We found out that
this empirical estimate is 0.987 (it turned out that for this set-up
this is the same for all ), which is higher compared
to the theoretical value , implying that the bound
in (9) is conservative. The bound in (10) is only of theoretical
value and cannot be validated numerically, since the semi-infi-
nite problem is not solvable.

B. Selection of a Service Contract

Assume that the aggregator offers a portfolio of a finite
number of annual contracts, each of them being a pair of a
price ($/KW/year) that the consumer should pay to purchase
the contract, and a probability of curtailment as (hours/year).
Consider a portfolio with contracts . To select
the most profitable one, the consumer can use the information
provided by the demand curve.
To achieve this, consider a quantization of the demand curve

as shown in Fig. 6. All capacity increments have the same
width and are centered on the points . Inspecting
the quantized demand curve, a specific capacity increment
corresponds to some , which shows the change in
disutility due to an incremental change in the capacity limit.
The consumer will assign a specific power increment to the
contract that results in the minimum disutility
due to load curtailment per KW/year. For each ,

, this is given by . Therefore,
for a given capacity increment, the index of the most profitable
contract in the portfolio is given by

(14)

where it is assumed that there is always a unique contract for
which the minimum is achieved. The first term in (14) is the cost
of purchasing a contract, whereas the second one represents the
cost of load curtailment per KW.
To illustrate this problem, we analyze a set-up similar to the

one provided in [19]. To this end, assume that the aggregator
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Fig. 6. Quantized demand curve for the stochastic set-up. The solid line is the
one of Fig. 1.

TABLE I
CONTRACT PORTFOLIO OFFERED BY THE AGGREGATOR, COMPRISING PAIRS

OF PURCHASE PRICES AND PROBABILITIES OF CURTAILMENT

TABLE II
TOTAL DISUTILITY PER KW/YEAR. THE MOST PROFITABLE CONTRACT

CORRESPONDS TO THE BOLDFACE ENTRY

offers the contract portfolio shown in Table I with . Con-
sider six arbitrarily selected capacity limits. For each of them,
associate a “shadow” price by means of the demand curve in
Fig. 6. These prices are reported in the left column in Table II.
Alternatively one could report the associated capacity limits;
however, the reason we show the prices is that, together with
Table I, they provide the necessary information to calculate the
entries of Table II. In fact, these entries correspond to the total
disutility per KW/year incurred, i.e., ,

, where takes the values shown in
the left column of Table II. With boldface, we show for each
capacity limit the values that correspond to the most profitable
contract choice. Using this information, for a given capacity in-
crement (corresponding to some row of Table II), the consumer
can select the preferable contract.

V. CONCLUSION
In this paper, we considered a capacity control paradigm

for demand side management. We formulated the household
energy management problem as a stochastic optimization pro-
gram, quantified the expected disutility due to load curtailment
compared to a real-time market price set-up and constructed
a probabilistic envelope around the “shadow” prices of the

deterministic variant of the problem inside which the “shadow”
prices of the stochastic one are confined to lie.
Current work concentrates on enhancing our framework with

more involved load dynamics and deferral possibilities. More-
over, since the proposed load management optimization pro-
gram is parametric with respect to the capacity limits, future
work involves selecting themwithin the optimization process by
treating them as decision policies, dependent on the underlying
uncertainty. Despite the fact that the pricing analysis presented
in this paper was related to load side management, it is also ap-
plicable to generation dispatch problems without network con-
straints. Current focus is to investigate the validity of our pricing
analysis in a stochastic, nodal pricing set-up, providing confi-
dence intervals for the locational marginal prices.

APPENDIX A
INCLUDING STORAGE DEVICES

We enhance the set-up of Section II-A by including
storage devices. To model the dynamics of each device, we
follow the formulation of [26]. Let be the level
of stored energy and be the power exchanged
with the storage device at time .
The evolution of the energy content of each storage device

can be modeled by the following discrete time
dynamical system:

(15)

with (i.e., storage devices start from a zero energy
content) for . Parameter denotes a
constant stored energy degradation within each interval of evo-
lution, whereas is the charging/discharging efficiency
of each device. Following [40], we use the same efficiency for
charging and discharging to simplify the exposition of this sec-
tion. In case different efficiencies are considered, logical con-
straints need to be introduced, giving rise to integer variables
[26]. The resulting problem would then be a mixed integer opti-
mization program; the analysis of Section III would still be ap-
plicable with a few modifications. In particular, the number of
integer variables would appear additive to in the sample
size bounds of Theorems 1 and 2 (see also [35]).
The household energy management problem of

Section II-A would then involve minimizing (1) with
respect to the decision variables of and

, subject to (2) – (5), the storage dynamics
(15) and possible limits on the energy of each device

, for , . The only
modification is that the term should be added
inside the outer summation in the left-hand side of (2).
Even though introducing storage dynamics in the load energy

management problem is straightforward, it poses challenges
when following the averaging procedure of Section III-A. The
reason is that now every consecutive steps in the optimiza-
tion problem are coupled due to (15), therefore to compute
a demand curve different capacity profiles need to be
constructed and for each of them the optimization problem
outlined above has to be solved. In principle, if sufficient
resources are available these problems can be solved in parallel
and be allocated to different processors. In this paper, however,
to get an estimate of the disutility due to load curtailment we
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introduce the simplifying assumption that the capacity limit
remains constant over the entire optimization horizon. This
implies that we only need to consider capacity profiles, one
for each value of .
We revisited the study of Section IV-A including

storage devices, and compared the capacity control approach
with the real-time price set-up in terms of disutility due to load
curtailment. The proposed approach resulted in 19.1% higher
disutility compared to the case where curtailment occurs in re-
sponse to real-time prices. Including storage devices offers ad-
ditional degrees freedom, hence the optimal objective value of
the associated problem (and also the one of the dual problem due
to strong duality) is lower compared to the one where no storage
dynamics are considered. This is not necessarily the case, how-
ever, with the resulting disutility calculated according to the de-
mand curve construction of Section III-A, which may be higher
compared to the case where no storage devices are included.
This is due to the averaging procedure of Section III-A, where
we average among “shadow” prices that correspond to the ca-
pacity constraints of every consecutive steps. These consecu-
tive steps are coupled via the storage dynamics leading to an
objective for the dual problem that involves a weighted sum of
the “shadow” prices that correspond to the capacity constraint of
every steps. To compute the average quantities, however, we
use the sum of the “shadow” prices corresponding to the con-
secutive steps, which, unlike the optimal dual objective value
(it includes a weighted sum of the “shadow” prices instead), is
not necessarily lower compared to the case where no storage is
included. If we did not perform this averaging step the resulting
disutility would always be lower in the case where storage dy-
namics are considered.

APPENDIX B
PROOFS

Proof of Proposition 1: The proof follows from the anal-
ysis of [6]. It suffices to show that (6) emanates from (2) and
(4). Since the last two terms in (3) are mutually exclusive, as-
sume that the first one is nonzero. In the opposite case the proof
is analogous. Substituting (3) in (2), for

(16)

Since due to (4), the terms that involve the
uncertainty in (16) cancel out. The resulting inequality is the
one given in (6), concluding the proof.

Proof of Proposition 2: 1) We only show that
; the proof that

follows symmetric arguments. The deterministic
variant of (5), which affects , would be

(17)

If we consider , (5) is enforced for all
. By rearranging some terms, for all , we have that

(18)
Since any feasible is non-negative and ,
(18) implies that for all , and any , the
upper bound of can only be tighter compared to (17).
Notice that, either if we use the expected or

the worst-case value, is such that every
term in (1) is of the form

. We show
that, for any , if a constraint (in the sense of
indices) that at the optimal solution of was
active/binding at the upper limit of (17), then it will remain
active at the upper limit of (18) at the optimal solution of

. Note that is feasible
due to the assumption stated at the end of Section II-B.
To see this, assume for the sake of contradiction that at

the optimal solution of , some of the
constraints that at the optimal solution of
were active at the upper limit, become inactive or are active
at the lower limit. Here we assume that the set of constraints
that are active at the upper limit of is
non-empty. In the opposite case, the proof is analogous. The

indices of the constraints that are active at the upper
limit for correspond to the highest ;
otherwise the corresponding terms
would be strictly positive, thus increasing the objective value.
Therefore, if some of these constraints become inactive for

, then for any , and hence also for
the optimal one,
would be higher compared to a solution where all of them
remain active at the upper limit. Consider a new solution using
the same , and by appropriately adjusting

so that all constraints that were active at the upper
limit remain active. Due to the fact that the capacity limits in
(6) are “budget” type of constraints, the constructed solution
is ensured to be feasible. Since we used the same allocation
coefficients, is the same for
both solutions, implying that the new solution can only have a
lower objective value, thus violating the optimality hypothesis
and establishing a contradiction.
Therefore, all constraints that were active at the upper limit

for , remain active for .
Hence, the number of constraints that at the optimal solution
of are active at the upper limit, is higher
than or equal to the one of . Moreover, fol-
lowing an analysis similar to [41], we can show via the Karush-
Kuhn-Tucker (KKT) optimality conditions that, for each

, the dual variable associated with (2) is equal to the
penalty coefficient , with , , being
the indices of the inactive constraint with the highest . This
is similar to the fact that, in case of a linear objective function
and for an uncongested, lossless network, the locational mar-
ginal price is determined by the marginal generator with the
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lowest cost [41]. The difference is due to the fact that, in con-
trast to the generating units in [41], appears with a nega-
tive sign in the objective function.
Since it was shown that more constraints may be active at the

upper limit in , and the ones that are active
are always those with the highest , the value of and
hence the dual variable of (2) in cannot
exceed the one of . Since ,

are average values of these quantities, the last state-
ment implies that and concludes
the first part of the proof.
2) Consider . For each ,

, may be either positive or negative, since not
necessarily all error samples have the same sign. For each

, consider the sign of for the sample
for which it achieves its maximum absolute value, i.e.,

the sign of the worst-case error per time-step. In fact, it suffices
to enforce the constraints only for these worst-case errors and
not for all samples. If this sign is positive, then more con-
straints may be active at the upper limit of compared to

, otherwise fewer constraints may be active.
In any case, the maximum absolute value of can

only be lower (since the individual samples may have opposite
signs) from the case where or . Therefore,
in we tighten either the upper or the lower
constraint limit compared to but by a smaller
amount compared to the cases where and ,
respectively. From the first part of the proof, we then have that

, thus concluding
the second part of the proof.

Proof of Theorem 1: By [30], if
, then for all , with confidence

at least , a new sample would give rise to a con-
straint, for which the optimal solution of
would be strictly feasible with probability at least . Strict
feasibility is ensured since, due to the continuity assumption for
, if the constraints that are affine with respect to the uncertainty

are active, they would form a lower dimensional manifold in the
uncertainty space. The latter implies that for any , the prob-
ability of belonging to this manifold, thus giving rise to
an active constraint, is of measure zero.
Due to the complementarity slackness condition [34], with

confidence at least , the dual variable associated with the
new constraint would be zero with probability at least and
hence the dual variable associated with the capacity constraint
remains unaffected, i.e.,
(it was assumed that these are not average quantities). The last
statement can be equivalently written as

(19)

By Proposition 2, for any ,
. The last statement, together

with (19), leads to (9) and hence concludes the proof.

Proof of Theorem 2: is an infinite
dimensional optimization program (it involves optimizing with
respect to all positive valued functions of the uncertainty) [36],
as the dual of a semi-infinite one. On the other hand, for any

, has a finite number of dual
variables, corresponding to the samples in . We can then
construct a function of the uncertainty as the weighted sum of
dirac functions located at the samples with weight coefficients
equal to the value of the dual variables (see also [36]). Clearly
the constructed function will be a suboptimal solution for

, since the latter involves optimizing over
positive valued functions with a generic dependence on the
uncertainty. Therefore, for any , .
Under Slater's condition [34] there is zero duality gap be-

tween and , and hence
also between the scenario based programs
and [36]. The latter implies that for all

, and . Therefore

(20)

Moreover, under Slater's condition and the feasibility assump-
tion for (see discussion at the end of
Section II-B), it is shown in [35, Theorem 3.6] that

(21)
for some function such that . Statements
(20) and (21) lead to (10) and conclude the proof.
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