
2258 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 8, AUGUST 2014

On the Road Between Robust Optimization and the
Scenario Approach for Chance Constrained

Optimization Problems

Kostas Margellos, Paul Goulart, and John Lygeros

Abstract—We propose a new method for solving chance constrained
optimization problems that lies between robust optimization and scenario-
based methods. Our method does not require prior knowledge of the
underlying probability distribution as in robust optimization methods,
nor is it based entirely on randomization as in the scenario approach.
It instead involves solving a robust optimization problem with bounded
uncertainty, where the uncertainty bounds are randomized and are com-
puted using the scenario approach. To guarantee that the resulting robust
problem is solvable we impose certain assumptions on the dependency
of the constraint functions with respect to the uncertainty and show
that tractability is ensured for a wide class of systems. Our results lead
immediately to guidelines under which the proposed methodology or the
scenario approach is preferable in terms of providing less conservative
guarantees or reducing the computational cost.

Index Terms—Chance constrained optimization, randomized algo-
rithms, robust optimization, scenario approach.

I. INTRODUCTION

Robust optimization has attracted increasing attention due to its
ability to offer performance guarantees for optimization problems
in the presence of uncertainty. Robust control design requires the
construction of a decision such that the constraints are satisfied for
all admissible values of some uncertain parameter. For such problems,
[1]–[4] provide conditions under which the robust variants of standard
programming problems are tractable.

An alternative approach is to interpret robustness in a probabilistic
sense, allowing for constraint violation with a low probability. This
gives rise to chance-constrained optimization problems [5], that, aside
from a few special cases [6], are computationally intractable since they
require the computation of multi-dimensional probability integrals. To
overcome this difficulty, [3], [7] follow a different approach; a robust
problem with bounded uncertainty is solved, where the uncertainty
bounds are chosen based on certain assumptions on the probability
distribution.

Randomization of uncertainty offers an alternative way to provide
probabilistic performance guarantees, without assumptions on the
probability distribution (see [8]–[14] and references therein). Typi-
cally it involves sampling the uncertainty and substituting the chance
constraint with a finite number of hard constraints, corresponding to
the different uncertainty realizations. To provide probabilistic guaran-
tees based on a finite number of samples, [15]–[18] concentrate on
problems that are convex with respect to the decision variables and
introduce the so called scenario approach.
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The number of samples required to achieve certain probabilistic per-
formance grow linearly with the number of decision variables. In view
of reducing the sample size we propose here a hybrid methodology,
which does not rely entirely on randomization as in the case of the
standard scenario approach, nor does it require knowledge about the
uncertainty probability distribution or ad-hoc truncation as in standard
robust methods. As in [3], a robust problem with bounded uncertainty
is solved, but the uncertainty bounds are computed using the scenario
approach. That way we do not require convexity to provide probabilis-
tic guarantees on the constraint satisfaction, but the resulting robust
problem needs to be solvable. To guarantee this we impose certain
assumptions on the dependency of the constraint functions with respect
to the uncertainty and show that tractability is ensured for a wide class
of systems. The number of scenarios that must be generated in our
case, however, does not depend on the number of decision variables as
in the scenario approach, but rather on the dimension of the uncertainty
vector or the number of constraints. This fact leads to guidelines under
which each of the methods, when applicable, is preferable in terms of
providing less conservative guarantees or reducing the computational
cost. We also investigate the performance of our approach against the
so called sampling-and-discarding approach [18], [19].

In Section II we recall the standard scenario approach, whereas in
Sections III and IV we introduce our alternative methods. Section V
compares the proposed approaches with the scenario approach and
discusses different alternatives, whereas Section VI summarizes our
results.

II. PROBLEM DESCRIPTION

Consider the chance constrained optimization problem

min
x∈Rnx

J(x)

subject to : P

(
δ ∈ Δ | max

j=1,...,nm

gj(x, δ) ≤ 0

)
≥ 1− ε (P1)

where δ ∈ Δ ⊆ R
nδ , J : Rnx → R, and gj : Rnx ×Δ → R for all

j = 1, . . . , nm. Any x satisfying the chance constraint of P1 is re-
ferred to as an ε-level feasible solution. It is assumed that Δ is endowed
with a σ-algebra D, that P is a probability measure defined over D, and
that for all x ∈ R

nx , every gj(x, ·) is measurable with respect to D and
the Borel σ-algebra over R.

The standard scenario approach [15] substitutes the chance con-
straint in P1 with a finite number of hard constraints, each corre-
sponding to a different realization δ(k), k = 1, . . . , N of the uncertain
parameter δ, extracted according to P. This leads to

min
x∈Rnx

J(x)

subject to : max
j=1,...,nm

gj
(
x, δ(k)

)
≤0, for k = 1, . . . , N. (P ′

1)

Assumption 1: The optimization problem P ′
1 is feasible for all

possible multi-sample extractions (δ(1), . . . , δ(N)) ∈ ΔN and its fea-
sibility region has a non-empty interior. Moreover, the solution x∗ of
P ′

1 exists and is unique.
Note that both the uniqueness [15] and feasibility [18] conditions

can be relaxed, so Assumption 1 serves only to streamline the presen-
tation of our results. Under Assumption 1, for a given violation level
ε ∈ (0, 1) and confidence β ∈ (0, 1), select N according to

n−1∑
k=0

(
N

k

)
εk(1− ε)N−k ≤ β (1)
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with n = nx. Equation (1) requires that the tail of a binomial distri-
bution is bounded by the desired β, and is tight for the class of fully
supported problems.

Theorem 1. ([16, Th. 1]): Under Assumption 1, if J(·) is convex
and gj(·, δ), j = 1, . . . , nm, is convex for every δ ∈ Δ, and N is
selected according to (1) with n=nx, then the optimal solution x∗

of P ′
1 is an ε-level feasible solution for P1 with probability at

least 1− β.
Assumption 1 is trivially satisfied in the cases in which we will in-

voke Theorem 1 below. If Ṽ (x)=P(δ∈Δ|maxj=1,...,nm gj(x, δ)>
0) denotes the probability of constraint violation, then Theorem 1
implies that PN ((δ(1), . . . , δ(N)) ∈ ΔN |Ṽ (x∗) ≤ ε) ≥ 1− β, where
P
N is the product probability measure.

III. METHOD 1: UNSTRUCTURED CONSTRAINTS

A. Formulation

The main idea of our work is to focus first only on the uncertainty
and solve a random program that returns a set B∗ that, with certain
confidence, encloses a predefined portion of the probability mass of
the uncertainty. We then solve the robust counterpart of P1 where
the uncertainty δ is now confined in B∗. We will construct B∗ as
a hyper-rectangle with outward normals aligned with the canonical
basis vectors in R

nδ . To this end, define constants εi ∈ (0, 1) for
i = 1, . . . , nδ , such that

∑nδ

i=1
εi = ε. We seek element-wise bounds

τi := (τ i, τ i) ∈ R
2 such that δi ∈ [τ i, τ i] with probability at least

1− εi, where δi ∈ R denotes the ith element of the uncertainty vector
δ. Therefore, we consider the family of problems

min
τi∈R2

(
τ i − τ i

)
subject to : P

(
δ ∈ Δ | δi ∈ [τ i, τ i]

)
≥ 1− εi. (P2)

The problems in P2 trivially satisfy Assumption 1 (in particular they
are fully supported) and both their objective function and the con-
straints are convex with respect to the decision variables. Therefore,
we can construct a solution using Theorem 1. Since P2 has only two
decision variables, choose Ni from (1) with n = 2 and consider the
problems

min
τi∈R2

(τ i − τ i)

subject to : δ
(k)
i ∈ [τ i, τ i], for k = 1, . . . , Ni (P ′

2)

where δ
(k)
i denotes the element i of the sample k. In total N =

maxi=1,...,nδ
Ni samples must be extracted; for each such problem we

then choose arbitrarily a subset of these samples with cardinality Ni.
For i = 1, . . . , nδ , τ∗

i := (τ∗
i , τ

∗
i ) is a feasible solution for P2 with

probability at least 1− βi. This implies that PNi((δ(1), . . . , δ(Ni)) ∈
ΔNi |V (τ∗

i ) ≤ εi) ≥ 1− βi, where V (τi) = P(δ ∈ Δ|δi �∈ [τ i, τ i])
is the probability of constraint violation. Construct now the hyper-
rectangle B∗ := ×nδ

i=1[τ
∗
i , τ

∗
i ] and pose the following robust version

of P1:

min
x∈Rnx

J(x)

subject to : max
j=1,...,nm

max
δ∈B∗∩Δ

gj(x, δ) ≤ 0. (P3)

Note that we only need to solve P ′
2 once and we can then use its

solution B∗ for any robust problem P3, inheriting the same prob-
abilistic performance guarantees. One could alternatively construct
a set B∗ using some other representation requiring fewer or more
decision variables in P2, e.g., a spherical or ellipsoidal cover for the
extracted scenarios. The number of variables required to parameterize
any particular geometric representation for B∗ dictates the number of
scenarios in P ′

2. Our proofs can be extended to such cases.

Proposition 1: Suppose that ε, β ∈ (0, 1) and εi, βi ∈ (0, 1), i =
1, . . . , nδ , are chosen such that ε =

∑nδ

i=1
εi, β =

∑nδ

i=1
βi, and Ni

is chosen according to (1) with n = 2. If x∗ is a feasible solution of
P3, then x∗ is also an ε-level feasible solution of P1, with probability
at least 1− β.

Proof: It suffices to show that for N = maxi=1,...,nδ
Ni,

P
N ((δ(1), . . . , δ(N)) ∈ ΔN |Ṽ (x∗) ≤ ε, for all x∗ ∈ XN )≥ 1− β,

where XN is the feasibility region of P3 (it depends on the multi-
sample via B∗). If x∗ ∈ XN is a feasible solution of P3 then it will
satisfy its constraints, so maxj=1,...,nm maxδ∈B∗∩Δ gj(x

∗, δ) ≤ 0.
By interchanging the two max operators, we have that if δ ∈ B∗ ∩Δ
then maxj=1,...,nm gj(x

∗, δ) ≤ 0. Hence

1− Ṽ (x∗) =P

(
δ ∈ Δ | max

j=1,...,nm

gj

(
x∗, δ

)
≤ 0

)
,

≥P

(
δ ∈ Δ | δ ∈ B∗

)
=1− P

( nδ⋃
i=1

(
δ ∈ Δ | δi �∈ [τ∗

i , τ
∗
i ]
))

,

≥ 1−
nδ∑
i=1

P

(
δ ∈ Δ | δi �∈ [τ∗

i , τ
∗
i ]
)
. (2)

The last statement implies that Ṽ (x∗) ≤
∑nδ

i=1
V (τ∗

i ). Since this
holds for all x∗ ∈ XN , we have

P
N
((

δ(1), . . . , δ(N)
)
∈ΔN | Ṽ

(
x∗
)
≤ ε, for all x∗ ∈ XN

)
,

≥ P
N
((

δ(1), . . . , δ(N)
)
∈ ΔN |

nδ∑
i=1

V
(
τ∗
i

)
≤ ε

)
,

≥P
N
((

δ(1), . . . , δ(N)
)
∈ΔN |V

(
τ∗
i

)
≤εi, ∀i=1, . . . , nδ

)
,

=1− P
N
( nδ⋃

i=1

((
δ(1), . . . , δ(N)

)
∈ΔN | V

(
τ∗
i

)
> εi

))
,

≥ 1−
nδ∑
i=1

P
Ni

((
δ(1), . . . , δ(Ni)

)
∈ ΔNi |V

(
τ∗
i

)
> εi

)
,

≥ 1− β (3)

where the first inequality is valid due to (2), and the last two fol-
low from the subadditivity of P and the implications of Theorem
1 for P ′

2, respectively. The selection of the first Ni samples in the
above procedure was arbitrary, and any subset of δ(1), . . . , δ(N) with
cardinality Ni could have been chosen instead. The interpretation
of this derivation is that the probability of all violation probabilities
V (τ∗

i ) being simultaneously bounded by the corresponding εi is at
least 1− β. �

B. Tractability of the Proposed Method

Proposition 1 provides probabilistic guarantees for the probability
of constraint violation of any feasible solution of P3, and not only the
optimal one as in the scenario approach. The number of samples that
we need to generate when Method 1 is adopted depends on the dimen-
sion of the uncertainty and not on the number of decision variables as
in the conventional scenario approach. Moreover, unlike Theorem 1,
we do not require the functions J(·), gj(·, ·), j = 1, . . . , nm to be
convex with respect to the decision variables. The reason is that the
scenario approach is only adopted to solve P2, which is trivially
convex. However, our method requires solving P3, which is a robust
problem with bounded uncertainty. We next consider two cases in
which we can solve P3. For both alternatives we assume that B∗ ∩Δ
is “nice”; this is the case for example if Δ = R

nδ or if Δ is a
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hyper-rectangular set. In the opposite case tractability of our approach
is not guaranteed. Note that if Δ is itself a hyper-rectangle, solving
directly a robust problem with the uncertainty confined in Δ will
generally be more conservative since in this case the hyper-rectangle
B∗ generated by our approach will always be inscribed in Δ.

Note that even if by means of the following methods the robust
constraints can be reformulated so that P3 is solvable, the possibly
non-convex dependency of the objective and the constraint functions
on x may lead to a problem which is difficult to solve. We can then
use numerical tools for non-convex optimization that may not return a
global minimizer. However, since we provide probabilistic guarantees
for any feasible solution of P3, the obtained solution will satisfy the
system constraints with certain probability.

1) Vertex Enumeration: We impose the following assumption.
Assumption 2: For all x ∈ R

nx and for all j = 1, . . . , nm, gj(x, δ)
achieves its maximum with respect to δ at a vertex of B∗.

Problems whose constraint functions are linear, monotone or convex
with respect to the uncertainty constitute problem classes that satisfy
Assumption 2. Under Assumption 2, it suffices to enforce the con-
straints of P3 only for the uncertainty vectors that correspond to the
vertices of B∗. Following this vertex enumeration scheme results in a
problem with nm2nδ constraints in total. Improved results have been
obtained for robustness problems affected by interval matrix uncer-
tainty [20], [21], however, with a constraint complexity of O(2nδ ).
For cases in which the vertex approach leads to a computationally
manageable problem, no additional structure on the objective function
and the constraints of the initial problem is required.

2) Tractable Reformulation of P3: To achieve tractability, [1], [3],
[22] focus on a specific class of problems that satisfy the following
assumption.

Assumption 3: For all j = 1, . . . , nm, gj(x, δ) is convex and ho-
mogeneous (i.e., gj(x, αδ) = αgj(x, δ) for any α ∈ R) in δ for any
fixed x ∈ R

nx .
Under Assumption 3,1 it is shown in [3] that using duality tech-

niques the robust counterpart of certain problem classes (linear pro-
grams, quadratic constrained quadratic programs, second order cone
programs, semi-definite programs) is tractable and in the same class
as the original problem, i.e., robust linear programs remain linear
programs, etc. Following Theorem 1 of [3], if P3 is a linear pro-
gram, this reformulation does not involve any relaxation and requires
nm(nδ + 1) decision variables and nm(2nδ + 1) linear constraints in
addition to those of P3. The approach of [3] was extended in [23]
to robust mixed-integer problems. Therefore, the proposed approach
for the aforementioned types of convex problems, as well as for
mixed-integer problems, leads to a problem with constraint complexity
O(nδ) and with probabilistic guarantees without assumptions on the
probability distribution as in [3].

IV. METHOD 2: STRUCTURED CONSTRAINTS

A. Formulation

We next consider the particular case where the functions gj are
separable in (x, δ):2

Assumption 4: For j = 1, . . . , nm, gj(x, δ) := pj(x)qj(δ), where
pj : Rnx → R and qj : Δ → R.

1Note that in [3] a concavity assumption is imposed instead since a max-min
and not a min-max problem was considered.

2The results of this section are easily generalized to the case where pj :

R
nx → R

� and qj : Δ → R
�, and gj(x, δ) := 〈pj(x)qj(δ)〉, thus allowing

for systems that are affine with respect to the uncertainty functions qj� (some
of the qj�(·) could be made trivial). The number of scenarios in this case would
depend on the total number of uncertainty functions, i.e. nm�.

Similarly to Section III, we construct a hyper-rectangle B∗
q that

encloses the image of a collection of samples δ(k) under the function
q(δ) = (q1(δ), . . . , qnm(δ)) with a certain probability. The subscript
q indicates that B∗

q contains q(δ) instead of δ. To this end, we consider
the problems

min
τj∈R2

(τ j − τ j)

subject to : P

(
δ ∈ Δ | qj(δ) ∈ [τ j , τ j ]

)
≥ 1− εj (P̃2)

Assumption 1 is trivially satisfied by the problems in P̃2, so using
Theorem 1 we have

min
τj∈R2

(τ j − τ j)

subject to : qj
(
δ(k)

)
∈ [τ j , τ j ], for k=1, . . . , Nj , (P̃ ′

2)

where Nj is chosen from (1) with n=2. In total N=maxj=1,...,nm Nj

samples must be extracted, and for each problem we choose arbitrar-
ily a subset with cardinality Nj . Moreover, PNj ((δ(1), . . . , δ(Nj)) ∈
ΔNj |V (τ∗

j ) ≤ εj) ≥ 1− βj , where τ∗
j := (τ∗

j , τ
∗
j ) and V (τj) =

P(δ ∈ Δ|qj(δ) �∈ [τ∗
j , τ

∗
j ]). Construct now the hyper-rectangle B∗

q :=
×nm

j=1[τ
∗
j , τ

∗
j ] and pose the following robust version of P1:

min
x∈Rnx

J(x)

subject to : max
j=1,...,nm

max
q(δ)∈B∗

q∩q(Δ)
pj(x)qj(δ) ≤ 0. (P̃3)

Proposition 2: Suppose throughout that Assumption 4 holds. Then:
1) Assume that ε, β ∈ (0, 1) and εj , βj ∈(0, 1), j=1, . . . , nm,

are chosen such that ε=
∑nm

j=1
εj , β=

∑nm

j=1
βj , and Nj is chosen

according to (1) with n=2. If x∗ is a feasible solution of P̃3, then x∗

is also an ε-level feasible solution of P1, with probability at least 1−β.
2) Assume that x∗ is an ε-level feasible solution of P1, and select

any β∈(0, 1) and an integer N such that ε=1−(1−β)1/N . Select
any (εj , βj), j=1, . . . , nm, such that Nj≤N , and construct the set

B∗
q from P̃ ′

2. Then x∗ is a feasible solution of P̃3 with probability at
least 1−β.

Proof: 1) The proof is similar to that of Proposition 1 and is
omitted for brevity.

2) If x∗ is a feasible solution of P1, then P(δ ∈
Δ|maxj=1,...,nm pj(x

∗)qj(δ) ≤ 0) ≥ 1− ε. Select any β ∈ (0, 1),
and an integer N such that ε ≤ 1− (1− β)1/N . Then, for N
independent uncertainty extractions δ(k), with k = 1, . . . , N ,
P(δ(k) ∈ Δ|maxj=1,...,nm pj(x

∗)qj(δ
(k)) ≤ 0)≥ (1− β)1/N . Due

to independence, for the joint event we have that

P
N
((

δ(1), . . . , δ(N)
)
∈ΔN | max

j=1,...,nm

pj(x
∗)qj

(
δ(k)

)
≤0,

for all k = 1, . . . , N
)
≥ 1− β. (4)

Select now εj , βj , j = 1, . . . , nm, such that Nj ≤ N , and solve P̃ ′
2.

Let τ∗
j , τ

∗
i denote the solution of P̃ ′

2, use it to construct B∗
q , and

formulate P̃3. The argument inside the probability of (4) implies
that for all j = 1, . . . , nm and k = 1, . . . , N , pj(x

∗)qj(δ
(k)) ≤ 0.

Therefore, it also holds that for all j = 1, . . . , nm and k = 1, . . . , Nj ,
pj(x

∗)qj(δ
(k)) ≤ 0; the choice of the first Nj samples is arbitrary,

and any subset of δ(1), . . . , δ(N) with cardinality Nj could have been
selected instead. Since the constraint functions are linear with respect
to qj(·) (Assumption 4), pj(x∗)qj(δ

(k)) ≤ 0 for all k = 1, . . . , Nj

implies that pj(x∗)qj(δ
(k)) ≤ 0 for all qj(δ) ∈ [τ∗

j , τ
∗
i ]. Therefore

P
N
((

δ(1), . . . , δ(N)
)
∈ ΔN |

max
j=1,...,nm

max
q(δ)∈B∗

q∩q(Δ)
pj(x

∗)qj(δ) ≤ 0
)
≥ 1− β. (5)
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Statement (5) implies that with probability at least 1− β, x∗ is a
feasible solution for P̃3. �

Note that an argument similar to the second part of Proposition 2
can not be applied for the more general problem described in
Section III. The reason is that the step analogous to that from (4) to
(5) would no longer be valid, since the fact that for all j = 1, . . . , nm

and k = 1, . . . , Nj , gj(x∗, δ(k)) ≤ 0, does not necessarily imply that
maxδ∈B∗∩Δ gj(x

∗, δ) ≤ 0. An analogous statement can still be made
if the constraint functions satisfy Assumption 2.

B. Tractability of the Proposed Method

The first part of Proposition 2 has an interpretation similar to that
of Proposition 1 and implies that, under Assumption 4, any feasible
solution of P̃3 is accompanied by a probabilistic certificate regarding
the satisfaction of the chance constraint in P1. Moreover, the number
of samples that need to be extracted depends now on the number
of constraints and not on the number of decision variables or the
dimension of the uncertainty as in the standard scenario approach
or Method 1, respectively. Note that Method 2 allows one to tackle
problems where Method 1, though applicable, does not lead to a
tractable robust problem. This is for example the case when qj(δ) does
not satisfy Assumptions 2 or 3. Moreover, there are cases where even
if both Method 1 and 2 lead to a tractable problem, using Method 2 is
of advantage since it leads to a less conservative performance.

If the scheme of Section III-B1 is employed, any problem (possi-
bly non-convex) that exhibits the structure of Assumption 4 can be
addressed by the proposed framework. On the other hand, if P̃3 can
be cast in the class of problems described in Section III-B2 then its
robust counterpart can be transformed to a form that can be solved for
instances of realistic size and its size is the same with the one reported
in Section III-B2. An additional feature of the case addressed in this
section is that in P̃3 we treat each function qj(δ) as an uncertainty
input, therefore the constraint functions are linear with respect to qj(δ)
and Assumptions 2 and 3 are always satisfied.

V. DISCUSSION AND NUMERICAL RESULTS

A. Explicit Sample Complexity Bounds

Following [16], [18], [24], from (1) and for a given ε, β ∈ (0, 1)
explicit bounds for the sample size complexity can be obtained.
Following Theorem 4 of [24], for the class of problems described in
Section II which has n = nx decision variables, it suffices to generate

N ≥ Nnx
ε,β =

⌈
1

ε

e

e− 1

(
nx − 1 + ln

1

β

)⌉
(6)

samples to achieve the desired probabilistic performance. The operator

·� denotes the smallest integer greater than or equal to its argument
and e is the Euler number. We will now provide similar bounds for the
number of samples of the problems discussed in Section III; for the
problems of Section IV the bounds are the same if nδ is substituted
with nm.

We solve each problem in P2 using the scenario approach. This
requires generating in total maxi=1,...,nδ

Ni samples, using Ni of
them for each individual problem. The optimal solution τ∗

i of each
problem would violate the corresponding constraint at most by εi. This
provides additional design freedom and allows us to introduce different
levels of violation for each uncertainty element. However, unless there
is some physical intuition, there is no known systematic way to trade-
off the constants εi and βi. Following [25], an obvious choice is to
select the same violation level εi = ε/nδ and confidence βi = β/nδ

for all i = 1, . . . , nδ . In this case N = Ni for all i = 1, . . . , nδ and,

since we have n = 2 decision variables for each problem in P ′
2 we

need to generate

N ≥ Nnδ
ε,β =

⌈
nδ

ε

e

e− 1

(
1 + ln

nδ

β

)⌉
(7)

uncertainty samples and use all of them in all nδ problems of P ′
2.

This bound is always lower compared to the case where an uneven
distribution of εi and βi is used.

For a given ε and β, an alternative approach is to compute simulta-
neously bounds for all elements of the uncertainty vector. In this case
P ′

2 will no longer be a family of nδ problems, but a single program
whose constraints would be δ

(k)
i ∈ [τ i, τ i] for all k = 1, . . . , N and

all i = 1, . . . , nδ , and its objective function would be the sum of the
interval lengths (i.e.

∑nδ

i=1
(τ i − τ i)). That way, we would have a

problem with n = 2nδ and hence

N ≥ N
nδ
ε,β =

⌈
1

ε

e

e− 1

(
2nδ − 1 + ln

1

β

)⌉
. (8)

Clearly, (8) leads to a lower bound on the number of samples relative
to (7). By inspection of (6), (8), it should be noted that for all problem
instances with 2nδ < nx, Method 1 requires fewer scenarios relative
to the standard scenario approach. Although choosing the approach
that requires the fewest scenarios prevents us from over-sampling,
it does not necessarily lead to a computationally simpler or less
conservative problem. This depends on the structure (i.e., the number
and type of decision variables and constraints) of the resulting robust
problem. For the standard scenario approach, the number of decision
variables remains equal to nx, whereas the number of constraints is
nmN . On the other hand, both the approaches proposed here result in
a robust program with interval bounds on the uncertainty, whose size is
determined following the discussion of Section III-B. The implications
of the proposed methodology on the conservatism of the resulting solu-
tion are discussed by means of the numerical example of Section V-C.

The scenario approach provides a general purpose methodology to
solve the chance constrained problems P2 (respectively P̃2). However,
alternative techniques could be employed as well. For example, in P2

we could formulate different problems to identify the minimum and
maximum value (interpreted in a probabilistic sense) of the elements
of δ. This would give rise to a family of 2nδ problems each of
them having only one decision variable, thus falling in the worst-case
performance framework of [8]. In this case if we select εi = ε/2nδ

and βi = β/2nδ for all i = 1, . . . , 2nδ , following [8], it suffices to
generate N ≥ 
ln(1/βi)/ ln(1/1− εi)� ≈ 
(2nδ/ε) ln(2nδ/β)� un-
certainty realizations, which is more conservative compared to (7) and
(8). Moreover, if we seek to bound simultaneously all elements of δ,
the procedure of [8] is no longer applicable, since the optimization
problem would involve more than one decision variable.

B. Extension to the Sampling-and-Discarding Approach and
Comparison With Other Methods

The scenario approach results were extended in [18], [19] to the
so called sampling-and-discarding approach. Specifically, given N
samples of the uncertainty, r of them are eliminated according to some
rule and P ′

1 is formulated with the remaining N − r samples. Under
the assumption that almost surely the solution of the resulting problem
violates the removed constraints (so that the solution is improved), the
implications of Theorem 1 remain unchanged with the difference that
given ε, β ∈ (0, 1), N and r are selected according to(

n+ r − 1

r

) n+r−1∑
k=0

(
N

k

)
εk(1− ε)N−k ≤ β (9)
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with n = nx. Explicit bounds for the sample size are also provided in
[18], [19]. Any algorithm could be employed for the discarding part;
since optimal constraint discarding is of combinatorial complexity,
[18] discusses the complexity of a greedy approach and an approach
based on the Lagrange multipliers associated with the constraint
functions.

In Method 1 (similarly for Method 2) we can incorporate these
results when using the scenario approach in problems P ′

2 where we
seek a hyper-rectangular set B∗ which encloses the uncertainty with
certain probability. Employing (9) with n = 2nδ in Proposition 1
allows us to construct a B∗ with smaller volume, thus reducing
the conservatism of the solution of P3. There are multiple ways to
select which r samples to discard; however, based on our simulation
study the largest improvement in the cost is achieved when a greedy
approach is adopted. We first solve the problem with N constraints and
identify the ones that are active for P ′

2, or in other words the samples
that lie on the facets of B∗. We then remove the one which results in
the hyper-rectangle that leads to the highest reduction in the objective
value of P3. Typically, this step requires solving 2nδ (assuming
no multiple samples on the same facet of B∗) robust optimization
problems. We then proceed in the same way until r samples are
removed. In contrast to the scenario approach, the size of the robust
problem at every step of this procedure does not depend on N or r.

Methods based on statistical learning theory [9] can also be used to
provide similar results for a certain class of problems. In particular, for
problems with finite VC dimension (see [9]) sample size bounds with
complexity of O((1/ε2) ln(1/ε2) ln(1/β)) can be obtained, which
clearly scale worse than those achieved by the scenario approach. Less
conservative bounds (O((1/ε) ln(1/ε) ln(1/β))) are derived in [26]
to bound the so called probability of one-sided constrained failure.
In principle these bounds can be applied to non-convex problems
with finite VC dimension. However, they depend on an upper bound
of the VC dimension, which is not necessarily easy to determine.
The methods proposed here circumvent this difficulty at the cost of
imposing assumptions on the dependency of the constraints functions
on the uncertainty. A comparison of the learning-theoretic bounds
with those of the scenario approach with optimal constraint removal
is carried out in [18], where it is shown that for problems with linear
constraints the latter tends to be exponentially better as the number of
samples increases.

C. Numerical Example

Consider the problem

min
x∈Rnx ,y∈R

‖x‖1 + |y| subject to :

P

(
δ∈Δ | max

j=1,...,nm

((
aT
j +δTBj

)
x+cTj δ + y

)
≤0

)
≥1− ε

(10)

where δ ∈ R
nδ is normally distributed with zero mean and iden-

tity covariance matrix. We consider problem instances with nx =
nm = 1, . . . , 19, nδ = 1, . . . , 5. For all j = 1, . . . , nm the vectors
aj ∈ R

nx , cj ∈ R
nδ and the matrix Bj ∈ R

nδ×nx have all of their
elements uniformly distributed in [−1, 1]. The additional decision
variable y ∈ R is added to ensure Assumption 1 is satisfied, leading to
nx + 1 decision variables. For each case we use the standard scenario
approach with N = Nnx+1

ε,β given by (6) and Method 1 with N =
Nnδ

ε,β given by (8).
We compute for each case the empirical probability of constraint

violation, using 10,000 uncertainty realizations (not including the ones
used for the optimization procedure), repeating the entire process
for 100 different multi-sample extractions, keeping aj , cj , Bj , j =
1, . . . , nm constant for all uncertainty realizations and multi-samples.

Fig. 1. (a) Expected empirical probability of constraint violation using
Method 1 and the scenario approach with ε = 0.2 and β = 0.01. (b) Upper
panel: Average (over 100 multi-samples) computational time for the set-up
of Fig. 1(a). Lower panel: Expected cost using the sampling-and-discarding
approach both for Method 1 and the scenario approach with ε = 0.2, β = 0.01
and N = 500 for instances of (10) with nx = 14 and nδ = 1, 2, 3.

Fig. 1(a) shows the expected value of the empirical probability of
constraint violation, which is always below the theoretical guarantees.

Consider first the case of scalar uncertainty, i.e. nδ = 1. Increasing
the number of scenarios results in a more robust solution, which in
turn leads to a lower violation probability. Hence, using the scenario
approach, the probability of constraint violation decreases with respect
to nx, since the number of scenarios increases with the dimension of
the decision vector. Since N

nδ
ε,β is independent of nx, the probability

of constraint violation does not change significantly with the number
of decision variables. Moreover, for the case where N

nδ
ε,β < Nnx+1

ε,β ,
our approach results in a higher violation probability, hence leads to a
less conservative solution.

As nδ increases, our approach becomes more conservative than the
scenario approach. This is due to the fact that the solution of the
scenario approach is guaranteed to be robust only with respect to
Nnx+1

ε,β uncertainty realizations, whereas with our approach the solu-
tion of P3 will also be robust with respect to all uncertainty realizations
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in B∗, not just the N
nδ
ε,β samples. This leads to low probabilities of

constraint violation even in the case where N
nδ
ε,β < Nnx+1

ε,β . Hence,
for larger nδ our approach is more conservative even though fewer
uncertainty samples are required.

To compare our approach and the scenario approach in terms of
cost, we compute for every problem instance the expected objective
value (over the 100 multi-samples). The resulting cost surfaces follow
a pattern similar to Fig. 1(a) with the roles of the scenario approach
and Method 1 reversed, with the more conservative solution leading
to the higher cost. The average cost difference increases with nδ (for
nδ = 5 the average cost increases by 100%).

Fig. 1(b) (upper panel) shows the average computational time for
the set-up of Fig. 1(a). The scenario approach leads to higher average
computational time compared to Method 1 for all problem instances.
This difference tends to be much higher as nx increases since the
number of constraints in the scenario approach increases as well.

For the instances of (10) with nx = 14 and nδ = 1, 2, 3 we
compare Method 1 to the standard scenario approach for the case
where the sampling-and-discarding approach of Section V-B is
adopted in both methods. As shown in Fig. 1(b) (lower panel) the
expected cost decreases monotonically (the expected probability of
constraint violation increases with r). The evaluation is carried out
against 10,000 uncertainty realizations and the expectation is with
respect to 100 multi-samples. For a given ε, β and N , the number
of removed constraints r is calculated from (9) using numerical
inversion with n = nx + 1 when using scenario approach and with
n = 2nδ when Method 1 is employed. For Method 1 we can remove
more constraints since 2nδ < nx + 1 for the problem instances
under consideration. Similarly to Fig. 1(a), for nδ = 1 Method 1
is less conservative than the scenario approach leading to lower cost.
As nδ increases, Method 1 leads to a more conservative performance
compared to the scenario approach since a robust problem needs to
be solved in our methodology. However, the size of this problem, and
hence the computational time, is far lower compared to the one of the
scenario approach.

All simulations were carried out using CPLEX [27] under the
MATLAB interface YALMIP [28]. Application of our methodology
to more realistic case studies can be found in [29].

VI. CONCLUSION

We proposed a methodology that eschews the direct application of
the scenario approach to chance constrained optimization problems. It
instead involves using the scenario approach in a lower dimensional,
fully supported problem, constructing a subset of the uncertainty
space. We then formulate the robust counterpart of the initial problem
with the uncertainty confined in this set. Our approach provides
guarantees with a reduced sample size, and does not require convexity
as long as the resulting robust problem is solvable. We show that
this is the case if one imposes assumptions on the way the constraint
functions depend on the uncertainty, thus leading to a problem whose
solution can be computed at a computational cost lower than the one
of a scenario program. However, in cases where the uncertainty is of
high dimension, the advantages of our solution come at the expense of
a more conservative performance.

REFERENCES

[1] A. Ben-Tal and A. Nemirovski, “Robust convex optimization,” Math.
Oper. Res., vol. 23, no. 4, pp. 769–805, 1998.

[2] L. E. Ghaoui and H. Lebret, “Robust solutions to uncertain semidefinite
programs,” SIAM J. Optim., vol. 9, no. 1, pp. 33–52, 1998.

[3] D. Bertsimas and M. Sim, “Tractable approximations to robust
conic optimization problems,” Math. Programming, Series B, vol. 107,
pp. 5–36, 2006.

[4] D. Bertsimas and M. Sim, “The price of robustness,” Oper. Res., vol. 52,
no. 1, pp. 35–53, 2004.

[5] A. Prekopa, Stochastic Programming. Boston, MA: Kluwer Academic
Publishers, 1995.

[6] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[7] D. Bertsimas, D. Pachamanova, and M. Sim, “Robust linear optimization
under general norms,” Oper. Res. Lett., vol. 32, pp. 510–516, 2004.

[8] R. Tempo, E. W. Bai, and F. Dabbene, “Probabilistic robustness analysis:
Explicit bounds for the minimum number of samples,” Syst. Control Lett.,
vol. 30, no. 5, pp. 237–242, 1997.

[9] M. Vidyasagar, A Theory of Learning and Generalization. London,
U.K.: Springer-Verlag, 1997.

[10] A. Lecchinni-Visintini, J. Lygeros, and J. Maciejowski, “Stochastic
optimization on continuous domains with finite-time guarantees by
Markov chain Monte Carlo methods,” IEEE Trans. Autom. Control,
vol. 55, no. 12, pp. 2858–2863, 2010.

[11] A. Shapiro, “Stochastic programming approach to optimization under
uncertainty,” Math. Programming, Series B, vol. 112, pp. 183–183,
2008.

[12] A. Nemirovski and A. Shapiro, “Probabilistic and Randomized Methods
for Design under Uncertainty,” in Scenario Approximation of Chance
Constraints, G. Calafiore and F. Dabbene, Eds. New York: Springer,
2005.

[13] G. Calafiore, F. Dabbene, and R. Tempo, “Research on probabilistic
methods for control system design,” Automatica, vol. 47, no. 7, pp. 1279–
1293, 2011.

[14] R. Tempo, G. Calafiore, and F. Dabbene, Randomized Algorithms for
Analysis and Control of Uncertain Systems. London, U.K.: Springer-
Verlag, 2005.

[15] G. Calafiore and M. Campi, “The scenario approach to robust control
design,” IEEE Trans. Autom. Control, vol. 51, no. 5, pp. 742–753, 2006.

[16] M. Campi and S. Garatti, “The exact feasibility of randomized solutions
of uncertain convex programs,” SIAM J. Optim., vol. 19, no. 3, pp. 1211–
1230, 2008.

[17] M. Campi and G. Calafiore, “Notes on the scenario design approach,”
IEEE Trans. Autom. Control, vol. 54, no. 2, pp. 382–385, 2009.

[18] G. Calafiore, “Random convex programs,” SIAM J. Optim., vol. 20, no. 6,
pp. 3427–3464, 1998.

[19] M. Campi and S. Garatti, “A sampling-and-discarding approach to
chance-constrained optimization: Feasibility and optimality,” J. Optim.
Theory Appl., vol. 148, no. 2, pp. 257–280, 2011.

[20] T. Alamo, R. Tempo, D. Ramirez, and E. Camacho, “A new vertex result
for robustness problems with interval matrix uncertainty,” Syst. Control
Lett., vol. 57, no. 6, pp. 474–481, 2008.

[21] G. Calafiore and F. Dabbene, “Reduced vertex set result for interval
semidefinite optimization problems,” J. Optim. Theory Appl., vol. 139,
no. 1, pp. 17–33, 2008.

[22] A. Ben-Tal and A. Nemirovski, “Robust solutions to uncertain programs,”
Oper. Res. Lett., vol. 25, no. 1, pp. 1–13, 1999.

[23] X. Lin, S. Janac, and C. Floudas, “A new robust optimization approach
for scheduling under uncertainty: I. Bounded uncertainty,” Comp. Chem.
Eng., vol. 28, no. 6–7, pp. 1069–1085, 2004.

[24] T. Alamo, R. Tempo, and A. Luque, “On the sample complexity of
randomized approaches to the analysis and design under uncertainty,” in
Proc. Amer. Control Conf., 2010, pp. 4671–4676.

[25] A. Nemirovski and A. Shapiro, “Convex approximations of chance con-
strained programs,” Siam J. Control Optim., vol. 17, no. 4, pp. 969–996,
2006.

[26] T. Alamo, R. Tempo, and E. Camacho, “Randomized strategies for prob-
abilistic solutions of uncertain feasibility and optimization problems,”
IEEE Trans. Autom. Control, vol. 54, no. 11, pp. 2545–2559, 2009.

[27] CPLEX11.0 Users Manual, ILOG.SA., 2008, Technical report, Gentilly,
France.

[28] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in Proc. IEEE Int. Symp. Comp. Aided Control Syst. Design,
2005, pp. 284–289.

[29] M. Vrakopoulou, K. Margellos, J. Lygeros, and G. Andersson, “A prob-
abilistic framework for reserve scheduling and N-1 security assessment
of systems with high wind power penetration,” IEEE Trans. Power Syst.,
vol. 28, no. 4, pp. 3885–3896, 2013.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


