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a b s t r a c t

In this paper, we revisit the problem of computing viability sets for hybrid systems with
nonlinear continuous dynamics and competing inputs. As usual in the literature, an iter-
ative algorithm, based on the alternating application of a continuous and a discrete op-
erator, is employed. Different cases, depending on whether the continuous evolution and
the number of discrete transitions are finite or infinite, are considered. A complete char-
acterization of the reach-avoid computation (involved in the continuous time calculation)
is provided based on dynamic programming. Moreover, for a certain class of automata, we
show convergence of the iterative process by using a constructive version of Tarski’s fixed
point theorem, to determine the maximal fixed point of a monotone operator on a com-
plete lattice of closed sets. The viability algorithm is applied to a benchmark example and
to the problem of voltage stability for a single machine-load system in case of a line fault.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Related work

The problem of synthesizing controllers for hybrid systems has attracted considerable attention both from the automatic
control and the computer science community [1–4]. In this direction, [5–7] considered reachability and viability type of
problems for hybrid automata. In [8,9] the authors characterize the maximal control invariant set (viability kernel in the
sense of [10]) for a general class of hybrid systems, with nonlinear dynamics and competing inputs [11]. The proposed
procedure was based on the alternating application of one continuous and two discrete operators. The former involves
what was referred in [8] as reach-avoid computation, whereas the latter requires the inversion of the reset maps which
encode the discrete behavior of the system.

There are certain limitations in the iterative procedure of [8]. The first is that there is no guarantee that the process
reaches a fixed point, hence the algorithmmight not converge to the desired viability kernel. Moreover, the continuous part
of the algorithm involves a reach-avoid computation, which is hampered from a numerical point of view since the value
function and the Hamiltonian of the optimal control problem involved are not necessarily continuous [8]. This is required so
that the numerically computed solution (e.g. when using tools based on Level SetMethods) converges to the viscosity one as
the numerical grid ismade finer. The authors of [12,13], addressed this issue using the notion of viscosity solutions, but were
restricted to the characterization of the ‘‘reach’’ part of the operator. To overcome these limitations and achieve a complete
characterization of the algorithm, [14,15] considered the same problem from a viability theory perspective. Moreover, they
introduced a theoretically sound notion of hybrid strategies in a gaming context and using nonsmooth analysis tools proved
convergence of the iterative scheme.
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1.2. Contributions

In this paper, we build on the approach introduced in [16] and provide an alternative framework for addressing viability
problems for hybrid systems in an optimal control context, which supports theoretically the use of publicly available
numerical tools [17] for hybrid reachability calculations. The proposed formulation is entirely based on optimal control
and the properties of the hybrid system executions, and as such it serves as the optimal control counterpart of [14]. We
consider different cases according to whether the time of continuous evolution and the number of discrete transitions are
finite or infinite.We first restrict our attention to the case of finite discrete transitions and a finite time continuous evolution,
as in [18]. For the finite time reach-avoid computation characterization we adopt the formulation of [19] which is based on
the viscosity solution of a quasi-variational inequality of the form of [20,21]. Both the value function and the Hamiltonian of
the optimal control problem are continuous, and hence the reach-avoid computation does not suffer from the drawbacks of
[8,9]. We then consider the case where the continuous calculation is still of finite time, but an infinite number of transitions
is allowed. To show convergence of the algorithm we reduce the problem to the calculation of the maximal fixed point of a
monotone operator on a complete lattice [22,23], and based on transfinite recursionwe use a constructive version of Tarski’s
theorem [24] to characterize this fixed point. Convergence of the algorithm may require limit ordinals higher than the first
one, which limits the applicability of our approach to a certain class of hybrid automata (see discussion in Section 3.2),
like those whose executions continue beyond the Zeno time. This approach, which is fundamentally different from the one
adopted in [14], is related to the approach proposed by [25] for amore restricted class of hybrid dynamics. Themore general
case, deals with the problem of infinite time continuous evolution and infinite number of discrete transitions. In this case,
we use the infinite time counterpart of the reach-avoid operator of [19], and follow a procedure similar to [20]. The last
remaining case of infinite continuous evolution and finite number of discrete transitions follows directly from the results of
Sections 3.1 and 3.3.

It should be noted that in [14] the authors prove similar results using techniques from nonsmooth analysis. Our deriva-
tion, not only serves as the optimal control counterpart of [14], but also exhibits certain differences with the work of [14].
Starting first from the case where we have finite time continuous evolution (this is the case in most applications), the pro-
posed value function and the Hamiltonian of the optimal control problem are both continuous, thus enabling the use of
existing numerical tools for viability computations (e.g. [17]) which are not supported by [14]. An additional difference
with [14] appears in the situation where the number of discrete transitions is finite. In that case, which is not considered
in [14], we provide a rigorous characterization of the set returned by the iterative algorithm (Proposition 2). Moreover, for
the case where the number of discrete transitions is infinite we provide a convergence proof, which despite its limitations,
is applicable to hybrid automata whose executions continue beyond the Zeno time. Such cases are not captured by [14].

We demonstrate some features of the proposed algorithms by means of a benchmark example and an application to the
problem of voltage stability for a singlemachine-load system in case of a line fault [26,27]. The objective here is to determine
the set of initial conditions for which the voltage will remain within the safety margins both during the transient phase and
after the reclosure of the line.

The paper is organized as follows. Section 2 states the main assumptions, describes the hybrid dynamics, and poses the
viability problem. Section 3 deals with the characterization of the continuous part of the proposed reachability algorithm,
and the convergence of the iterative process for three different cases. Section 4 shows a benchmark example and the
application of the viability algorithm to a power system case study. Finally, Section 5 summarizes our results and provides
a list of open problems.

2. Viability specifications of hybrid game automata

2.1. Hybrid dynamics

Weconsider dynamical systems,whose state vector comprises both a discrete component q, and a continuous component
x. The trajectories of the state vector are governed by control and disturbance inputs. Adopting the notation of [14], let v
and u denote the control, and δ, d the disturbance inputs (discrete and continuous respectively). The system can then be
described by a hybrid automaton H .

Definition 1. A hybrid automaton H is the collection of
• discrete state variables q ∈ Q and continuous state variables x ∈ X ,
• control inputs v ∈ V and u ∈ U ,
• disturbance inputs δ ∈ ∆ and d ∈ D,
• vector field f (·, ·, ·, ·) : Q × X × U × D → X ,
• domain set, Dom(·) : Q → 2X ,
• edges, E ⊆ Q × Q ,
• guard condition G(·) : E → 2X ,
• reset function r(·, ·, ·, ·) : E × X × V × ∆ → X ,

where 2X denotes the power set of X . Throughout the paper we assume that X = Rn. Before introducing the properties of
the executions accepted by the hybrid automaton H , we provide the definition of a hybrid time set [28].
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Definition 2. A hybrid time set τ = {Ii}Ni=0 is a finite or infinite sequence of intervals of the real line, such that for all
i < N, Ii = [τi, τ

′

i ], if N < ∞, IN = [τN , τ ′

N) (possibly with τ ′

N = ∞), or IN = [τN , τ ′

N ], and for all i, τi ≤ τ ′

i = τi+1.

We are now in a position to define the class of executions accepted by the automaton H .

Definition 3. Let τ = {Ii}Ni=0 be a hybrid time set and consider the sequences of functions {qi(·)}Ni=0, {xi(·)}
N
i=0, {vi(·)}

N
i=0,

{ui(·)}
N
i=0, {δi(·)}

N
i=0, {di(·)}

N
i=0, with qi(·) : Ii → Q , xi(·) : Ii → X, vi(·) : Ii → V , ui(·) : Ii → U, δi(·) : Ii → ∆, di(·) : Ii →

D. The collection these sequences of functions is called execution of the hybrid automaton H starting from initial condition
(q0(τ0), x0(τ0)), if and only if it satisfies the following conditions:
• Discrete evolution: For all i < N ,

1. (qi(τ ′

i ), qi+1(τi+1)) ∈ E.
2. xi(τ ′

i ) ∈ G(qi(τ ′

i ), qi+1(τi+1)).
3. xi+1(τi+1) = r(qi(τ ′

i ), qi+1(τi+1), xi(τ ′

i ), vi+1(τi+1), δi+1(τi+1)).
• Continuous evolution: For all i with τi < τ ′

i
1. ui(·) and di(·) are Lebesgue measurable functions on Ii.
2. qi(t) = qi(τi), υi(t) = vi(τi) and δi(t) = δi(τi) for all t ∈ Ii.
3. xi(·) : Ii → X is the solution of the differential equation

ẋi(t) = f (qi(t), xi(t), ui(t), di(t)),

over the interval Ii with initial condition xi(τi).
4. xi(t) ∈ Dom(qi(t)) for all t ∈ [τi, τ

′

i ).

The executions accepted by H may be finite if τ is a finite sequence and its last interval is closed, infinite if τ is an infinite
sequence or


∞

i=1(τ
′

i −τi) = ∞, and Zeno if it is infinite but


∞

i=1(τ
′

i −τi) < ∞. The convergence of the viability algorithm,
and the validity of the results presented in the next section, rely on a series of assumptions on the hybrid automaton H and
its executions.

Assumption 1. 1. The cardinality of Q is finite. The sets U, V ,D and ∆ are compact subsets of Euclidean spaces.
2. For all q ∈ Q the function f (q, x, u, d) is globally Lipschitz continuous in x, continuous in u and d and bounded. For all

(q, x) ∈ Q × X , the sets


u∈U f (q, x, u, d) and


d∈D f (q, x, u, d) are convex and compact for all d ∈ D and all u ∈ U ,
respectively.

3. For all q ∈ Q , the set Dom(q) is open and Dom(q) ∪


q′∈Q G(q, q′) = X .
4. For all q, q′

∈ Q with (q, q′) ∈ E, the function r(q, q′, x, v, δ) is continuous in x, v and δ.
5. For all q, q′

∈ Q with (q, q′) ∈ E, the set G(q, q′) is open, possibly the empty set.

The first two conditions in Assumption 1 are mainly imposed to ensure that in the gaming set-up certain sets are closed,
whereas the convexity part is also used in Section 3.3. To ensure that f is bounded and sincewe are interested in the behavior
inside a given set whose viability kernel (this set is denoted by F in Section 2.3) we seek to compute, we saturate f outside
that set [12]. Note that f is automatically bounded in the numerical computations, since they are always performed on
compact sets. Condition 3 guarantees that H is non-blocking [28]. Conditions 4 and 5 ensure continuity of the discrete
operators of Section 2.3. Note that Zeno executions are not excluded from this formulation. Given this framework, and
under Assumption 1, it was shown in [14] that for all admissible initial conditions and input trajectories there exists an
infinite execution (possibly Zeno) for the automaton H .

2.2. Gaming formulation and input strategies

In purely continuous differential games [29,30], it is standard to consider the notion of nonanticipative strategies. Let
u(·) ∈ U and d(·) ∈ D , where U, D denote the set of Lebesgue measurable functions u(·) : R+ → U and d(·) : R+ → D,
respectively. A function α(·, ·, ·) : D × Q × X → U is called non-anticipative (with respect to the first variable) if for all
(q, x) ∈ Q × X, d(·), d′(·) ∈ D and T ≥ 0, d(t) = d′(t) for almost every t ∈ [0, T ] implies that α(d, q, x)(t) = α(d′, q, x)(t)
for almost every t ∈ [0, T ]. Note that this definition is identical to the one of [31],with the difference that the nonanticipative
strategy in this case depends also on (q, x), which will end up playing the role of the initial conditions of an interval of
continuous evolution of the hybrid automaton. Under the choice of a nonanticipative strategy the player has the same
information like feedback, but also knows the current value of the other player’s input. This additional information compared
to feedback strategies is needed to avoid situations where the game does not attain a value (see [32] for such a game).

LetA denote the class of nonanticipative strategies. Following [14], we can define a hybrid strategy (α, γ ) for the control
inputs (u, v) as a pair whose first element is a nonanticipative strategyα(·, ·, ·) : D×Q ×X → U for the continuous control
input, and γ (·, ·) : Q × X → V is a feedback strategy for the discrete control input; note that in contrast to the continuous
game a feedback strategy provides all necessary information to the discrete inputs. Note also thatwe do not allow transitions
between discrete modes to be forced by neither the control nor the disturbance inputs (the domain and guard conditions
do not depend on the controls or disturbances), and the discrete state after the transition is not determined by the control
inputs. This restriction serves as a sufficient condition to ensure that the players are not second guessing one another in the
discrete game. We could relax this assumption if the sets of states where the control and the disturbance inputs can force



48 K. Margellos, J. Lygeros / Nonlinear Analysis: Hybrid Systems 10 (2013) 45–62

transitions are disjoint. However, autonomous transitions of the non-deterministic automaton are captured by the proposed
framework.

2.3. Problem statement and definition of operators

The main objective is to characterize the hybrid discriminating kernel [14] of a given closed set F ⊆ Q × X . This is
equivalent to the maximal control invariant set of [9]. Formally this set is defined as follows (see Definitions 8 and 9 of [14]
for details).

Let N denote a non-negative integer (to be thought of as the maximum number of allowable discrete transitions) and T
denote a non-negative real number (to be thought of as the maximum allowable duration of continuous evolution), both
possibly infinite. Given a hybrid strategy (α, γ ), for n ≤ N and for disturbance actions d(·) ∈ D, {δi}

n−1
i=0 , the executions

of the automaton satisfy Definition 3, and also for all i < n, and all Ii ∈ τ and t ∈ Ii, δi(t) = δi, di(t) = d(t),
vi+1(τi+1) = γ (qi(τ ′

i ), xi(τ
′

i )), and ui(t) = α(dτi(·), qi(τi), xi(τi))(t − τi), where dτi(t) = d(t + τi).

Definition 4. The hybrid discriminating kernel Viab(N,T )
F of a closed set F ⊆ Q × X is the set of (q, x) ∈ F , for which there

exists a hybrid strategy (α, γ ), such that for all n ≤ N and any disturbance actions d(·) ∈ D, {δi}
n−1
i=0 , all executions of the

hybrid automaton starting from (q0(τ0), x0(τ0)) = (q, x) ∈ F with
n−1

i=0 (τ ′

i − τi) ≤ T and τn = τ ′
n are such that (qi(t),

xi(t)) ∈ F for all Ii ∈ τ and t ∈ Ii with i < n, and (qn(τn), xn(τn)) ∈ F .

For technical purposes, in Definition 4 we consider executions that terminate with a transition. The algorithm developed
below for computing such hybrid discriminating kernels is based on three set valued operators. Following [14], for an
arbitrary set of states K , we define

Pre∃(K) = {(q, x) ∈ K | [x ∉ Dom(q)] ∧ [∃v ∈ V , ∀δ ∈ ∆,

∀q′
∈ Q , (q, q′) ∈ E, x ∈ G(q, q′) ⇒ (q′, r(q, q′, x, v, δ)) ∈ K ]}, (1)

Pre∀(K) = K c
∪ {(q, x) ∈ K | ∀v ∈ V , ∃δ ∈ ∆, ∃q′

∈ Q ,

[(q, q′) ∈ E, x ∈ G(q, q′)] ∧ [(q′, r(q, q′, x, v, δ)) ∉ K ]}. (2)

The set Pre∃(K) contains all states in K for which continuous evolution is not possible (x ∉ Dom(q)), and there exists
a choice for the discrete control input v ∈ V such that for all disturbance inputs δ ∈ ∆, the state remains in K after one
transition. On the other hand, Pre∀(K), contains all states that are either outside K , or for all discrete control inputs v ∈ V
there exists a disturbance δ ∈ ∆ such that the state of the system leaves K after a transition.

For all t ∈ [0, T ]
1 wedefine the continuous operator Reach(t, ·, ·) : 2Q×X

×2Q×X
→ 2Q×X , such that the set Reach(t, R, A)

includes all states (q, x) ∈ Q × X for which if the state starts at (q, x) at time t there exist a nonanticipative strategy α for
the control inputs, such that for any disturbance d, the system trajectories either reach R via continuous evolution before
passing through A, or remain outside A over the time interval [t, T ]. In other words, Reach(t, R, A) contains all states that
are viable under continuous evolution, plus those that can reach R prior to hitting A. The latter was referred to as reach-
avoid computation in [9]. Notice that the discrete state q remains constant along this computation, since only continuous
dynamics are involved. Hence, for each q ∈ Q we can define Rq = {x ∈ X | (q, x) ∈ R} and Aq = {x ∈ X | (q, x) ∈ A}. Then,
as in [14], treating one discrete state at a time,

Reach(t, R, A) =


q∈Q

{q} × Reachq(t, Rq, Aq), (3)

where

Reachq(t, Rq, Aq) = {x ∈ X | ∃α(·, q, x) ∈ A, ∀d(·) ∈ D,

[∃t1 ∈ [t, T ], φ(t1, t, q, x, α(·, q, x), d(·)) ∈ Rq

∧∀t2 ∈ [t, t1], φ(t2, t, q, x, α(·, q, x), d(·)) ∈ Ac
q ∩ Dom(q)]},

∪{x ∈ X | ∃α(·, q, x) ∈ A, ∀d(·) ∈ D,

[∀t3 ∈ [t, T ], φ(t3, t, q, x, α(·, q, x), d(·)) ∈ Ac
q ∩ Dom(q)]}, (4)

where φ(·, t, q, x, α(·, q, x), d(·)) denotes the solution of the continuous vector field at each discrete mode q starting from
x at time t , when a nonanticipative strategy α is adopted. For each mode q ∈ Q , Eq. (4) implies that the set Reachq(t, Rq, Aq)
is given by the union of two sets. The first contains all continuous states that can reach Rq at some time within our horizon,
while avoiding passing through Aq until then. The second set includes all states that for the entire horizon remain outside Aq,
without necessarily hitting Rq. We can compute Reachq(t, Rq, Aq) separately for each mode q ∈ Q , and use (3) to construct
Reach(t, R, A).

The operators defined above have the following basic properties, which are shown in [14] and are repeated here for
completeness.

1 This is to be understood as [0, T ) whenever T = ∞.
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Algorithm 1 Finite time viability algorithm
1: Initialization:.W0 = F × [0, T ], i = 0.
2: repeat

Wi+1 = Reach(0, Pre∃(Wi), Pre∀(Wi)),
i = i + 1.

3: until Wi = Wi−1 or i = N .
4: Viab(N,T )

F×[0,T ]
= Wi.

5: Viab(N,T )
F = {(q, x) ∈ F |(q, xz) ∈ Viab(N,T )

F×[0,T ]
and z = 0}.

Proposition 1. For all t ∈ [0, T ],

1. If R is closed and A is open, then Rq is closed, Aq is open and Reachq(t, Rq, Aq) is closed for all q ∈ Q .
2. For all K ⊆ Q × X, Pre∃(K) ⊆ Reach(t, Pre∃(K), Pre∀(K)).
3. For all K ⊆ Q × X, Reach(t, Pre∃(K), Pre∀(K)) ⊆ K .
4. The operator Reach(t, Pre∃(·), Pre∀(·)) is monotone. For K1 ⊆ K2 ⊆ Q × X, Reach(t, Pre∃(K1), Pre∀(K1)) ⊆ Reach(t,

Pre∃(K2), Pre∀(K2)).

The fact that Reachq(t, Rq, Aq) is closed if Rq is closed and Aq is open is established below, in Proposition 3 of Section 3.1.
Note that if this holds for all q ∈ Q then Reach(t, R, A) is closed.

3. Hybrid discriminating kernel characterization

3.1. Case 1: finite continuous evolution and finite discrete transitions

Consider first the case where both T and N are finite (i.e. T ,N < ∞). To keep track of the elapsed time we augment the
hybrid automaton by introducing an additional continuous state and set xz =


x z


∈ X × R. For all q ∈ Q , u ∈ U, d ∈ D,

the vector field of the augmented dynamics is given by f z(q, xz, u, d) =

f (q, x, u, d) 1


∈ X × R, and for all q, q′

∈ Q
with (q, q′) ∈ E, v ∈ V , δ ∈ ∆ the reset map is given by rz(q, q′, x, v, δ) =


r(q, q′, xz, v, δ) z


∈ X × R. Moreover,

Dom(·) : Q → 2X×R and G(·) : E → 2X×R. In words, the new state component z ∈ R counts forward in time and remains
unaffected after discrete transitions.

The objective nowbecomes to compute the finite timehybrid discriminating kernel of a desired set F×[0, T ] ⊆ Q×X×R.
Given the discrete and continuous operators of Section 2.3, Algorithm 1 [14] summarizes the steps needed to compute
Viab(N,T )

F×[0,T ]
. At iteration i of Algorithm 1we compute the setWi+1 which includes the states fromwhich executions can start

and, despite any adversarial decision, can lead our system in Pre∃(Wi) while avoiding passing through Pre∀(Wi) until then.
Based on the definition of the discrete operators, the previous statement implies that at iteration iwe determine the states
that remain in the predecessor set Wi following an execution comprising of one interval of continuous evolution followed
by at most one discrete transition. The latter implies that the states inWi+1 remain viable (i.e. inW0) following an execution
with at most i discrete transitions. Therefore, the number of iterations of Algorithm 1 is related to the number of transitions
that an admissible execution may contain.

Proposition 2. The set Viab(N,T )
F computed by Algorithm 1 is indeed the desired finite time hybrid discriminating kernel of

F ∈ Q × X.

The proof is given in the Appendix.
We now characterize Reachq(t, Rq, Aq) (for the augmented system) which based on (3) determines Reach(t, R, A) for

t ∈ [0, T ]. This is achieved using tools from optimal control and viscosity solutions to Hamilton–Jacobi equations [31].
Notice that (4) is the union of two sets, hence we rewrite it as Reachq(t, Rq, Aq) = RA(t, Rq, Aq) ∪ N(t, Aq). RA(t, Rq, Aq) is
a finite time reach-avoid computation in the sense of [19]. It includes all initial states from which trajectories can reach Rq
at some time within [t, T ], without passing through Aq in the meantime. N(t, Aq) is a finite time viability calculation in the
sense of [12]. It contains all initial states from which trajectories stay in Ac

q during the interval [t, T ]. Under the assumption
that Rq is closed and Aq is open, consider two bounded, Lipschitz continuous functions l(·), h(·) such that

Rq = {xz ∈ X × R | l(xz) ≤ 0},
Aq = {xz ∈ X × R | h(xz) > 0}.

Under these conditions, the set RA(t, Rq, Aq) was shown in [19] to be equal to the sub-zero level set of the function

V (xz, t) = inf
α(·)∈A

sup
d(·)∈D

min
t1∈[t,T ]

max{l(φ(t1, t, xz, α(·), d(·))), max
t2∈[t,t1]

h(φ(t2, t, xz, α(·), d(·)))}, (5)
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which is in turn the unique continuous viscosity solution (see [33] for a definition) of

max


h(xz) −V (xz, t),

∂V
∂t

(xz, t) + min


0, sup

d∈D
inf
u∈U

∂V
∂xz

(xz, t)f (xz, u, d)


= 0, (6)

over (xz, t) ∈ X × R × [0, T ], withV (xz, T ) = max{l(xz), h(xz)}.
Following [12], the set N(t, Aq) is equal to the sub-zero level set of the function

V (xz, t) = inf
α(·)∈A

sup
d(·)∈D

max
t3∈[t,T ]

h(φ(t3, t, xz, α(·), d(·))), (7)

which can be shown to be the unique continuous viscosity solution of

∂V
∂t

(xz, t) + max


0, sup

d∈D
inf
u∈U

∂V
∂xz

(xz, t)f (xz, u, d)


= 0, (8)

over (xz, t) ∈ X × R × [0, T ], withV (xz, T ) = h(xz).
We summarize our observations in the characterization of Reach in the following proposition.

Proposition 3. Reachq(t, Rq, Aq) = {xz ∈ X × R | V (xz, t) ≤ 0} ∪ {xz ∈ X × R | V (xz, t) ≤ 0}.

Proof. Following Proposition 2 of [19], RA(t, Rq, Aq) = {xz ∈ X × R | V (xz, t) ≤ 0} and N(t, Aq) = {xz ∈ X × R | V (xz, t) ≤

0}. The statement follows then from the fact that Reachq(t, Rq, Aq) = RA(t, Rq, Aq) ∪ N(t, Aq). �

Reach(t, R, A) can be then constructed from (3), taking the disjoint union of the sets Reachq(t, Rq, Aq). We note that
unlike [9], the value functionsV andV are both continuous, which implies that the use of existing numerical tools [17,34]
for approximating these functions is theoretically supported.

For the discrete part of the algorithm we need to compute the operators Pre∃(·) and Pre∀(·). This requires inversion of
the reset map relations subject to existential and universal quantifiers, which is not an easy task in general. However, in the
numerical examples of Section 4 the transition logicwas simple enough to carry out this task by hand. Note also that sincewe
treat every discrete mode separately in Algorithm 1, the computational complexity for each iteration is linear with respect
to the number of discrete modes. However, this is not the case for the overall algorithm, apart from specific situations, like
the case where the hybrid system can be represented by an acyclic graph.

For the continuous operator of Algorithm 1, and in particular to solve (6), (8), one could employ existing numerical tools
based on Level Set Methods [17]. These are based on gridding the state space, therefore, the memory and computational
cost grow exponential with the continuous dimension of the system. Assuming that an accurate enough grid is used, tight
approximations of the (in general irregular and nonconvex) reachable sets can be achieved; however, this is not guaranteed
to be an under-approximation or over-approximation. For a more detailed analysis and discussion on scalability issues the
reader is referred to [35]. Note that (6), (8) are solved backwards in time; connections with forward reachability analysis
can be found in [36].

3.2. Case 2: finite continuous evolution and infinite discrete transitions

In the case T < ∞,N = ∞ the theoretical computation of the hybrid discriminating kernel proceeds again via Algorithm
1, only without the terminating condition i = N . The computation of the set Reach required by the algorithm can be carried
out as shown in Proposition 3. Unlike Section 3.1, infinite executions are also considered, however any such execution
will be by definition Zeno. The iterations of the algorithm generate a sequence of nested closed sets whose intersection
(possibly empty) is by construction a closed subset of F × [0, T ]. Consider then the complete lattice (see Section 3.2.2 for
definitions) of closed subsets of W0 = F × [0, T ]. By Proposition 1, Reach(t, Pre∃(·), Pre∀(·)) is a monotone operator on
this lattice, and hence by Knaster–Tarski theorem [22,23], it admits a maximal fixed point. Unfortunately, Tarski’s theorem
that could be used to characterize this fixed point is not constructive, unless the monotone operator is continuous. To
overcome this difficulty, we adopt the constructive approach of [24], which relates theminimal andmaximal fixed points of
amonotone operator on a complete lattice to the limits of stationary transfinite iteration sequences. Following this approach
no continuity assumption for the Reach operator is needed. We can thus relate the hybrid discriminating kernel to the fixed
point of the set-valued operator Reach, but do not establish convergence of a countable intersection of sets to the operator’s
fixed point (the limit of the resulting transfinite iteration might not be


∞

i=0 Wi), since sets corresponding to higher limit
ordinals (possibly uncountable) may be required.

This limits the applicability of our theoretical analysis to many practically relevant cases, since most of the hybrid
automata (including the Zeno ones) accept executions with a finite or infinite (but still countable) number of discrete tran-
sitions. Recall that the number of discrete transitions is related to the number of iterations in Algorithm 1. Therefore, con-
vergence at a limit ordinal higher than the first one serves only as a correctness proof for such cases. However, there are
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Fig. 1. Bouncing ball on a staircase.

Fig. 2. Two-state hybrid automaton for the bouncing ball on a staircase example.

problems where the underlying automaton may accept executions whose number of transitions exceeds the first limit or-
dinal. This is for example the case when the objective is the continuation of the hybrid system executions beyond the Zeno
time [37]. Convergence proofs like the one provided in [14] are not applicable to this class of systems, which are, however,
captured by the proposed theoretical framework. For the rest of the section we focus on hybrid automata with a number of
transitions higher than the first limit ordinal.

3.2.1. Motivating example
We provide here an example that better illustrates the class of hybrid systems where our theoretical framework is

relevant. The so called bouncing ball problem is a typical example of a hybrid system with Zeno executions, and has been
studied extensively in the hybrid system literature [38]. Here we consider a variant of the standard bouncing ball problem,
where the ball is given a constant horizontal velocity and bounces on a staircase (see Fig. 1). At every stair the behavior of
the ball reduces to the standard bouncing ball example. It bounces ω (the first limit ordinal) times, and after the Zeno time
it rolls due to its horizontal velocity until it falls from the stair. The phenomenon is then repeated at all subsequent stairs.

The bouncing ball on a staircase problem can be modeled by the two-state hybrid automaton of Fig. 2. Assuming a local
coordinate frame at each stair, x1 denotes the vertical displacement of the ball at this stair, x2 denotes its vertical velocity,
x3 is the horizontal displacement on the local frame and x4 is a timer. Variable g denotes the gravitational acceleration and
c > 1 is a constant. For simplicity we assumed ẋ3 = 1 (unit horizontal velocity), therefore x3 acts as a local timer as well,
and after a transition to q2 it is reset to zero. On the other hand, x4 denotes the total time elapsed, which is equal in this case
to the horizontal displacement of the ball with respect to the global coordinate frame. Mode q1 corresponds to the standard

bouncing ball problem. The ball stays in q1 until the Zeno time τω =
x2(0)
g +

(c+1)
√

x21(0)+2gx22(0)
g(c−1) (see also [38] for details),

following an execution with ω transitions, however, at the samemode. Once x3 exceeds τω we have a transition at mode q2,
where the ball rolls until the end of the stair. We assumed that at the first stair x2(0) = 0 so that the Zeno time is the same
for all stairs, and also every stair is of unit length and height. When the length of the stair is exceeded we have a transition
back to mode q1, where the ball starts bouncing again. Here we assumed that the number of stairs is not finite; if we have a
finite number of stairs an additional continuous state is required to keep track of the number of stairs elapsed.

We are interested in computing the hybrid discriminating kernel of {x ∈ R4
| x4 ≤ s}, i.e. the set of initial states from

which the ball can start bouncing without exceeding s, where s is beyond the Zeno time of the last stair (see Fig. 1). By
inspection of Fig. 1, the executions accepted by this automaton have a number of transitions higher than the first limit
ordinal. In fact, at every stair we have ω transitions, and in the hypothetical set-up of an uncountable number of stairs the
total number of transitions would also be uncountable. Applying the analysis of [14] for this problem is not possible. In the
next subsections we show how this is captured by the proposed framework.
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3.2.2. Tools from fixed point theory on lattices
We first recall the definition of a complete lattice [23], and provide the definition of an upper and lower iteration sequence

and their limits [24]. Consider an arbitrary set K . An order (or ordering relation) on K is a binary relation ≤ such that for all
x, y, z ∈ K , x ≤ x, x ≤ y and y ≤ x imply x = y, x ≤ y and y ≤ z imply x ≤ z; a set K with an ordering relation is called an
ordered set. Note that the standard inclusion ⊆ is an order for sets. An ordered set has a top element⊤ if there exists ⊤ ∈ K
such that x ≤ ⊤ for all x ∈ K . The bottom element ⊥ is defined in a similar way. For an arbitrary subset S of an ordered
set K , if {x ∈ K |s ≤ x for all s ∈ S} has a least element, then this element is called the supremum of S, denoted by ∨S. The
infimum, ∧S of S is defined analogously.

Definition 5. A non-empty ordered set L is called a complete lattice if for all S ⊆ L, ∨S and ∧S exist. Denote the complete
lattice as L(≤, ⊤, ⊥, ∨, ∧).

Let now λ denote the smallest ordinal such that {i : i ∈ λ} has cardinality strictly greater that the one of L. Ordinals could
be thought of as away to extend the natural numbers. Every ordinal denotes the set containing all strictly lower ordinals, but
also the position of an element in a given sequence [39]. Moreover, since we consider lattices of sets, the ordering relation
≤ is to be understood as set inclusion.

Definition 6. The λ-termed lower (dually for the upper) iteration sequence for a monotone operator P(·) : L → L starting
with a setW0 is the sequence ⟨Wi, i ∈ λ⟩ of elements of L, defined by the transfinite recursion

• Wi = P(Wi−1) for every successor ordinal i ∈ λ,
• Wi =


j<i Wj for every limit ordinal i ∈ λ.

Since we are considering a lower iteration sequence and P(·) is a monotone operator, it follows from Definition 6 that
Wi ≤ Wi−1.

Definition 7. A sequence ⟨Wi, i ∈ λ⟩ is stationary if and only if there exists k ∈ λ such that for all j ∈ λwith j ≥ k,Wj = Wk.
Wk is then the limit of the sequence. Denote by liml

P(W0) (limu
P(W0)) the limit of a lower (upper) stationary sequence of a

monotone operator P , starting withW0.

Adopting the notation of [23], consider the sets of pre- and post-fixed points of P .2

Pre(P) = {x ∈ X | P(x) ≤ x}, (9)
Post(P) = {x ∈ X | x ≤ P(x)}. (10)

Following Tarski’s theorem [23], the maximal and minimal fixed points of P are denoted by gfp = ∨Post(P) and lfp =

∧Pre(P) respectively. To relate gfp(P) (lfp(P)) to the limits of a lower (upper) iteration sequence, the following lemma is
needed (dual to Lemma 3.1 and Theorem 3.2 (part 1) of [24]).

Lemma 1. Let ⟨Wi, i ∈ λ⟩ be a λ-termed lower iteration sequence for the monotone operator P(·) : L → L, on the complete
lattice L, starting with W0 ∈ L. Then, if ω ∈ λ is the smallest limit ordinal,

1. For all x ∈ L with W0 ≥ x and x ∈ Post(P), we have that Wi ≥ x for all i ∈ λ.
2. For all i ∈ λ let a ≤ i and b < ω, such that i = aω + b. Then, for all a′ > a and for all a′ω ≤ k ≤ a′ω + b,Wi ≥ Wk.

The proof of this lemma is given in the Appendix.
The first part of Lemma 1 shows that for W0 ∉ Post(P), the lower iteration sequence ⟨Wi, i ∈ λ⟩ starting from W0, can

only reach Post(P) at some k ∈ λ with Wk = P(Wk) = Wk+1 (i.e. stationarity). To see this apply part 1 of Lemma 1 with
x ∈ Post(P) such that x = P(x). The second part shows that for a lower iteration sequence ⟨Wi, i ∈ λ⟩, ⟨Wiω, i ∈ λ⟩ is
also a decreasing chain. We are now in a position to show that if we start a lower iteration sequence from an initial set
W0 ∈ Pre(P), then a stationary decreasing chain is constructed, and its limit is the greatest fixed point of P less than or equal
to W0 [24, Theorem 3.2]. A pictorial representation is given in Fig. 3.

Lemma 2. A λ-termed lower iteration sequence ⟨Wi, i ∈ λ⟩ for the monotone operator P(·) : L → L on the complete lattice L
starting with W0 ∈ Pre(P), is a stationary decreasing chain, and its limit liml

P(W0) is the greatest fixed point of P, less than or
equal to W0 (i.e. gfp(P) = liml

P(W0)).

The proof of this lemma is given in the Appendix.

3.2.3. Connection with the problem of hybrid discriminating kernel computation
We will now show how the fixed point theory of the previous subsection is related to the problem of computing hybrid

discriminating kernels. Since we allow for executions with a number of transitions possibly higher than the first limit

2 Note that in some references (e.g. [24]), Pre(P) is defined by (10) and Post(P) by (9) instead.
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Fig. 3. Pictorial representation of the set of pre-fixed points Pre(P) and post-fixed points Post(P) of amonotone operator P on a complete lattice L. Starting
from an initial setW0 ∈ Pre(P), a stationary, lower iteration sequence is constructed, which converges to the maximal fixed point gfp(P) of P .

ordinal, the definition of a hybrid time set and of an admissible execution (Definitions 2 and 3) should be revisited. To
avoid repetitions and unnecessarily complicating our notation, we only state informally that the hybrid time set (similarly
for the executions) should be thought of as a sequence of sets in the form of τ (see Definition 2), each of them having even
an infinite number of intervals. The overall time set would then be a sequence of intervals whose number may correspond
to higher limit ordinals.

Let now L be the complete lattice of closed subsets ofW0 = F × [0, T ], and set

P = Reach(t, Pre∃(·), Pre∀(·)).

Lemma 2 leads to the main result of this section.

Lemma 3. There exists a limit ordinal k ∈ λ such that for all j ≥ k,

Reach(t, Pre∃(Wj), Pre∀(Wj)) = Wk.

Moreover, Wk is the largest set such that this holds.

Proof. Reach(t, Pre∃(·), Pre∀(·)) is a monotone operator on the complete lattice L. Therefore, by Knaster–Tarski theo-
rem [23], it processes amaximal fixed point. SinceWi+1 ⊆ Wi,W0 ∈ Pre(Reach(t, Pre∃(·), Pre∀(·))). By Lemma 2, gfp(Reach
(t, Pre∃(·), Pre∀(·))) = liml

W0
(Reach(t, Pre∃(·), Pre∀(·))). Therefore, by Definition 7 (and since for all j ∈ λ we have

that Wj+1 = Reach(t, Pre∃(Wj), Pre∀(Wj))), there exists a limit ordinal k ∈ λ such that for all j ≥ k, we have Wk =

Reach(t, Pre∃(Wj), Pre∀(Wj)). In Lemma 2 it was also shown thatWk is the greatest fixed point of Reach(t, Pre∃(·), Pre∀(·)).
Hence,Wk is the largest set such that this holds. �

Note that Lemma 3 guarantees the existence of a limit ordinal such that the viability algorithm converges, but not
necessarily the least one. It remains to show that the fixed point Wk of the algorithm is the hybrid discriminating kernel
ofW0. This can be done as in Theorem 2 of [14].

Theorem 1. Wk is the hybrid discriminating kernel of W0 = F ×[0, T ] (i.e. Wk = Viab(N,T )
W0

with N possibly infinite), with k ∈ λ

such that Wk = Reach(t, Pre∃(Wk), Pre∀(Wk)).

Proof. The fact that Viab(N,T )
W0

⊆ Wk can be shown as in the first part of Proposition 2. Following [14], to show that

Wk ⊆ Viab(N,T )
W0

it suffices to show that Wk is hybrid discriminating domain.3 By Theorem 1 of [14], this is equivalent with
Wk = Reach(t, Pre∃(Wk), Pre∀(Wk)). The latter was shown in Lemma 3, and hence concludes the proof. �

Theorem 1 and Lemma 3 provide theoretical support when relating the fixed point of Reach(t, Pre∃(·), Pre∀(·)) to the
hybrid discriminating kernel of W0. However, the number of iterations required may exceed the first limit ordinal ω. Even
though this is justified in hybrid automata like the one of Section 3.2.1 with more than ω transitions (e.g. continuation

3 A closed set K ⊆ Q × X is called hybrid discriminating domain if there exists a hybrid strategy (α, γ ), such that for all n ≤ N and any disturbance
d(·) ∈ D, {δi}

n−1
i=0 , all executions of the hybrid automaton starting from (q0(τ0), x0(τ0)) ∈ K with

n−1
i=0 τ ′

i − τi ≤ T and τn = τ ′
n are such that

(qi(t), xi(t)) ∈ K for all Ii ∈ τ and all t ∈ Ii with i < n, and (qn(τn), xn(τn)) ∈ K .
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of executions beyond the Zeno time), algorithmic computation of the desired fixed point by means of Algorithm 1 is not
possible. The reason is that we cannot repeat steps 2–3 of the algorithm more than ω times, and so the sets in Definition 6
that correspond to higher limit ordinals cannot be computed by Algorithm 1.

Revisiting now the bouncing ball on a staircase example of Section 3.2.1, it is clear that it falls in the framework
of Theorem 1, for the specific set-up where no control or disturbance inputs are present. Clearly, the desired hybrid
discriminating kernel of {x ∈ R4

| x4 ≤ s} (see Fig. 1) is the empty set. However, as discussed above, this cannot be computed
bymeans of Algorithm 1 since the number of iterations cannot exceedω; but this is the case for all other algorithms as well.

3.3. Case 3: infinite continuous evolution and infinite discrete transitions

This is the most general case, since both the number of discrete transitions and the horizon of the continuous evolution
may be infinite (i.e. T = ∞,N = ∞). For the discrete part of the hybrid algorithm the same procedure as in the previous
case can be followed. Therefore, the implications of Theorem 1 and the corresponding proofs remain unchanged, with the
difference that the infinite time version of the continuous operator needs to be considered. To characterize this operator,
define as in [13] the augmented input ũ = (u, ū) ∈ U × [0, 1], and consider the dynamics f̃ (x, ũ, d) = ūf (x, u, d). Note
that since the horizon of the continuous evolution is allowed to be infinite, there is no need to augment the state space with
an additional ‘‘timer’’ as in the previous subsections. Denote byV (x) andV (x) the infinite horizon value functions, which
correspond to (5) and (7) respectively. We will only provide the characterization of V (x); the same for V (x). The infinite
horizon value functionV (x) is given byV (x) = inf

α(·)∈A
sup

d(·)∈D

max{l(φ̃(t, x, α(·), d(·))), max
τ∈[0,t]

h(φ̃(τ , x, α(·), d(·)))},

for all t > 0. The map φ̃(·, x, α(·), d(·)) : [0, ∞) → X denotes the trajectory of the augmented system, starting from the
initial condition x with inputs α(·), d(·). Unlike the finite time case of Section 3.1, there is no explicit dependency of φ̃ on
the initial time. Moreover,V (·) is not necessarily continuous.

Lemma 4. The functionV (x) is upper semicontinuous.

Proof. Consider an arbitrary x0 ∈ X . It suffices to show that for all ϵ > 0 there exists δ > 0 such thatV (x) −V (x0) < ϵ for all |x − x0| < δ.

By the definition ofV (x), for all ϵ > 0 there exists T ∈ [0, ∞) and α̂(·) ∈ A such that for all d(·) ∈ D ,

V (x0) > max{l(φ̃(T , x0, α̂(·), d(·))), max
τ∈[0,T ]

h(φ̃(τ , x0, α̂(·), d(·)))} −
ϵ

4
. (11)

Due to the continuous dependence of finite time trajectories on initial conditions (recall that both l(·), h(·) are Lipschitz
continuous), there exists δ > 0 with |x − x0| < δ, such that for all α(·) ∈ A and d(·) ∈ D , max

τ∈[0,T ]

h(φ̃(τ , x, α(·), d(·))) − max
τ∈[0,T ]

h(φ̃(τ , x0, α(·), d(·)))
 <

ϵ

4
, (12)l(φ̃(τ , x, α(·), d(·))) − l(φ̃(τ , x0, α(·), d(·)))

 <
ϵ

4
. (13)

But, by the definition ofV (x), we have thatV (x) < sup
d(·)∈D

max{l(φ̃(T , x, α̂(·), d(·))), max
τ∈[0,T ]

h(φ̃(τ , x, α̂(·), d(·)))}.

Hence, there exists d̂(·) ∈ D such thatV (x) < max{l(φ̃(T , x, α̂(·), d̂(·))), max
τ∈[0,T ]

h(φ̃(τ , x, α̂(·), d̂(·)))} +
ϵ

2
.

Since (11)–(13) hold for any d(·) ∈ D , they would also hold for d̂(·). We can then distinguish two cases. If V (x) <

l(φ̃(T , x0, α̂(·), d̂(·))), then statements (11), (13) lead toV (x) −V (x0) < ϵ. Else, ifV (x) < maxτ∈[0,T ] h(φ̃(τ , x0, α̂(·), d̂(·))),
statements (11), (12) lead toV (x) −V (x0) < ϵ, and conclude the proof. �

Proposition 4. The functionV (x) is a viscosity solution of

max


h(x) −V (x),min


0, sup

d∈D
inf
u∈U

∂V
∂x

(x)f (x, u, d)


= 0. (14)

Note that (14) is the stationary version of (6) for the initial (not the augmented) system (see [19] for details). Following a
proof similar to the finite horizon case (see Theorem1of [19]) it is straightforward to show thatV (x) is a viscosity subsolution
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of (14). Under the convexity part of Assumption 1 we can also show that the lower semicontinuous envelope ofV (x) is a
viscosity supersolution of (14). This implies thatV (x)will be a viscosity supersolution as well. Note that instead of imposing
the second part of Assumption 1, one could enlarge the set of admissible control functions from the class of measurable
functions to that of relaxed controls (see Chapter 3 of [31]). Unfortunately, the comparison principle does not hold in this
case and hence the viscosity solution is not unique [20]. However, V (x) is the maximal upper semicontinuous viscosity
subsolution.

Proposition 5. For all upper semicontinuous viscosity subsolutions W (x) of (14) such that W (x) ≤ l(x) for all x ∈ X,V (x) ≥

W (x) for all x ∈ X.

Proof. The proof is analogous to that of Proposition 5 of [20], and is based on the comparison principle for discontinuous
viscosity solutions [31]. For any T ∈ [0, ∞), let w(x, t) = W (x) for all t ∈ [0, T ] and x ∈ X . We have w(x, T ) ≤ l(x), and
hence w(x, T ) ≤ max{l(x), h(x)} = V (x, T ). Theorem 3.4 of [40] leads then to V (x, t) ≥ w(x, t) = W (x) on X × [0, T ].
Therefore, T → ∞ leads toV (x) = limT→∞

V (x, T ) ≥ W (x). �

Computation of the desired hybrid discriminating kernel can be performed using Algorithm 1, without the terminating
condition i = N and with the difference that the continuous operator at step 2 of the algorithm is now replaced by its
infinite horizon counterpart. The latter can be computed by means of Proposition 3, with the finite horizon value functions
being replaced byV (x) andV (x), respectively. Due to lack of continuity of the value functions (see Lemma 4) and since the
numerical tools based on Level Set Methods [17] deal with finite horizon problems, to approximateV (x) (similarly forV (x))
numerically, instead of (14) we solve (6) until the solution does not evolve any more (i.e. the resulting sets have saturated).
This procedure is also employed in the example of Section 4.2.

3.4. Case 4: infinite continuous evolution and finite discrete transitions

The computation of the hybrid discriminating kernel for the case where T = ∞,N < ∞ follows directly from
the analysis of Sections 3.1 and 3.3. Specifically, Reach can be computed as shown in Section 3.3, whereas the hybrid
discriminating kernel can be determined by Proposition 2, applying Algorithm 1 of Section 3.1. Even if convergence does not
occur the algorithm will terminate after at most N iterations.

4. Case studies

4.1. Numerical example

Consider the hybrid automaton of Fig. 4 with Q = {q1, q2}, X = R,U = D = V = [−1, 1], ∆ = [0, 1], f (q1, x, u, d) = 0
and f (q2, x, u, d) = u + ( 1

2 − x)d. Notice also that E = {(q1, q2), (q2, q1)},Dom(q1) = (−∞, − 1
2 ) ∪ ( 1

2 , ∞),Dom(q2) =

(−∞, 0),G(q1, q2) = R,G(q2, q1) = (−1, ∞), r(q1, q2, x, v, δ) = 2xδ and r(q2, q1, x, v, δ) = x. Clearly, the hybrid
automaton satisfies all parts of Assumption 1.

We will now apply the infinite time counterpart of Algorithm 1 (i.e. T = ∞ and termination occurs only if Wi = Wi−1)
with W0 = {q1} × [−1, 1] ∪ {q2} × [−1, 1]. Since we do not require the time of continuous evolution to be finite, the
additional state that was appended to the continuous state vector to track time is no longer needed. For all i = 0, 1, . . . , let
Wi,q1 = {x ∈ R|(q1, x) ∈ Wi},Wi,q2 = {x ∈ R|(q2, x) ∈ Wi}, and define

Si(q1) = {x ∈ R|∃v ∈ V , ∀δ ∈ ∆, x ∈ G(q1, q2) ⇒ r(q1, q2, x, v, δ) ∈ Wi,q2},

Ti(q1) = {x ∈ R|∀v ∈ V , ∃δ ∈ ∆, x ∈ G(q1, q2) ∧ r(q1, q2, x, v, δ) ∉ Wi,q2}.

Si(q1) contains the states x ∈ R for which there exists a choice for the discrete control input v ∈ V such that for all
disturbance inputs δ ∈ ∆, the continuous state ends up in Wi,q2 after a transition, thus remaining in Wi. On the other
hand, Ti(q1) contains all states x ∈ R for which for all discrete control inputs v ∈ V there exists at least one choice for the
disturbance δ ∈ ∆ such that the continuous state leaves Wi after a transition since it does not end up in Wi,q2 . The sets
Si(q2), Ti(q2) are defined analogously. Treating each mode q ∈ Q separately, notice from (1), (2) that

Pre∃(W0,q1) = Domc(q1) ∩ S0(q1) =


−

1
2
,
1
2


∩


−

1
2
,
1
2


=


−

1
2
,
1
2


,

Pre∀(W0,q1) = W c
0,q1 ∪ T0(q1) =


(−∞, −1) ∪ (1, ∞)


∪


−∞, −

1
2


∪


1
2
, ∞


=


−∞, −

1
2


∪


1
2
, ∞


,

Pre∃(W0,q2) = Domc(q2) ∩ S0(q2) = [0, ∞) ∩ (−1, 1] = [0, 1],

Pre∀(W0,q2) = W c
0,q2 ∪ T0(q2) =


(−∞, −1) ∪ (1, ∞)


∪ (1, ∞)

= (−∞, −1) ∪ (1, ∞).
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Fig. 4. Two-state hybrid automaton for the example of Section 3.2.

The fact that S0(q1) = [−
1
2 ,

1
2 ] follows from the definition of S0, where we seek to determine the set of x ∈ R such that

r(q1, q2, x, v, δ) ∈ Wi,q2 for all δ ∈ ∆. The latter implies that for all δ ∈ [0, 1], 2xδ ∈ [−1, 1]. We can now compute
W1 = {q1} × W1,q1 ∪ {q2} × W1,q2 , where

W1,q1 = Reachq1(Pre
∃(W0,q1), Pre

∀(W0,q1)) =


−

1
2
,
1
2


,

W1,q2 = Reachq2(Pre
∃(W0,q2), Pre

∀(W0,q2)) =


−

1
2
, 1


.

For the computation of W1,q2 it suffices to notice that for all x ≥ −1/2 there exists u such that for all d, f (q2, x, u, d) ≥ 0.
Proceeding on a similar way, the second iteration of the algorithm results in

Pre∃(W1,q1) = Domc(q1) ∩ S1(q1) =


−

1
2
,
1
2


∩


−

1
4
,
1
2


=


−

1
4
,
1
2


,

Pre∀(W1,q1) = W c
1,q1 ∪ T1(q1) =


−∞, −

1
2


∪


1
2
, ∞


∪


−∞, −

1
4


∪


1
2
, ∞


=


−∞, −

1
4


∪


1
2
, ∞


,

Pre∃(W1,q2) = Domc(q2) ∩ S1(q2) = [0, ∞) ∩


−

1
2
,
1
2


=


0,

1
2


,

Pre∀(W1,q2) = W c
1,q2 ∪ T1(q2) =


−∞, −

1
2


∪ (1, ∞)


∪


−1, −

1
2


∪


1
2
, ∞


=


−∞, −

1
2


∪


1
2
, ∞


.

Therefore,W2 = {q1} × W2,q1 ∪ {q2} × W2,q2 , where

W2,q1 = Reachq1(Pre
∃(W1,q1), Pre

∀(W1,q1)) =


−

1
4
,
1
2


,

W2,q2 = Reachq2(Pre
∃(W1,q2), Pre

∀(W1,q2)) =


−

1
2
,
1
2


.

In general, it is easy to show that for i = 1, 2, . . . ,W2i−1 = {q1} × W2i−1,q1 ∪ {q2} × W2i−1,q2 andW2i = {q1} × W2i,q1 ∪

{q2} × W2i,q2 , where

W2i−1,q1 =


−

1
2i

,
1
2i


, W2i,q1 =


−

1
2i+1

,
1
2i


,

W2i−1,q2 =


−

1
2i

,
1

2i−1


, W2i,q2 =


−

1
2i

,
1
2i


.

Hence, the sequence {Wi}i converges asymptotically (N = ∞) to Viab(N,T )
W0

= {q1} × {0} ∪ {q2} × {0}, which is the hybrid
discriminating kernel ofW0. Notice that for all executions starting at (q, 0) with q ∈ Q the continuous state remains at zero
either via continuous evolution or after a discrete transition. In particular, there exists the choice of a Zeno execution, taking
at τ ′

0 = τ0 = 0 an infinite number of transitions between the discrete states q1 and q2, without time progressing further.
It should be also noted that, as stated in Propositions 2 and4of [14] andProposition1, the sets Reach(Pre∃(Wi), Pre∀(Wi)),

Pre∃(Wi) are closed and their volume decreases with the number of iterations (see Fig. 5), whereas Pre∀(Wi) is open and
its volume increases with the number of iterations. The latter is not included in Fig. 5 since it extends to infinity. Since
Reach(Pre∃(Wi), Pre∀(Wi)) and Pre∃(Wi) are closed intervals, their volume is defined as the length of the corresponding
interval.
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Fig. 5. Normalized volume of Pre∃(Wi,q) and Reachq(Pre∃(Wi,q), Pre∀(Wi,q)) for every iteration i = 0, 1, 2, . . . and each mode q ∈ Q . Note that for all
i = 0, 1, 2, . . . , Pre∃(Wi,q1 ) = Reachq1 (Pre

∃(Wi,q1 ), Pre
∀(Wi,q1 )).

4.2. Voltage stability of a single machine-load system

4.2.1. System description and mathematical modeling
We consider a standard single machine-load system, as shown in Fig. 6, including the dynamics of the Automatic Voltage

Regulator (AVR). E, E ′ and Efd denote the voltage at the load bus, the voltage behind the generator’s transient reactance,
and the field excitation respectively. The voltage dynamic behavior for this network was studied in detail in [41], and
it was assumed to be isolated from the frequency dynamics. The objective of the AVR control loop is to regulate Efd at a
specified reference value Er , using as feedback the measured value of Eg . Following [41], the system is represented by a set
of differential equations that govern the response of E ′, Efd and an algebraic equation that couples E ′ with E. The differential
equation that describes the evolution of E ′ corresponds to a one axis generator model, whereas the equation for Efd is due to
the first degree model that was used for the control dynamics. The algebraic equation that couples E ′ with E emanates from
the power flow balance equations at every bus of the network. Solving it with respect to E ′, we get the following system
(see [41]).

Ė =


−

X − Xd

TdX ′
g1(E) +

Xd − X ′

d

TdX ′

E2

g1(E)
+

Xd − X ′

d

Td

Q (E)

g1(E)
+

Efd
Td


∂g1
∂E

−1

,

Ėfd = (−Efd + E0
fd)u1 + (−g2(E) + Er)u2, (15)

where

g1(E) = E ′
=

1
E


X ′2(P2 + Q (E)2) + 2X ′Q (E)E2 + E4,

g2(E) = Eg =
1
E


X2(P2 + Q (E)2) + 2XQ (E)E2 + E4,

Q (E) = Q0 + HE + BE2.

P,Q are the active and reactive parts of the load, where the latter was assumed to be voltage dependent. It consists of
a constant power source Q0, a current source HE and an impedance load BE2, where H, B ∈ R are constant coefficients.
Variables X, Xd, X ′

d denote the transmission reactance, the generator’s d-axis reactance and transient reactance respectively,
and X ′

= X +X ′

d. Td is the open-circuit transient time constant. For the voltage dependent load we considered H = B = 0.1,
whereas variables u1 ∈ [0.1, 1], u2 ∈ [−10, 10] are gains treated as control inputs (i.e. u =


u1 u2

T ) so as to regulate
Efd to its reference value Er . In this case no disturbance inputs are present, although one could consider load, parameter
uncertainty, etc. Numerical values for the remaining parameters were retrieved from [41]. Note that (15) becomes singular
along ∂g1/∂E = 0, but this occurs for an unacceptably low voltage value, outside the region of interest.

We consider a case where due to a fault, one of the two lines that connect the generator with the load is tripped at
tf = 4 s. The line closes then automatically after the fault is cleared at tc = 5 s. The overall system can be described by
the two-state automaton of Fig. 7. Define x =


x1 x2 x3

T
=

E Efd z

T
∈ R3, where z is a ‘‘timer’’, and is appended to the

system dynamics to capture the timed transitions between the two discrete modes. The vector fields f1, f2 ∈ R3 represent
(15), augmented with ẋ3 = 1, with the difference that the value of the reactance X is doubled once the line is tripped in
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Fig. 6. Single machine-load power system with AVR.

Fig. 7. Two-state hybrid automaton for the voltage control problem.

a b

Fig. 8. (a) Hybrid discriminating kernel for each discrete mode. (b) Volume of Pre∃(Wi), Pre∀(Wi), and Reach(Pre∃(Wi), Pre∀(Wi)) for every iteration
i = 1, . . . , 3 and each mode. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

mode q2. The hysteresis ϵ > 0 is added to the guard and domain conditions of the automaton, to avoid Zeno phenomena
and ensure that conditions 3 and 5 of Assumption 1 are satisfied.

4.2.2. Viability problem and simulation results
Considering the hybrid automaton of Fig. 7, the main objective is to determine the set of initial operating conditions,

from which the system trajectories can start, and despite the line failure, there exists a control action such that the voltage
remains within its safety limits both during the transient phase and after the reclosure of the line. A similar problem, but
from a reachability perspective, was investigated in [26,27]. In these references the authors attempted to identify the time
that the voltage exceeds the safety margins (i.e. voltage instability) after a fault. They represented the system by an acyclic
graph since no line reclosure was considered, and hence a sequence of continuous calculations was applied instead. In our
case the system is effectively also acyclic due to the timing constraints of the fault, and could be represented by a three-mode
automaton whose third mode would be a sink state with the same continuous dynamics as the first one. Nevertheless, we
keep the representation of Fig. 7 to illustrate some of the properties of the iterative procedure outlined in Algorithm 1.

The setW0 = {q1} × {x ∈ R3
|0.9 ≤ x1 ≤ 1.1} ∪ {q2} × {x ∈ R3

|0.8 ≤ x1 ≤ 1.2} encodes the safety limits of E. Using the
Level Set Method Toolbox [17] (version 1.1) on MATLAB 7.10 (at an Intel(R) Core(TM)2 Duo 2.66 GHz processor, 4 GB RAM,
runningWindows 7), we applied the viability algorithm, which reached a fixed point after two iterations, since at most two
transitions may occur (i.e. N = 2). The overall procedure required 8.36 min. The continuous calculation at each mode was
carried out until the viability sets had saturated (i.e. T = ∞). Viab(N,T )

W0
is then illustrated in Fig. 8(a). For any starting point
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in the low ‘‘green’’ region of q1 there exists a control sequence, such that the corresponding trajectory remains safe until
transiting to the safe part of q2 (‘‘red’’) at x3 = tf , and then return to the upper ‘‘green’’ region of q1 at x3 = tc , remaining in
W0 for ever while evolving continuously.

Fig. 8(b) shows how the volume of Reach(Pre∃(Wi), Pre∀(Wi)), Pre∃(Wi) and Pre∀(Wi), computed as the number of grid
points inside each set (normalized by the number of grid points inside the initial volume, using a 41 × 41 × 41 grid),
changes at every iteration i = 1, . . . , 3 for each mode. As expected (see Propositions 2 and 4 of [14] and Proposition 1),
Reach(Pre∃(Wi), Pre∀(Wi)), Pre∃(Wi) shrink, whereas the size of Pre∀(Wi) increases with the number of iterations.

5. Concluding remarks

In this paper, we investigated the problem of computing viability sets for hybrid systems with competing inputs. Our
analysis serves as the optimal control counterpart of [14], providing a complete characterization based entirely on optimal
control and the definition of executions of hybrid automata, Different cases, based onwhether the horizon of the continuous
calculation and the number of discrete transitions was finite or infinite, were considered, and the algorithm was applied to
a benchmark example and to the problem of voltage stability for a single machine-load system in case of a line fault.

Although the results reported here, together with those in the literature address a wide variety of viability type problems
for hybrid systems, there are still a few open issues. The first is that no transitions forced by the inputs are allowed, hence a
wide range of problems is excluded. Moreover, it was shown that the viability algorithm terminates at some ordinal number
(see Section 3.2), but not necessarily the least one, which hampers the applicability of the method. Finally, for the infinite
horizon case, the value function is semi-continuous, and hence uniqueness is no longer guaranteed. These issues constitute
subject of current research.
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Appendix

Proof of Proposition 2. Let k ≤ N denote the iteration at which the algorithm terminates. It suffices to show that
Viab(k,T )

W0
= Wk for all k ≤ N . If k = N we directly have that Viab(N,T )

W0
= WN , whereas if k < N notice that Viab(N,T )

W0
=

WN = Wk, since we would have Wi = Wk for all i ≥ k. At the first part of the proof we show that Viab(k,T )
W0

⊆ Wk. To show

thatWk ⊆ Viab(k,T )
W0

we use induction; the first step of the induction arguments is shown in Part 2 of the proof, whereas the

induction proof is completed in Part 3. Finally in Part 4we show that Viab(N,T )
F = {(q, x) ∈ F |(q, xz) ∈ Viab(N,T )

F×[0,T ]
and z = 0}.

Part 1: We first show that Viab(k,T )
W0

⊆ Wk. Since Viab(k,T )
W0

⊆ W0 and Wk ⊆ W0, it suffices to show that W0 \ Wk ⊆ W0 \

Viab(k,T )
W0

. Take (q̂, x̂z) ∈ W0 \ Wk. Fix any hybrid strategy (α, γ ). Similarly to [14] we show that we can find an execution
starting at (q0(τ0), xz0(τ0)) = (q̂, x̂z) leaving W0 after at most T units of continuous evolution and at most k discrete tran-
sitions. Since (q̂, x̂z) ∉ Wk, there exists i < k such that (q̂, x̂z) ∉ Wi = Reach(0, Pre∃(Wi−1), Pre∀(Wi−1)). By Proposition 1
(part 2) we have that (q̂, x̂z) ∉ Pre∃(Wi−1). Therefore, either x̂z ∈ Dom(q̂), or there exists δ̂ and q̂′ such that x̂z ∈ G(q̂, q̂′)

and (q̂′, rz(q̂, q̂′, x̂z, γ (q̂, x̂z), δ̂)) ∉ Wi−1. In the latter case, set τ ′

0 = 0, q1(τ1) = q̂′, xz1(τ1) = rz(q̂, q̂′, x̂z, γ (q̂, x̂z), δ̂) and
notice that τ1 = 0 and (q1(τ1), xz1(τ1)) ∉ Wi−1. If now x̂z ∈ Dom(q̂), and since under Assumption 1 (part 3) Dom(q̂) is
open, there exists d(·) such that the solution φ(·, q̂, x̂z, α, d) reaches Pre∀(Wi−1) without first reaching Pre∃(Wi−1). Since
the admissible executions are limited to at most T time of continuous evolution, it suffices to consider the case where
there exists t1 ∈ [0, T ] such that xz(t1) ∈ Pre∀(Wi−1) and for all t2 ∈ [0, t1), xz(t2) ∈ Dom(q̂) \ Pre∃(Wi−1). Let
xz0(t) = xz(t) for all t ∈ [0, t1]. By the definition of Pre∀, either (q0(t1), xz0(t1)) ∉ Wi−1 or there exist δ̂ and q̂′ such
that xz0(t1) ∈ G(q̂, q̂′) and (q̂′, rz(q̂, q̂′, xz0(t1), γ (q̂, xz0(t1)), δ̂)) ∉ Wi−1. In the latter case, set τ ′

0 = t1, q1(τ1) = q̂′ and
xz1(τ1) = rz(q̂, q̂′, xz0(t1), γ (q̂, xz0(t1)), δ̂) and notice that τ1 = t1 ≤ T < ∞ and (q1(τ1), xz1(τ1)) ∉ Wi−1.

Overall, starting from (q̂, x̂z) ∈ W0 \ Wi we constructed an admissible run that leaves Wi−1 in less than T time of con-
tinuous evolution and after at most one discrete transition. Iterating i times we can construct a run that leaves W0 in less
than T time of continuous evolution and after at most i ≤ k discrete transitions. For every iteration the above arguments
remain the samewith the modification stated below. Assume that at iteration j < k the system is at (qj(τj), xzj (τj)) = (q̂, x̂z)
with zj(τj) = τj > 0. Everything remains the same apart from the case where x̂z ∈ Dom(q̂). For an execution to be ad-
missible we need to consider only the case where there exists t1 ∈ [0, T − τj] so that the solution φ(·, q̂, x̂z, α, d) reaches
Pre∀(Wi−1) without first reaching Pre∃(Wi−1). Letting now xzj (τj + t) = xz(t) for all t ∈ [0, t1], we can show as before that
either (qj(τj + t1), xzj (τj + t1)) ∉ Wi−1 or (qj+1(τj+1), xzj+1(τj+1)) ∉ Wi−1, for τj+1 = τj + t1. Hence for any hybrid strategy
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we have found discrete and continuous disturbance inputs such that the associated run starting from (q̂, x̂z), leaves W0 via
an admissible execution, which in turn implies that (q̂, x̂z) ∉ Viab(k,T )

W0
.

Part 2: We will show that W1 ⊆ Viab(1,T )
W0

. We prove that if (q̂, x̂z) ∈ W1 then (q̂, x̂z) ∈ Viab(1,T )
W0

. Since W1 = Reach
(0, Pre∃(W0), Pre∀(W0)), for any (q0(τ0), xz0(τ0)) = (q̂, x̂z) ∈ W1 we can distinguish two cases.

Case 1: For any (q̂, x̂z) ∈ W1 there exists an nonanticipative strategy α for the continuous controls such that for
any continuous disturbance d(·) ∈ D, (q̂, xz(t)) ∈ (Pre∀(W0))

c
∩ Dom(q̂) for all t ∈ [0, T ] (note that we are inter-

ested in executions with τ ′

0 − τ0 ≤ T ). Choose then an arbitrary t̂ ∈ [0, T ]. Therefore, there exist α such that for any
d, (q̂, xz(t̂)) ∈ W0 and there also exists v ∈ V such that for all δ ∈ ∆ and q′

∈ Q with (q̂, q′) ∈ E, xz(t̂) ∈ G(q̂, q′) and
(q′, rz(q̂, q′, xz(t̂), v, δ)) ∈ W0. Choose q̂′

∈ Q , set τ ′

0 = t̂, xz0(t) = xz(t) for all t ∈ [0, t̂], q1(τ1) = q̂′, γ (q̂′, xz(t)) = v for
all t ∈ [0, t̂], xz1(τ1) = rz(q̂, q̂′, xz(t̂), γ (q̂′, xz(t̂)), δ), and notice that τ1 = t̂ and (q1(τ1), xz1(τ1)) ∈ W0. Since t̂ ∈ [0, T ] was
arbitrary, we have shown that there exists a hybrid strategy (α, γ ), such that for any disturbance d and δ, all executions
with τ ′

0 − τ0 ≤ T starting from (q0(τ0), xz0(τ0)) ∈ W1 ⊆ W0 are such that (q0(t), xz0(t)) ∈ W0 for all t ∈ [τ0, τ
′

0] and
(q1(τ1), xz1(τ1)) ∈ W0. By Definition 4, the last statement implies that (q̂, x̂z) ∈ Viab(1,T )

W0
.

Case 2: For any (q̂, x̂z) ∈ W1 there exists an nonanticipative strategy α for the continuous controls such that for any
continuous disturbance d(·) ∈ D , there exists t1 ∈ [0, T ] such that (q̂, xz(t1)) ∈ Pre∃(W0) and (q̂, xz(t2)) ∈ (Pre∀(W0))

c

∩ Dom(q̂) for all t2 ∈ [0, t1]. As in the previous case, we restricted t1 ∈ [0, T ] since all admissible executions are such
that τ ′

0 − τ0 ≤ T . Consider first any execution with τ ′

0 ∈ [0, t1). Since (q̂, xz(t)) ∉ Pre∀(W0) for all t ∈ [0, τ ′

0], following
the same arguments as in Case 1 we can show that the system executions stay in W0 via continuous evolution and one
discrete transition, i.e. (q0(t), xz0(t)) ∈ W0 for all t ∈ [τ0, τ

′

0] and (q1(τ1), xz1(τ1)) ∈ W0. If τ ′

0 = t1, a transition is forced
to occur since (q̂, xz(τ ′

0)) ∈ Pre∃(W0). This implies that there exist a v ∈ V such that for any δ ∈ ∆ and q′
∈ Q with

(q̂, q′) ∈ E, xz(τ ′

0) ∈ G(q̂, q′) and (q′, rz(q̂, q′, xz(τ ′

0), v, δ)) ∈ W0. Choose q̂′
∈ Q , set q1(τ1) = q̂′, xz0(t) = xz(t) for all

t ∈ [0, t1], γ (q̂′, xz(τ ′

0)) = v, xz1(τ1) = rz(q̂, q̂′, xz(τ ′

0), γ (q̂′, xz(τ ′

0)), δ), and notice that τ1 = t1 and (q1(τ1), xz1(τ1)) ∈ W0.
The last statement implies that (q̂, x̂z) ∈ Viab(1,T )

W0
.

Part 3: We now show that Wk ⊆ Viab(k,T )
W0

. To achieve this we will use induction. For k = 1 the claim follows from Part

2. Assume that the statement holds for some j < k, i.e. Wj ⊆ Viab(j,T )
W0

. We should show that Wj+1 ⊆ Viab(j+1,T )
W0

. By the last
part of Proposition 1,

Reach(0, Pre∃(Wj), Pre∀(Wj)) ⊆ Reach(0, Pre∃(Viab(j,T )
W0

), Pre∀(Viab(j,T )
W0

)).

SinceWj+1 = Reach(0, Pre∃(Wj), Pre∀(Wj)), it suffices to show that

Reach(0, Pre∃(Viab(j,T )
W0

), Pre∀(Viab(j,T )
W0

)) ⊆ Viab(j+1,T )
W0

.

Following the same arguments as in Part 2 with Viab(j,T )
W0

in place of W0, we can show that there exist continuous controls

such that for any disturbance input and any admissible execution starting from (q0(τ0), xz0(τ0)) ∈ Reach(0, Pre∃(Viab(j,T )
W0

),

Pre∀(Viab(j,T )
W0

)) ⊆ Viab(j,T )
W0

, (q0(t), xz0(t)) ∈ Viab(j,T )
W0

for all t ∈ [τ0, τ
′

0] and (q1(τ1), xz1(τ1)) ∈ Viab(j,T )
W0

. Since (q1(τ1), xz1(τ1))

∈ Viab(j,T )
W0

, following Definition 4 viability should be ensured for all executions with n ≤ j and
n

i=1 τ ′

i − τi ≤ T (the first
interval of those executions was assumed to be [τ1, τ

′

1]). To achieve this, and sinceW0 = F × [0, T ], for all such executions
the last component of the continuous state should not exceed T , i.e. zn(τn) ≤ T for all n ≤ j. But zn(τn) = τn =

n
i=0 τ ′

i − τi.
Therefore, all admissible executions that lead to (q1(τ1), xz1(τ1)) ∈ Viab(j,T )

W0
should be restricted to one discrete transition

and one interval [τ0, τ ′

0] of continuous evolution such that
n

i=0 τ ′

i − τi ≤ T for all n ≤ j.
Overall, starting from (q0(τ0), xz0(τ0)) ∈ Viab(j,T )

W0
⊆ W0 there exists a continuous control input such that for any distur-

bance, all executions with n ≤ j + 1 (one transition is needed to reach Viab(j,T )
W0

) and
n

i=0 τ ′

i − τi ≤ T are such that (qi(t),
xi(t)) ∈ W0 for all Ii ∈ τ and all t ∈ Ii with i < n, and (qn(τn), xn(τn)) ∈ W0. By Definition 4 this implies that
(q0(τ0), xz0(τ0)) ∈ Viab(j+1,T )

W0
and concludes the induction proof.

Part 4: We will now show that Viab(N,T )
F = {(q, x) ∈ F |(q, xz) ∈ Wk and z = 0}. Parts 1 and 3 lead to Wk = Viab(k,T )

W0
=

Viab(N,T )
W0

, where W0 = F × [0, T ]. Therefore, the set W t
k = {(q, x) ∈ F |(q, xz) ∈ Wk and z = t} for t ∈ [0, T ], de-

notes the states that remain in F following any execution restricted to T − t time of continuous evolution. Notice that
Viab(N,T )

F contains all states that remain in F for any execution restricted to T time of continuous evolution. Therefore
Viab(N,T )

F =
T

t=0 W
t
k = W 0

k . �

Proof of Lemma 1. Part 1: Let x ∈ L such thatW0 ≥ x and x ∈ Post(P), i.e. P(x) ≥ x. Assume that for all j ∈ λ with j < i, we
haveWj ≥ x. If i is a successor ordinal, then we haveWi−1 ≥ x. By Definition 6,Wi = P(Wi−1), and since P(·) is a monotone
operator P(Wi−1) ≥ P(x). Therefore, Wi = P(Wi−1) ≥ P(x) ≥ x. If i is a limit ordinal, then by the induction hypothesis

j<i Wj ≥ x, and hence by Definition 6,Wi ≥ x. Therefore, by transfinite induction, for all i ∈ λ,Wi ≥ x.
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Part 2: For all i ∈ λ there exist unique a, b such that i = aω + b, with a ≥ i and b < ω [24]. If i is a limit ordinal, then
b = 0 and for all a′ > a, i = aω < a′ω. But a′ω is a limit ordinal, hence by Definition 6,Wi =


j<i Wj ≥


j<a′ω Wj = Wa′ω .

If b ≠ 0, then i is a successor ordinal, and i−1 = aω+b−1. Assume now that for all a′ > a and for all a′ω ≤ k ≤ a′ω+b−1,
we have Wi−1 ≥ Wk. Then, by monotonicity of P , we have Wi = P(Wi−1) ≥ P(Wk) = Wk+1. Then, since Wi ≥ Wa′ω , with
k′

= k + 1 we have that for all a′ > a and for all a′ω ≤ k′
≤ a′ω + b,Wi ≥ Wk′ . Therefore, by transfinite induction, the last

statement concludes the proof. �

Proof of Lemma 2. Since W0 ∈ Pre(P), and P is a monotone operator on L, ⟨Wi, i ∈ λ⟩ is a decreasing chain. For the sake
of contradiction, assume that this chain is strictly decreasing. By the definition of λ, this would imply that Card(⟨Wi, i ∈

λ⟩) = Card({i ∈ λ}) > Card(L) (Card(A) denotes the cardinality of A). On the other hand, we have that for all i ∈ λ,Wi ∈ L,
hence Card(⟨Wi, i ∈ λ⟩) ≤ Card(L). The last argument establishes a contradiction, and shows that ⟨Wi, i ∈ λ⟩ is a stationary
decreasing chain. This implies that there exists k ∈ λ, such thatWk = Wk+1. SinceW0 ≥ Wk = Wk+1 = P(Wk),Wk is a fixed
point (and also a post-fixed point) of P less than or equal W0. If k is a limit ordinal, denote k = aω. Then, for all a′ > a we
have a′ω > aω. By Definition 6, Wa′ω =


j<a′ω Wj = Waω ∩


aω<j<a′ω Wj. But Waω = Wk ∈ Post(P), so by Lemma 1 (part

2), for all j ∈ λ (and also for all j > aω), Wj ≥ Waω . Therefore, Wa′ω = Waω for all a′ > a. Hence, the sequence ⟨Wjω, j ∈ λ⟩

is stationary decreasing (it is decreasing due to Lemma 1 (part 2)) with limitWaω = Wk.
Let now x ∈ L be such that W0 ≥ x and x ∈ Post(P). Then, by Lemma 1 (part 1), Wk ≥ x, which implies that Wk is the

greatest fixed point of P less than or equalW0. Hence, gfp(P) = liml
P(W0) = ∨Post(P). �
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