
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 4, NOVEMBER 2013 3885

A Probabilistic Framework for Reserve Scheduling
and Security Assessment of Systems

With High Wind Power Penetration
Maria Vrakopoulou, Student Member, IEEE, Kostas Margellos, Student Member, IEEE, John Lygeros, Fellow, IEEE,

and Göran Andersson, Fellow, IEEE

Abstract—We propose a probabilistic framework to design an
secure day-ahead dispatch and determine the minimum

cost reserves for power systems with wind power generation. We
also identify a reserve strategy according to which we deploy the
reserves in real-time operation, which serves as a corrective con-
trol action. To achieve this, we formulate a stochastic optimization
program with chance constraints, which encode the probability of
satisfying the transmission capacity constraints of the lines and
the generation limits. To incorporate a reserve decision scheme,
we take into account the steady-state behavior of the secondary
frequency controller and, hence, consider the deployed reserves
to be a linear function of the total generation-load mismatch. The
overall problem results in a chance constrained bilinear program.
To achieve tractability, we propose a convex reformulation and
a heuristic algorithm, whereas to deal with the chance constraint
we use a scenario-based-approach and an approach that considers
only the quantiles of the stationary distribution of the wind power
error. To quantify the effectiveness of the proposed methodolo-
gies and compare them in terms of cost and performance, we use
the IEEE 30-bus network and carry out Monte Carlo simulations,
corresponding to different wind power realizations generated by a
Markov chain-based model.

Index Terms—Chance-constrained optimization, corrective se-
curity, security, reserve scheduling, wind power integration.

I. INTRODUCTION

T HE expected increase in the installed wind power capacity
and other fluctuating power sources as well (e.g., pho-

tovoltaic power) highlights the necessity of revisiting certain
operational concepts, like security and reserve scheduling. In
a deterministic setup, security of a power system refers to its
ability to withstand contingencies without disruption of service
[1], [2]. As a security measure, the security criterion is
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commonly used, under which the system is considered to be se-
cure if any single component outage does not lead to any oper-
ational violations.
In the absence of uncertainty, many methods dealing with se-

curity enhancement have been proposed [3]–[7]. From a market
point of view, the authors of [8] propose a method for incorpo-
rating contingencies and stability constraints by making use of
a voltage-constrained optimal power flow. On the other hand,
in the presence of uncertainty, most of the research has either
concentrated on the economic implications of security [9], [10]
or has resorted to Monte Carlo-based statistical analyses [11],
[12]. Toward maximizing the expected social welfare, optimiza-
tion of reserve power has been addressed in [13]–[16] in a secu-
rity-constrained market clearing context. Using the same frame-
work, the work in [17] and [18] formulated a multistage sto-
chastic unit commitment program, modeling the uncertain gen-
eration by means of scenarios and using reduction techniques to
ensure tractability of the problem. However, these approaches
do not offer a priori guarantees regarding the reliability of the
resulting solution.
In this paper, we propose a unified framework that simultane-

ously solves the problem of designing an secure day-ahead
dispatch for the generating units while determining the min-
imum cost reserves and the optimal way to deploy them. To
account for the variability of wind power, we follow a prob-
abilistic methodology, providing certain guarantees regarding
the satisfaction of the system constraints. We first integrate, as
in [19], the security constraints emanating from the cri-
terion to a dc optimal power flow problem and formulate a sto-
chastic optimization problemwith chance constraints.Modeling
the steady-state behavior of the secondary frequency controller
leads to a representation of the reserves as a linear function of
the total generation-load mismatch, which may be due either to
the difference between the actual wind and its forecast or to a
generator/load loss. We introduce different ways to distribute
reserves based on the type of mismatch, thus offering an imple-
mentation of corrective security. Therefore, the overall formu-
lation includes both preventive and corrective control [20]. The
generation dispatch and the reserve capacity determination con-
sist of preventive control actions, whereas the case-dependent
strategy according to which we deploy reserves in real-time op-
eration falls in the framework of corrective control. Apart from
the physical intuition, using such a strategy for the reserves has
the advantage that the number of decision variables does not
grow with the number of uncertainty realizations as in [17], and
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the resulting solution is less conservative compared with that
of [21]. This makes our method applicable even for large-scale
networks.
The resulting problem is a chance-constrained bilinear pro-

gram. To achieve tractability, the issues arising due to the bi-
linear terms and the presence of the chance constraint need to be
resolved. To alleviate these difficulties, we propose a heuristic
algorithm and a convex reformulation, as well as two alternative
techniques to deal with the chance constraint. The effectiveness
of the proposed methodologies is illustrated by means of Monte
Carlo simulations for a modified version of the IEEE 30-bus
network [22].
In Section II, we formulate the security constrained reserve

scheduling problem as a chance constrained optimization pro-
gram. Section III provides details on how to deal with the bilin-
earity problem and the chance constraint, and Section IV illus-
trates the performance of the proposed approaches via a simu-
lation study. Finally, in Section V, we provide some directions
for future work.

II. PROBLEM FORMULATION

A. Problem Setup and Definitions
We consider a power network comprising generating

units, loads, lines, and buses. For the security-con-
strained formulation, as in [13] and [23], we take into account
any outage involving the tripping of a branch, generator, or
load, and by we denote the total number
of possible single outages. Moreover, denote by the
set of indices corresponding to branch, load, and generator
outages. The “0” index corresponds to the case of no outage.
Let also .
The problem formulation of the next section is based on the

following assumptions: 1) a standard dc power flow approxi-
mation [24] is used; 2) wind generation is located at a single
bus of the network; 3) perfect load forecasts are considered; 4)
line outages do not lead to multiple generator/load failures; and
5) the “ON–OFF” status of the generating units has been fixed a
priori by solving a unit-commitment problem. The first assump-
tion is standard for this type of problems. The second, third,
and fourth are included to simplify the presentation of our re-
sults and could still be captured by the proposed algorithm. Re-
moving the last assumption by incorporating the unit commit-
ment problem would give rise to a mixed-integer problem; this
can be tackled using the modified version of the scenario ap-
proach [25], as will be discussed in Section III-C1.
Under the dc power flow approximation and by eliminating

the angles by setting the reference angle to zero [19], the vector
including the power flows across each line can be defined as

, where the power in-

jection vector is given by

(1)
where denotes the first rows of the quantity inside
the brackets. For every outage, matrices and denote
the imaginary part of the admittance of each network branch and
the nodal admittance matrix. , , and

denote the generation dispatch, the wind power in-feed,
and the load, respectively. is a power correction
term, which is related to the reserves provided by each generator
and will be defined in Section II-B. Matrices , , and
are of appropriate dimension, and their element is “1” if
generator (resp. wind power/load) is connected to the bus and
zero otherwise. Matrices , depend
on the outage . Specifically, for (i.e., the case
where we have no generator outage), (similarly
for ) is an identity matrix, where for the
diagonal element with index corresponding to the bus to which
the tripped generator is connected is set to zero.

B. Reserves Representation

Reserves are needed to balance generation-load mismatches,
which may occur due to a difference between the actual wind
power and its forecast or as an effect of a generator/load
loss. Such mismatches between load and generation induce
frequency deviations and activate the primary and secondary
frequency controllers [by means of automatic generation con-
trol (AGC)]. Here, we assume an ideal primary frequency
control functionality compensating for any fast time-scale
power deviation and focus only on the steady-state behavior
of the AGC actions (and, hence, on the secondary frequency
control reserves). The AGC output is distributed to certain
participating generators, whose setpoint is changed by a certain
percentage of the active power to be compensated. The product
of these percentage weights with the worst case imbalance
results in the amount of reserves that each generating unit
has to provide. We will refer to the vector that includes these
weights as the distribution vector.
The existing setup of the AGC loop is shown in Fig. 1,

demonstrating the role of the distribution vector. In current
practice, this vector results from the market that determines
the secondary frequency control reserves and remains constant
until the next market auction. Typically, this task is performed
without taking the network constraints into account. More-
over, the distribution vector may differ between up-spinning
and down-spinning reserves, but is the same for all possible
outages. In this paper, in view of a corrective security control
scheme, apart from distinguishing between up-spinning and
down-spinning reserves, we also consider different distribution
vectors depending on the outage. Optimizing then over the
distribution vectors, we determine an optimal reserve schedule
while taking the network security constraints into account.
Our approach enables us to compute simultaneously both the
minimum cost reserves per generator and a reserve strategy that
can be deployed in real-time operation. This strategy consists of
using the distribution vectors, which depending on the outage
and the wind power deviation dictate the amount of power
by which each generating unit should adjust its production.
Therefore, the proposed methodology serves as an alternative to
other methods for reserve scheduling, e.g., [17] and [18], which
account implicitly for real-time response via their day-ahead
decisions.
To encode the proposed reserve representation, we define a

power correction term as a linear function of the total gener-
ation-load mismatch. This term is directly related to the reserves
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Fig. 1. Schematic diagram illustrating the AGC functionality required for the
security-constrained reserve scheduling algorithm.

since it shows the amount of the reserves that, for every mis-
match, will be provided by each generator:

for all

(2)

where . Variable denotes the
generation-load mismatch, which for each outage is given by

if or
if
if .

(3)

Note that denote the element of ,
, that corresponds to the failed component . Vectors

represent the distribution vectors. The sum
of their elements is equal to one and, if a generator is not con-
tributing to the AGC, the corresponding element in the vector is
zero. The indices up and down are used to distinguish between
up-spinning and down-spinning reserves.
If is negative, up-spinning reserves are provided and the

production of the generators is increased accordingly, whereas
in the opposite case the second term of (2) is active and, hence,
down-spinning reserves are provided. Notice that , ,

may have negative elements as well. Consider for ex-
ample the base case where we have no outages: the power mis-
match is negative ( ), and some elements of are
negative as well. This corresponds to a setup where the network
is congested. The interpretation of some elements of being
negative is that the corresponding generators should provide
down-spinning reserves so that congestion is relieved, while the
rest of the units would provide up-spinning reserves.

C. Probabilistic Security Constrained Reserve Scheduling

We consider an optimization horizon with hourly
steps,1 and introduce the subscript to indicate the value of the
quantities for a given time instance . We consider
a quadratic form for the production cost and a linear cost for

1Here, we implicitly assume an ideal primary frequency control performance,
capturing the fast time scale wind power variability. This is standard practice
for day-ahead planning problems of this type [16]–[18].

the reserves. Let , , be generation and
reserve cost vectors and let denote a diagonal matrix with
vector on the diagonal.
For each step , define the vector of decision variables to be

where denote the probabilistically worst
case up-down spinning reserves that the system operator needs
to purchase for every . The resulting optimization problem
is

(4)

subject to the following.
1) Forecast power balance constraints: for all ,

(5)

This constraint encodes the fact that the power balance in
the network should always be satisfied when .

2) Generation limits: for all

(6)

where denote the minimum and max-
imum generating capacity of each unit.

3) Distribution vector constraints: for all and for
all

(7)

For , the element of , corresponding
to the tripped generator is equal to zero. Constraints (7)
encode the fact that the elements of the distribution vectors
should sum to one.

4) Probabilistic constraints: for all

for (8)

where the probability is meant with respect to the prob-
ability distribution of the wind power vector .
The first constraint inside the probability denotes the stan-
dard transmission capacity constraints for each outage .

represents either normal or emergency line ratings.
The second constraint provides guarantees that the sched-
uled generation dispatch plus the power correction term
will not result in a new operating point outside the gener-
ation capacity limits. The last constraint in (8) is included
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to determine the reserves , as the worst case,
in a probabilistic sense, value of the power correction term
. The reserves that the system operator will need to pur-

chase are then determined as and
, which denote the worst case

values of and , respectively. Note that in
(8) we considered the same probability level for each
time-step , but different probability levels per
stage or a joint chance constraint for all stages could be
captured by the proposed framework as well.

Following this formulation, we propose an additional AGC
functionality. The operator of the system needs to monitor both
the production of the tripped plant and the deviation of the wind
power from its forecast and, using (2) as a lookup table (LUT),
select the appropriate distribution vector, among those com-
puted in the optimization problem (see Fig. 1).
The resulting problem (1)–(8) is a chance-constrained

bilinear program whose stages are only coupled due to the
temporal correlation of the wind power. We could have a fur-
ther coupling among the stages if a unit commitment problem
was included or if ramping constraints of the generating units
and minimum up and down times were modeled. The reader is
referred to [26] for a setup where all of these constraints are
included. There are two main challenges when attempting to
solve problem (1)–(8). The first arises from the presence of
bilinear terms due to the products of , and
for , whereas the second is due to the presence of the
chance constraint. These issues are addressed in Section III.

Algorithm 1

1: Initialization – Part 1.
2: Set (e.g., ),3: .
4: Repeat until convergence

5: Set , , only in (2),
6: Compute solving (1)–(8),
7: Update ,
8: .

9: end
10: Return converged solution
11: Initialization – Part 2.
12: Set , , ,
13: .
14: Repeat until convergence

15: Set , , , in
(2),
16: Compute

solving (1)–(8),
17: Fix in (1)–(8),

18: Compute
solving (1)–(8),
19: .

20: end

Fig. 2. Illustration of Algorithm 1 for 1 h of the simulated data, initialized with
. For the first part, the power dispatch of each unit and the obtained

objective value converge after three iterations, whereas for the second only one
iteration is needed.

III. TRACTABLE PROBLEM REFORMULATIONS

A. Method 1: Heuristic Algorithm

We propose here a method based on an iterative algorithm
(Algorithm 1) to deal with the bilinear terms. We first attempt
to identify a feasible solution to the problem starting from an ar-
bitrarily chosen power schedule . For the simulation study
of Section IV, we used ; we have tested other initial
values as well, and in all cases the algorithm converged to the
same solution. At iteration of the algorithm, we fix only
in (2) to the value obtained in the previous iteration. Therefore,
is still a function of the distribution vectors and the produc-

tion, but this time the value of the power production term is
fixed to to avoid the presence of bilinear terms. Solving then
(1)–(8), a new solution is computed and is updated ac-
cordingly. If the algorithm converges, its fixed point will be
a feasible solution.
At a second step, we use an alternating scheme to refine

the resulting feasible solution in terms of cost. At iteration
we first fix , to the values obtained at the

previous step of the algorithm only for and ob-
tain by
solving (1)–(8). We then fix to the computed value in
all equations it appears and solve for the decision vector

. The entire process is
then repeated until convergence. Note that the first part of
Algorithm 1 is a heuristic scheme applied to identify a feasible
solution, and no convergence guarantees can be provided. The
second part of the algorithm converges monotonically (this is
not necessarily the case for the first part), since it is a bilinear
descent iteration; however, the limit point is not guaranteed to
be the global optimum of the original bilinear problem.
Fig. 2 shows how the power dispatch of each unit and the

obtained objective value change per iteration for the benchmark
problem introduced in the next section. After three iterations the
first part converges, whereas for the second only one iteration
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is needed. As expected, the cost decreases monotonically in the
second part.

B. Method 2: Convex Reformulation

Assume that, in the case where , we can distinguish
between the mismatch that corresponds to wind deviation and
the one that occurs due to a generator outage by introducing
different distribution vectors. For , the power correction
term would now be

By considering the optimization problem that corresponds to
(1)–(8) if the additional distribution vectors are introduced,

becomes the only bilinear term, which appears
both in the constraints and the objective function. Setting

and defining the new decision vector

the resulting problem is linear in and hence convex. It is of
the same structure as (1)–(8) with the additional constraint

for all (9)

Once the solution to this problem is computed, for all ,
is calculated as if is not equal to

zero and is set to zero otherwise. Note that the sum of the el-
ements of is constrained to be one, since , sat-
isfies (9). For real time operation, the look-up table interpre-
tation (discussed in Section II-C) may be used. Then, given a
mismatch , the participation of
each unit in compensating can be computed as .
Note that, following this procedure, we convexify the bilinear
terms inside the probability. The overall problem is still non-
convex, however, due to the presence of the chance constraint.
In Section III-C, we elaborate on how to deal with this issue.

C. Solving the Chance Constrained Problem

1) The Scenario Approach: Applying method 2 directly
transforms (1)–(8) to a problem where the constraints inside
the chance constraints are convex. This is also the case at every
iteration of method 1, with the difference that the size of the
resulting problem might be different from that of method 2. In
this section we provide a scenario based methodology to deal
with the chance constraint while ensuring tractability of the
resulting program. Since the decision variables of the different
optimization stages are not coupled via the constraints or the
objective function, we can treat each hour separately. The
chance constrained problem that we need to solve can be then
written in a more compact notation as

where is the vector of decision variables with being
the dimension of , is the uncertain parameter (in
this case the wind power ), is quadratic in , and
, are of appropriate dimension. Using the standard scenario
approach of [27] requires replacing the chance constraint with a
finite number of hard constraints, each of them corresponding to
a different uncertainty realization. This results in the following
optimization problem:

where , denote the different realizations of the
uncertain parameter , extracted according to . The authors of
[28] provide a bound on number , of uncertainty realizations
that one needs to generate to achieve probabilistic constraint
violation guarantees. It is shown that, if we generate

(10)

realizations of the uncertainty, the resulting solution of
will satisfy the chance constraint in with probability at
least ; here, is the number of decision variables and

is a confidence parameter. There are two basic lim-
itations of this procedure. The number of scenarios (and hence
also the number of constraints in ) grows with respect to
the number of decision variables and convexity of the objective
function and the constraints of the initial problem is required.
The latter prevents us from providing probabilistic performance
guarantees to mixed-integer programs like those arising in unit
commitment problems.
To overcome this difficulty, we exploit the recent results of

[25]. Instead of directly using the scenario approach and solving
, we construct and solve a robust version of with in-

terval bounded uncertainty, where the uncertainty bounds are
computed at an intermediate step using the scenario approach.
Specifically, we seek bounds , such that

with probability at least . Therefore, consider
the optimization problem

This is a different chance-constrained problem, whose objective
function and constraints are convex by construction. Therefore,
we can determine its solution using the scenario approach. This
requires solving the following problem:

for

where since has only two deci-
sion variables. Note that is effectively a selection problem
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Fig. 3. Connection between problems .

and , correspond to the maximum and minimum, respec-
tively, among the generated samples. We then use the com-
puted bounds to formulate the robust counterpart of as

Themaximization in is interpreted element-wise. Note that
is no longer a stochastic program, but we require that its

constraints be satisfied for all values of the uncertainty inside
, where , are computed by . Therefore, is a

robust optimization problem (equivalently it could be thought of
as a min-max problem) and can be solved efficiently using the
algorithms of [29]. In particular, for the specific setup where
the uncertainty is scalar, it suffices to enforce the constraints
in (8) only for the extreme values , of the uncertainty in-
tervals, which correspond to the maximum and minimum, in a
probabilistic sense, value of the wind power (see also [26]). Fol-
lowing [25], with confidence at least , any feasible solution
of satisfies the chance constraint of . Since the chance
constraint corresponding to each hour is satisfied
with confidence at least , all chance constraints would be
simultaneously satisfied with confidence at least (see
also [30]). The connection between the problems
is shown in Fig. 3.
In contrast to the standard scenario approach, our method-

ology provides finite sample size guarantees regarding the prob-
ability of constraint satisfaction, convexity of the initial problem
with respect to the decision variables. This implies that our
method is applicable to all problems where can be solved
effectively. This includes convex problems, but also problems
such as classes of mixed integer programs, for which effective
robust optimization algorithms already exist [29]. This feature
is exploited in [26], where the unit commitment problem is in-
corporated in the proposed framework.2

Including additional uncertainty sources (e.g., more wind
power generators, load uncertainty) or introducing coupling
constraints among the stages of the optimization problem
(ramping constraints, minimum up-down times, etc.) would
result in a problem where the uncertainty is no longer scalar.

2Including the unit commitment problem in the proposed probabilistic frame-
work would require the introduction of a vector of binary vari-
ables to encode the “ON–OFF” status of the generating units. This would give rise
to a term additive to the left-hand side of the inequality inside the chance
constraint of problems , , and , where would be
a matrix with constant entries. The resulting problem would be a robust
mixed-integer quadratic program since it would involve optimizing over both
and and can be tackled using the algorithms of [29].

The preceding formulation would remain unaffected with the
exception that the number of scenarios would depend on
the dimension of the uncertainty vector and that problem
would have hyper-rectangular instead of interval bounded
uncertainty. Using the methodology of [29], the resulting
optimization still leads to a tractable reformulation.
2) Quantile-Based Approach: An alternative way to treat the

chance constraint is to consider the stationary distribution of the
wind power error, as this is computed in Section IV-A. Two ex-
treme scenarios are then considered: a low one corresponding
to the forecast plus the percentile of the error distribution
and a high one corresponding to the forecast plus the

percentile of the error distribution (that way we have the
same -guarantees with the scenario approach). Now, treating
the wind power as a bounded uncertainty, with the bounds cor-
responding to these two extreme cases, we compute the genera-
tion dispatch and the reserves by solving the robust counterpart
of (1)–(8), where the bilinear constraints are tackled using either
method 1 or method 2. As in the previous approach, due to the
particular structure of the problem, it suffices to enforce the con-
straints in (8) only for the two extreme values of the wind power,
computed as described above. Note that the resulting problem is
of the same type as the one that we need to solve when using the
scenario approach of the previous section, with the difference
that the extreme values of the wind power are not necessarily
the same for both methods.

D. Probabilistic Performance Guarantees

Based on the method we use to deal with the bilinearity
problem and the approach we adopt to tackle the chance
constraint, we can offer different probabilistic performance
guarantees. If method 1 is selected to deal with the bilinear con-
straints, we need to employ the scenario or the quantile-based
approach at every iteration of the heuristic algorithm. The re-
sulting solution (if convergence at the first part of Algorithm 1
occurs) will be feasible by construction for the bilinear problem.
Therefore, applying either the scenario or the quantile-based
approach, we have probabilistic guarantees that the resulting
optimal solution is feasible for the initial chance constrained
problem (1)–(8).
Consider now the case where method 2 is used to transform

the bilinear constraints to convex ones. Following the scenario
approach results in solving the robust problem , whose so-
lution is feasible for with confidence at least . How-
ever, we have no guarantees that the resulting solution is fea-
sible for the bilinear chance constrained problem (1)–(8). In the
particular case where the uncertainty at every stage of the opti-
mization problem is scalar, it is shown in Appendix A that, using
method 2, we obtain probabilistic guarantees regarding the sat-
isfaction of the constraints of (1)–(8).

IV. SIMULATION STUDY

A. Wind Power Model and Simulation Setup

We assume that the wind power is the sum of a determin-
istic component (forecast) and a stochastic one, which models
the error between the forecast and the actual wind power. To
generate scenarios for the wind power error, we employed the
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Fig. 4. Stationary distribution of the wind power error. The “shaded” regions
denote the quantiles, which contain an fraction of the probability mass,
whereas the arrows indicate the and percentiles.

approach of [31], which proposes a Markov chain model to gen-
erate wind power time series that take into account the temporal
correlation of the wind power error. We used five-year, hourly
measured data (both actual and forecasted values), for the ag-
gregated wind power production of Germany over the period
2006–2011. Discretizing the wind power error with 41 states,
we construct the transition probability matrix for the wind
power error. It exhibits a pronounced block-triangular structure
suggesting strong auto-correlation of the wind power error. The
stationary distribution of the wind power error is computed
as a vector whose entries are all non-negative, sum up to one,
and satisfy . Fig. 4 shows the stationary distribution
of the wind power error, where the shaded regions denote the

quantiles which contain an fraction of the probability mass.
To evaluate the performance of our approach we applied it to

the IEEE 30-bus network [22], which includes ,
, , and is modified to in-

clude a wind power generator connected to bus 22. All numer-
ical values for the network data are retrieved from [22]. Even
though it is not a large scale system, using the IEEE 30-bus
network enables us to illustrate some features of the proposed
methodology. However, the proposed approach can be applied
to larger scale systems at manageable computational costs.
For all simulations we used and . Note

that when using the scenario approach, decreasing the value of
leads to a higher number of scenarios. However, using the pro-
cedure described in Section III-C.1 we only need the scenarios
to solve Problem , which is effectively a selection problem
and thus easy to solve. The size of problem is of impor-
tance and this is independent from the number of scenarios. The
number of scenarios will just determine (in a probabilistic sense)
the size of the interval uncertainty bounds and hence the con-
servatism of the resulting solution (the lower the value of the
more conservative the solution of tends to be). Therefore,
our choice for serves as a compromise between the theoretical
guarantees we can offer and the conservatism of the resulting
solution, as this is quantified by an a posteriori analysis and is
not related to the computational cost of solving .
To collect statistical results regarding the performance of our

algorithm, we carried out a Monte Carlo study, evaluating the

solution of (1)–(8) (reformulated based on the proposed alter-
natives, i.e., method 1 and 2, scenario and quantile approach)
against 10,000 wind power realizations, not included in the op-
timization process. Using the obtained reserve strategy (i.e., the
power correction term (2) with the distribution vectors fixed
according to the outcome of the optimization problem and the
wind power equal to the evaluation scenario), for each of these
realizations we examined whether the problem constraints are
satisfied. Note that since we examine the feasibility of all con-
straints, all possible outages are taken into account in the eval-
uation phase. Since we perform a probabilistic design, applying
our reserve strategy still allows for constraint violation but with
a certain probability. By constraint violation we mean the case
where the wind power realization used to evaluate our solution
leads to a power mismatch for which at least one of the con-
straints is violated. Such a violation does not necessarily cor-
respond to the base case but to some . In case
we violate the constraints and end up with an excess of power,
we refer to the maximal such amount as power surplus, which
corresponds to a potential wind power curtailment action. In
the opposite case we use the term power deficit to characterize
the amount of power that may not be covered by the scheduled
up-spinning reserves. In the realistic setup of an interconnected
system a fraction of this amount would be provided by the pri-
mary frequency reserves of neighboring areas (assuming the pri-
mary reserves of our area are also at saturation). If these primary
reserves are not sufficient to cover the power deficit load shed-
ding will occur. Following its definition, if no power deficit is
encountered the system will always be secure.
Note that for the simulation study of the next section we dif-

ferentiate among the distribution vectors based on the sign of the
wind power error and the possible generator outage, thus having
the same vector for all line and load outages. Our choice is mo-
tivated by a desire to minimize the number of decision variables
(and hence the computational cost) in the optimization problem.
All optimization problems were solved using the solver

CPLEX [32] via the MATLAB interface YALMIP [33].

B. Simulation Results

We first investigate the performance of methods 1 and 2 when
applying both the scenario approach and the quantile based ap-
proach for one day of our data. Fig. 5(a) shows the forecast
(“blue”) and the actual (“red”) wind power, the wind power
scenarios (“green”) that were used for the scenario approach
(generated according to ), and the wind power quantiles that
were used for the quantile based approach. For the analysis of
Fig. 5(c) the solution of (1)–(8) was evaluated using the actual
wind power realization (red curve in Fig. 5(a)). Figs. 6, 7 pro-
vide statistical information regarding the performance of our
methods using 10,000 wind power realizations, that were used
for evaluation purposes and their span corresponds to the shaded
region of Fig. 5(a).
Fig. 5(b) shows the scheduled cost (production + reserves)

for the convex reformulation (“dashed” line) and the heuristic
algorithm (“solid” line), using both the scenario and the quan-
tile based approach. All methods lead to a similar cost, but the
quantile based ones result in slightly lower values. The differ-
ence in the cost occurs due to the fact that the quantile based
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Fig. 5. (a) Wind power for one day of the simulated data. Forecast (“blue”),
actual (“red”), scenarios used for methods 1 and 2 (“green”), and the span of the
10,000 wind power realizations used for evaluation purposes (shaded region).
(b) Total scheduled cost (production + reserves) for method 1 (“solid” line) and
method 2 (“dashed” line). The “blue” and “light blue” curves correspond to
the scenario approach, whereas the “red” and “yellow” to the quantile based
approach. (c) Power deficit for method 1 (“solid” line) and method 2 (“dashed”
line). The “blue” and “light blue” curves correspond to the scenario approach,
whereas the “red” and “yellow” to the quantile based approach.

approach leads to scheduling less reserves, since it does not cap-
ture extreme scenarios like the scenario approach. However, this
is at the expense of more frequent constraint violations (see also
Figs. 6, 7). The latter is highlighted in Fig. 5(c) which shows the
amount of power deficit for each method, as this occurs once
the actual wind is realized. Using the scenario approach neither
method 1 nor method 2 lead to a power deficit, whereas the for
the quantile based approach the amount of deficit is the same for
both methods. As discussed below, this is not the case in gen-
eral. No power surplus was encountered since the actual wind
scenario never exceeds the upper quantile barrier.
For comparison purposes we solved the nonlinear problem

(1)–(8) directly using the nonlinear solver IPOPT. In all cases
the resulting solution led in slightly lower cost values com-
pared to method 1, with a maximum difference of 1%. There-
fore, method 1 provides a reliable alternative to more direct

schemes based on nonlinear solvers, since it leads to a similar
cost while involving the solution of a sequence of convex prob-
lems. method 2 leads to slightly lower cost compared to the non-
linear solver (maximum difference of at most 1%). This is due to
the fact that our setup satisfies the requirements of Proposition
1 in Appendix A; hence, method 2 provides an exact convex
reformulation of the bilinear problem. This implies that these
problems have the same optimal objective values, however, we
do not have guarantees that the bilinear one (solved using the
nonlinear solver) can be solved up to optimality. In the general
case, where the requirements of Proposition 1 are not satisfied,
method 2 will not necessarily outperform the solution of the
nonlinear solver in terms of cost since it will only be a convex re-
laxation of the bilinear problem. However, since method 2 leads
to a convex problem the computational cost will be much lower.
Methods 1 and 2 lead to different distribution of the reserves

among the various generators and to different total amount of
reserves in general. Therefore, the amount of power deficit or
surplus differs according to whether method 1 or 2 is employed.
Figs. 6(a) and (c) and 7(a) and (c) show the power surplus and
power deficit for the scenario approach and the quantile-based
approach, respectively, when method 2 is used.3 The results for
method 1 are similar and are omitted in the interest of space.
However, the probability of constraint violation (power deficit
or surplus) depends solely on the wind power used for evalua-
tion purposes. To see this, notice that the left or right hand-side
inequalities of the last constraint inside (8) will always hold
with equality for at least one of its rows (possibly different rows
for methods 1 and 2). From the definition of the power correc-
tion term, this implies that any wind power realization outside
the span of the scenarios used for the scenario approach or the
“band” of the quantile-based approach will result in violating
these specific constraints. Therefore, the distributions shown in
Figs. 6(b) and (d) and 7(b) and (d) are the same both for methods
1 and 2. The probabilities of these figures are calculated as the
fraction of the 10 000 evaluation scenarios that resulted in power
surplus and deficit, respectively. The empirical probability of
constraint violation is determined by the sum of the individual
probabilities of power surplus and deficit. The quantile-based
approach, even though it provides the same -type theoretical
guarantees, leads to systematically more power deficit and sur-
plus since the scenarios (“green”) span the entire range of the
shaded region, which includes the wind power realizations that
were used for evaluation purposes. It should be noted that load
shedding and wind power curtailment becomes more promi-
nent at later times due to accumulated forecast inaccuracy. This
is more pronounced when using the quantile-based approach
(Fig. 7) since the robustness guarantees offered by this approach
are limited in a band [“dashed” black lines in Fig. 5(a)] which
has the same width irrespective of the time instance (it is based
only on the stationary distribution of the wind power error).
Therefore, since the wind power inaccuracy is increasing with
time while the robustness region remains constant, we have the
increasing pattern of Fig. 7. On the other hand, since the scenario

3In the boxplots, the “red” line corresponds to the median value, the edges
of the box correspond to the 25th and 75th percentiles, whereas the whiskers
extend to a 99% coverage. The “red” marks denote the data outliers, which lie
outside the 99% confidence region.
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Fig. 6. Power deficit and surplus using the scenario approach, for one day of the
simulated data, evaluated with 10,000 wind power realizations ( and

). (a) Power surplus for method 2. (b) Probability of power surplus.
(c) Power deficit for method 2. (d) Probability of power deficit.

approach (Fig. 6) is based on sampling, the span of the scenarios
[“green” trajectories in Fig. 5(a)] does not exhibit this regularity
pattern and covers a wider range of wind power values.
Using the scenario approach, Fig. 8 depicts the distribution

of the percentage of cost improvement, using method 1 against
method 2 for 30 days of hourly measured data. Method 2 sys-
tematically leads to lower cost compared with method 1 since,
as discussed above, it falls in the framework of Appendix A.
However, we cannot generalize this pattern if the setup of
Appendix A is not satisfied. The total amount of power deficit
(surplus) for the 30 days, evaluated with the actual wind power
realizations, was 37 (3) MW for method 1 and 43 (3) MW for
method 2.

C. Simulation Conclusions

The main conclusions drawn from our simulation results are
summarized in Table I. As already mentioned, the probability of
power deficit or surplus depends only on the approach used to
solve the chance-constrained problem and not on methods 1 or
2, thus justifying the same characterization in the corresponding
entries of Table I. The same holds for the conservatism of each
method. By inspection of Figs. 6 and 7 it can be observed that
the probability of power deficit or surplus when the scenario
approach is used is lower compared to the one obtained by the
quantile based approach, while both methods are below the de-
sign value of . This implies that the scenario approach leads to a
more conservative performance compared to the quantile based
approach. This is justified by the fact that the scenario approach

Fig. 7. Power deficit and surplus using the quantile based approach, for one day
of the simulated data, evaluated with 10,000 wind power realizations (
and ). (a) Power surplus for method 2. (b) Probability of wind power
surplus. (c) Power deficit for method 2. (d) Probability of power deficit.

Fig. 8. Distribution of the percentage of cost improvement, using the scenario
approach, and applying method 1 against method 2 for 30 days of hourly mea-
sured data.

is based on sampling, so outliers may appear in the optimiza-
tions process, and by the fact that the bound which determines
the number of scenarios is not tight. To rank the methods in
terms of cost we use a numbering schemewhere “1” implies low
and “4” high cost. Independently of the approach used to solve
the chance constraint, method 2 leads to lower cost compared
to method 1 since it constitutes a convex reformulation of the
initial problem (see also Appendix A). Using the quantile based
approach results in scheduling less reserves, thus leading to a
lower scheduled cost.
Even though it seems more conservative in some cases, the

scenario approach provides a more general framework to handle
uncertainty since it takes into account the temporal correlation
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TABLE I
COMPARISON OF THE PROPOSED ALTERNATIVE APPROACHES IN TERMS OF

COST, POWER DEFICIT, POWER SURPLUS AND THE DEGREE OF CONSERVATISM.

of the wind power error. This is of major importance especially
if the optimization stages are coupled, as in the case where
ramping constraints of the generating units are taken into ac-
count. Moreover, subsequent developments of the scenario ap-
proach [34], which are not exploited in this paper, provide a
way to reduce the conservatism while providing the same per-
formance guarantees.

V. CONCLUDING REMARKS

In this paper, a new methodology for solving security-con-
strained reserve scheduling problems for systems with fluctu-
ating generation is presented. Moreover, a corrective security
control scheme consisting of a reserve strategy that could be
applied in real-time operation is introduced, and different al-
ternatives to deal with the resulting chance-constrained bilinear
problem are proposed.
Despite the fact that we focus on secondary frequency con-

trol reserves, the proposed methodology could also be applied
to determine the primary and tertiary reserves. Such an imple-
mentation is currently under investigation. Moreover, we focus
on decentralizing the developed algorithm and on exploiting the
work of [35], [36], by including a convex ac optimal power flow
relaxation. Another issue is to investigate the validity of our ap-
proach for alternativemarket structures [37] and compare it with
other benchmark methods.

APPENDIX
DISCUSSION ON METHOD 2

Here, we focus on a specific setup where the uncertainty at
every stage of the optimization problem is scalar. We will show
how method 2 can be used in conjunction with the scenario ap-
proach (similar arguments hold for the quantile-based approach
as well) to provide feasibility guarantees for problem (1)–(8).
Since the scenario-based methodology of Section III-C does
not require convexity of the underlying problem, with confi-
dence of at least , the optimal solution of the robust coun-
terpart of (1)–(8) is feasible for the initial chance-constrained
problem. Note that, for each optimization stage, the robust ver-
sion of (1)–(8) has interval bounded uncertainty and bilinear
constraints and denote by the optimal cost corresponding to
this problem. We will show how to construct the optimal so-
lution of this problem so as to obtain the desired probabilistic
guarantees.
Using method 2, the robust counterpart of (1)–(8) can be

transformed to a robust problem with linear constraints. Denote

as the optimal cost of the resulting robust problem. Propo-
sition 1 below shows that for this particular setup the costs
and are equal, and an optimal solution that corresponds to
can be used to construct an optimal solution corresponding to
. This implies that it suffices to compute a solution that leads

to (this is a robust convex problem and can be solved using
the approach of [29]) and use it to determine an optimal solution
of the robust version of (1)–(8), thus inheriting the probabilistic
guarantees of the scenario approach.

Proposition 1: If the uncertainty at every stage of (1)–(8)
is scalar, then . Moreover, a solution that corresponds
to can be used to construct a solution that corresponds to
.
Proof:
Part 1: : For every outage , method 2

introduces different distribution vectors , to distin-
guish between the mismatch which occurs due to wind devia-
tion and the one due to a generator outage. Therefore, the setup
of problem (1)–(8) is a special case of method 2, corresponding
to the situation where for , . The latter im-
plies that by construction the cost of the solution obtained by
method 2 is never higher compared to the one of (1)–(8) since
we have more degrees of freedom.

Part 2: : Since the stages are decoupled we
can focus on specific time instance . Consider the terms ,

, of the optimal
solution of method 2. It suffices to show that for all there
exist vectors , which together with these
terms, constitute a feasible solution of the robust counterpart of
(1)–(8). This solution would satisfy all of the constraints in (8)
for all values of the uncertainty inside the interval (scalar uncer-
tainty was assumed) where it is confined. Due to linearity of the
constraints with respect to the uncertainty, it suffices to check
feasibility only for the extreme values of this interval, which is
denoted here by . We show this here only for the
case where that results in determining ,
whereas the proof for the other case is similar. Moreover, the
cost of the constructed solution will be equal to since the
cost depends only on and . The claim
follows then directly, since we will have identified a feasible but
not necessarily optimal solution for (1)–(8).
To construct such a feasible solution, notice that, in all con-

straints, the distribution vectors appear through the term .
Therefore, consider such that the power correction
term of the bilinear problem (see (2) for ) is equal
to the one obtained by method 2, i.e., for all

(11)

If, in addition, , then all other constraints of
(1)–(8) will be trivially satisfied, since they are the same with
those of method 2. By multiplying both sides of (11) with ,
we obtain
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Since , the last statement is equivalent to

.
However, we have that and . Hence,

concluding the proof.
Note that the assumption of scalar uncertainty was used at

the second part of the proof, since, by checking only the two
extreme values of the interval bounded uncertainty, we were
able to have a unique map from , to , ,
. In case the uncertainty is of higher dimension, this proof

is not always valid, unless we introduce additional distribution
vectors for every vertex of the uncertainty set.
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