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Abstract—A new framework for formulating reachability
problems with competing inputs, nonlinear dynamics, and state
constraints as optimal control problems is developed. Such
reach–avoid problems arise in, among others, the study of safety
problems in hybrid systems. Earlier approaches to reach–avoid
computations are either restricted to linear systems, or face
numerical difficulties due to possible discontinuities in the Hamil-
tonian of the optimal control problem. The main advantage of
the approach proposed in this paper is that it can be applied to
a general class of target-hitting continuous dynamic games with
nonlinear dynamics, and has very good properties in terms of
its numerical solution, since the value function and the Hamil-
tonian of the system are both continuous. The performance of the
proposed method is demonstrated by applying it to a case study,
which involves the target-hitting problem of an underactuated
underwater vehicle in the presence of obstacles.

Index Terms—Differential game theory, Hamilton–Jacobi
equations, hybrid systems, optimal control, reachability.

I. INTRODUCTION

R EACHABILITY for continuous and hybrid systems has
been an important topic of research in the dynamics

and control literature. Numerous problems regarding safety of
air traffic management systems [1]–[3], flight control [4]–[7]
ground transportation systems [8], [9], etc., have been formu-
lated in the framework of reachability theory. In most of these
applications, the main aim was to design suitable controllers to
steer or keep the state of the system in a “safe” part of the state
space. The synthesis of such safe controllers for hybrid systems
relies on the ability to solve target problems for the case where
state constraints are also present. The sets that represent the so-
lution to those problems are known as capture basins [10]. One
direct way of computing these sets was proposed in [11] and
[12] and was formulated in the context of viability theory [10].
Following the same approach, the authors of [13] and [14]
formulated viability, invariance, and pursuit-evasion gaming
problems for hybrid systems and used nonsmooth analysis tools
to characterize their solutions. Computational tools to support
this approach have been developed by [15].
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An alternative, indirect way of characterizing such problems
is through the level sets of the value function of an appropriate
optimal control problem. By using dynamic programming,
for reachability/invariant/viability problems without state
constraints, the value function can be characterized as the
viscosity solution to a first-order partial differential equation
in the standard Hamilton–Jacobi form [16]–[18]. Numerical
algorithms based on level set methods have been developed by
[19] and [20], have been coded in efficient computational tools
by [18] and [21], and can be directly applied to reachability
computations.

In the case where state constraints are also present, this
target-hitting problem is the solution to a reach–avoid problem
in the sense of [1]. The authors of [1] and [22] developed a
reach–avoid computation, whose value function was charac-
terized as a solution to a pair of coupled partial differential
equations. In [21], [23], and [24], the authors proposed another
characterization, which involved only one Hamilton–Ja-
cobi-type partial differential equation together with an in-
equality constraint. These methods, however, are hampered
both from a theoretical and a numerical point of view by the
fact that the Hamiltonian of the system is in general discontin-
uous [22]. In this case, there is no theoretical characterization
of the value functions as viscosity solutions of variational
equations/inequalities.

In [25] and [26], a scheme based on ellipsoidal techniques to
compute reachable sets for control systems with constraints on
the state was proposed. This approach was restricted to the class
of linear systems. In [27], this approach was extended to a list
of interesting target problems with state constraints. The calcu-
lation of a solution to the equations proposed in [25]–[27] is in
general not easy apart from the case of linear systems, where
duality techniques of convex analysis can be used.

In this paper, we propose a new framework of characterizing
reach–avoid sets of nonlinear control systems as the solution to
an optimal control problem. Related problems in the absence of
competing inputs have recently been treated in [28]. We con-
sider the case where we have competing inputs and hence adopt
the gaming formulation proposed in [17]. We first restrict our at-
tention to a specific reach–avoid scenario, where the objective of
the control input is to make the states of the system hit the target
at the end of the time horizon and without violating the state
constraints. We then generalize our approach to the case where
the controller aims to steer the system toward the target not nec-
essarily at the terminal, but at some time within the specified
time horizon. Both problems could be treated as pursuit–eva-
sion games. The contribution of this paper is that it provides a
clear characterization of two nonlinear reach–avoid problems,
and a proof that the corresponding reach–avoid sets are deter-
mined by the level sets of nonsmooth value functions similar
to [27], which in turn are the unique continuous viscosity solu-
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tions to variational equations of a form similar to [29] and [30].
In addition to theoretical support for the use of computational
tools, the numerical advantage of this approach is that the prop-
erties of the value function and the Hamiltonian (both of them
are continuous) enable the use of existing tools based on Level
Set Methods [23], or other tools for solving variational equa-
tions [29], to compute the solution of the problem numerically.
Another advantage of this paper is that it provides a theoreti-
cally solid formulation for the reach–avoid operator, which is
the core of the hybrid algorithm of [1] and [22], and consists an
alternative approach for the viability-based algorithm of [14].

To illustrate our approach, we consider the motion of an au-
tonomous underwater vehicle in the presence of a disturbance
current, whose mathematical modeling was studied in detail in
[31]. The objective in this case is to determine the set of initial
states from which, for any disturbance, the underwater vehicle
can hit a target set while avoiding some fixed obstacles.

In Section II, we pose two reach–avoid problems for contin-
uous systems with competing inputs and state constraints and
formulate them in the optimal control framework. Section III
provides the characterization of the value functions of these
problems as the viscosity solution to two variational equations.
In Section IV, we present an application of this approach to the
navigation of an underactuated underwater vehicle in the pres-
ence of obstacles. Finally, in Section V, we provide some con-
cluding remarks and directions for future work.

II. DIFFERENTIAL GAMES AND REACH–AVOID PROBLEMS

A. Differential Game Problem Formulation

Consider the continuous time control system ,
and an arbitrary time horizon , with ,

, , and . Let ,
denote the set of Lebesgue measurable functions from

the interval to , and respectively. Consider also two
bounded, Lipschitz continuous functions ,

to be used to encode the target and state constraints
respectively.

Assumption 1: The sets and are compact.
The functions , and are bounded, Lipschitz
continuous in , and continuous in and .

Under Assumption 1, the system admits a unique solution
for all , ,

and for each initial state . For , this solution
will be denoted by

(1)

Let be a bound such that for all ,
and , and for all and

Let also and be such that

and

and

In a game setting, it is essential to define the information patterns
that the two players use. Following [17] and [32], we restrict the
first player to play nonanticipative strategies. A nonanticipative
strategy is a function such that for all

and for all , if for almost every
, then for almost every . We

then use to denote the class of nonanticipative strategies.
Consider the sets , related to the level sets of
and , respectively. For technical purposes,

assume that is closed, whereas is open. Then, and
could be characterized as

B. Reach–Avoid at the Terminal Time

Let represent a set that we would like to reach while
avoiding a set . One would like to characterize the set of
the initial states from which trajectories can start and reach the
set at the terminal time without passing through the set
over the time horizon . To answer this question, one needs
to determine whether there exists a choice of such
that for all , the trajectory satisfies
and for all . The set of initial conditions
that have this property is then

(2)

Now, introduce the value function

(3)

1 can be thought of as the value function of a differential game,
where is trying to minimize, whereas is trying to maximize
the maximum between the value attained by at the end of the
time horizon and the maximum value attained by along the
state trajectory over the horizon . Based on [16], [17], and
[29], we will show that the value function defined by (3) is the
unique viscosity solution of the following variational equation:

(4)

with terminal condition . It is then
easy to link the set of (2) to the level set of the
value function defined in (3).

Proposition 1: .
Proof: We first show that

holds. Consider a point
, and for the sake of contradiction assume

that . The latter implies that such that

. Equiva-
lently, there exists , such that for all ,

1Note that this � is different from the set that � takes values from, which was
defined in Section II-A. Throughout the paper, it will always be clear from the
context to which � we refer.
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there exists , so that
. The

last statement is equivalent to there exists , such that
for all , there exists , such that

or there exists
such that . Or in other words,
there exists , such that for all , there exists

, so that or there exists
. The last statement is

equivalent to , which is a contradiction.
We now show that .

Consider such that , and for the sake of
contradiction assume that . This implies
that for all , there exists , such that

or there exists such that
. Then, there exists such

that for all , there exists , such that
, or there exists such

that . However,
implies that for all there exists a strategy

such that
. Hence for all

, and also for all
, . The last argument

implies that , and for all ,
and so also for , . By
choosing , the last statement establishes a contradiction
and completes the proof.

C. Reach–Avoid at Any Time

Another related problem that one might need to characterize
is the set of initial states from which trajectories can start, and for
any disturbance input can reach the set not at the terminal, but
at some time within the time horizon , and without passing
through the set until they hit . In other words, we would like
to determine the set

(5)

Based on [33], define the augmented input as
and consider the dynamics

(6)

In Assumption 1, is assumed to be continuous in
and , and Lipschitz continuous in . Hence, since is the aug-
mented input, is not binary but takes values in [0, 1], and

is affine in , if satisfies Assumption 1

so will . Let denote the solution
of the augmented system, and define , and similarly to
the previous case. Following [33], for every , the
pseudo-time variable is given by

(7)

Consider , as it was defined in [33], such that .
In [33, Lemma 6], was proven to be the limit of a conver-
gent sequence of functions, its existence was verified, and it was
shown that

(8)

for any . Based on the analysis of [33], (8) implies that
the trajectory of the augmented system visits only the subset
of the states visited by the trajectory of the original system in
the time interval .

Define now the value function

One can then show that is related to the set .
Proposition 2: For ,

.
The proof of this proposition is given in Appendix A.

III. CHARACTERIZATION OF THE VALUE FUNCTION

A. Basic Properties of

We first establish the consequences of the principle of opti-
mality for .

Lemma 1: For all and all ,
we have (9), shown at the bottom of the page. Moreover, for all

.
The proof for the second part is straightforward and follows

from the definition of . The proof for the first part is given in
Appendix B.

Next, we show that is a bounded, Lipschitz continuous
function.

Lemma 2: There exists a constant such that for all

The proof of this Lemma is given in Appendix B.

(9)
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B. Variational Equation for

We now introduce the Hamiltonian ,
defined by

Lemma 3: There exists a constant such that for all
, and all

The proof of this fact is straightforward (see [16] or
[34, Lemma 2]). We are now in a position to state and prove the
following theorem, which is the main result of this section.

Theorem 1: The function is the unique viscosity solution
over of the variational equation

with terminal condition .
Proof: Uniqueness follows from [29, Lemmas 2 & 3 and

Proposition 1]. Note also that by
definition of the value function. Therefore, it suffices to show
the following.

1) For all and for all smooth
, if attains a local maximum at ,

then

2) For all and for all smooth
, if attains a local minimum at ,

then

The case is automatically captured by [35, p. 546].
Part 1: Consider an arbitrary and a

smooth such that has a local
maximum at . Then, there exists such that for all

with

We would like to show that

Since by Lemma 1 , either
or, . For the former, the claim

holds, whereas for the latter, it suffices to show that there exists
such that for all

For the sake of contradiction, assume that for all , there
exists such that for some

Since is smooth and is continuous, then based on [17], we
have that

for all and some , where denotes
a ball centered at with radius . Because is compact, there
exist finitely many distinct points

, and such that and for

Define by setting for , if
. Then

Since is smooth and is continuous, there exists
such that for all with

Finally, define by for
all . It is easy to see that is now nonanticipative
and hence . Thus for all and all

such that
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By continuity, there exists such that
for

all . Therefore, for all

Let be such that
.

Case 1.1: If , then for we have

(10)
Then, by the dynamic programming argument of Lemma 1, we
have

We can choose such that

and set . Since by Lemma 1
for all , we

have that
.

Hence

Since (10) holds for all , it will also hold for ,
and hence the last argument establishes a contradiction.

Case 1.2: If then for we have that for all

Since by Lemma 1

then if

we can choose such that

which establishes a contradiction.
If

then we can choose such that

or equivalently , since . Based
on our initial hypothesis that , there exists a

such that . If we take ,
we establish a contradiction.

Part 2: Consider an arbitrary and a
smooth such that has a local
minimum at . Then, there exists such that for all

with

We would like to show that

Since we have , it suf-
fices to show that

.
This implies that for all , there exists a such that

For the sake of contradiction, assume that there exists
such that for all there exists such that

Since is smooth, there exists such that for all
with
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Hence, following [17], for and any

By continuity, there exists such that
for all

. Therefore, for all

However, by the dynamic programming argument of Lemma 1,
we can choose a such that we have the equation
shown at the bottom of the page. The last statement establishes
a contradiction and completes the proof.

C. Variational Equation for

Consider the value function defined in the previous section.
The following theorem proposes that is the unique viscosity
solution of another variational equation.

Theorem 2: is the unique viscosity
solution of the variational equation

(11)

with terminal condition .
Proof: By Theorem 1, is the unique viscosity so-

lution of (4), subject to . If we

let , then, following the
proof of [33, Theorem 2], we have that

Consequently, the two variational equations (4) and (11) are
equivalent, and so is the viscosity solution of (11).

Since the solution to (11) is unique [29], one could easily
show that

IV. CASE STUDY: UNDERWATER VEHICLE MOTION IN THE

PRESENCE OF OBSTACLES

To illustrate the theoretical formulation of Section II, we con-
sider the motion of an underactuated underwater vehicle in the
presence of a disturbance current. Based on the modeling ap-
proach of [31], we focus on the problem of steering the vehicle
toward a specified target set while avoiding fixed obstacles in
the navigation space.

A. Mathematical Modeling

Following the detailed derivation of [31], we consider the mo-
tion of a three-degrees-of-freedom underwater vehicle with two
back thrusters but no side thruster. For the kinematic equations
of the vehicle, the following model was assumed:
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The state variables in represent the cartesian
coordinates and the orientation of the vehicle, whereas ,
are the components of the linear velocity vector, and is the
angular velocity. Variable denotes the amplitude and the
direction of the disturbance current.

In [31], the dynamic and kinematic equations of motion were
studied separately, and a forward reachability analysis for the
dynamical subsystem was performed, in order to determine an
estimate for the bounds of , and . By adopting these
results, we further consider, as in [31], that is
the control input, which consists of the velocities along the two
degrees of freedom, and to act as a bounded disturbance,
since it is the velocity along the unactuated degree of freedom.

B. Reach–Avoid Formulation

The objective in this problem is to identify the set of ini-
tial states for which there exists a control input , such that
for any disturbance , the vehicle can reach a target within
some specified time interval, while avoiding some fixed obsta-
cles denoted by . This is a reach–avoid at any time problem,
and based on the analysis of Section II-B, the value function

, that characterizes the desired set, is the viscosity solution of
(11). The target set is characterized by constraints of the form

and . Similarly,
represents the obstacles in the motion space and could be ex-

pressed as , where
, and denotes the number

of obstacles. To encode these constraints in the reach–avoid set-
ting of Section II, we define functions and

, such that characterizes the set and
, where determines

the obstacle . A natural choice is to choose to be the signed
distance to the set . Then

if
if

where stands for the usual distance to
the set . Similarly, is defined to be the signed distance to
the set respectively. The functions and will then be
Lipschitz by construction; to keep them bounded, we saturated
them at the Lipschitz constants and , respectively.

The Hamiltonian of the system, as defined in Section III-B,
is given by

The input values that optimize can be then easily com-
puted as

if
if

if
if

if
if

where for (see [31] for a detailed
derivation). Although these inputs depend in general on the state

of the system (through the costate vector ), they are not neces-
sarily feedback, but nonanticipative strategies. For a single input
setting though, the optimal control inputs would also be feed-
back.

To enforce the constraints represented by numerically, a
procedure called “masking” is used in the level set methods to
ensure that the value function will not enter in the obstacle re-
gion . Alternatively, numerical tools of [29] for solving varia-
tional equations could be used. In both methods, as also stated
in [21], at each time-step and for all grid points , the value
function is computed as , where

is the numerical solution of the partial differential equa-
tion, which appears as the second term in (11). A similar pro-
cedure is followed for , where the second term of (4) is
solved instead.

C. Simulation Results

For the numerical computation, we used four fixed obstacles
and considered m/s, (aligned with the -axis)
to be the current disturbance amplitude and orientation respec-
tively. The orientation of the underwater vehicle can vary in
the interval . For the simulations, m/s,

m/s, rad/s, rad/s,
m/s, and m/s were chosen from

[31] to be the extrema of the control and disturbance inputs.
Contour slices of the resulting set , for and
different values of , are shown in Fig. 1(a)–(c). The reachable
sets include all states inside the area determined by the solid
lines and, as expected, do not include points inside the fixed ob-
stacles denoted by rectangles. The filled square represents the
target set that the vehicle aims to reach, whereas the dashed
square indicates the boundary of the motion space. For com-
parison purposes, the dashed lines depict the reachable sets at

.
So far, the disturbance current was assumed to have constant

magnitude and direction. In a worst-case setting, the angle
of the current can be considered as an additional disturbance
input , which is also trying to maximize the Hamiltonian
of the system. The maximum value of is attained for

. The numerically computed reachable set for
this case is depicted in Fig. 2(a). It implies that only the points
that belong to this set can reach the target for any disturbance
direction and for any value of . The transparent cube indicates
the boundary of the motion space.

For a more realistic implementation of the worst-case sce-
nario, the state space could be augmented with

, and so the derivative of the current’s angle, in-
stead of the actual angle, could be treated as an additional distur-
bance input. Fig. 2(b) depicts a 3-D projection of the 4-D reach-
able set for s. This projection represents a union over the
reachable sets that correspond to each disturbance angle, and as
expected, it is a superset of the one of Fig. 2(a) (conservative
case) since the disturbance does not change direction instanta-
neously any more, and subset of that of Fig. 1(d), where the
disturbance was assumed to have constant direction. The main
purpose of this example was to illustrate the proposed formula-
tion numerically, and from an application point of view, further
investigation is required.

All simulations were performed on an Intel Core 2 Duo
2.66-GHz processor running Windows 7 and using the Level
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Fig. 1. Contour plots of ����� �� �� for (a) � � ����� rad, (b) � �
����� rad, and (c)� � � rad. (d) 3-D representation of ����� �� ��.

Set Method Toolbox [23] (ver. 1.1) on MATLAB 7.10. Since
the Level Set Method Toolbox is based on gridding the state
space, the memory and computational cost grow exponentially
with the dimension of the system, and hence the algorithm

Fig. 2. (a) Worst-case analysis with � as additional disturbance input.
(b) Worst-case analysis with �� as additional disturbance input.

TABLE I
NUMERICAL STATISTICS OF THE REACHABILITY COMPUTATIONS

suffers from the “curse of dimensionality” [21]. On the other
hand, assuming that an accurate enough grid is used, tight
approximations of the (in general irregular and nonconvex)
reachable sets can be achieved. The details for the numerical
implementation of the specific example are summarized in
Table I. As expected, the first two cases, which were performed
on the same grid, required similar time and memory usage,
whereas the 4-D implementation led to a significant increase
both in memory and computational time.

V. CONCLUSION

A new framework of controlling nonlinear systems with state
constraints and competing inputs was presented, and a proof that
the value function of the resulting reach–avoid problem is the
viscosity solution to a variational equation was provided. The
formulation was based on reachability and game theory and has
the advantage of maintaining the continuity in the value func-
tion and the Hamiltonian of the system. As a consequence, it
has very good numerical properties in the sense that standard nu-
merical tools can be now formally used. The effectiveness of the
proposed approach was verified numerically in the target-hitting
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problem of an underactuated underwater vehicle in the presence
of obstacles. For the numerical implementation, standard tools
based on Level Set Methods were used.

In future work, we plan to extend the proposed approach to
formulate games in the case where the obstacle function is time-
and/or control-dependant. Another issue would be to provide a
systematic methodology in order to construct numerically the
theoretically optimal control policy. This is in general difficult
to construct since it requires the computation of derivatives of
the value function, which is a process very sensitive to numerical
errors. Finally, the developed reach–avoid operator provides an
alternative formulation for the viability-based approaches and
could be extended and incorporated in existing algorithms for
verification of hybrid systems.

APPENDIX A

A. Proof of Proposition 2

Proof:
Part 1: Following [33, Lemma 8], we first show that

. Consider
, and for the sake of contradiction, as-

sume that . Then, there exists such that for
all ,

. This in turn
implies that for all , there exists such
that either , or there exists

such that .
Consider now the implications of . Equa-

tion (5) implies that there exists a such that
for all , and so also for , we can define

. Then, for this and , there exists
such that and for all

. Choose the freezing input
signal as

for
for .

If we combine with , we can get the input , which
will generate a trajectory

if
if

(12)
Case 1.1: Consider first the case where for all

. For , we have
that

Since , we showed before that
, i.e. .

Thus, from (12) we have that .
Since is already nonanticipative, and a
nonanticipative strategy for can be designed, will
also be nonanticipative. Therefore, the previous statement
establishes a contradiction.

Case 1.2: Consider now the case where for all
there exists such that

. Since we showed
that for all , we can
conclude from (12) that for all

If , we have that

Thus, .
Hence, for all , we have that

. Since in Case 1.1 was shown to be nonanticipative, we
have a contradiction.

Part 2: Next, we show that
. Consider such that and as-

sume for the sake of contradiction that . Then,
for all there exists such that ei-
ther for all , , or there
exists such that

.
Consider the strategy (note that

follows from the implications of and will be de-
fined in the sequel), which consists of a strategy ,
as defined in Section II-B, and an additional scalar component
that corresponds to . Following [33, Lemma 8], by eliminating
this scalar component, we can extract from

. By the implications of , we can then
choose the that corresponds to that . In [33,
Lemma 4], it was proven that the set of states visited by the aug-
mented trajectory is a subset of the states visited by the original
one. We therefore have that for all

(13)
or there exists such that

(14)
and similarly, . By
(13) and (14), and based on the definition of and , we con-
clude that there exists a such that either for all

(15)

or for some

(16)

Since , then for all , there ex-
ists a nonanticipative strategy such
that

. Hence, for all
, , and for all
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, . For , the
last argument implies that

and for

If we choose , the last statements contradict (15) and
(16) and complete the proof.

APPENDIX B

A. Proof of Lemma 1

Proof: Following [17, Theorem 3.1], we can define

We will then show that for all ,
and . Then, since is arbitrary,

.
Case 1: . Fix and choose

such that

Similarly, choose such that we have the first
equation shown at the bottom of the page. For any ,
we can define and such that

for all and for all
. Define also by

if
if .

It is easy to see that is nonanticipative.
By uniqueness, in
case , and also

if .
Hence, we have the second equation shown at the bottom of

the page. Therefore, .
Case 2: . Fix and choose now

such that

(17)

By the definition of
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Hence, there exists a such that

(18)

Let for all , and for
all . Let also to be the restriction
of the nonanticipative strategy over . Then, for all

, we define . Hence, we have

and so there exists a such that

(19)

We can define

if
if .

Therefore, from (18) and (19)

which together with (17) implies .

B. Proof of Lemma 2

Proof: Since and are bounded, is also bounded. For
the second part fix and . Let and
choose such that

By definition

We can choose such that

and hence

For all

where is the Lipschitz constant of . By the
Gronwall–Bellman Lemma [36, p. 86], there exists a
constant such that for all

Let be such that

Then
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Case 1:

Case 2:

Thus, in any case
. The same argument with the roles of , reversed

establishes that .
Since is arbitrary

Finally, consider and . Without loss of
generality, assume that . Let and choose
such that

By definition

Therefore, we can choose such that

where is the restriction of over . Then,
for all , we define , and

. By uniqueness, for all we have that

Case 1: Assume that

where is the Lipschitz constant of .
Case 2: Assume that

Let be such that

Then

where is the Lipschitz constant of . In any case we have
that

A symmetric argument shows that
, and since is arbitrary, this

concludes the proof.
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