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a b s t r a c t 

This paper deals with structured multi-agent optimization problems that involve coupled local and global 

decision variables. We propose an iterative distributed algorithm that explicitly accounts for this struc- 

ture, and requires the agents to communicate only their tentative solutions for the global variables 

throughout iterations. Our approach extends to structured multi-agent optimization a proximal-based 

distributed methodology that has recently appeared in the literature. Privacy of local information is pre- 

served and communication effort is reduced with respect to alternative distributed solutions where local 

and global optimization variables are grouped together and treated as a single decision vector. Multi- 

agent optimization problems with the considered structural properties appear in various contexts. In this 

paper, we apply our approach to energy management in a district where multiple buildings can commu- 

nicate over a possibly time-varying network and aim at optimizing the use of shared and local resources. 

We illustrate the efficacy of the resulting distributed energy management algorithm by means of a de- 

tailed simulation study on a cooling problem. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

This paper addresses optimization problems where multiple

gents are connected through a possibly time-varying network and

im at optimizing their local performance indices subject to het-

rogeneous constraints. A key feature of the considered set-up

s that it involves both local and global optimization variables,

nd the latter variables generate a coupling in the decisions of

he agents. More specifically, we consider m agents that need to

gree on a global decision vector x ∈ R 

n , while also deciding their

wn individual decision vector u i ∈ R 

n i , i = 1 , . . . , m, so as to min-

mize the sum of their local cost functions f i (x, u i ) : R 

n × R 

n i → R ,

 = 1 , . . . , m, while satisfying the local constraints ( x, u i ) ∈ V i , i =
 , . . . , m, where V i ⊆ R 

n + n i is the constraint set of agent i . The tu-

le ( u i , f i , V i ) constitutes private information that agent i is not

illing to share with the other agents. As for the communication
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tructure, the network connecting the agents is modeled as a di-

ected graph ( N, E k ), where the node set N = { 1 , . . . , m } represents

he agents and the edge set E k ⊆N × N represents the communica-

ion links that are active at time step k . More specifically, ( j, i ) ∈ E k 
f agent j can communicate with agent i at k . 

Our goal is devising an iterative algorithm over such a time-

arying communication network so that the agents jointly solve

he following constrained optimization problem 

 : min 

x ∈ R n , { u i ∈ R n i } m i =1 

m ∑ 

i =1 

f i (x, u i ) (1a)

ubject to: (x, u i ) ∈ V i , for all i = 1 , . . . , m, (1b)

hile not sharing with each other their private information repre-

ented by the tuple ( u i , f i , V i ) for each agent i , i = 1 , . . . , m . 

Note that the presence of a structured time-varying network

nd of information privacy constraints prevents us from solving P
n a centralized fashion. Moreover, even in the case when all this

nformation were made available, a centralized solution to P would

e computationally intense and not scalable for problems with a

igh number of agents. 

In case when a star communication graph is present, with one

f the agent acting as a central authority/aggregator and collect-

ng information from all agents, a possibility to preserve privacy
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Table 1 

Information exchange in the proposed algorithm and the most relevant approaches 

in the literature. 

Information
exchange

Algorithm
[3 8] [9,10] Algorithm 1

Dual variables – nm –

Local variables ui per agent ni – –

Global variables x n – n
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and obtain a scalable solution would be to adopt a decentralized 

1 

paradigm, where the central authority/aggregator collects from all

agents their estimates on the global decision vector x , performs

some aggregation/computation and broadcasts some update to all

agents. Under this regime, each agent has then to solve a prob-

lem with fewer decision variables and constraints compared to the

original one, Bertsekas and Tsitsiklis [1] . 

Several decentralized algorithms have been proposed in the lit-

erature; among those the alternating direction method of multipli-

ers (ADMM) has attracted particular attention, Bertsekas and Tsit-

siklis [1] , Boyd et al. [2] . To render P amenable to ADMM each

agent should create a copy of the global decision vector, thus giv-

ing rise to a separable objective function and constraint sets in

(1a) and (1b) , respectively. However, we would need to introduce

the so called consistency constraints to guarantee that all these

copies should be the same. Applying then ADMM, which involves

running a primal-dual scheme (as opposed to the primal algo-

rithm presented in the sequel), the dual variables associated with

the consistency constraints would need to be exchanged with all

agents via the central authority. This would entail exchanging nm

variables, where n is the number of variables in each copy and m

is the number of agents (one consistency constraint per agent). 

Here, in view of reducing the amount of information exchange

and respecting the privacy constraints, we aim at a protocol that

does not involve a central authority, restricting communication

only among neighboring agents. Given the time-varying nature

of the communication graph ( N, E k ) and, hence, of the notion

of neighbors, the proposed communication protocol should be

time-varying. Therefore, we resort to distributed optimization al-

gorithms that allow for time-varying communication in contrast to

distributed implementations of ADMM (see [2] for consensus de-

velopments). In this realm, the gradient/subgradient algorithms of

[3–6] , or the proximal minimization based algorithm of [7,8] , could

be adopted. The drawback, however, of all these distributed meth-

ods is that agents need to share their local decisions u i which con-

stitute private information. Alternatively, the primal-dual scheme

proposed in [9,10] based on dual decomposition could be adopted.

However, such a choice would entail introducing consistency con-

straints as in ADMM and as a result an excess of communication

involving exchanging nm variables. 

In this paper, we propose a proximal based distributed algo-

rithm that builds on [8] , as the latter imposes fewer assumptions

and does not require differentiability of the objective function or

computation of subgradients as in other approaches in the liter-

ature. At the same time, it is a primal based scheme that over-

comes the need for a communication exchange that increases with

the number of agents as in [9,10] , and exploits the structure of

the problem requiring to exchange information related only to the

global decision vector. The value taken by the global optimization

vector will in turn affect the optimization of the local ones, which,

however, will be performed locally to each agent, without sharing

with any other its individual objective function and constraint set

(privacy preserving algorithm), and without the need of enlarging

its optimization vector so as to include the local decision vectors

of the other agents. The proposed solution is then scalable in the

number of agents since the size of the global optimization vector

over which the agents need to reach consensus is fixed, and the

computation of the local ones is made individually by each agent,

without the need of providing any related information to the oth-
1 In certain research domains the term distributed is used instead. Motivated 

by the convention adopted by the majority of the control systems community we 

use the term decentralized when a central authority is present, while we use the 

term distributed to indicate that a central authority is absent and communication 

is restricted only among agents considered as neighbors according to an underlying 

communication protocol. 

s  

E  

o  

e  

u  

p  
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rs. Note that this nested optimization scheme was suggested in

8] , Remark 1 but with reference to the special (significantly eas-

er) case where local and global decisions are coupled only through

he performance index and the feasibility region for the local deci-

ion variables is independent of the value taken by the global ones.

t is actually the coupling via the constraint that makes the prob-

em difficult to solve. 

Our algorithm extends the one in [7,8] to the considered struc-

ured framework, and has the advantage with respect to [9,10] of

educing the exchange of information, and with respect to [3–

] of preserving privacy of local decisions, besides achieving sig-

ificant communication savings. The theoretical guarantees pro-

ided in [7,8] on the convergence to an optimizer of the central-

zed counterpart of the problem are shown to still hold in our

tructured setting. The proposed approach is particularly conve-

ient when there is a high number of local optimization variables

nd only a few global ones. Table 1 classifies the main features of

he proposed algorithm ( Algorithm 1 ) with respect to the most rel-

lgorithm 1 Distributed algorithm for structured optimization. 

1: Initialization 

2: k = 0 

3: (x i (0) , u i (0)) ∈ V i , for all i = 1 , . . . , m 

4: For i = 1 , . . . , m repeat until convergence 

5: x̄ i (k ) = 

∑ m 

j=1 a 
i 
j 
(k ) x j (k ) 

6: (x i (k + 1) , u i (k + 1)) ∈ 

arg min 
(x i ,u i ) ∈ V i f i (x i , u i ) + 

1 
2 c(k ) 

‖ ̄x i (k ) − x i ‖ 2 
7: k ← k + 1 

vant distributed optimization approaches over time-varying net-

orks, Nedic and Ozdaglar [3] , Nedic et al. [4] , Zhu and Mar-

inez [5] , Lee and Nedic [6] , Margellos et al. [7,8] , Chang et al.

9] , Falsone et al. [10] . All these algorithms perform local compu-

ations of the same complexity; we thus report their difference in

erms of the amount and nature of information that needs to be

xchanged. 

Optimization problems for multi-agent systems exhibiting the

onsidered structural properties can be found in various applica-

ion domains. Here, we focus on energy management in buildings

onnected over a network sharing common resources, as it natu-

ally fits the class of structured programs with each building/agent

aving several decision variables related to temperature set-points

hat are local and should not be shared with other agents, while

aving some global variables related to the usage of shared re-

ources. Optimal energy management in buildings has attracted

ignificant attention worldwide, since recent studies [11] have

hown that more than 30% of the total electricity consumption in

urope and in the United States is related to buildings and half

f that to climate control. Constructing algorithms for optimal en-

rgy management in building networks will allow demand mod-

lation through intelligent control and coordination of certain ap-

liances, or demand deferrability by appropriate use of the storage

evices. To achieve this, not only conventional energy management
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2 Throughout the paper, ‖ · ‖ denotes Euclidean norm. 
ethods need to be revisited, but also conceptually different con-

rol and coordination schemes have to be designed. 

Towards this direction, optimization based algorithms have

een already successfully applied to the problem of energy

anagement in buildings, due to their ability to handle the

ulti-objective nature of the problem (e.g., minimize energy costs,

aximize building utility), while taking physical and/or technolog-

cal constraints (e.g., storage limits, comfort constraints) into ac-

ount. Studies in this direction include, but are not limited to,

enze et al. [12] , Ma et al. [13] , Siroky et al. [14] , Ma et al. [15] ,

ldewurtel et al. [16] , Deng et al. [17] . Recently, in [18,19] , a com-

ositional perspective is adopted, allowing for smart-grid control

hat involves multiple buildings, chiller plants, storage devices, co-

eneration plants, etc., interacting with each other, whereas in

20] an energy-hub perspective is adopted, investigating the prob-

em of managing a collection of buildings in a cooperative manner.

owever, the network encoding the interaction among the differ-

nt modules is considered to be time-invariant, and the problem is

olved in a centralized fashion. In [21] , a decentralized scheme for

cheduling smart appliances in a residential district with a shared

nergy storage system is described, with an aggregator playing

he role of the central entity coordinating the buildings demand

nd managing the exchanges with the grid and the shared en-

rgy storage system. In [22] , a hierarchical scheme implementing

 decentralized heuristic solution is proposed, which accounts also

or the on-off switching of devices. In [23] a decentralized control

ethodology is applied to a home energy management problem. In

ll cases the underlying network topology is assumed to be time-

nvariant. 

In this paper, we deal in particular with the problem of cooling

f a building district, where buildings connected over a (possibly)

ime-varying network, are equipped with individual chiller plants

nd are connected to a cooling network through which they can

xchange cooling energy. The aim is minimizing the district elec-

rical energy costs over a given time horizon, while guaranteeing

omfort conditions for the building occupants. 

Note that building energy management applications have been

tudied recently in Koehler et al. [24] and Parisio and Gutierrez

25] according to a multi-agent perspective. In contrast with these

eferences, we allow for a more general formulation where the cost

unction is only required to be convex, and propose an algorithm

hat is completely distributed since it does not require any central

uthority. As for the application, we provide a more accurate mod-

ling for the building, since we explicitly account for its thermal

nertia, and for the chiller unit, since we consider its efficiency as

 function of the cooling energy request. 

Our contributions can then be summarized as follows: 

• we propose a scalable distributed algorithm which extends

[7,8] to structured multi-agent optimization problems, pre-

serving its optimality guarantees, without requiring agents

to disclose their local decision variables and limiting the

amount of exchanged information to that related to the

global decision variables, which have a fixed size, indepen-

dent on the number of agents; 
• we show how the proposed algorithm can be applied to re-

source sharing in energy management of a building district,

and perform a detailed simulation-based study. 

The rest of the paper unfolds as follows: In Section 2 we for-

ulate the structured multi-agent optimization problem and in-

roduce our distributed solution, including a detailed convergence

nalysis. In Section 3 we describe the energy management prob-

em over a building district. Section 4 provides a simulation based

tudy, whereas Section 5 concludes the paper. 
. Multi-agent optimization with local decisions 

In Section 2.1 , we provide a distributed iterative procedure to

olve the optimization problem P in (1) and then analyze its con-

ergence properties in Section 2.2 . 

At every iteration of the proposed distributed algorithm, each

gent i solves an appropriate local optimization problem and then

xchanges information with other agents only regarding the ten-

atively obtained value for the common decision vector x . In this

ay, one can account for information privacy, because agents are

ot required to share their own cost function f i , constraint set V i ,

nd decision vector u i , i = 1 , . . . , m . Moreover, even though all the

ecessary information could be exchanged, solving P in a central-

zed fashion may be computationally intensive and our distributed

lgorithm is also a means to alleviate this issue. 

Under certain structural and communication assumptions, the

roposed algorithm converges, and agents reach consensus to a

ommon value for the global decision vector x that, together with

he converged values for the local decision vectors u i , i = 1 , . . . , m,

orms an optimal solution of P (note that P does not necessarily

dmit a unique solution). 

.1. Distributed algorithm 

The pseudo-code of the proposed distributed procedure is given

n Algorithm 1 . In the remainder of this subsection we provide

ome explanations of the algorithm steps. 

Initially, each agent i , i = 1 , . . . , m, starts with some tentative

alues u i (0) and x i (0) for its local decision vector and the global

ecision vector, respectively. The latter constitutes an estimate of

gent i (this justifies the subscript i in x i ) of what the value of the

lobal decision vector might be. Those tentative values are chosen

rbitrarily from the set of feasible solutions, i.e., ( x i (0), u i (0)) ∈ V i 

step 3). One sensible choice for ( x i (0), u i (0)) is to set it such that

(x i (0) , u i (0)) ∈ arg min (x i ,u i ) ∈ V i , f i (x i , u i ) , as it guarantees local con-

traint satisfaction for each agent. However, the convergence analy-

is presented in the sequel does not depend on the initialization of

he algorithm. At iteration k , each agent i constructs a weighted

verage x̄ i (k ) of the solutions x j (k ) , j = 1 , . . . , m communicated

y its neighboring agents and its own one (step 5). Coefficient

 

i 
j 
(k ) ≥ 0 , indicates how agent i weights the solution received by

gent j at iteration k . If a i 
j 
(k ) = 0 , agent j does not use informa-

ion related to agent i at iteration k (this is necessarily the case if

 j, i ) 	∈ E k ). The coefficients a i 
j 
(k ) are chosen by the user but they

re required to satisfy some assumptions specified in Section 2.2 .

gent i solves then a local minimization problem, seeking the op-

imal solution pair ( x i , u i ) within V i that minimizes a performance

riterion, which is defined as a linear combination of the local ob-

ective function f i ( x i , u i ) and a quadratic term 

2 , penalizing the dif-

erence from x̄ i (k ) (step 6). The relative importance of these two

erms is dictated by c ( k ) > 0, which act as the step-size parameter

f a gradient-like method. Similarly to the a i 
j 
(k ) coefficients, also

he sequence { c ( k )} k ≥ 0 is a design parameter but it is subject to re-

trictions described in Section 2.2 . Since multiple minimizers may

xist, we assume that at every iteration the same deterministic tie-

reak rule (as e.g. that implemented by a deterministic numerical

olver) is used. 

Algorithm 1 is closely related to the distributed methodology

hat has been recently proposed in [7,8] . However, in Algorithm 1 ,

eighboring agents need to exchange at every iteration their ten-

ative estimates for the value of the global decision vector only,

hile, as discussed in the introduction, the distributed algorithm
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6

x  
in [7,8] requires to exchange both the global and the local de-

cision vectors. When the dimension of the local decision vector

is high compared to the global one, this would unnecessarily in-

crease the amount of information that needs to be exchanged.

Algorithm 1 alleviates this issue by exploiting the particular

structure of P, where the objective functions and the constraint

sets are coupled only by means of x . 

2.2. Algorithm analysis 

In this section we study the convergence properties of

Algorithm 1 . To this end, we shall first introduce some assump-

tions on optimization problem P . 

Assumption 1. For all i = 1 , . . . , m, the function f i (·, ·) : R 

n ×
R 

n i → R is jointly convex with respect to its arguments. Moreover,

for all i = 1 , . . . , m, f i (·, ·) : R 

n × R 

n i → R is jointly Lipschitz contin-

uous with respect to its arguments. 

Note that under Assumption 1 , and due to the presence of the

quadratic penalty term, the objective function in the optimization

problem at step 6 of Algorithm 1 is strictly convex with respect to

x i . Therefore, a unique solution for x i is admitted; this is not the

case for u i . 

Assumption 2. For all i = 1 , . . . , m, the set V i ⊆ R 

n + n i is compact

and convex. Moreover, 
⋂ m 

i =1 V i has non-empty interior. 

For all i = 1 , . . . , m, for any x ∈ R 

n , consider the set 

 i (x ) = 

{
u i ∈ R 

n i : (x, u i ) ∈ V i 

}
. (2)

Moreover, for all i = 1 , . . . , m, consider the projection of V i on the

x domain, i.e., 

X i = 

{
x ∈ R 

n : ∃ u i ∈ R 

n i such that (x, u i ) ∈ V i 

}
. (3)

A direct consequence of the first part of Assumption 2 is that, for

all i = 1 , . . . , m, X i and U i ( x ) for any x ∈ X i are all compact and con-

vex. By the second part of Assumption 2 , we also have that 
⋂ m 

i =1 X i ,

and hence also X i , i = 1 , . . . , m, has a non-empty interior. More-

over, U i ( x ) is non-empty for any x ∈ X i , i = 1 , . . . , m . The fact that V i

is both convex and compact implies that the set-valued mapping

U i ( ·) is continuous on X i , see [26] . In the following assumption we

further require that U i ( ·) is Lipschitz continuous. 

Assumption 3. For all i = 1 , . . . , m, the set-valued mapping U i (·) :
X i ⇒ R 

n i is Lipschitz continuous, i.e., there exists L i ∈ R , L i > 0, such

that 

d H (U i (x ) , U i (x ′ )) ≤ L i ‖ x − x ′ ‖ , for all x, x ′ ∈ X i , (4)

where 

d H (U i (x ) , U i (x ′ )) = sup 

u i ∈ R n i 

∣∣∣∣ min 

v i ∈ U i (x ) 
‖ u i − v i ‖ − min 

v ′ 
i 
∈ U i (x ′ ) 

‖ u i − v ′ i ‖ 

∣∣∣∣, (5)

denotes the Pompeiu-Hausdorff distance (see p. 272 in [27] ) be-

tween the sets U i ( x ) and U i ( x 
′ ). 

Besides Assumptions 1 –3 , which need to be verified from prob-

lem to problem, we also impose the following restrictions on the

choices of the penalty parameter sequence { c ( k )} k ≥ 0 and on the

communication weights a i 
j 
(k ) , i, j = 1 , . . . , m and k ≥ 0. 

Assumption 4. { c ( k )} k ≥ 0 is a non-increasing sequence with

c ( k ) > 0 for all k . Moreover, 
∑ ∞ 

k =0 c(k ) = ∞ and 

∑ ∞ 

k =0 c(k ) 2 < ∞ . 

A direct consequence of the last part of Assumption 4 is

that lim k →∞ 

c(k ) = 0 , meaning that the relative importance of the

quadratic penalty term over the local cost function f i ( ·, ·) is progres-

sively increased to force consensus of the different x i ( k )’s. A pos-

sible choice for { c ( k )} k ≥ 0 that satisfies Assumption 4 is to select it

from the class of generalized harmonic series, e.g., c(k ) = α/ (k + 1)
or some α > 0. Given this choice, a small value of α will drive the

gents to quickly reach consensus on x and then seek optimality,

hereas a high value of α will let the agents minimize their lo-

al cost function first and then adjust their decisions to agree on a

ommon x . To get an insight on the role of c ( k ) we refer the reader

o an example in Appendix B . 

ssumption 5. For all i, j ∈ { 1 , . . . , m } and all k ≥ 0 , a i 
j 
(k ) ≥ 0 and

 

i 
i 
(k ) > 0 . Moreover, there exists η ∈ (0 , 1) such that a i 

j 
(k ) > 0 im-

lies that a i 
j 
(k ) > η. Furthermore, for all k ≥ 0 , 

1. 
∑ m 

j=1 a 
i 
j 
(k ) = 1 for all i = 1 , . . . , m, 

2. 
∑ m 

i =1 a 
i 
j 
(k ) = 1 for all j = 1 , . . . , m . 

The interpretation of having a uniform lower bound η, indepen-

ent of k , for the (non-zero) coefficients a i 
j 
(k ) in Assumption 5 is

hat it ensures that each agent is weighting information received

y other agents at a non-diminishing rate (as η is strictly greater

han zero) as iterations progress, Nedic et al. [4] . Moreover, points

 and 2 ensure that this weighting is a convex combination of the

ther agent estimates and the local estimate, where a non-zero

eight is assigned to this latter since a i 
i 
(k ) ≥ η. 

Let E ∞ 

= 

{
( j, i ) : a i 

j 
(k ) > 0 for infinitely many k 

}
denote the

et of edges ( j, i ) such that agent j uses information provided by

gent i infinitely often. The following connectivity and communi-

ation assumption is eventually enforced. 

ssumption 6. The graph ( N, E ∞ 

) is strongly connected, i.e., for

ny two nodes there exists a path of directed edges that connects

hem. Moreover, there exists k̄ ≥ 1 such that for every ( j, i ) ∈ E ∞ 

,

gent i uses information from a neighboring agent j at least once

very consecutive k̄ iterations. 

Assumption 6 guarantees that any pair of agents communicates

t least indirectly infinitely often, and the intercommunication in-

erval is bounded. For further details the reader is referred to [3,8] .

t should be emphasized that allowing for iteration-varying topol-

gy is typically referred to as time-varying communication in the

istributed optimization literature [4] . However, at each iteration

f the algorithm a finite horizon optimization program has often to

e solved, as in the energy management application presented in

he sequel. Therefore, the absence of communication at any given

teration of the algorithm does not necessarily imply absence of

ommunication at a given step of the finite horizon problem, but

ather at the time of local computation. 

Problem P can be equivalently written as 

min 

 ∈ ⋂ m 
i =1 X i 

m ∑ 

i =1 

g i (x ) , (6)

here, for all i = 1 , . . . , m, and for any x ∈ R 

n , 

 i (x ) = min 

u i ∈ U i (x ) 
f i (x, u i ) . (7)

ote that for all x ∈ X i the minimum in (7) exists due to the Weier-

trass’ theorem (Proposition A.8, p. 625 in [1] ), since U i ( x ) is com-

act by Assumption 2 and f i ( ·, ·) is continuous due to Assumption 1 .

e then have the following auxiliary lemmas, which are crucial for

he proof of Theorem 2 . Their proofs are provided in Appendix A . 

emma 1. Under Assumptions 1 and 2 , it holds that g i (·) : R 

n → R

s convex on X i , for all i = 1 , . . . , m . 

emma 2. Under Assumptions 1 –3 , it holds that g i (·) : R 

n → R is

ipschitz continuous on X i , for all i = 1 , . . . , m . 

Consider now Algorithm 1 , and, according to (7) , re-write step

 as 

 i (k + 1) = arg min 

x i ∈ X i 
g i (x i ) + 

1 

2 c(k ) 
‖ ̄x i (k ) − x i ‖ 

2 . (8)
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ote that, since g i ( ·) is convex on X i ( Lemma 1 ) and the quadratic

enalty term in (8) is strictly convex, x i (k + 1) is univocally de-

ned. 

Le us now recall Theorem 1 in [8] , which is crucial for proving

onvergence of Algorithm 1 . 

heorem 1 ( [8] ) . Consider problem (6) . If X i are convex and com-

act, g i ( ·) are convex on R 

n , and 
⋂ m 

i =1 X i has non-empty interior,

hen, under Assumptions 4 –6 , there exists a minimizer x � of (6) such

hat the sequence { x i ( k )} k ≥ 0 satisfies lim k →∞ 

‖ x i (k ) − x � ‖ = 0 , for all

 = 1 , . . . , m . 

What is missing for a direct application of Theorem 1 in our

ontext is the convexity of functions g i ( ·) over the whole R 

n .

et, building on Theorem 1 , we prove in Theorem 2 below that

lgorithm 1 converges to a minimizer of P . More precisely, we

re able to show that there exists a minimizing global deci-

ion vector x � of P such that the values { x i ( k )} k ≥ 0 generated by

lgorithm 1 converge to x � , for all i = 1 , . . . , m (i.e. agents reach

onsensus on the value of the global decision vector). Moreover,

hough the local decision vector { u i ( k )} k ≥ 0 , i = 1 , . . . , m, generated

y Algorithm 1 may exhibit an oscillatory behavior, all their limit

oints will form together with x � a minimizer of P . 

heorem 2. Let { x i ( k )} k ≥ 0 , { u i ( k )} k ≥ 0 , i = 1 , . . . , m, be the sequences

f estimates generated by Algorithm 1 . Under Assumptions 1 –6 : 

1. there exists a minimizing vector x � of P, such that

lim k →∞ 

‖ x i (k ) − x � ‖ = 0 , for all i = 1 , . . . , m ; 

2. any limit point (u � 
1 
, . . . , u � m 

) of the sequence

{ (u 1 (k ) , . . . , u m 

(k )) } k ≥0 , is such that (x � , u � 1 , . . . , u 
� 
m 

) is a

minimizer of P . 

roof. Consider Algorithm 1 with step 6 rewritten as in (8) .

hanks to Assumptions 1 –3 and thanks to Lemmas 1 and 2 , it

olds that 

p.1 X i is convex and compact, for all i = 1 , . . . , m ; 

p.2 
⋂ m 

i =1 X i has non-empty interior; 

p.3 g i (·) : R 

n → R is convex on X i , for all i = 1 , . . . , m ; 

p.4 g i (·) : R 

n → R is Lipschitz continuous on X i , for all i =
1 , . . . , m . 

Under Assumptions 4 –6 and given properties p.1 and p.2, if g i ( ·)
n (7) were convex on R 

n , one could invoke Theorem 1 to di-

ectly conclude that there exists a minimizer x � of (6) , such that

im k →∞ 

‖ x i (k ) − x � ‖ = 0 , for all i = 1 , . . . , m . Here, we do not have

onvexity of g i ( ·) over the whole R 

n , but only the characteriza-

ion of g i ( ·) through conditions p.3 and p.4. On the other hand, p.3

nd p.4 constitute a weaker set of conditions on g i ( ·) (as a matter

f fact, convexity over the whole R 

n together with the compact-

ess condition in p.1 implies p.3 and p.4), and, as it follows from

he discussion below Assumption 3 in [8] , it is easy to see that

ssumptions 4 –6 and properties p.1-p.4 suffice to draw the same

onclusion that lim k →∞ 

‖ x i (k ) − x � ‖ = 0 , for all i = 1 , . . . , m, where

 

� is a minimizer of (6) . The fact that a minimizer x � of (6) is also

he x -component of the minimizer of P (by the equivalence be-

ween problem P and (6) ), concludes then the proof of the first

art of the theorem. 

The second part follows along lines akin to the proof of

oint (b) of Theorem 1.17 in [28] . Specifically, let (u � 
1 
, . . . , u � m 

) be

ny limit point of the sequence { (u 1 (k ) , . . . , u m 

(k )) } k ≥0 , which

xists thanks to the compactness Assumption 2 . Thanks to

ssumption 2 it also holds that (x � , u � 
1 
, . . . , u � m 

) is feasible for

. Given the definition of g i and that of u i ( k ), recalling that

im k →∞ 

‖ x i (k ) − x � ‖ = 0 for all i = 1 , . . . , m, and thanks to the con-

inuity of g ( ·) as assured by Lemma 2 , for any given ε > 0 it
i 
olds that 

m 

 

i =1 

f i (x i (k ) , u i (k )) = 

m ∑ 

i =1 

g i (x i (k )) ≤
m ∑ 

i =1 

g i (x � ) + ε

or k large enough. This in turn implies that 
∑ m 

i =1 f i (x � , u � 
i 
) ≤

 m 

i =1 g i (x � ) + ε. Being ε arbitrary, it follows that 
∑ m 

i =1 f i (x � , u � 
i 
) ≤

 m 

i =1 g i (x � ) , which, given the equivalence between problem P and

6) , shows that (x � , u � 1 , . . . , u 
� 
m 

) is a minimizer of P . �

emark 1 (satisfaction of the algorithm assump-

ions) . Assumptions 4 and 5 imply that Algorithm 1 is syn-

hronous, and agents need to agree prior to the execution of the

lgorithm on { c ( k )} k ≥ 0 and the weight coefficients { a i 
j 
(k ) } k ≥0 ,

, j = 1 , . . . , m . For every iteration k , these weights should form a

oubly stochastic matrix. A distributed methodology to construct

oubly stochastic matrices can be found in [3,29] . Assumption 6 is

tandard in distributed optimization algorithms over networks,

nd is satisfied for a wide class of time-varying network struc-

ures. In particular, periodic absence of communication links, as in

he case study of Section 4 , falls in the proposed framework. 

As for the other assumptions, even though it is relatively

traightforward to verify Assumptions 1 and 2 , note that the com-

actness requirement of Assumption 2 is not restrictive from a

ractical point of view, as numerical computation is typically per-

ormed over compact domains (enclosing the region where deci-

ion variables take values from). Moreover, most practical prob-

ems involve decisions/actuation that is subject to limitations, thus

nsuring compactness. However, it is in general difficult to ver-

fy Assumption 3 . This is due to the fact that existence of a uni-

orm Lipschitz constant, such that the set-valued continuity condi-

ion (4) is satisfied, is hard to verify even numerically. In [30] , the

uthors determine a Lipschitz constant for Assumption 3 to hold,

or the case where the set-valued function U i ( x ) in (2) admits a

epresentation as a product of a Lipschitz continuous single-valued

unction and a convex, compact and non-empty set (see Lemma

.5 and Remark 2.7 therein). This is the case if the constraint sets

 i , i = 1 , . . . , m, are polytopic. This opens the road for approxima-

ion procedures for problems where Assumption 3 is hard to ver-

fy. To this end, a piece-wise affine approximation of general con-

ex constraint sets could be constructed, thus replacing the origi-

al problem with one that has polytopic constraints sets, for which

ssumption 3 is satisfied [30] . 

. Energy management of a building district 

In this section, we describe the cooling problem of a building

istrict. Each building can set the temperatures of its thermally

ontrolled zones within some appropriate range, can operate on

ts own chiller unit, and can exchange energy with a cooling net-

ork shared among the other buildings in the district, so as to sat-

sfy its cooling load and minimize electric energy costs. Given that

he shared resource has a limited capacity, some coordination is

eeded among buildings and this is realized via a (possibly) time-

arying communication network so as to model temporary failures.

In this set-up, global decision variables are the energy ex-

hanges of all buildings with the cooling network, and local de-

ision variables are the zone temperature set-points of each build-

ng, which affect its cooling load and have to be chosen compatibly

ith the actuation capabilities of the chiller unit of the building.

he resulting constraint on the local decision variables finally de-

ends on the global decision variables since the cooling load has to

atch the sum of the cooling energy produced by the chiller and

hat drawn from the cooling network. Clearly, the electrical energy

ost depends on both the energy exchanges with the cooling net-

ork and the zone temperature set-points. 
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3.1. Modeling of the components 

We next present the models of a building, a chiller plant, and

a cooling network, which constitute the basic components of the

considered district network. 

We focus on energy management over a finite time horizon, di-

vided into n t time slots, each of them having duration � ∈ R . Mod-

els describe the energy contribution of each component per time

slot t , t = 1 , . . . , n t , and are taken from [19] , where a compositional

modeling framework for energy management of a district network

is presented. 

3.1.1. Building 

We adopt the convex formulation proposed in [31] to model

each individual building in the network. The adopted building

model was validated in [19] according to the ANSI-ASHRAE (Amer-

ican Society for Heating Refrigerating and Air-conditioning Engi-

neers) 140 standard. 

Temperature set-points are control input variables and the ac-

tual building temperatures are assumed to track the imposed pro-

files. This entails the presence of a lower level control system able

to effectively track the set-points. Constraints are enforced on the

maximum cooling energy request and thus indirectly on the ad-

missible temperatures and temperatures variation rate, so as to

make it a reasonable assumption. 

We consider a building composed of n z zones and denote

by ˜ T z (t) ∈ R the temperature of zone z , z = 1 , . . . , n z , at the end

of time slot t , t = 1 , . . . , n t . Then, we can collect all control in-

puts in vector ˜ T = [ ̃  T (1) · · ·˜ T (n t )] � ∈ R 

n z n t , where we set ˜ T (t) =
[ ̃  T 1 (t) · · ·˜ T n z (t)] � ∈ R 

n z . 

Let E B,z (t) ∈ R denote the cooling energy request of building

zone z during time slot t , in order to track a given zone temper-

ature profile, with t = 1 , . . . , n t and z = 1 , . . . , n z . E B,z ( t ) constitutes

of four energy contributions, namely 

E B,z (t) = E walls ,z (t) + E people ,z (t) + E internal ,z (t) + E inertia ,z (t) , (9)

where E walls ,z (t) ∈ R is the amount of thermal energy exchanged

between zone z and its adjacent walls over time slot t , E people ,z (t) ∈
R and E internal ,z (t) ∈ R are the thermal energy produced by peo-

ple and by other internal heat sources in zone z , respectively, and

E inertia ,z (t) ∈ R is the energy contribution due to the thermal iner-

tia of zone z , over time slot t . The energy request of the building

over the time slot t is given by 

E B (t) = 

n z ∑ 

z=1 

E B,z (t) , 

and E B = [ E B (1) · · · E B (n t )] � describes the cooling energy re-

quested by the building to track the temperature set-points of ev-

ery zone over the time horizon [1, n t ]. In [19, Section 2.1] it is

shown that the following expression holds for E B : 

E B = AT (0) + B (d) ̃  T + C(d) + Dd, (10)

where T (0) represents the building thermal state at time 0 and vec-

tor d collects all the disturbances affecting the system, i.e., the out-

side ambient temperature, the incoming shortwave and longwave

solar radiation and people occupancy. Matrices A, D, B ( d ), and C ( d )

have appropriate dimensions and the last two depend on the dis-

turbance vector d . Also, the building thermal state T ( n t ) at the end

of the time horizon is given by a similar expression but with dif-

ferent matrices, i.e., 

T (n t ) = 

˜ A T (0) + 

˜ B (d) ̃  T + 

˜ C (d) + 

˜ D d. 

3.1.2. Chiller plant 

A chiller plant converts electric energy into cooling energy. The

cooling energy is then transferred to the building via, e.g., the
hilled water circuit. The electrical energy E chiller, e ( t ) needed to pro-

uce a certain amount E chiller, c ( t ) of cooling energy during time slot

 can be obtained as a bi-quadratic convex approximation of the

g-Gordon model, Gordon and Ng [32] : 

 chiller ,e (t) = c 2 E chiller ,c (t) 4 + c 1 E chiller ,c (t) 2 + c 0 , (11)

here the parameters c 0 , c 1 , c 2 are determined using weighted

east squares to best fit the most relevant points, i.e, those that

orrespond to zero energy request and to the maximum value

f the Coefficient Of Performance (COP), which is the ratio be-

ween E chiller, c ( t ) and E chiller, e ( t ). Derivations are reported in [19] ,

ection 2.2 . 

.1.3. Cooling network 

Since the cooling network has a high thermal inertia, it acts

s a thermal storage, whose energy content can be described as

 first-order dynamical system, with the energy exchange (drawn

r inserted) as input and the thermal energy stored as state: 

 stored (t + 1) = aE stored (t) −
m ∑ 

i =1 

e i s (t) , (12)

here E stored (t) ∈ R is the amount of cooling energy stored, see

19] , Section 2.3. In view of the multi-building problem consid-

red in the next section we assume that the cooling network is

hared among m buildings, and denote by e i s (t) ∈ R the cooling en-

rgy exchanged ( e i s (t) > 0 if the cooling network is discharged, and

 

i 
s (t) < 0 if it is charged), with building i in time slot t . The coeffi-

ient a ∈ (0, 1) is introduced to model energy losses. 

.2. Building district problem formulation 

Consider a district of m buildings, each of them equipped with

 different chiller plant, that share a common cooling network. To

his end, append to all quantities introduced in the previous sec-

ion the superscript i , to denote that they correspond to building

 , i = 1 , . . . , m, e.g., E i 
chiller ,e 

(t) denotes the cooling energy of the

hiller at building i at time slot t , ˜ T i denotes the vector of zone

emperatures at building i , etc. For each i and t , the electric energy

equest of building i over the time slot t is given by the chiller

lectric energy request E i 
chiller ,e 

(t) . Our objective is to minimize the

otal electric energy cost for the m building network, across a hori-

on of n t steps. To achieve this, for each building i we will sched-

le the zone temperature set-points ̃  T i (t) and the energy exchange

 

i 
s (t) with the cooling network. Therefore, we seek to solve the fol-

owing minimization problem: 

min {˜ T i (t) ∈ R 

n z , e i s (t) ∈ R 

}
n t 
t=1 

}
m 

i =1 
, {

T i (0) ∈ R 

n w 
}

m 

i =1 
, E stored (1) ∈ R 

m ∑ 

i =1 

n t ∑ 

t=1 

ψ 

i (t) E i chiller ,e (t) , (13)

here ψ 

i (t) ∈ R is the electric energy price for building i over the

ime slot t and E i 
chiller ,e 

(t) is its electric energy request (computed

ccording to (11) ) within the same time slot. 

This minimization is subject to the following constraints, that

ust hold for each time slot t and every building i : 

• Energy balance equation: the chiller cooling energy request

E i 
chiller ,c 

(t) is given by 

E i chiller ,c (t) = E i B (t) − e i s (t) , (14)

where E i 
B 
(t) is the cooling energy requested by the build-

ing in the time slot t and is one of the component of vector

E 

i 
B 

shown in (10) , whereas e i s (t) is the energy exchange be-

tween building i and the cooling network in the same time

slot. 
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Fig. 1. Structure of each building. 
• Electric energy limits: the electric energy drawn from the

grid is limited to E i max ∈ R , as an effect of the chiller unit

size and maximum capability, thus giving rise to 

0 ≤ E chiller ,e (t) ≤ E i max . (15) 

• Cooling energy limits: zone z cooling energy request E i 
B,z 

(t) ,

is non-negative, i.e., 

E i B,z (t) ≥ 0 ∀ z = 1 , . . . , n z . (16) 

• Comfort constraints: the zone temperature set-point is kept

within certain comfort limits, i.e., ˜ T i (t) ∈ [ ̃  T i min (t ) , ˜ T i max (t )] , (17) 

where ˜ T i 
min 

(t) ∈ R 

n z , ˜ T i max (t) ∈ R 

n z denote the minimum and

maximum comfort temperatures. 
• Cooling network energy limits: the amount of cooling en-

ergy stored should be non-negative and within the energy

cooling network capacity limit E s, max ∈ R , i.e., 

E stored (t) ∈ [0 , E s, max ] . (18) 

• Cooling network energy exchange limits: the energy ex-

changed with the cooling network is subject to 

e i s (t) ∈ [ −e i s, max , e i s, max ] , (19) 

where e i s, max ∈ R denotes the maximum value of energy that

the building can exchange with the cooling network per

time slot. 
• Final value constraints: the zone temperature and the build-

ing thermal state at the beginning and at the end of the

planning horizon should be equal, i.e., ˜ T i (n t ) = ̃

 T i (0) ∧ T i (n t ) = T i (0) . (20) 

To ensure that the cooling network does not get empty at

the end of the horizon, we impose the constraint 

E stored (n t ) ≥ E stored (1) . (21) 

Constraint (21) is of particular importance in case of a receding

orizon implementation of the proposed scheme. 

Note that the quantity E i 
chiller ,e 

(t) in (13) is a function of the de-

ision variables 
{˜ T i (t) , e i s (t) 

}
n t 
t=1 

}
m 

i =1 
, 
{

T i (0) 
}

m 

i =1 
(see (14) and (10) )

nd E stored (1) affects the admissible range for e i s (t) , t = 1 , . . . , n t ,

 = 1 , . . . , m, through (18) and (12) , so that here we optimize it as

ell. 

If we define now vectors u i , i = 1 , . . . , m, and x as follows: 

 i = 

[˜ T i (1) , . . . , ̃  T i (n t ) , T 
i (0) 

]� ∈ R 

n t n z + n w , (22a)

 = 

[
ē 1 s , . . . , ̄e 

m 

s , E stored (1) 
]� ∈ R 

mn t +1 , (22b)

here ē i s = 

[
e i s (1) , . . . , e i s (n t ) 

]� ∈ R 

n t , then, u i , i = 1 , . . . , m, can be

hus thought of as a local decision vector related to the comfort

nd actuation constraints of each chiller plant, that can be enforced

ocally, whereas x can be treated as a global decision vector which

s related to the energy exchange of the building district with the

ommon cooling network. Given (22a) and (22b) , the energy man-

gement in (13) –(21) is an instance of problem (1) . 

emark 2 (alternative closed-loop strategy) . Note that the pro-

osed energy management solution consists of an open-loop strat-

gy that is pre-computed offline, where the zone temperature set-

oints and the energy exchange with the cooling network for the

hole one-day reference time horizon are set based on some nom-

nal profile for the disturbances. Alternatively, one could adopt a

odel predictive control approach where the optimal value for

he zone temperature set-points and the energy exchange with the

ooling network is determined online, by solving problem (13) on
ome finite-length time window, applying only the values corre-

ponding to the current time instant, shifting the time window

ne step ahead in time, recomputing the optimal value for the de-

ision variables on the shifted time window, and so on (receding

orizon strategy). The advantage is that one can exploit state mea-

urements and the possibly updated profile of the disturbances,

hus getting a closed-loop strategy that is better tailored to the

ctual disturbance realizations. Computations can still be run in a

istributed way through Algorithm 1 . Constraints are however im-

osed on the time required for computing the optimal solution,

hich calls for further investigations on its convergence rate. 

.3. Satisfaction of algorithm assumptions 

The energy management problem of Section 3.2 is a convex

inimization program. Assumption 2 is satisfied, as an effect of

he physical and technological constraints imposed in (14) –(21) .

ven if this were not the case, all numerical calculations are per-

ormed on compact domains, hence satisfaction of Assumption 2 is

ot an issue. Due to convexity and compactness, it can be also eas-

ly verified that the objective function is Lipschitz continuous with

espect to all decision variables, thus satisfying Assumption 1 . 

Assumptions 4 and 5 can be imposed by defining appropriately

 c ( ·)} k ≥ 0 and the weight coefficients { a i 
j 
(k ) } k ≥0 , i, j = 1 , . . . , m in

lgorithm 1 . Assumption 6 is satisfied in the case of periodic ab-

ence of communication links, as in the case study of Section 4 ,

hich falls in the proposed framework. Verifying Assumption 3 is

nstead generally difficult. However, applying Algorithm 1 to the

ase study of Section 4 we verified numerically that the assertions

f Theorem 2 are valid (by comparing the achieved results with

he optimal solution of the centralized problem), even though we

ere not able to formally verify satisfaction of Assumption 3 . 

. Simulation results 

Consider a network of m = 3 , identical, three-storey buildings,

s schematically illustrated in Fig. 1 . Each building is divided into

 z = 3 thermal zones (one per floor) and is equipped with its own

hiller, namely, building 1 has a medium-size chiller, building 2 a

mall one, and building 3 a large one for which the COP curves as a

unction of the cooling energy request E chiller, c are shown in Fig. 2 .

arameters values of the bi-quadratic approximations (11) can be

ound in [19] , Section 2.2 . 

We considered a time horizon of 24 h discretized in n t = 144

ime slots of � = 10 min each. The external disturbances affect-

ng the buildings are reported in Fig. 3 . The three buildings are

upposed to be subject to the same disturbance profiles, and the

ccupancy shall be intended per building and equally partitioned

mong the zones. The period in which the occupancy is greater
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Fig. 2. Chiller COP: maximum cooling energies are 18, 30 and 40 MJ. 

Fig. 3. Disturbance profiles. 

Fig. 4. Energy price profile along the one-day time horizon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Optimal zone temperature profiles of building 1. The temperature of zone 2 

(at the middle) is always the lowest, it acts as a passive thermal storage draining 

heat of the other zones through floor and ceiling. 

Fig. 6. Cooling network exchange profiles at iteration k = 1 . Building 1 is constantly 

withdrawing cooling energy ( e 1 s > 0 , solid line), thus forcing buildings 2 and 3 to 

charge the cooling network ( e 2 s < 0 and e 3 s < 0 , dashed and dot-dashed lines, re- 

spectively). The stored energy is shown with the black dotted line. 
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f  
than zero is referred to as “occupancy period” and it is within the

“working hours” range 7 AM to 6 PM. In all buildings, temperature

constraints are set to ˜ T i 
min 

= 20 ◦C and 

˜ T i max = 24 ◦C during work-

ing hours and to ˜ T i 
min 

= 16 ◦C and 

˜ T i max = 30 ◦C otherwise. Fig. 4

represents the profile of the energy price, which is assumed to be

identical for all buildings, during the 24 h time horizon. 

We assessed the performance of the algorithm for two differ-

ent choices of the weights { a i 
j 
(k ) } k ≥0 , i, j = 1 , . . . , m, defining the

communication protocol over the same bi-directional communica-

tion graph where all buildings are connected together. In the first

communication protocol, buildings 1 and 3 exchange information

only with building 2 but not with each other and the communica-

tion scheme is kept fixed across iterations with link weights equal

to 1/3. In the second one, at each iteration k , only two buildings

communicate and weights of active links are set equal to 1/2. The

order in which the links are activated within the period is: (1,2),

(2,3), and (1,3). We applied Algorithm 1 with the two communica-

tion protocols and in both cases the proposed distributed approach

was able to retrieve the optimal solution. 

Fig. 5 shows the optimal temperature profiles for the three

zones of building 1. It can be observed that, while the profiles of
ones 1 and 2 are kept close to the maximum temperature bound

f the working hours comfort range (outside the grey area), the

emperature of zone 2 is always lower than the other two. Zone 2

s indeed subject to a pre-cooling phase before the occupancy pe-

iod so as to cool down the building, acting as a passive thermal

torage to drain the heat of the other zones through floor and ceil-

ng. The temperature profiles of the other two buildings are very

imilar to that of building 1, and hence are not reported here. 

In Figs. 6 and 7 we report the cooling network exchange pro-

les computed by building 1 at iteration k = 1 and at consensus

when Algorithm 1 converges), respectively. From Fig. 6 it is clear

hat, at the beginning, building 1 acts in a “selfish” manner and its

ptimal strategy is to constantly withdraw cooling energy from the

ooling network ( e 1 s > 0 , solid line), thus forcing buildings 2 and 3

o charge the cooling network ( e 2 s < 0 and e 3 s < 0 , dashed and dot-

ashed lines, respectively). The stored energy is shown with the

lack dotted line. The consensus solution depicted in Fig. 7 is in-

tead cooperative. Building 3, which has the biggest chiller, is con-

tantly providing cooling energy ( e 3 s < 0 ) to the shared cooling net-

ork; building 2, which has the smallest chiller, is constantly with-

rawing energy ( e 2 s > 0 ) from it; and building 1 provides/retrieves

nergy to/from the cooling network depending on the time slot. In

his way, differences in the chiller sizes are compensated through

he cooling network. 

The number of iterations needed to achieve consensus are 278

or the fixed topology and 1032 for the time-varying topology,
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Fig. 7. Cooling network exchange profiles at consensus. Cooperative solution, with 

building 3 constantly providing cooling energy ( e 3 s < 0 ) to the shared cooling net- 

work; building 2 constantly withdrawing energy ( e 2 s > 0 ) from it; and building 1 

providing/withdrawing energy depending on the time slot. The stored energy is 

shown with the black dotted line. 

Fig. 8. COP profiles for the baseline setting. 
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Fig. 9. COP profiles when the energy in the cooling network is shared. 
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here we considered the solution to be at consensus if either

he absolute or the relative difference between the solutions of

he agents across two consecutive iterations was less than a given

hreshold, which was taken to be 10 −3 . 

We compared the performance achieved in the considered set-

p of three buildings sharing a cooling network with that of a

aseline setting where each building uses one third of the cool-

ng network capacity, without exchanging cooling energy with the

ther buildings. This is the case when buildings do not communi-

ate, and each one optimizes the use of its own share of energy in

he cooling network. In the baseline setting, the electrical energy

ost for the district is 56.83 euros whereas it reduces to 48.28 eu-

os in the case when buildings are sharing the common cooling

etwork, with a saving of about 15%. 

Fig. 8 shows the COP coefficient of the chillers of the three

uildings for the baseline setting. Fig. 9 shows the same quanti-

ies but for the case when the cooling energy in the cooling net-

ork is shared. In Fig. 8 the chiller of building 1 is clearly bet-

er performing with respect to the other two, whereas the consen-

us solution reported in Fig. 9 shows that the efficiency of the two

ther chillers is increased significantly. As for the individual costs,

n the baseline setting, buildings 1, 2, and 3 spend 15.43, 20.72,

nd 20.68, respectively, whereas if they share the cooling network

heir costs become 13.63, 7.17, and 27.48, with an increase of the

mount spent by building 3 (the one that owns the large chiller)
hat is largely compensated by the decrease of those of the other

wo buildings. 

. Concluding remarks 

In this paper we proposed a distributed scheme for structured

ulti-agent decision making problems over a time-varying com-

unication network, involving both local and global decision vari-

bles, with the feasibility domain of the local decision variables de-

ending on the global ones, and the individual objective functions

epending on the global decision variables. In particular, a proxi-

al minimization based approach was adopted, and a theoretical

xtension to an algorithm that recently appeared in [8] was pro-

ided. The proposed scheme does not require for agents to reveal

nformation that is considered as private, and overcomes the com-

unication and computational challenges imposed by centralized

r decentralized optimization paradigms. 

The efficacy of the proposed distributed algorithm was illus-

rated by means of a detailed simulation study on the cooling

f multiple buildings in a district sharing a cooling network. The

onsidered case study refers to a simple set-up, which, however,

ould be extended to a more realistic one by including local gener-

tion capabilities, intermittent sources, electrical storage systems.

s long as convexity is preserved, nonlinearity will not be an is-

ue. To relax the convexity requirement of Assumption 1 , convex

elaxations techniques with guaranteed relaxation gap may be em-

loyed. To this end, we aim at investigating the case where in-

eger variables related, e.g., to on/off device switching, are intro-

uced. The combinatorial nature of the resulting mixed integer op-

imization problem makes distributed schemes involving the solu-

ion of lower dimensional problems very appealing. However, de-

ising effective distributed solutions is far more challenging and,

ndeed, only a limited number of results are available in the liter-

ture on decentralized, Vujanic et al. [33] , Falsone et al. [34] , and

istributed, Falsone et al. [35] , mixed integer optimization. 

Current work concentrates on extending the proposed dis-

ributed optimization scheme for structured decision making prob-

ems to the stochastic case, based on the scenario-based solution

o stochastic distributed optimization proposed in [8] . This exten-

ion will enable the design of a distributed energy management al-

orithm that is robust against the uncertainty on the disturbances

ffecting the thermal dynamics of a building. 
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Appendix A. Proofs 

Proof. Lemma 1 For each i = 1 , . . . , m, fix any x, x ′ ∈ X i and λ∈ [0,

1]. By (7) , let 

u 

� 
i (x ) ∈ arg min 

u i ∈ U i (x ) 
f i (x, u i ) , (A.1)

u 

� 
i (x ′ ) ∈ arg min 

u i ∈ U i (x ′ ) 
f i (x ′ , u i ) . (A.2)

Note that the existence of such minimizers is guaranteed by Weier-

strass’ theorem (Proposition A.8, p. 625 in [1] ), since U i ( x ), U i ( x 
′ )

are compact and non-empty ( Assumption 2 ), and f i ( ·, ·) is continu-

ous ( Assumption 1 ). 

Since u � 
i 
(x ) ∈ U i (x ) and u � 

i 
(x ′ ) ∈ U i (x ′ ) , we have that

(x, u � 
i 
(x )) ∈ V i and (x ′ , u � 

i 
(x ′ )) ∈ V i , which, given the convexity

of V i ( Assumption 2 ), implies that (
λx + (1 − λ) x ′ , λu 

� 
i (x ) + (1 − λ) u 

� 
i (x ′ ) 

)
∈ V i . (A.3)

This also implies that λu � 
i 
(x ) + (1 − λ) u � 

i 
(x ′ ) ∈ U i (λx + (1 − λ) x ′ )

(see (2) ). We then have 

g i 
(
λx + (1 − λ) x ′ 

)
= min 

u i ∈ U i ( λx +(1 −λ) x ′ ) 
f i 
(
λx + (1 − λ) x ′ , u i 

)
≤ f i 

(
λx + (1 − λ) x ′ , λu 

� 
i (x ) + (1 − λ) u 

� 
i (x ′ ) 

)
≤ λ f i 

(
x, u 

� 
i (x ) 

)
+ (1 − λ) f i 

(
x ′ , u 

� 
i (x ′ ) 

)
= λg i (x ) + (1 − λ) g i (x ′ ) , (A.4)

where the first inequality follows because λu � 
i 
(x ) + (1 − λ) u � 

i 
(x ′ ) ∈

 i (λx + (1 − λ) x ′ ) and the definition of min , the second inequal-

ity because f i ( ·, ·) is jointly convex with respect to its arguments

( Assumption 1 ), whereas the last equality because (A .1), (A .2) and

the definition of g i ( ·) in (7) . Since (A.4) holds for any x, x ′ ∈ X i , and

for any λ∈ [0, 1], the convexity of g i ( ·) on X i remains proven. �

Proof. Lemma 2 The proof is inspired by the proof of Corol-

lary 3.5 of [27] . For each i = 1 , . . . , m, fix any x, x ′ ∈ X i . Let also

u � 
i 
(x ) ∈ U i (x ) , u � 

i 
(x ′ ) ∈ U i (x ′ ) , be as in (A.1) and (A.2) , respectively.

By Assumption 3 , we have for all u i ∈ R 

n i that ∣∣∣∣ min 

v i ∈ U i (x ) 
‖ u i − v i ‖ − min 

v ′ 
i 
∈ U i (x ′ ) 

‖ u i − v ′ i ‖ 

∣∣∣∣ ≤ L i ‖ x − x ′ ‖ . (A.5)

Take u i = u � 
i 
(x ) . We then have that 

min 

v ′ 
i 
∈ U i (x ′ ) 

‖ u 

� 
i (x ) − v ′ i ‖ ≤ min 

v i ∈ U i (x ) 
‖ u 

� 
i (x ) − v i ‖ + L i ‖ x − x ′ ‖ 

≤ L i ‖ x − x ′ ‖ , (A.6)

where the last inequality holds because u � 
i 
(x ) ∈ U i (x ) . 

Letting v̄ ′ 
i 
∈ arg min v ′ 

i 
∈ U i (x ′ ) ‖ u � i 

(x ) − v ′ 
i 
‖ , (A.6) is equivalent to 

‖ u 

� 
i (x ) − v̄ ′ i ‖ ≤ L i ‖ x − x ′ ‖ . (A.7)

Similarly, taking u i = u � 
i 
(x ′ ) in (A.5) gives that

min v i ∈ U i (x ) ‖ u � i 
(x ′ ) − v i ‖ ≤ L i ‖ x − x ′ ‖ , which, letting v̄ i ∈

arg min v i ∈ U i (x ) ‖ u � i 
(x ′ ) − v i ‖ is equivalent to 

‖ u 

� 
i (x ′ ) − v̄ i ‖ ≤ L i ‖ x − x ′ ‖ . (A.8)

Note that v̄ i , ̄v ′ i , exist due to the Weierstrass’ theorem (Proposition

A.8, p. 625 in [1] ), since U i ( x ), U i ( x 
′ ) are compact and non-empty

due to Assumption 2 , and since ‖ u � 
i 
(x ′ ) − v i ‖ and ‖ u � 

i 
(x ) − v ′ 

i 
‖ are

continuous with respect to v i and v ′ 
i 
, respectively. 

By Assumption 1 , f i (·, ·) : R 

n × R 

n i → R is Lipschitz continuous.

Denoting its Lipschitz constant by C i ∈ R , C i > 0, we have that 

f i (x ′ , ̄v ′ i ) ≤ f i (x, u 

� 
i (x )) + C i ‖ x − x ′ ‖ + C i ‖ u 

� 
i (x ) − v̄ ′ i ‖ 

≤ f i (x, u 

� 
i (x )) + C i (1 + L i ) ‖ x − x ′ ‖ , (A.9)
here the last inequality follows in view of (A.7) . Since v̄ ′ 
i 
∈ U i (x ′ )

nd since u � 
i 
(x ′ ) minimizes f i ( x 

′ , · ) over U i ( x 
′ ), (A.9) yields 

f i (x ′ , u 

� 
i (x ′ )) ≤ f i (x, u 

� 
i (x )) + C i (L i + 1) ‖ x − x ′ ‖ . (A.10)

Similarly, by the Lipschitz continuity of f i ( ·, ·) and by using (A.8) ,

e have that 

f i (x, ̄v i ) ≤ f i (x ′ , u 

� 
i (x ′ )) + C i ‖ x − x ′ ‖ + C i ‖ u 

� 
i (x ′ ) − v̄ i ‖ 

≤ f i (x ′ , u 

� 
i (x ′ )) + C i (1 + L i ) ‖ x − x ′ ‖ . (A.11)

ince v̄ i ∈ U i (x ) and since u � 
i 
(x ) minimizes f i ( x , ·) over U i ( x ),

A.11) in turn gives that 

f i (x, u 

� 
i (x )) ≤ f i (x ′ , u 

� 
i (x ′ )) + C i (L i + 1) ‖ x − x ′ ‖ . (A.12)

Combining (A.10) and (A.12) we have that | f i (x, u � 
i 
(x )) −

f i (x ′ , u � 
i 
(x ′ )) | ≤ C i (L i + 1) ‖ x − x ′ ‖ , which is equivalent to | g i (x ) −

 i (x ′ ) | ≤ C i (L i + 1) ‖ x − x ′ ‖ , being g i (x ) = f i (x, u � 
i 
(x )) and g i (x ′ ) =

f i (x ′ , u � 
i 
(x ′ )) . 

Hence, g i ( ·) is Lipschitz continuous on X i with Lipschitz con-

tant C i (L i + 1) . This concludes the proof. �

ppendix B. Step-size sequence 

In this section we provide a numerical example that admits an

nalytic solution, and offers insight on how the { c ( k )} k ≥ 0 sequence

ffects the algorithm convergence. To this end consider problem P
ith m = 2 , n = 1 , n i = 0 , f i (x, u i ) = f i (x ) = γ (x + s i ) , with γ > 0

nd s 1 = 1 , s 2 = −1 , and V i = [ −M, M] with 1 < M < ∞ , for i = 1 , 2 .

his amounts to solving the following optimization problem 

min 

x ∈ R 
γ (x + 1) 2 + γ (x − 1) 2 (B.1)

ubject to x ∈ [ −M, M] , 

here the cost function is split among two agents. Clearly, the op-

imal solution of (B.1) is achieved when x = x � = 0 . 

Let us apply Algorithm 1 to solve (B.1) in a distributed manner,

here as far as the communication structure is concerned we as-

ume that it is fully connected and choose a i 
j 
(k ) = 1 / 2 for all k ≥ 0,

or i, j = 1 , 2 . Step 6 of Algorithm 1 simplifies to the following it-

ration 

 i (k + 1) = 

{
min ( ̂  x i (k + 1) , M) , if ˆ x i (k + 1) ≥ 0 

max ( ̂  x i (k + 1) , −M) , otherwise , 
(B.2)

here 

ˆ 
 i (k + 1) = 

x̄ i (k ) − s i 2 γ c(k ) 

2 γ c(k ) + 1 

, (B.3)

s the unconstrained minimizer of the optimization program of

gent i . Therefore, (B.2) encodes the projection of ˆ x i (k ) on [ −M, M] .

If we initialize the algorithm with x i (0) = arg min x i ∈ V i = −s i , i =
 , 2 , as suggested in Section 2.1 , we have that x̄ i (0) = 0 , for i =
 , 2 . It can then be easily shown using induction that x̄ i (k ) = 0 for

ll k ≥ 0, for i = 1 , 2 , thus (B.2) reduces to 

 i (k + 1) = −s i 
2 γ c(k ) 

2 γ c(k ) + 1 

. (B.4)

y inspection of (B.4) , we can note that the constraints are satisfied

ut are never active since M > 1. Moreover, we have that 

• c ( k ) has to converge to zero (as required by Assumption 4 )

for x i ( k ) to converge to x � = 0 , 
• the convergence rate of x i ( k ) is dictated by that of c ( k ). 
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