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Abstract— We consider the problem of verifying safety
for continuous-time dynamical systems. Developing upon
recent advancements in data-driven verification, we use
only a finite number of sampled trajectories to learn a
barrier certificate, namely a function which verifies safety.
We train a safety-informed neural network to act as this
certificate, with an appropriately designed loss function
to encompass the safety conditions. In addition, we pro-
vide probabilistic generalisation guarantees from discrete
samples of continuous trajectories, to unseen continuous
ones. Numerical investigations demonstrate the efficacy of
our approach and contrast it with related results in the
literature.

I. INTRODUCTION

Ensuring the safety of Continuous-time dynamical sys-
tems is of critical importance in an increasingly autonomous
world [8], [15], [19]. As it is often infeasible to model system
behaviour precisely, and making direct use of system data to
verify behaviour is of interest [1], [12].

A technique to verify properties of dynamical systems
involves discretising the state space [3], under approximation
guarantees, and verifying the resulting model. Alternatively,
the use of certificates [2], [18] allows one to analyse directly
the continuous-state system. These certificates map system’s
states to real values, and exhibit certain properties that are
relevant for analysis: here in particular we construct safety
certificates for continuous-time systems, but extensions to
more complex certificates are possible [19].

There are a number of techniques for synthesising such
certificates. In the case that an exact model is known, one
can use a polynomial function as a certificate to formulate
a convex sum-of-squares problem [17]. Recent work in this
area investigated the use of neural networks as certificates [8],
which represent a class of general function approximators.

When obtaining an exact model is infeasible, we turn to
data-driven techniques. One method for employing data in
certificate synthesis is through the use of state pairs (i.e. states,
and next-states), sampled from across the domain of interest.
Such techniques are investigated in [15] for deterministic
systems, and in [21] for stochastic systems. Both these works
make use of the techniques in [11], [14] to bound the distance
between what is referred to as a robust program, and its sample
based counterpart. As discussed in [14, Remark 3.9], such
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techniques exhibit an exponential growth in the dimension of
the sampling space (here the state space), and also require
access to the underlying probability distribution.

Alternatively, one can consider using entire trajectories
as samples, hence only requiring access to realistic runs of
the system. This technique is explored in [19] for discrete-
time systems. This work leverages the so-called scenario
approach [5], [10] and the notion of compression [13], [7],
and provides a constructive algorithm for the general pick-to-
learn framework [16], to provide a probably approximately
correct (PAC) bound on the correctness of certificates for
newly sampled trajectories. These techniques are restricted to
discrete-time systems, since they perform calculations on en-
tire trajectories, which is infeasible in continuous-time. Hence,
here we develop techniques for continuous-time systems by
analysing samples from complete trajectories and bounding
the difference between the safety of these approximations and
the complete trajectories.

Our main contribution is the synthesis of neural barrier cer-
tificates for continuous-time dynamical systems, accompanied
by PAC generalisation guarantees. These certificates are useful
per se as a proxy for safety, and open the road for their use
in control synthesis, an area of ongoing research.

Notation. We use {ξk}Kk=0 to denote a sequence indexed by
k ∈ {0, 1, . . . ,K}. B |= ψ defines condition satisfaction i.e.,
it evaluates to true if the quantity B on the left satisfies the
condition ψ on the right, e.g., x = 1 |= x > 0 evaluates to true
and x = −1 |= x > 0 evaluates to false. Using ̸|= represents
the logical inverse of this (i.e., condition dissatisfaction). By
(∀ξ ∈ Ξ)B |= ψ(ξ) we mean that some quantity B satisfies
a condition ψ which, in turn, depends on some parameter ξ,
for all ξ ∈ Ξ. We use ξ[0,k] to refer to a (possibly infinite)
subsequence {ξ0, . . . , ξk} of a sequence.

II. CERTIFICATES

In this work, we focus on barrier certificates, but emphasise
that our techniques naturally extend to the more complex
certificates in [19]. To this end, we begin by defining a
dynamical system, before considering the barrier certificate
and associated safety property it verifies.

A. Continuous-Time Dynamical Systems
We consider a bounded state space X ⊆ Rn, and a

dynamical system whose evolution starts at an initial state
x(0) ∈ XI , where XI ⊆ X denotes the set of possible initial
conditions. From an initial state, we uncover a finite trajectory,
i.e., a continuous sequence of states ξ = {x(t)}t∈[0,T ], where
T ∈ R and x(t) : t→ Rn, by following the dynamics

ẋ(t) = f(x(t)). (1)
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We only require f : X → Rn to be Lipschitz continuous, thus
enforcing unique solutions. The set of all possible trajectories
Ξ ⊆ XI × X(0,T ] is then the set of all trajectories starting
from the initial set XI .

In Section III, we discuss how to use a finite set of
trajectories to build safety certificates, and accompany them
with generalization guarantees with respect to their validity for
any trajectory. To allow for the synthesis of such certificate,
as discussed in Section IV, we must store and perform
calculations on such trajectories that play the role of samples.
For this reason, we consider a finite T , and take samples
along the continuous trajectory. Hence, we define the time-
discretised trajectory

ξ̃ = {x(t)}t∈{0,t1,...,tM} ∈ Ξ̃ ⊆ XI ×XM , (2)

for M sampled time steps t1, . . . , tM .

B. Safety Property
We use ϕ(ξ) to refer to the safety property under study,

evaluated on a trajectory ξ ∈ Ξ, defined as follows.
Property 1 (Safety): Consider (1), and let XI , XU ⊂ X

with XI ∩ XU = ∅ denote an initial and an unsafe set,
respectively. If, for all ξ ∈ Ξ,

ϕ(ξ) := ∀t ∈ [0, T ], x(t) /∈ XU ,

holds, then we say that ϕ encodes a safety property. Ξ denotes
the set of trajectories consistent with (1) and with initial state
contained within XI .
By the definition of ϕ, it follows that verifying a system
exhibits the safety property is equivalent to verifying all
trajectories emanating from the initial set avoid the unsafe set
for all time instances, until horizon T .

C. Barrier Certificate
We now define the relevant criteria necessary for a certificate

B to verify a safety property. We fix a time horizon T < ∞
and assume that B is continuous, so that when considering
the supremum/infimum of B over X (already assumed to be
bounded) or over some of its subsets, this is well-defined.
Consider:

B(x) ≤ 0,∀x ∈ XI , (3)
B(x) > 0,∀x ∈ XU , (4)
dB

dt

∣∣∣∣
x∈ξ

<
1

T

(
inf

x∈XU

B(x)− sup
x∈XI

B(x)
)
, (5)

where we may expand the Lie derivative as

dB

dt
=
∂B

∂x

dx

dt
=
∂B

∂x
f(x), (6)

and hence recognise that this depends on the system dynamics
f(x). We place the following assumption on this Lie deriva-
tive, necessary for our analysis later.

Assumption 1 (Lie Derivative is Lipschitz): Assume that
dB
dt is Lipschitz continuous.

Notice that even if infx∈XU
B(x) − supx∈XI

B(x) > 0, i.e.,
in the case where the last condition encodes an increase of B

along the system trajectories, the system still avoids entering
the unsafe set. This is established in the proof of Proposition
8 below.

A graphical representation of these conditions is found in
Figure 2. The level set (with dashed line) is the set obtained
when the certificate value is 0. The decrease condition then
means that we never leave the sublevel set.

Denote by ψs the conjunction of (3) and (4), and by ψ∆(ξ)
the property in (5). Notice that the latter depends on ξ as it
relates to the derivative along a trajectory. We define a barrier
certificate as follows.

Definition 1 (Property Verification & Certificates): Given
a safety property ϕ(ξ), and a function B : Rn → R, let ψs

and ψ∆(ξ) be conditions such that, if

∃B : B |= ψs ∧ (∀ξ ∈ Ξ)B |= ψ∆(ξ) =⇒ ϕ(ξ),∀ξ ∈ Ξ,

then the property ϕ is verified for all ξ ∈ Ξ. We then say that
such a function B is a barrier certificate.

In words, the implication of Definition 1 is that if a barrier
certificate B satisfies the conditions in ψs, as well as the
conditions in ψ∆(ξ), for all ξ ∈ Ξ, then the safety property
ϕ(ξ) is satisfied for all trajectories ξ ∈ Ξ.

Proposition 1 (Safety/Barrier Certificate): A function
B : Rn → R is a safety/barrier certificate if

B |= ψs ∧ (∀ξ ∈ Ξ)B |= ψ∆(ξ). (7)
Proof: It suffices to show that satisfaction of (5) implies

safety. Integrating (5) up to t ≤ T , we obtain

B(x(t)) < B(x(0)) +
t

T

(
inf

x∈XU

B(x)− sup
x∈XI

B(x)
)

≤ T − t
T

sup
x∈XI

B(x) +
t

T
inf

x∈XU

B(x)

≤ t

T
inf

x∈XU

B(x) ≤ inf
x∈XU

B(x). (8)

where the second inequality is since B(x(0)) ≤
supx∈XI

B(x), as x(0) ∈ XI . The third inequality is
since supx∈XI

B(x) ≤ 0 due to (3), and the last one is since
t ≤ T . We thus have

B(x(t)) < inf
x∈XU

B(x), t ∈ [0, T ], (9)

i.e. the maximum value along a trajectory is less than the
infimum over the unsafe region and hence x(t) /∈ XU , t =
[0, T ] (notice that x(0) /∈ XU holds since XI ∩ XU = ∅).
The latter implies that all trajectories that start in XI avoid
entering the unsafe set XU , thus concluding the proof.

To synthesise one of these deterministic certificates, we re-
quire complete knowledge of the behaviour f of the dynamical
system, to allow us to evaluate the Lie derivative dB

dt . This may
be impractical, and we therefore use data-driven techniques to
learn a certificate.

III. DATA-DRIVEN CERTIFICATES

For our analysis, we will treat the initial state as random,
distributed according to P (an appropriate probability space is
defined; we gloss the technical details here in the interest of
space). The support of P will be the set of admissible initial
states (i.e. the initial set XI ).



To obtain our sample set, we consider N independent
and identically distributed (i.i.d.) initial conditions, sampled
according to probability distribution P, namely {xi(0)}Ni=1 ∼
PN . Initializing the dynamics from each of these initial states,
we unravel a set of continuous-time trajectories {ξi}Ni=1. Since
there is no stochasticity in the dynamics, we can equivalently
say that trajectories (generated from the random initial condi-
tions) are distributed according to the same probabilistic law;
hence, with a slight abuse of notation, we write ξ ∼ P. We
impose the following assumption.

Assumption 2 (Non-concentrated Mass): Assume that
P{ξ} = 0, for any ξ ∈ Ξ.

A. Problem Statement

Since we are now dealing with a sample-based problem, we
will construct probabilistic certificates and hence probabilistic
guarantees on the satisfaction of a given property.

Denote by BN a barrier certificate, we introduce the sub-
script N to emphasize that this certificate is constructed on
the basis of time-discretised sampled trajectories {ξ̃i}Ni=1.

Problem 1 (Probabilistic Property Guarantee): Consider
N sampled trajectories, and fix a confidence level β ∈ (0, 1).
We seek a property violation level ϵ ∈ (0, 1) such that

PN
{
{ξ̃i}Ni=1 ∈ Ξ̃N :

P{ξ ∈ Ξ: BN ̸|= ψs ∧ ψ∆(ξ)} ≤ ε
}
≥ 1− β. (10)

In words, finding a solution to Problem 1 requires de-
termining an ϵ ∈ (0, 1), such that with confidence at least
1− β, the probability that BN does not satisfy the condition
ψs ∧ ψ∆(ξ) for another sampled continuous-time trajectory
ξ ∈ Ξ is at most equal to that ϵ. As such, with a certain
confidence, a certificate BN trained on the basis of N sampled
trajectories, will remain a valid certificate with probability at
least 1−ϵ. Note that the outer probability in (10) (as well as in
similar statements below) refers to the selection of discretized
trajectories, {ξ̃i}Ni=1 (as these are used for training), while the
inner probability refers to the selection of a continuous time
one ξ, as this captures the desired generalization properties.

B. Probabilistic Guarantees

Consider a mapping A such that BN = A({ξi}Ni=1) as
an algorithm that, based on N samples, returns a certificate
BN . We call as compression set of such an algorithm any
subset of the input that returns the same certificate. That
is, a sample-subset CN ⊆ {ξi}Ni=1 is a compression set if
A(CN ) = A({ξi}Ni=1). In Algorithm 1, we provide a specific
synthesis procedure through whichA (and hence the certificate
BN ) can be constructed. This algorithm is adapted from [19],
with appropriate modifications to allow for continuous-time
dynamics; we discuss this in the next section. Using the results
of [19], and if we have access to samples of the time-derivative
f(x), we can provide a guarantee over the time-discretised
trajectories, as stated next.

Theorem 1 (Probabilistic Guarantees [19]): Consider As-
sumption 2, and let BN and CN be the certificate and compres-
sion set, respectively, returned by Algorithm 1. Fix β ∈ (0, 1),

and for k < N , let let ε(k, β,N) be the (unique) solution to
the polynomial equation in the interval [k/N, 1]

β

2N

N−1∑
m=k

(
m
k

)(
N
k

) (1− ε)m−N

+
β

6N

4N∑
m=N+1

(
m
k

)(
N
k

) (1− ε)m−N = 1, (11)

while for k = N let ε(N, β,N) = 1. We then have that

PN
{
{ξ̃i}Ni=1 ∈ Ξ̃N : (12)

P{ξ̃ ∈ Ξ̃ : BN ̸|= ψs ∧ ψ∆(ξ̃))} ≤ ε(CN , β,N)
}
≥ 1− β,

where CN = |CN | is the cardinality of the compression set.
Unfortunately, this does not provide us with a guarantee on

the property satisfaction for the continuous-time trajectories,
i.e. our trajectory may violate the safety property between
sampled states x(ti) and x(ti+1), as the inner probability refers
to a choice of ξ̃ as opposed to ξ.

If the Lipschitz continuity in Assumption 1 holds, we can
additionally offer guarantees on newly sampled continuous-
time trajectories, based only on time-discretised trajectories,
and approximate derivatives. In this case, we require a tighten-
ing of the derivative condition in (5) by some value d ∈ R, to
ensure that the decrease condition is maintained between sam-
ple times. Denote this condition (over discretized trajectories)
as ψ∆

d (ξ̃), defined by the inequality

max
k=1,...,M

B(x(tk))−B(x(tk−1))

tk − tk−1
(13)

<
1

T

(
inf

x∈XU

B(x)− sup
x∈XI

B(x)
)
− d.

Define by LB and Lf the Lipschitz constants of the certificate
derivative ∂Bθ⋆

∂x and of the dynamics f(x) respectively, and
by MB ,Mf bounds on their norms, namely supx ∥

∂Bθ⋆

∂x ∥ ≤
MB and supx ∥f(x)∥ ≤ Mf . Then, the value d is defined as

d = tMf (MBLf +MfLB) , (14)

where t = maxk=1,...,M (tk − tk−1).
Theorem 2 (Continuous-Time Guarantees): Consider the

conditions of Theorem 1, Assumption 1 and (14). Then,

PN
{
{ξ̃i}Ni=1 ∈ Ξ̃N : (15)

P{ξ ∈ Ξ: BN ̸|= ψs ∧ ψ∆(ξ))} ≤ ε(CN , β,N)
}
≥ 1− β.

The proof of this is achieved by bounding the difference
between the safety of the continuous-time trajectories and their
time-discretised approximations, and is in the Appendix.

IV. CERTIFICATE SYNTHESIS

In order to learn a barrier certificate from samples, we
consider a neural network, a well-studied class of function
approximators that generalize well to a given task. Denote all
tunable neural network parameters by a vector θ. We then have
that our certificate BN depends on θ. For the results of this
section, we simply write Bθ and drop the dependency on N
to ease notation.



Algorithm 1 Certificate Synthesis and Compression Set Computation

1: function A(θ,D)
2: Set k ← 1 ▷ Initialise iteration index
3: Set C ← ∅ ▷ Initialise compression set
4: Fix L1 < L0 with |L1 − L0| > η ▷ η is any fixed tolerance
5: while ls(θ) > 0 do ▷ While sample-independent state loss is non-zero
6: g ← ∇θl

s(θ) ▷ Gradient of loss function
7: θ ← θ − αg ▷ Step in the direction of sample-independent gradient

8: while |Lk − Lk−1| > η do ▷ Iterate until tolerance is met
9: M← {ξ̃ ∈ D : L(θ, ξ̃) ≥ maxξ̃∈C L(θ, ξ̃)} ▷ Find maximal samples with loss greater than compression set loss

10: gM ← {∇θL(θ, ξ̃)}ξ̃∈M ▷ Subgradients of loss function for ξ̃ ∈M
11: ξC ∈ argmaxξ̃∈C L(θ, ξ̃) ▷ Find a sample with maximum loss from C
12: gC ← ∇θL(θ, ξC) ▷ Approximate subgradient of loss function for ξ̃ = ξC

13: if ∃g ∈ gM : ⟨g, gC⟩ ≤ 0 ∧ g ̸= 0 then ▷ If there is a misaligned subgradient (take the maximum if multiple)
14: θ ← θ − αg ▷ Step in the direction of misaligned subgradient
15: C ← C ∪ {ξ} ▷ Update compression set with sample corresponding to g
16: else
17: θ ← θ − αgC ▷ Step in the direction of approximate subgradient

18: Lk ← min
{
Lk−1,maxξ̃∈D L(θ, ξ̃)

}
▷ Update “running” loss value

19: k ← k + 1 ▷ Update iteration index
20: return θ, C

A. Certificate and Compression Set Computation

We seek to minimize a loss function that encodes the barrier
certificate conditions, with respect to the neural network
parameters. To this end, for a ξ̃ ∈ Ξ̃ and parameter vector
θ, let

L(θ, ξ̃) = l∆(θ, ξ̃) + ls(θ), (16)

represent an associated loss function comprised of sample-
dependent loss l∆, and sample-independent loss ls

ls(Vθ) :=
1

|XI |
∑
x∈XI

max{0, Vθ(x)}

+
1

|XU |
∑
x∈XU

max{0,−Vθ(x)}.

l∆(θ, ξ̃) := − 1

T

(
inf

x∈XU

B(x)− sup
x∈XI

B(x)
)

+ max
k=1,...,M

B(x(tk))−B(x(tk−1))

tk − tk−1
.

To instantiate these functions we consider a discrete set of
grid-points on each sub-domain: XI is the set of points in the
domain but outside the goal region, and XU is the set of points
in the unsafe set. These points are generated densely enough
across the domain of interest, and hence offer an accurate
approximation. Since these samples do not require access to
the dynamics, we consider them separate to the sample-set
{ξ̃i}Ni=1.

Consider the first summation in the sample-independent
loss, if B(x) < 0 then max{0, Bθ(x)} = 0, i.e., no loss
is incurred, implying satisfaction of (3). Under a similar
reasoning, the other integral accounts for (4), respectively.

We impose the next mild assumption, a sufficient condition
for termination of our algorithm.

Assumption 3 (Minimizers’ Existence): For any {ξ̃}Ni=1,
and any non-empty D ⊆ {ξ̃}Ni=1, the set of minimizers of
maxξ̃∈D L(θ, ξ̃), is non-empty.
Note that, for a sufficiently expressive neural network, we can
find a certificate B which satisfies the state constraints and
hence has a sample-independent loss of zero.

Algorithm 1 provides an inexact subgradient methodology
to minimize the loss function, and to iteratively construct a
compression set C (initially empty; see step 3). We explain the
main steps of this algorithm with reference to Figure 1. After
an arbitrary parameter initialization, we follow the subgradient
associated with the current sample in C (“blue” dot labeled by
3). At this point, this step becomes inexact, as there would
exist another sample resulting in a higher loss (“green” point
labeled by 2). Such a sample is in M, step 9 of Algorithm 1.
However, the algorithm does not “jump” to the green point, as
the condition in step 13 of the algorithm is not yet satisfied. As
such the algorithm performs inexact subgradient descent steps
up to point 5; this is the first instance where the condition
in step 13 is satisfied (there exists another constraint with
opposite slope) and hence the algorithm “jumps” to a point
with higher loss and subgradient of opposite sign. The “jumps”
serve as an exploration step to investigate the non-convex
landscape, while their number corresponds to the cardinality of
the returned compression set. Such a procedure can be thought
of as a constructive procedure for the general framework
presented recently in [16] to construct compression sets.

In some cases, the parameter returned by Algorithm 1 may
result in a value of the loss function greater than −d, and hence
mean we are unable to verify safety. To achieve a lower loss,



we make use of a sample-and-discarding procedure [6], [20],
and introduce Algorithm 2 as an outer loop around Algorithm
1. This procedure leads to a lower loss, however the samples
that are discarded have to be added to the compression set.
Theorems 1 and 2 then apply, but with the compression set
returned by Algorithm 2 instead.

To terminate our algorithm we require knowledge of d, but
cannot calculate d until we find θ⋆. To resolve this, we propose
two different approaches.

1) At every iteration j calculate dj using the current best
parameters θj , terminate when maxi

[
L(θj , ξ̃

i)
]
< dj .

2) Choose a parameter set Θ, and take the supremum across
the set to find an upper bound on LB ,MB , use these
to calculate d.

To determine Lipschitz constants for neural networks we refer
the reader to [4], [9], [22].

Algorithm 2 Compression Set Update with Discarding

1: Fix {ξ̃i}Ni=1

2: Set C̃ ← ∅ ▷ Initialise compression set
3: Set D ← {ξ̃i}Ni=1 ▷ Initialise “running” samples
4: while (maxξ̃∈D l

∆(θ, ξ̃) > −d)
∨
(ls(θ) > 0) do

5: θ, C ← A(θ,D) ▷ Call Algorithm 1
6: C̃ ← C̃ ∪ C ▷ Update C̃
7: D ← D \ C̃ ▷ Discard C̃ from D
8: return θ, C̃

V. NUMERICAL RESULTS

We consider constructing a safety certificate for the nonlin-
ear, two-dimensional jet engine model as considered in [15],

ẋ1(t) = −x2(t)−
3

2
x21(t)−

1

2
x31(t), ẋ2(t) = x1(t). (17)

In Figure 2 we provide a graphical representation of the
dynamics, sub-domains under study, the 0-level set produced
by our certificate, and the level sets calculated by the methods
in [15] (one lower bounding the unsafe set, the other upper
bounding the initial set). We used 5 independent repeti-
tions (each with different multi-samples) of 1, 000 sampled

1. Exact Subgradient Step (line 10)

3. Approximate Subgradient Step   
(line 12)

5. Subgradient Misalignment 
(line 13-16)

2. True Loss

4. Approximate Subgradient Location

Loss 
Value

Parameter Space

1

2

3

4

5

Fig. 1: Graphical Representation of Algorithm 1.
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Fig. 2: Phase plane plot, ini-
tial and unsafe set for (17).
The zero-level set for our cer-
tificate is dashed; level sets
that bound the initial and un-
safe sets (i.e. γ- and λ- level
sets) in [15] are dotted.
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Fig. 3: Surface plot of the
safety/barrier certificate, gen-
erated by our techniques, for
the system of Figure 2.

trajectories and 367 seconds of computation time (standard
deviation 139s), to obtain ε = 0.01492 (standard deviation
0.00140) with confidence to 0.99. The methodology of [15]
required 257149 state pair samples and 5123 seconds (standard
deviation 449s) of computation time to compute a barrier
certificate with the same confidence (however, this holds
deterministically). We estimate the Lipschitz constants using
the methods in [23]. Figure 3 contains a 3D plot of the
certificate.

Beyond these numerical results, we briefly discuss the
theoretical differences between our approaches. The results
in [15] offer a guarantee that, with a certain confidence, the
safety property is always satisfied, in contrast to Theorem
2 where we provide such guarantees in probability (up to a
quantifiable risk level ε). However, these “always” guarantees,
albeit very useful, come with some challenges. Firstly, they
are not applicable when part of the initial set is unsafe.
Secondly, they implicitly require some knowledge of the
underlying probability distribution. Finally, they are bound to
an exponential growth with the dimension of the state space.

Related to this last point, we performed a comparison on
the following four-dimensional system taken from [8].

ẋ1(t) = x1(t) +
x1(t)x2(t)

5
− x3(t)x4(t)

2
,

ẋ2(t) = cos(x4(t)),

ẋ3(t) = 0.01
√
|x1(t)|,

ẋ4(t) = −x1(t)− x2(t)2 + sin(x4(t)).

(18)

We calculate that the approach of [15] requires at least
1019 samples to return a confidence lower bounded by at
most 10−30, which is not practically useful. In contrast, our
techniques with only 100 samples obtain a risk level of ε =
0.21450 (standard deviation 0.00910), confidence 1− 10−5.

VI. CONCLUSION

We have proposed a method for synthesis of neural-network
certificates for continuous-time dynamical systems, based only
on a finite number of trajectories from a system. Our nu-
merical experiments demonstrate the efficacy of our methods



on a number of examples, involving comparison with related
methodologies in the literature. Current work concentrates
towards extending our analysis to controlled systems, thus co-
designing a controller and a certificate at the same time.

APPENDIX
I. PROOF OF THEOREM 2

We aim at finding a bound on the discretisation gap
L(θ, ξ)−L(θ, ξ̃) so that, for sufficiently small loss evaluated on
the time-discretised approximations L(θ, ξ̃), we also achieve
a negative loss on the continuous trajectories L(θ, ξ).

L(θ, ξ)− L(θ, ξ̃) = l∆(θ, ξ)− l∆(θ, ξ̃)

= max
x∈ξ

dB

dt

∣∣∣∣
x

− max
k=1,...,M

B(x(tk))−B(x(tk−1))

tk − tk−1
. (19)

Replacing the first maximisation with one between time in-
stances, and exchanging the order of the max operators, (19)
is equal to

max
k=1,...,M

max
t∈[tk−1,tk]

dB

dt

∣∣∣∣
x(t)

(20)

− max
k=1,...,M

B(x(tk))−B(x(tk−1))

tk − tk−1
,

≤ max
k=1,...,M

[
max

t∈[tk−1,tk]

dB

dt

∣∣∣∣
x(t)

− B(x(tk))−B(x(tk−1))

tk − tk−1

]
.

(21)

We can now replace the difference term with an integral, so
that (21) becomes equivalent to

max
k=1,...,M

∫ tk
tk−1

maxt∈[tk−1,tk]
dB
dt

∣∣
x(t)
− dB

dt

∣∣
x(τ)

dτ

tk − tk−1
.

Letting L =MBLf +MfLB (refer to (14) for the definition
of the various constants), the previous derivations lead to

L(θ, ξ)− L(θ, ξ̃)

≤ max
k=1,...,M

∫ tk
tk−1
∥x(τ)−maxt∈[tk−1,tk] x∥L dτ

tk − tk−1

≤ max
k=1,...,M

L

∫ tk−1

tk
Mf (tk − tk−1) dτ

tk − tk−1
, (22)

= max
k=1,...,M

L

∫ tk−1

tk

Mf dτ = tLMf . (23)

where the second inequality is since supx ∥f(x)∥ ≤ Mf , and
the last one since t = maxk=1,...,M (tk − tk−1).

This results then to a discretisation gap as in (14). By
Theorem 1, and noticing that violating the conditions with
ψ∆
d in place of ψ∆, is equivalent to L(θ⋆, ξ̃) > −d, we have

PN
{
{ξ̃i}Ni=1 : P{ξ̃ : L(θ⋆, ξ̃) > −d} ≤ ε(CN , β,N)

}
≥ 1− β.

Since L(θ⋆, ξ) ≤ L(θ⋆, ξ̃) + d, this then implies that

PN
{
{ξ̃i}Ni=1 : P{ξ : L(θ⋆, ξ) > 0} ≤ ε(CN , β,N)

}
≥ 1− β,

thus concluding the proof. □
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Hasan A. Poonawala, Mariëlle Stoelinga, and Nils Jansen. Robust
control for dynamical systems with non-gaussian noise via formal
abstractions. Journal of Artificial Intelligence Research, 76:341–391,
2023.

[4] Aritra Bhowmick, Meenakshi D’Souza, and G. Srinivasa Raghavan.
LipBaB: Computing exact lipschitz constant of ReLU networks. In
ICANN (4), volume 12894 of Lecture Notes in Computer Science, pages
151–162. Springer, 2021.

[5] Marco Campi and Simone Garatti. Introduction to the Scenario Ap-
proach. SIAM Series on Optimization, 2018.

[6] Marco C. Campi and Simone Garatti. A sampling-and-discarding
approach to chance-constrained optimization: Feasibility and optimality.
Journal of Optimization Theory and Applications, 148(2):257–280,
2011.

[7] Marco C. Campi and Simone Garatti. Compression, generalization and
learning. J. Mach. Learn. Res., 24:339:1–339:74, 2023.

[8] Alec Edwards, Andrea Peruffo, and Alessandro Abate. Fossil 2.0:
Formal certificate synthesis for the verification and control of dynamical
models. In HSCC, pages 26:1–26:10. ACM, 2024.

[9] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari,
and George J. Pappas. Efficient and accurate estimation of lipschitz
constants for deep neural networks. In NeurIPS, pages 11423–11434,
2019.

[10] Simone Garatti and Marco C. Campi. Risk and complexity in scenario
optimization. Math. Program., 191(1):243–279, 2022.

[11] Takafumi Kanamori and Akiko Takeda. Worst-case violation of sampled
convex programs for optimization with uncertainty. J. Optim. Theory
Appl., 152(1):171–197, 2012.

[12] Alexandar Kozarev, John F. Quindlen, Jonathan P. How, and Ufuk Topcu.
Case studies in data-driven verification of dynamical systems. In HSCC,
pages 81–86. ACM, 2016.

[13] Kostas Margellos, Maria Prandini, and John Lygeros. On the con-
nection between compression learning and scenario based single-stage
and cascading optimization problems. IEEE Trans. Autom. Control.,
60(10):2716–2721, 2015.

[14] Peyman Mohajerin Esfahani, Tobias Sutter, and John Lygeros. Perfor-
mance bounds for the scenario approach and an extension to a class
of non-convex programs. IEEE Transactions on Automatic Control,
60(1):46–58, 2015.

[15] Ameneh Nejati, Abolfazl Lavaei, Pushpak Jagtap, Sadegh Soudjani, and
Majid Zamani. Formal verification of unknown discrete- and continuous-
time systems: A data-driven approach. IEEE Trans. Autom. Control.,
68(5):3011–3024, 2023.

[16] Dario Paccagnan, Marco C. Campi, and Simone Garatti. The pick-
to-learn algorithm: Empowering compression for tight generalization
bounds and improved post-training performance. In NeurIPS, 2023.

[17] Antonis Papachristodoulou and Stephen Prajna. On the construction of
Lyapunov functions using the sum of squares decomposition. In CDC,
pages 3482–3487. IEEE, 2002.

[18] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems
using barrier certificates. In HSCC, volume 2993 of Lecture Notes in
Computer Science, pages 477–492. Springer, 2004.

[19] Luke Rickard, Alessandro Abate, and Kostas Margellos. Data-driven
neural certificate synthesis. CoRR, abs/2502.05510, 2025.

[20] Licio Romao, Antonis Papachristodoulou, and Kostas Margellos. On the
exact feasibility of convex scenario programs with discarded constraints.
IEEE Trans. Autom. Control., 68(4):1986–2001, 2023.

[21] Ali Salamati, Abolfazl Lavaei, Sadegh Soudjani, and Majid Zamani.
Data-driven verification and synthesis of stochastic systems via barrier
certificates. Autom., 159:111323, 2024.

[22] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural
networks: Analysis and efficient estimation. In NeurIPS, pages 3839–
3848, 2018.

[23] Graham R. Wood and B. P. Zhang. Estimation of the Lipschitz constant
of a function. 8(1):91–103, 1996.


	Introduction
	Certificates
	Continuous-Time Dynamical Systems
	Safety Property
	Barrier Certificate

	Data-Driven Certificates
	Problem Statement
	Probabilistic Guarantees

	Certificate Synthesis
	Certificate and Compression Set Computation

	Numerical Results
	Conclusion
	Proof of Theorem 2
	References

