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a b s t r a c t

We consider stochastic dynamic programming problems with high-dimensional, discrete state-spaces
and finite, discrete-time horizons that prohibit direct computation of the value function from a given
Bellman equation for all states and time steps due to the ‘‘curse of dimensionality’’. For the case where
the value function of the dynamic program is concave extensible and submodular in its state-space,
we present a new algorithm that computes deterministic upper and stochastic lower bounds of the
value function in the realm of dual dynamic programming. We show that the proposed algorithm
terminates after a finite number of iterations. Furthermore, we derive probabilistic guarantees on
the value accumulated under the associated policy for a single realisation of the dynamic program
and for the expectation of this value. Finally, we demonstrate the efficacy of our approach on a
high-dimensional numerical example from delivery slot pricing in attended home delivery.

© 2021 Published by Elsevier Ltd.
1. Introduction

Multi-stage optimal control problems arise in many appli-
ation areas. Using dynamic programming (DP) to solve these
roblems is mostly restricted to low-dimensional problem in-
tances, since high-dimensional state and action spaces prohibit
irect computation of the value function of the DP due to the
o-called ‘‘curse of dimensionality’’.
Numerous approximation approaches have been proposed in

he literature. To classify our work, it is illustrative to categorise
hese approaches by two characteristics, namely whether they
ere designed to be used for problems with either continuous or

✩ Research is supported by SIA Food Union Management. The material in this
paper was partially presented at the 21st IFAC World Congress (IFAC 2020), July
12–17, 2020, Berlin, Germany. This paper was recommended for publication in
revised form by Associate Editor Marcello Farina under the direction of Editor
Ian R. Petersen.

✩ A preliminary version of the results presented in this paper can be found in
ebedev et al. (2020). These results have been extended in multiple directions:
e provide a novel validation procedure, a probabilistic analysis and a more
etailed case study.
∗ Corresponding author.
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K. Margellos).
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005-1098/© 2021 Published by Elsevier Ltd.
Fig. 1. Schematic grouping of selected approximate DP literature based on how
general-purpose or problem-specific the approaches are and if they are limited
to a discrete or continuous state space.

discrete states and whether they are rather agnostic or exploita-
tive with regards to particular mathematical structures in the
underlying problem. We schematically lay out some well-studied
methods from the literature in Fig. 1.

One of the most general and widely used approaches is to
model the value function of the DP as a linear combination of
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asis functions, which are sometimes also called features (Powell,
007, Chapter 8.2). Approximation of the value function then
educes to the problem of estimating the weight coefficients of
he linear combination. While this approach is very flexible, it
ight not be obvious which and howmany basis functions should
e chosen for a particular problem at hand.
A more structured way to solve such an approximate DP

ormulation is given by the linear programming approach to
pproximate DP (de Farias & Van Roy, 2003), which was originally
evised for finite state and action spaces. The general idea is to
hange the Bellman equation of the DP by an epigraphic reformu-
ation into a linear program, where the Bellman equation appears
s a constraint for each state and action pair. Consequently,
he number of constraints is often prohibitively large even for
roblems with finite state and action spaces, but sampling a
arge enough number of these constraints may be sufficient to
enerate a good enough solution for the particular problem at
and de Farias and Van Roy (2004). The same strategy is also
xploited in Kariotoglou, Summers, Summers, Kamgarpour, and
ygeros (2013) and Mohajerin Esfahani, Sutter, Kuhn, and Lygeros
2018) to turn semi-infinite programs arising in case of infinite
tate and actions spaces to finite ones. Still, the quality of the
pproximation once again hinges on the need to choose suitable
asis functions.
Certain structures of the value function can simplify the pro-

ess of selecting basis functions. For example, if the value func-
ion of a DP over continuous states is convex,1 then stochastic
ual DP provides an alternative to the above-mentioned approxi-
ate DP techniques (Pereira & Pinto, 1991; Shapiro, 2011). The
ain objective is to under-approximate the value function by

he pointwise maximum of a finite number of hyperplanes in
he state space for all time steps in the DP. These hyperplanes
re added iteratively by first generating an approximately opti-
al sample path of states forward in time and then adding a
yperplane at each time step along this sample path backward
n time, which refines the value function along this sample path.
ariants of this algorithm have also been developed for systems
ith piecewise-quadratic value functions (Warrington, Beuchat,
Lygeros, 2019).
Further developments of stochastic dual DP are concerned

ith discrete state systems (Zhang & Sun, 2019; Zou, Ahmed,
Sun, 2019). While exploiting convex problem structure and

i-passing the need to choose basis functions, these approaches
till suffer from some limitations, such as being constrained to
inear systems (Zou et al., 2019) or having to solve a non-convex
ptimisation problem to add hyperplanes to the representation of
he approximate value function at each time step (Zhang & Sun,
019).
In this paper, we present a variant of the stochastic dual

P algorithm, termed gradient-bounded DP, for problems with
iscrete states and value functions that are concave extensible
nd submodular. One example of a problem whose value function
as these properties can be found in the so-called revenue man-
gement problem in attended home delivery (Lebedev, Goulart,
Margellos, 2019, 2021). Similar to stochastic dual dynamic

integer) programming, we represent the value function of the
P as the pointwise minimum of affine functions over states.
nd in contrast to the existing extensions to discrete states, our
pproach does not suffer from the above-mentioned limitations.
e also demonstrate the effectiveness of our approximation ap-
roach on a numerical example of the revenue management
roblem in attended home delivery.

1 The value function needs to be convex if costs are minimised or
lternatively concave if rewards are maximised.
2

Furthermore, we address another problem that may be en-
countered by all approximation approaches mentioned above.
In the case of finite-time multistage stochastic optimal control
problems, the performance of an approximately optimal decision
policy may be evaluated by simulating the DP forward in time
and thus obtaining a performance metric. Since the problem is
stochastic, so is this performance metric, which follows a station-
ary, yet unknown distribution under the approximately optimal
policy (assuming that this policy is stationary, i.e. the probability
of making a decision at any state–time pair is independent of
the simulation run). Hence, as a second central contribution to
this paper, we derive bounds on the tail and expectation of the
probability distribution of a performance metric obtained from a
finite number of its samples.

The paper is structured as follows: Section 2 formulates our
problem of interest and the assumptions that our work builds
upon. In Section 3, we present a novel algorithm to compute
approximately optimal policies for value functions over discrete
state-spaces under assumptions on submodularity and concave
extensibility. Section 4 derives deterministic upper bounds and
stochastic lower bounds to the exact value function and shows
convergence of the algorithm in a finite number of iterations.
In Section 5, we present an algorithm that validates the policy
obtained in Section 3 by computing sample profits, their em-
pirical mean and their standard deviation. Section 6 details our
theoretical results on tail and expectation bounds of the sample
profits obtained in Section 5. In Section 7, we present a numerical
example on a high-dimensional problem that is unsolvable by
direct computation. Finally, we conclude in Section 8 and provide
directions for future research.
Notation: For any s ∈ N, let 1s be a column vector of all zeros
apart from the sth entry, which equals 1. Furthermore, we define
he convention that 10 is a vector of zeros. Let 1 denote a vector of
nes. Let ⟨·, ·⟩ denote the standard inner product of its arguments.
et ⌊·⌋ denote the floor function, i.e. the greatest integer less than
r equal to its argument. Let E denote the expectation operator,
et Pr(·) denote the probability of its argument and let 1(·) denote
the indicator function.

2. Problem statement

We consider a discrete-space, discrete-time, finite horizon DP.
Define discrete states x ∈ X ⊂ Zn and continuous and/or
discrete decision variables d ∈ D ⊂ Za

× Rb. Define the set S :=
{1, 2, . . . , n}. Let the transition probability between two states x
and y under decision d be Px,y(d), where we require Px,y(d) ≥ 0
for all (x, y, d) ∈ X × X × D. For all x ∈ X , we impose that∑

y∈Y+(x) Px,y(d) = 1, where Y+(x) := {x+ 1s}s∈S∪{0}. This require-
ment implies that transitions in x are only possible in the positive
direction and by at most a unit step along one dimension. Such
models are typical for order-taking processes (Yang & Strauss,
2017; Yang, Strauss, Currie, & Eglese, 2016). Furthermore, we
define a finite time horizon T := {1, 2, . . . , t̄}, a stage revenue
function g : Zn

×Zn
×(Za

×Rb)→ R and a terminal cost function
C : Zn

→ R to construct the following DP:

Vt (x) := max
d∈D

⎧⎨⎩ ∑
y∈Y+(x)

Px,y(d) (g(x, y, d)+ Vt+1(y))

⎫⎬⎭
∀(x, t) ∈ X × T , where

Vt̄+1(x) := − C(x) ∀x ∈ X . (1)

It is not strictly necessary for g to be independent of t as long as

the assumptions stated below can be satisfied. However, as our
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nterest lies in time-independent problems and to ease notation,
e ignore time-dependency of g in this paper.2 To represent the
P more compactly, we notice that (1) is a time-independent
apping from Vt+1 to Vt for all t ∈ T , which makes it pos-
ible to define the so-called Bellman operator T through the
elationship

t = T Vt+1, for all t ∈ T . (2)

otice that the argument of T is a functional. We next intro-
uce several definitions needed to state the assumptions that we
mpose on the DP in (1).

efinition 1. A function f : Zn
→ R is submodular if it satisfies

(max(y, z))+ f (min(y, z)) ≤ f (y)+ f (z) (3)

or all (y, z) ∈ Zn
× Zn, where the maximum and minimum are

aken elementwise.

The following two definitions are commonly used in discrete
onvex analysis:

efinition 2. Let a ∈ Rn and b ∈ R. Then the concave closure
˜ : Rn

→ R ∪ −∞ of a function f : Zn
→ R ∪ −∞ is defined

s (Murota & Shioura, 2001, equation (2.1))

˜(x) := inf
a,b

{
⟨a, x⟩ + b

⏐⏐ ⟨a, y⟩ + b ≥ f (y) ∀y ∈ Zn } .

ote that the concave closure is identical to the so-called concave
ull.

efinition 3. A function f : Zn
→ R ∪ −∞ is concave extensible

f and only if the evaluations of f coincide with the evaluations
f its concave closure f̃ (Murota & Shioura, 2001, Lemma 2.3), i.e.
(x) = f̃ (x), for all x ∈ dom(f̃ ).

These definitions allow us to state the assumptions that we
mpose on the DP in (1):

ssumption 1. The function −C is submodular and concave ex-
ensible in x.

ssumption 2. We assume that the functions D, g and Px,y for
ll (x, y) ∈ X × X and T are chosen such that the Bellman
perator preserves concave extensibility and submodularity of
ny concave extensible and submodular value function, i.e. if Vt+1
s submodular and concave extensible, then Vt = T Vt+1 also has
hese properties for all t ∈ T .

In Lebedev, Goulart, and Margellos (2021, Theorem 2), it is
hown that, under mild technical assumptions on the customer
rrival rate, these assumptions are satisfied for the revenue man-
gement problem considered in Section 7.

. Value function approximation algorithm

We first state our proposed approximation procedure in Algo-
ithm 1 and subsequently detail the individual algorithm steps.
nspired by stochastic dual DP techniques (Shapiro, 2011), the
ain idea of our algorithm is to alternate between generating
ample paths in ‘‘forward sweeps’’ and refining the value function
n ‘‘backward sweeps’’. We term our approximation algorithm
‘gradient-bounded DP’’, since it exploits properties of the gra-
ient of the approximate value function, namely submodularity

2 We refer readers, who are interested in a multi-stage optimisation formula-
ion of this DP for the application studied in our numerical example, to Lebedev,
argellos, and Goulart (2021).
3

and concave extensibility, to compute an upper bound to the
exact value function of the DP. The following sections describe
this procedure in detail.

Algorithm 1 Gradient-bounded dynamic programming
1: Initialise parameters: X,D, Px,y, T , g, C and imax

2: Initialise Q 0
t (x)←∞, for all (x, t) ∈ X × T

3: Initialise Q 0
t̄+1(x)←−C(x), for all x ∈ X

4: for i ∈ {1, 2, . . . , imax} do
5: xi1 ← 0
6: for t ∈ {1, 2, . . . , t̄ } do ▷ ‘‘Forward sweep’’
7: dit ← d∗ ∈ argmax

d∈D

{∑
xit+1∈Y+(x

i
t )
Pxit ,xit+1 (d)

×
(
g(xit , x

i
t+1, d)+ Q i−1

t+1(x
i
t+1)

)}
8: xit+1 ← xit + sample

xit+1

{
Pxit ,xit+1

(
dit
)}

9: end for
10: l(i)←

∑t̄
t=1 g(x

i
t , x

i
t+1, d

i
t )− C(xt̄+1)

11: for t ∈ {t̄, t̄ − 1, . . . , 1} do ▷ ‘‘Backward sweep’’
12: Z(xit+1)← {x

i
t+1 + 1s + 1s′}s∈S∪{0},

s′∈S∪{0}

13: if Q i−1
t+1 is submodular on Z(xit+1) then

14: H∗ ← unique hyperplane through{(
y, (T Q i−1

t+1)(y)
)}

y∈Y+(xit+1)

15: else
16: j∗ ∈ argmin

j∈J i−1t+1(x
i
t+1)

{(
T H j−1

t+1

) (
xit+1

)}
17: H∗ ← T H j∗−1

t+1
18: end if
19: Q i

t ← min
{
H∗,Q i−1

t
}

20: t ← t − 1
21: end for
22: u(i)← Q i

1(0)
23: end for

3.1. Initialisation

We first initialise all parameters of the DP in (1) (step 1).
Denote the maximum number of iterations by imax ∈ N and let
:= {0, 1, . . . , imax}. Let the value function approximation Q i

t for
ll (i, t) ∈ I × T be the pointwise minimum of a finite number of
ffine functions, i.e.
i
t (x) := min

j∈{0,1,...,i}
H j

t (x), for all x ∈ X, (4)

where H j
t : X ↦→ R describes a hyperplane, i.e.

H j
t (x) := ⟨a

j
t , x⟩ + bjt , for all x ∈ X, (5)

with ajt ∈ Rn, bjt ∈ R for all (t, j) ∈ T × I . We characterise the set
of supporting hyperplanes at x as

J it (x) := argmin
j∈{0,1,...,i}

{
⟨ajt , x⟩ + bjt

}
(6)

for all (x, i, t) ∈ X × I × T . Notice that the aforementioned
functions are defined for all states x ∈ X . In practice, the number
of states may be prohibitively large to compute these functions
for all states, however, for our purposes, we will only ever eval-
uate these functions locally at certain x ∈ X , which is possible
since the maximum number of hyperplanes imax will be relatively
moderate.

We construct Q i
t as a successively tighter upper bound of Vt

(as i increases), i.e. V (x) ≤ Q i(x) ≤ Q i−1(x) for all (x, i, t) ∈ X ×
t t t
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(

a

I \ {0})× T . In the ith ’’backward sweep‘‘, H i
t is added to Q i−1

t for
all t ∈ T to form Q i

t . To initialise Q 0
t , one could simply set Q 0

t to be
single affine function with a0t = 0 and b0t = ∞, such that Q 0

t is
indeed an upper bound to Vt for all t ∈ T (step 2). We discuss the
possibility of closer initialisations in the context of our example
in Section 7. We also initialise Q i

t̄+1(x) := Vt̄+1(x) = −C(x) for all
(x, i) ∈ X × I , which is a tight upper bound by the construction of
the DP in (1) (step 3).

3.2. ‘‘Forward sweep’’

Fix any iteration i ∈ I \ {0}. In each ‘‘forward sweep’’, we solve
an approximate version of the Bellman equation in (1) forward
in time, i.e. by replacing Vt with its approximation Q i−1

t (step
7). Hence, we compute suboptimal dit for all t ∈ T and simu-
late state transitions by sampling from the transition probability
distribution given the approximately optimal decisions (step 8).
This defines a sample path xit for all t ∈ T ∪ {t̄ + 1}. At the end
of each ‘‘forward sweep’’, we compute a stochastic lower bound
on the total expected profit V1(0), which we denote by l(i) for all
i ∈ I\{0} (step 10). We show that this is indeed a stochastic lower
bound in Section 6.

3.3. ‘‘Backward sweep’’

Fix any iteration i ∈ I . In each ‘‘backward sweep’’, we first
check if Q i−1

t+1 is submodular on Z(xit+1) by computing the sign of
(3) for all possible pairs of points (y, y′) ∈ Z(xit+1)× Z(xit+1), such
that y ̸= y′ (step 12). If the inequality in (3) holds for all these
points, we locally compute the exact DP stage problem on the
set Y+(xit+1), i.e. {T Q i−1

t+1(y)}y∈Y+(xit+1), to construct the hyperplane

through
{(

y, (T Q i−1
t+1)(y)

)}
y∈Y+(xit+1)

(step 14). Then, the resulting
added hyperplane is an upper bound to Vt (x) for all x ∈ X , as
shown in Section 4.

In the opposite case, we need to compute a submodular up-
per bound on Q i−1

t+1 , which is readily given by the hyperplanes
from which Q i−1

t+1 is constructed. Therefore, we select the hyper-
plane H j∗−1

t+1 that minimises the value at the evaluation point xit ,
which therefore locally creates the tightest upper bound (step
16). It may be possible to construct other submodular upper
bounds to non-submodular Q i−1

t+1 , however, steps 16 and 17 of
Algorithm 1 offer a simple implementation. Finally, we update
the value function approximation as the pointwise minimum of
the approximation from the previous iteration and the newly
constructed hyperplane (step 19). We also compute an upper
bound, u(i) for all i ∈ I\{0}, on the total expected profit V1(0) (step
22). We show that this is indeed an upper bound in Section 4.

4. Approximation algorithm properties

In this section, we show our main theoretical results on
bounds on the exact value function and convergence properties
of Algorithm 1. Proofs not included in this section can be found
in Appendix.

Proposition 1. Under Assumptions 1 and 2, the approximate value
function is an upper bound to the exact finite horizon value function,
i.e. Q i

t (x) ≥ Vt (x) for all (x, i, t) ∈ X × I × T .

Corollary 2. Under Assumptions 1 and 2, the value of u(i) is an
upper bound to the exact total expected profit, i.e. u(i) ≥ V1(0) for
all i ∈ I \ {0}.

Proof. This result follows immediately from Proposition 1 and by
observing that u(i) = Q i

1(0) for all i ∈ I \ {0} from step 22 of

Algorithm 1.

4

Proposition 3. The value of l(i) is a stochastic lower bound to the
expected total profit, i.e. E[l(i)] ≤ V1(0) for all i ∈ I \ {0}.

Proof. For any i ∈ I \ {0}, the value of l(i) is obtained from sub-
optimal decisions dit for all t ∈ T , due to the use of Q i−1

t+1 instead
of the exact (yet unavailable) Vt+1 in step 7 of Algorithm 1. It
follows that dit is not a maximiser of the exact DP in (1) which,
by the principle of optimality, implies that the expected value
accumulated under this suboptimal policy will not be greater
than the value obtained under the optimal policy. Hence, E[l(i)] ≤
V1(0) for all i ∈ I \ {0}.

The stochastic dual DP algorithm converges asymptotically in
i to the exact value function (Shapiro, 2011). We can strengthen
this result for our algorithm by exploiting the fact that the set of
states X is finite. Hence, the proposed algorithm converges in a
finite number of steps under the following minor modification to
Algorithm 1.

Algorithm 2 Resampling procedure replacing step 8 of Algo-
rithm 1
1: m← ⌊(i− 1)/|X |⌋
2: xit+1 ← xit + sample

xit+1

{
Pxit ,xit+1

(
dit
)}

3: if t = t̄ −m and xit+1 ∈
{
xjt+1

⏐⏐⏐ m|X |+1 ≤ j < i
}
then

4: xit+1 ← sample (with uniform probability)

from X \
{
xjt+1

⏐⏐⏐ m|X |+1 ≤ j < i
}

5: end if

Notice that for an arbitrary (i, t), m in the if-statement in step
3 of Algorithm 2 ensures that every state x ∈ X is sampled every
|X | iterations.

Proposition 4. Under Assumptions 1 and 2, the gap u(i)−E[l(i)] for
all i ∈ I \{0} converges to 0 in at most t̄|X | iterations of Algorithm 1,
when using the resampling procedure of Algorithm 2.

Note that it is likely to take an unacceptably large number
of iterations for the algorithm to converge to the exact value
function due to the large number of states |X |. Since the value
function is computationally expensive to calculate for all states,
we seek to generate closer approximations at points that are
likely to be visited, i.e. points on the sample path, and to use
this information to save on approximation accuracy for less likely
samples.

Our ultimate objective is to solve problems with large state
spaces (|X | ≈ 1020) and long time horizons (|T | ≈ 104). In
such scenarios, the need to resample the state as detailed in
Algorithm 2 becomes negligible, because the required number of
iterations to reach convergence is much larger than the maximum
acceptable number of iterations. Therefore, from a practical point
of view, we do not use Algorithm 2. In this case, the proposed
algorithm only converges asymptotically to the exact value func-
tion instead of in a finite number of steps, just as in stochastic
dual DP (Shapiro, 2011).

5. Proposed validation algorithm

As noted in the previous section, absolute convergence of the
approximate value function to the exact value function cannot
be achieved for industry-sized problems due to the ‘‘curse of
dimensionality’’. The performance of the algorithm, i.e. how close
the stochastic lower bound l(i) is to the deterministic upper
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ound u(i) for any i ∈ I \ {0}, can only be validated statistically
o a certain level of probabilistic confidence. To this end, we will
enerate a set of validation samples as described in Algorithm 3
nd detailed further below.

Algorithm 3 Proposed validation algorithm

1: Compute approximation: Q imax
t , for all t ∈ T \ {0} ∪ {t̄ + 1}

2: Initialise number of validation samples kmax
3: for k ∈ K := {1, 2, . . . , kmax} do
4: xk1 ← 0
5: for t ∈ T do ▷ ‘‘Forward validation sweep’’
6: dkt ← d∗ ∈ argmax

d∈D

{∑
xkt+1∈X

Pxkt ,xkt+1 (d)

×

(
g(xkt , x

k
t+1, d)+ Q imax

t+1 (xkt+1)
)}

7: xkt+1 ← xkt + sample
xkt+1

{
Pxkt ,xkt+1

(
dkt
)}

8: end for
9: lv(k)←

∑T
t=1 g(x

k
t , x

k
t+1, d

k
t )− C(xt̄+1)

10: end for
11: l̄v ← k−1max

∑kmax
k=1 lv(k)

12: σv ←

√
(kmax − 1)−1

∑kmax
k=1

(
lv(k)− l̄v

)2
We first compute the approximation obtained in Algorithm 1

step 1). We denote the maximum number of validation samples
y kmax ∈ N and let K := {1, 2, . . . , kmax} (step 2). We then

compute kmax ‘‘forward validation sweeps’’, where in each of
them we use our most refined estimate, Q imax

t+1 as our approximate
value function (steps 5–8). After each sweep k ∈ K , we compute
the stochastic lower bound lv(k) on the total expected profit,
similarly to l(i) for all i ∈ I \ {0} in Algorithm 1 (step 9). We then
compute the sample mean profit l̄v and unbiased empirical stan-
ard deviation σv of the set of sampled lower bounds {lv(k)}k∈K
steps 11–12). As detailed in the next section, these quantities
ill be used to generate one-sided confidence intervals, quanti-

ying the performance of the decision policy associated with the
pproximate value function Q imax

t+1 .

. Validation algorithm properties

In this section we state the main theoretical properties of our
alidation procedure. The proofs can be found in Appendix. We
se {lv(k)}k∈K , l̄v and σv from Algorithm 3 to derive two different
easures for the performance guarantee. The first is a probabilis-

ic bound on the tail of the distribution of a single lower bound
ample, i.e. a value for l(kmax + 1) that is reached or exceeded
ith 1 − α confidence for a user-defined α ∈ (0, 1). As we will
ee later in Section 7, this bound is not necessarily indicative
f the expectation of l̄v, since even under the profit-maximising
ecision policy, some variance will persist in l(kmax+ 1) from the
andomness of the state transitions. Therefore, we also derive a
ound on the expectation of the empirical sample mean l̄v that
olds with confidence 1 − αE, where αE

∈ (0, 1) can be chosen
y the user.

.1. Tail bounds

In this section, we present two tail bounds of the distribution
f lv(kmax + 1). Let [l−, l+] denote the (finite) support of the
istribution of lv(k) for any k ∈ K ∪ {kmax + 1} and let FK denote
he empirical cumulative distribution function of {lv(k)}k∈K , i.e.
K (l) := k−1max

∑
k∈K 1(lv(k) ≥ l). We derive two tail bounds of the

istribution of lv(kmax+1) with a given confidence level (1−α) ∈
0, 1), which is mildly restricted for the first bound due to the
ext assumption.
5

ssumption 3. Assume that α > θC := Pr(σv = 0).

The value of θC will often be negligibly small, since lv(k) for
all k ∈ K is highly unlikely to take identical values due to the
typically high-dimensional state space and long time horizon. We
show this later in Section 7.2.

Proposition 5. The inequality Pr(lv(kmax + 1) > l∗) ≥ 1− α holds
i) under Assumption 3, if α ∈ (θC, 1) and l∗ = lC, the empirical
antelli bound given by

C := l̄v − σv

√
(1− α)(kmax − 1)

(α − θC)kmax
, or (7)

(ii) if α ∈ (0, 1) and l∗ = lD, the Dvoretzky–Kiefer–Wolfowitz bound
given by

lD := sup

⎧⎨⎩l ∈ [l−, l+]

⏐⏐⏐⏐⏐⏐ FK (l) ≤ α − θD −

√
ln( 1

θD
)

2kmax

⎫⎬⎭ , (8)

where θD ∈ (0, α) is a user-defined parameter.

For lD, we find the θD, which maximises the value of the bound,
from the so-called Lambert W function.

Definition 4. Let the Lambert W function be implicitly defined as
Wi : R→ R, such thatWi(x) exp(Wi(x)) = x for i ∈ {0,−1}, where
W0(x) > −1 is called the principal branch and W−1(x) ≤ −1 is
called the lower branch.

Lemma 6. For any α ∈ (0, 1), the value of lD is maximised at

θD = min

{
α,

√
exp

(
W−1

(
−1

4kmax

))}
. (9)

The bounds lC and lD, are termed after Cantelli’s inequality (Can-
telli, 1928) and the Dvoretzky–Kiefer–Wolfowitz (Massart, 1990)
inequality, respectively. These inequalities are critical for showing
that the bounds are indeed reached or exceeded with probability
1 − α. By Proposition 5, we can always choose the tighter, i.e.
greater, of the two bounds and we will see later in Section 7 that
the selection of α and kmax influences which bound is preferred.

6.2. Expectation bounds

Similarly to the tail bounds, we now state our theoretical
results on two bounds on the expectation of l̄v, denoted by El̄v .

Proposition 7. Fix any significance level αE
∈ (0, 1). Then

r(El̄v>l∗) ≥ 1− αE, for all l∗ ∈ {lEB , l
E
D}, where:

(i) lEB is the empirical Bernstein bound given by

lEB := l̄v −

√
2σ 2

v ln(2/αE)
kmax

−
7(l+ − l−) ln(2/αE)

3(kmax − 1)
and (10)

ii) lED is the expectation Dvoretzky–Kiefer–Wolfowitz bound given
y

E
D :=

∫ max{0,l+}

max{0,l−}
1−min

⎧⎨⎩1, FK (l)+

√
ln(1/αE)
2kmax

⎫⎬⎭ dl

−

∫ min{0,l+}

min{0,l−}
min

⎧⎨⎩1, FK (l)+

√
ln(1/αE)
2kmax

⎫⎬⎭ dl

+max{0, l−} −min{0, l+}. (11)
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he bounds lEB and lED are termed after the empirical
ernstein Maurer and Pontil (2009) and Dvoretzky–Kiefer–
olfowitz (Massart, 1990) inequalities, respectively. The proof
f Proposition 7(i) is given in Maurer and Pontil (2009). It can
e shown that lED is at least as tight as Hoeffding’s concentration
ound (Hoeffding, 1963), given by

E
H := l̄v − (l+ − l−)

√
ln(1/αE)
2kmax

. (12)

In fact, under an additional technical assumption, we show that
the expectation Dvoretzky–Kiefer–Wolfowitz bound is strictly
better than Hoeffding’s bound.

Assumption 4. We assume that α and kmax are chosen to satisfy√
ln(1/αE)/(2kmax) > k−1max.

Assumption 4 is very mild, since even for only a single obser-
ation kmax = 1, the critical value of αE would be e−2 ≈ 13.5%,
hich is much larger than typical significance levels, e.g. 5% or 1%.
aking any smaller value of αE than the critical value will ensure
hat Assumption 4 is always satisfied. Furthermore, for kmax > 1,
he constraint on αE is even less restrictive.

roposition 8. Under Assumption 4, the expectation Dvoretzky–
iefer–Wolfowitz bound is strictly tighter than Hoeffding’s concen-
ration bound, i.e. lED > lEH for all αE

∈ (0, 1).

Finally, we note that other bounds have also been proposed in
he literature, e.g. Shapiro (2011) assumes that the distribution of
v is Gaussian and determines confidence intervals based on the
orresponding standard score, i.e. a Gaussian lower bound on the
xpectation of l̄v would be

E
G := l̄v − z(αE)

σv
√
kmax

, (13)

here z(αE) is the standard score of the Gaussian distribution
in fact, Student’s t-distribution, especially for small sample sizes
max, since the true variance of the underlying distribution of l̄v is

approximated by σ 2
v ). We compare this with our proposed bounds

in Section 7.

7. Numerical example

We demonstrate our algorithm on an example of the so-
called revenue management problem in attended home delivery.
The objective is to price delivery time windows, called ‘‘slots’’,
dynamically over a finite time horizon to control the customer
purchasing process to maximise profits while ensuring that all
orders can still be fulfilled.

In this problem, S is the set of delivery slots and the compo-
nents of x are the number of orders placed in every delivery slot.
The feasible set of states X is defined by the maximum state vec-
or x̄, i.e. X := {x ∈ Zn | 0 ≤ x ≤ x̄ }. The set of delivery slot price
ectors is D :=

{
d ∈ Rn

⏐⏐ ds ∈ [d, d̄], s = 1, 2, . . . , n
}
. Customer

choice follows a multinomial logit model (Dong, Kouvelis, & Tian,
2009):

Px,x(d) := (1− λ)+
λ∑

k∈S exp(βc + βk + βddk)+ 1
,

x,x+1s (d) :=
λ exp(βc + βs + βdds)∑

k∈S exp(βc + βk + βddk)+ 1
(14)

or all (x, d, s) ∈ X × D × S, where λ ∈ (0, 1) is the probability
hat a customer arrives on the booking website, βc ∈ R denotes
constant offset, βs ∈ R represents a measure of the popularity

or all delivery slots s ∈ S and βd < 0 is a parameter for the price
sensitivity. More details on the estimation of these parameters
6

Table 1
Numerical example parameters.
S {1, 2, . . . , 17}
x̄ [6, 6, . . . , 6]
λ 0.8[
d, d̄

]
[£0, £10]

r £20
t̄ 200
C(x) £10× ⟨1, x⟩ if x ∈ X and ∞ otherwise

can be found in Yang et al. (2016). The average revenue of an
order is r and the length of the time horizon, representing the
booking period, is t̄ . The cost function C represents the delivery
cost for all lists of orders x ∈ X accumulated at the end of the
booking period. The challenge is to price the slots dynamically
to maximise profits, which corresponds to solving a DP of the
form of (1), where g(x, y, d) := r + ds if y = x + 1s for all
s ∈ S and otherwise, g(x, y, d) := 0, i.e. the stage revenue
is the average revenue plus delivery price for slot s if slot s
is chosen and otherwise, it is zero. The DP in our numerical
example takes the parameters in Table 1, adapted from a real-
world, multi-subarea case study by Yang and Strauss (2017) to a
single delivery subarea scenario. Furthermore, we also adopt the
customer choice parameters (βc, βd, {βs}s∈S) from that paper.

We have chosen C(0) = 0, i.e. we ignore fixed costs, which
have no effect on the pricing policy. Notice that for direct value
function computation we would have to evaluate (1) for all
(x, t) ∈ X × T , i.e. (6+ 1)17× 200 ≈ 4.7× 1016 evaluations in our
example. This is prohibitively large for any available computer
capabilities. Hence, we use an approximate algorithm.

For this type of DP, Lebedev, Goulart, and Margellos (2021,
Theorem 2) showed that the Bellman operator preserves strict
submodularity, i.e. the condition in (3) holds with strict inequal-
ity, if a small enough λ > 0 is chosen. We set λ = 0.8 as shown
n Table 1. This setup is similar to the numerical example in
ur preliminary work in Lebedev, Goulart, and Margellos (2020).
owever, we changed the expected number of customers arriving
n the booking website to λ × t̄ = 0.8 × 200 = 160. This is an

interesting variation for several reasons:
(1) Increasing the number of customers arriving on the booking
website increases the need to actively control the sales process
much earlier in the booking period.
(2) Increasing λ while reducing t̄ in the model speeds up com-
putation time, since it depends linearly on the number of time
steps. At the same time, we do not observe any decrease in profit
generation performance in comparison with smaller values of λ.

Since it is more difficult to maximise profits in this scenario,
the need to select an appropriate initialisation for the approxi-
mate value function also gains importance. To illustrate this, we
compare two initialisation strategies.
(1) A trivial way to initialise the value function is to set Q 0

t to
large constant for all t ∈ T , i.e. a number that exceeds the

maximum attainable profit. We choose Q 0
t (x) = 106 for all (x, t) ∈

X × T in our example.
(2) An alternative to this is to initialise Q 0

t for all t ∈ T using
the fixed point of DP, V ∗, which is a known upper bound to the
exact value function at any (x, t) ∈ X×T , i.e. V ∗(x) ≥ Vt (x). This is
always the case, since T in (2) is a monotone operator (Bertsekas,
2012, Chapter 3). In Lebedev et al. (2019), it is shown that the
fixed point is given analytically as

V ∗(x) := (d̄+ r)⟨1, x̄− x⟩ − C(x̄), for all x ∈ X . (15)

Hence, we use this result to set Q 0
t (x) = V ∗(x) for all (x, t) ∈ X×T .

Note that the fixed point in (15) is an affine function, so
the initialiser has low complexity, i.e. only one affine function
describes Q 0. There is also an intuitive interpretation for the
t
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Fig. 2. Deterministic upper and stochastic lower bounds with initialisation of
the value function at the fixed point and at an arbitrary large constant, 106 in
his case.

implicity of the fixed point: The fixed point corresponds to the
xpected profit obtained in an artificial scenario with infinite
ooking horizon. It happens that the uniform gradient −(d̄ + r)

of the fixed point implies that the optimal delivery charge is the
maximum admissible price d̄ for all feasible orders. The intuition
behind this is that (assuming non-zero choice probability for
this set of prices) all orders will sell out in a finite number of
time steps, such that one should always charge the maximum
admissible price to maximise profits in the infinite horizon case.
This is a hypothetical scenario, yet, it provides the means to
identify state–time pairs for which some of the slots should be
priced at the maximum admissible delivery charge.

7.1. Computation of approximate value function

We run imax = 1000 iterations of Algorithm 1 for both initial
approximate value functions. Computation of our Julia (Bezanson,
Edelman, Karpinski, & Shah, 2017) code takes 9 min, 49 s on an
i7-8565U CPU at 1.80 GHz processor base frequency and with
16 GB RAM. In each iteration i ∈ {1, 2, . . . imax}, we compute
he deterministic upper bound on the expected profit u(i) (Corol-
ary 2) and the stochastic lower bound l(i) (Proposition 3). We
how the behaviour of these bounds, for both initialisations, over
ll iterations in Fig. 2.
A gap between upper and lower bounds of approximately 5%

emains even if the algorithm is run for 10,000 iterations. This
ndicates that the numerical problem instance actually violates
ssumption 2, i.e. the exact value function of the problem is not
oncave extensible, such that there remains a gap between the
oncave extensible upper bound and the exact value function.
owever, as numerical evidence suggests the upper and lower
ounds established in Corollary 2 and Proposition 3 remain valid.
owever, the fact that the gap is non-zero makes our upper and
ower bounds non-trivial thus facilitating the subsequent numer-
cal investigation. We discuss on choices of λ that result in a
ero gap and allow numerical satisfaction of Assumption 2 in Sec-
ion 7.3. Notice also that the fixed point initialisation outperforms
he trivial initialisation in several ways:
1) The stochastic lower bound based on initialising the up-
er bound at the fixed point is greater (tighter) than the other
tochastic lower bound, especially in the first 200 iterations,
hile they approach each other over iterations and become very
imilar after 800 iterations.
2) The deterministic upper bound based on the fixed point
nitialisation is substantially lower (tighter) than for the other
7

Fig. 3. ‘‘Violin’’ plots of sample profits obtained by 100 validation samples
from Algorithm 3. Left halves show samples where the approximate value
function was initialised at the fixed point, right halves show samples with trivial
initialisation at a large constant, 106 in this case. Horizontal lines indicate sample
median.

initialiser for the first 560 iterations, while still being slightly
tighter for larger iteration indices.

The relative advantage of the fixed point initialisation strategy
can also be seen in Fig. 3, where we have generated ‘‘violin’’ plots
from 100 validation samples of Algorithm 3 for both initialisers.

Especially the first iteration samples have higher value when
initialised at the fixed point and not at an arbitrary large con-
stant. However, the effect decreases for larger iteration numbers.
Since in either case a substantial variation in sample profits
remains and since, upper and lower bounds for either case do
not converge in the number of iterations performed, we want to
compute confidence bounds on the tail and the expectation of the
distribution of the stochastic lower bound in the next step.

Another important consideration when computing these
bounds is the number of samples drawn. We would like to
note that the computation time for the above validation samples
depends on the iteration number, since it corresponds to the
number of hyperplanes that the value function is comprised of. As
we need to find the minimum over this number of hyperplanes
for every approximate value function evaluation, the computation
time also grows approximately linearly in the number iterations,
e.g. computing 100 validation samples takes 0.05 s per iteration
count, i.e. approximately 50 s for i = 1000. Overall, validation
(Algorithm 3) tends to be much faster than approximation (Al-
gorithm 1). However, in time-critical applications, it might be
prohibitive to choose overly large validation sample sizes.

7.2. Computation of bounds

We first compute the tail bounds on the value of profit ob-
tained by a single sample under the approximate policy after
1000 iterations of Algorithm 1. To this end, we compute the
empirical Cantelli bound lC from (7) and the Dvoretzky–Kiefer–
Wolfowitz tail bound lD from (8). Due to the 17-dimensional
state-space, θC ≈ 0. To see this, upper bound the probability
of the most likely event at every stage, namely no order being
placed by Px,x(d) ≤ Px,x(1d̄) ≈ 0.6732. Due to time-independence
of the transition probabilities, we can exponentiate this number
by the number of time steps in the DP to obtain the probability
of 0 orders at the end of the booking period. This needs to
happen for all kmax (independent) validation samples, hence we
again exponentiate this number by kmax, which we assume is at
least 10. This gives us the probability of all validation samples
having 0 orders. This is the most likely, but only one of |X | states,
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Fig. 4. Probabilistic bounds — empirical Cantelli bound (green dashed line, Proposition 5(i)) and Dvoretzky–Kiefer–Wolfowitz tail bound (blue dotted line,
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Fig. 5. Probabilistic bounds — Gaussian bound (green dashed line, (13)), expectation Dvoretzky–Kiefer–Wolfowitz bound (blue dotted line, Proposition 7(ii)) and
empirical Bernstein bound (orange dash-dotted line, Proposition 7(i)) – on the expectation of the profit obtained as functions of various significance levels and for
10 (a), 100 (b) and 1000 (c) validation samples.
t
n

t
t
H
t
e
s
v
m
t
p
a
t

so we multiply this number by |X | to obtain Pr(σv = 0) ≤
X |Px,x(1d̄)t̄kmax ≈ 717

× 0.6732200×10
≈ 0.

As we see in Fig. 4, the tail bounds do not converge to the sam-
le average, since there is an inherent variance in the customer
hoice model. This can be seen by inspecting the high variation
f the sample profits in Fig. 3 for all iteration steps. In Fig. 4,
otice that the choice of optimal bound changes with sample
ize: In our example, the empirical Cantelli bound is preferred for
ll significance levels when kmax = 10, whereas the Dvoretzky–
iefer–Wolfowitz tail bound is preferred for significance levels
> 20% when kmax = 100 and for significance levels α > 5.74%,

where we have chosen the optimal parameter θD from Lemma 6.
To get more meaningful measures of the convergence of Algo-

rithm 1, we now compute the bounds on the expectation of the
profit obtained after 1000 iterations of Algorithm 1. To this end,
we compute the empirical Bernstein bound lEB from (10) and the
xpectation Dvoretzky–Kiefer–Wolfowitz bound lED from (11). We
lso compute the Gaussian bound lEG from (13), following Shapiro
2011). This final bound relies on the additional assumption that
he exact distribution of the mean sample profit l̄v is Gaus-
ian. This is only asymptotically true by a Central Limit Theorem
see Hajek, 2015, Proposition 2.16). As seen in Fig. 5, the Gaussian
ound is always the most optimistic, however not accompanied
y theoretical guarantees. Moreover, for large validation samples
izes kmax, the gap with the empirical Bernstein bound and with
he expectation Dvoretzky–Kiefer–Wolfowitz bound is small.

Therefore, we suggest to avoid using the Gaussian bound if
robabilistic guarantees are sought for problems, such as our
xample, where the validation sample values are not normally
istributed. Out of the empirical Bernstein bound and the expec-
ation Dvoretzky–Kiefer–Wolfowitz bound, the earlier only tends

o perform better for large sample sizes (kmax = 1000). Note

8

hat we omit the empirical Bernstein bound in Fig. 5(a) since its
egative values are not meaningful.
Finally, we would like to comment on the relative compu-

ational cost of Algorithms 1 and 3. It is efficient to evaluate
he forward part of Algorithm 1 compared to its backward part.
owever, as the iteration count increases, hyperplanes are added
o the approximate value function, making it more expensive to
valuate. For example, to evaluate the value function at some
tate–time pair (x, t) after i iterations, one needs to compare the
alues of i hyperplanes, since the value function is the pointwise
inimum of these i hyperplanes. Since Algorithm 3 uses only

he most refined value function, i.e. the one with the most hy-
erplanes, value function evaluations take relatively long. Thus,
complex approximation will also take long to be validated. If

ime is limited, this could mean that imax needs to be lowered
to allow sufficient time for large enough number of validation
samples to be generated and the bounds to be computed. In our
example, it took 13 min, 10 s to compute 100 validation samples
with Algorithm 3 after 1000 iterations of Algorithm 1. Recalling
that running Algorithm 1 took 9 min, 49 s, there could be a
trade-off between accuracy of the approximation and quality of
the validation bound if time were more limited, e.g. in another
application.

7.3. Algorithm convergence analysis

As noted in Section 7.1, there is a persistent gap of about 5%
between the upper and stochastic lower bound for the particular
problem instance. We conjecture that this is due to Assumption 2
not holding for these parameters. In particular, the customer
arrival rate may be prohibitively high for the Bellman opera-

tor to produce concave extensible value functions in the exact
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Fig. 6. Deterministic upper and stochastic lower bounds for different customer
rrival rates.

roblem. Hence, there may always be a gap between the exact
alue function and the approximate value function, since the
atter is defined as the pointwise minimum of a finite number of
yperplanes and is thus concave. As shown in Lebedev, Goulart,
nd Margellos (2021, Theorem 2), there exists a small enough
ustomer arrival rate λ, for which Assumption 2 holds. We inves-
igate this theorem and also demonstrate the convergence result
rom this paper (Proposition 4) by repeating the experiment
rom Section 7.1 with reduced values of λ, in steps of 0.1 down
o a minimum value of 0.1. The resulting upper and stochastic
ower bounds after 1000 iterations and using the fixed point
nitialisation strategy are shown in Fig. 6.

Notice that both bounds monotonically increase with the cus-
omer arrival rate λ, which is to be expected, since we keep the
umber of time steps t̄ constant across all experiments. Therefore,
oth the expected number of customer arrivals λt̄ and thus the
xpected profit monotonically increase with λ. The gap between

the bounds is no greater than 1.0% for all customer arrival rates
λ ≤ 0.5, indicating that a policy has been found that produces
near-optimal profits for these cases. In the other cases, the gap
increases with λ, such that the associated performance guaran-
tees are increasingly loose. Tightening these bounds further is a
topic of current research.

8. Conclusions and future work

In this paper, we addressed two problems: First, we presented
a new algorithm, termed gradient-bounded dynamic program-
ming, for approximately solving high-dimensional multi-stage
optimisation problems characterised by dynamic programming
formulations with submodular, concave extensible value func-
tions over discrete states. We accompanied the algorithm with
finite convergence guarantees as well as deterministic upper and
stochastic lower bounds to the exact value function. In future
work, these bounds may be used to compare the profit gener-
ation efficiency with other approximate dynamic programming
algorithms, which may not provide an upper bound to the ex-
act value function. A comparative study of gradient-bounded
dynamic programming and other approximate dynamic program-
ming approaches can be found in Lebedev, Margellos, and Goulart
(2021). One possible direction for future numerical studies would
be the analysis of gradient-bounded dynamic programming in
other application areas.
 b

9

Second, we derived bounds on the tail and expectation of the
(unknown) distribution of samples of the value obtained under
an approximately optimal decision policy. These bounds may
be used to validate the performance of approximately optimal
decision policies also in other multistage stochastic optimisation
problems without additional assumptions on this distribution
other than its finite support. Hence, these bounds can be used
to obtain probabilistic performance certificates for a wide range
of multi-stage optimisation problems. Finally, we demonstrated
our results in an example of the revenue management problem
in attended home delivery.
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Appendix

A.1. Proof of Proposition 1

We show this result by induction on t . In the base case (the
terminal condition), Q i

t̄+1(x) := Vt̄+1(x) = −C(x) for all (x, i) ∈
X × I , which satisfies the proposition trivially by Assumption 1.
Assume for an induction hypothesis that Q i−1

t+1(x) ≥ Vt+1(x) for
some (i, t) ∈ I \ {0} × T and for all x ∈ X . Fix any x in X
and distinguish the two cases of the if-statement in step 12 of
Algorithm 1.
Case I: Suppose that Q i−1

t+1 is submodular on Z(xit+1). Then H∗ is
the unique hyperplane through the set {(y, (T Q i

t+1)(y))}y∈Y+(xit+1).
y (4), Q i

t+1 is concave extensible since it is the pointwise min-
mum of a finite number of hyperplanes. Hence, we invoke As-
umption 2 to conclude that T Q i−1

t+1 is concave extensible and
ubmodular. As shown by Lebedev, Goulart, and Margellos (2021,
ppendix B4), this implies that H∗ is a separating hyperplane, i.e.
∗(x) ≥ T Q i−1

t+1(x) for all x ∈ X . Define dV to be the maximiser
f (1) and define dQ to be the maximiser of (1) with Vt+1(y)
eplaced by Q i−1

t+1(y). We now show that the Bellman operator of
he DP preserves the inequality Q i−1

t+1(x) ≥ Vt+1(x), i.e. T Q i−1
t+1(x) ≥

Vt+1(x). To this end, fix x ∈ X and consider

T Q i−1
t+1)(x) = g(x, dQ )+

∑
y∈Y+(x)

Px,y(dQ )Q i−1
t+1(y)

≥ g(x, dV )+
∑

y∈Y+(x)

Px,y(dV )Q i−1
t+1(y)

≥ g(x, dV )+
∑

y∈Y+(x)

Px,y(dV )Vt+1(y)

= (T Vt+1)(x), (A.1)

here the first inequality follows from the supoptimality of dV for
T Q i−1

t+1)(x) and the second inequality follows from the induction
ypothesis.
ase II: Now consider the case when Q i−1

t+1 is not submodular on

(xit+1). Then H∗ ∈
{
T H j−1

t+1

⏐⏐ j ∈ J i−1t+1

}
. Furthermore, by (4) and

he induction hypothesis,
j−1
t+1(x) ≥ Q i−1

t+1(x) ≥ Vt+1(x), for all (x, j) ∈ X × J i−1t+1. (A.2)

e now show that all possible realisations of H∗ constitute upper
ounds on T Vt+1. To this end, fix any (x, j) ∈ X×J i−1t+1. Define dH to

j−1
e the maximiser of (1) with Vt+1(y) replaced by Ht+1(y). We can
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how that the Bellman operator of the DP preserves the inequality
i−1
t+1(x) ≥ Vt+1(x) using a similar argument as before:

(T H j−1
t+1)(x) ≥ (T Vt+1)(x), (A.3)

hich follows from the suboptimality of dV (see Case I) for
T H j−1

t+1)(x) and the fact that H j−1
t+1(x) ≥ Vt+1(x) (see (A.2)). There-

fore, we conclude that H∗(x) ≥ T Vt (x) for all x ∈ X in the second
case as well.

Since both cases lead to an upper bound, i.e. H∗(x) ≥ T Vt+1(x)
for all x ∈ X , we infer that

Q i
t (x) = min

{
H∗(x),Q i−1

t+1(x)
}
≥ T Vt+1(x) (A.4)

for all x ∈ X . This concludes our induction argument and shows
that Q i

t (x) ≥ Vt (x) for all (x, i, t) ∈ X × I × T .

A.2. Proof of Proposition 4

We will show the proposition by induction on t . Consider the
base case, when Q 0

t̄+1(x) = Vt̄+1(x) for all x ∈ X . Then notice that
in the ‘‘backward sweep’’, the proposed algorithm computes the
Bellman equation from t̄ + 1 → t̄ exactly for every x ∈ X . This
is because Q 0

t̄+1 is submodular by Assumption 1 and hence, the
if-statement in step 12 of Algorithm 1 is true. Using Algorithm 2,
xit̄+1 is resampled if for the time step transition t̄ + 1 → t̄ , the
algorithm has not visited this state in iteration m,m+1, . . . ,m+
|X |, where m = 0. Therefore, the value function is computed
exactly at all x ∈ X for the time step transition t̄ + 1→ t̄ after at
most |X | iterations of the proposed algorithm, i.e. Q î

t̄ (x) = Vt̄ (x)
for all x ∈ X , where î ≤ |X |.

Now suppose by means of an induction hypothesis that for
some (t, i) ∈ T × I , Q i

t+1(x) = Vt+1(x) for all x ∈ X . Then by
Assumptions 1 and 2, Vt+1 is submodular and hence, Q i

t+1 is also
submodular. By a similar argument to the base case, the proposed
algorithm computes the exact value function for the time step
transition t + 1→ t in another î ≤ |X | iterations. Notice that for
an arbitrary (i, t), m in the if-statement in step 3 of Algorithm 2
ensures that resampling only occurs if states have been visited
that are relevant for this particular time step t .

Hence, we conclude that for every time step transition, the
proposed algorithm needs at most |X | iterations to compute the
exact value function for any one time step t ∈ T , which gives at
most t̄|X | iterations for the total time horizon. Hence, after any
i ≥ t̄|X | iterations, Q i

t (x) = Vt (x) for all (x, t) ∈ X × T . Therefore,
both E[l(i)] = V1(0) and u(i) = Q i

1(0) = V1(0), which finally
implies that E[l(i)] = u(i) for all i ≥ t̄|X | iterations.

A.3. Proof of Proposition 5(i)

The proof is a finite sample adaptation of the one-sided Cheby-
shev’s inequality, i.e. Cantelli’s inequality (Ghosh, 2002, Theo-
rem 1). We distinguish the following two cases:
Case I: Suppose that σv ̸= 0. Fix any k ∈ K and consider the
conditional probability that lC := lv(kmax + 1) is no greater than
lv −mσ̂ for some m > 0:

Pr(lC ≤ l̄v −mσv|σv ̸= 0)

= Pr(mσv ≤ l̄v − lC|σv ̸= 0)

=
1

kmax

∑
k∈K

Pr(mσv ≤ l̄v − lv(k)|σv ̸= 0)

=
1

kmax
E

(∑
k∈K

1(mσv ≤ l̄v − lv(k))

⏐⏐⏐⏐⏐ σv ̸= 0

)
,

(A.5)

where the second last equality follows from the observation that
l (k) for all k ∈ K ∪ {k + 1} are independently and identically
v max

10
distributed. Next, we want to upper bound the indicator function
in (A.5) by a quadratic function. A suitable expression is given for
any c > 0 by

Pr(lC ≤ l̄v −mσv|σv ̸= 0)

≤
1

kmax
E

(∑
k∈K

(l̄v − lv(k)+ cσv)2

(mσv + cσv)2

⏐⏐⏐⏐⏐ σv ̸= 0

)
.

(A.6)

Note that each element in the summation is always non-negative
and no smaller than one if mσv ≤ l̄− lv(k) and hence is an upper
bound to (A.5). We simplify this expression using the definitions
of l̄v and σv from Algorithm 3 in Section 5 as

1
kmax

E

(∑
k∈K

(l̄v − lv(k)+ cσv)2

(mσv + cσv)2

⏐⏐⏐⏐⏐ σv ̸= 0

)

=
1

kmax
E
(

(kmax − 1)σ 2
v + kmaxc2σ 2

v

(m+ c)2σ 2
v

⏐⏐⏐⏐ σv ̸= 0
)

=
1

kmax
E
(
kmax − 1+ kmaxc2

(m+ c)2

)
=

kmax − 1+ kmaxc2

kmax(m+ c)2
,

(A.7)

here σv cancels, since σv ̸= 0, and the expectation operator
rops, since its argument is a constant. We minimise (A.7) by
onsidering its first order condition, i.e.

0 =
∂

∂c
kmax − 1+ kmaxc2

kmax(m+ c)2

= (kmax(m+ c)2)−2
{
2k2maxc(m+ c)2

−(kmax − 1+ kmaxc2)2kmax(m+ c)
}

c =
kmax − 1
kmaxm

. (A.8)

The second-order condition shows that c minimises (A.7). Substi-
tuting c into (A.7) and simplifying gives:

Pr(lC ≤ l̄v −mσv|σv ̸= 0) ≤
kmax − 1

kmaxm2 + kmax − 1
. (A.9)

ase II: Suppose that σv = 0. We repeat the derivation of Case I
ith Pr(lC ≤ l̄v−mσv|σv ̸= 0) replaced by Pr(lC ≤ l̄v−mσv|σv = 0)
ntil (A.5), where we note that due to σv = 0, we have lv(k) =
v(k′) for all (k, k′) ∈ K ×K and hence, Pr(lC ≤ l̄v−mσv|σv = 0) =
.
Recalling that θC := Pr(σv = 0) and taking both cases together,

e obtain by the total probability theorem that

Pr(lC ≤ l̄v −mσv) ≤
(1− θC)(kmax − 1)
kmaxm2 + kmax − 1

+ θC. (A.10)

e want this probability to be at most the significance level α.
ence, we solve this expression for m, yielding

α ≥ (1− θC)
kmax − 1

kmaxm2 + kmax − 1
+ θC

⇐⇒ m ≥

√
(1− α)(kmax − 1)

(α − θC)kmax
,

(A.11)

hich is real-valued, since α > θC by Assumption 3. Substituting
or m on the left-hand side of (A.10) gives the desired property:

r

(
lC ≤ l̄− σv

√
(1− α)(kmax − 1)

(α − θC)kmax

)
≤ α. (A.12)
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.4. Proof of Proposition 5(ii)

Fix any α ∈ (0, 1), any θD ∈ (0, α) and compute

lD = sup

{
l ∈ [l−, l+]

⏐⏐⏐⏐⏐FK (l) ≤ α − θD −

√
ln(1/θD)
2kmax

}
. (A.13)

e will now show that lv(kmax+ 1) > lD with probability at least
− α. By the total probability theorem, we write

r(lv(kmax + 1) > lD) = Pr(B|E) Pr(E)

+ Pr(B|Ec) Pr(Ec), (A.14)

where B denotes the random event that lv(kmax + 1) > lD, i.e.
Pr(B) = 1− F (lD), and E denotes the random event that

F (lD) ≤ FK (lD)+

√
ln(1/θD)
2kmax

, (A.15)

hich according to the Dvoretzky–Kiefer–Wolfowitz inequal-
ty (Massart, 1990) has probability Pr(E) ≥ 1 − θD. Ec denotes
he complementary event of E. Notice that Pr(Ec) and Pr(B|Ec)
are non-negative and hence, we can create the following lower
bound:

Pr(lv(kmax + 1) > lD) ≥ Pr(B|E) Pr(E). (A.16)

Since we condition on E, we can lower bound Pr(B|E) ≥ 1 −(
FK (lD)+

√
ln(1/θD)/(2kmax)

)
according to (A.15), which yields

Pr(lv(kmax + 1) > lD)

≥

[
1−

(
FK (lD)+

√
ln(1/θD)
2kmax

)]
(1− θD)

1−

(
FK (lD)+

√
ln(1/θD)
2kmax

)
− θD

≥ 1− (α − θD)− θD = 1− α, (A.17)

here the final inequality follows from the choice of lD in (A.13),
hich thus concludes our proof.

.5. Proof of Lemma 6

Consider the first-order optimality condition, i.e.

0 =
∂

∂θD

⎧⎨⎩α − θD −

√
ln( 1

θD
)

2kmax

⎫⎬⎭
0 = −1+

1
2θD
√
−2kmax ln(θD)

. (A.18)

ince θD > 0, we can simplify to arrive at

2
D ln(θ2

D) =
−1

4kmax

⇒ θ2
D = exp

(
Wi

(
−1

4kmax

))
, (A.19)

here i ∈ {0,−1} and Wi is the Lambert W function (see
efinition 4). The second-order conditions show that i = −1
ives a local maximum. Hence, we take the square root and note
hat θD is bounded from above by α to arrive at the desired result.

.6. Proof of Proposition 7(ii)

We start by writing the expectation of the random variable l in
erms of its exact yet unknown cumulative distribution function
11
F (see Evans & Rosenthal, 2004, Definition 3.7.1), i.e.

El :=
∫
∞

l=0
1− F (l)dl−

∫ 0

l=−∞
F (l)dl.

=

∫
∞

l=0
1− F (l)dl+

∫ 0

l=−∞
−F (l)dl

=

∫ max{0,l+}

l=max{0,l−}
1− F (l)dl+max{0, l−}

+

∫ min{0,l+}

l=min{0,l−}
−F (l)dl−min{0, l+}, (A.20)

here we changed the limits of integration, since F has the finite
upport [l−, l+]. The max- and min-operators in the integration
imits ensure that equality holds independent of the sign of either
− or l+. By the Dvoretzky–Kiefer–Wolfowitz inequality (Massart,
990), we can write with confidence 1− αE that

F (l) ≤ min

⎧⎨⎩1, FK (l)+

√
ln(1/αE)
2kmax

⎫⎬⎭
⇐⇒ −F (l) ≥ −min

⎧⎨⎩1, FK (l)+

√
ln(1/αE)
2kmax

⎫⎬⎭
⇐⇒ 1− F (l) ≥ 1−min

⎧⎨⎩1, FK (l)+

√
ln(1/αE)
2kmax

⎫⎬⎭ . (A.21)

sing these expressions for −F (l) and 1 − F (l), we lower bound
A.20) by

l ≥
∫ max{0,l+}

l=max{0,l−}
1−min

⎧⎨⎩1, FK (l)+

√
ln(1/αE)
2kmax

⎫⎬⎭ dl

−

∫ min{0,l+}

l=min{0,l−}
min

⎧⎨⎩1, FK (l)+

√
ln(1/αE)
2kmax

⎫⎬⎭ dl

+max{0, l−} −min{0, l+}. (A.22)

inally, El̄v = El, since E is a linear operator and lv(k) for all k ∈ K
are independent, thus concluding the proof.

A.7. Proof of Proposition 8

We can express the empirical mean in Hoeffding’s bound (Ho-
effding, 1963) as an integral over the empirical cumulative distri-
bution function:

lEH := l̄v − (l+ − l−)

√
ln(1/αE)
2kmax

=

∫
∞

l=0
1− FK (l)dl+

∫ 0

l=−∞
−FK (l)dl

− (l+ − l−)

√
ln(1/αE)
2kmax

=

∫ max{0,l+}

l=max{0,l−}
1−

⎛⎝FK (l)+

√
ln(1/αE)
2kmax

⎞⎠ dl

+

∫ min{0,l+}

l=min{0,l−}
−

⎛⎝FK (l)+

√
ln(1/αE)
2kmax

⎞⎠ dl

+max{0, l } −min{0, l }
− +
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<

∫ max{0,l+}

l=max{0,l−}
1−min

⎧⎨⎩1, FK (l)+

√
ln(1/αE)
2kmax

⎫⎬⎭ dl

+

∫ min{0,l+}

l=min{0,l−}
−min

⎧⎨⎩1, FK (l)+

√
ln(1/αE)
2kmax

⎫⎬⎭ dl

+max{0, l−} −min{0, l+}

= lED, (A.23)

here the third equality follows from the fact that the (fi-
ite) support of FK (l) is [l−, l+] and the last inequality is strict
y Assumption 4, since FK is a stair function with step height
/kmax and

√
ln(1/αE)/(2kmax) > 1/kmax implies that FK (l∗) +√

ln(1/αE)/(2kmax) > 1 for some l∗ < l+.
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