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a b s t r a c t 

We study the dynamic programming approach to revenue management in the context of attended home 

delivery. We draw on results from dynamic programming theory for Markov decision problems to show 

that the underlying Bellman operator has a unique fixed point. We then provide a closed-form expression 

for the resulting fixed point and show that it admits a natural interpretation. Moreover, we also show 

that – under certain technical assumptions – the value function, which has a discrete domain and a 

continuous codomain, admits a continuous extension, which is a finite-valued, concave function of its 

state variables, at every time step. Furthermore, we derive results on the monotonicity of prices with 

respect to the number of orders placed in our setting. These results open the road for achieving scalable 

implementations of the proposed formulation, as it allows making informed choices of basis functions in 

an approximate dynamic programming context. We illustrate our findings on a low-dimensional and an 

industry-sized numerical example using real-world data, for which we derive an approximately optimal 

pricing policy based on our theoretical results. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The expenditure of US households on online grocery shopping 

ould reach $100 billion in 2022 according to the Food Marketing 

nstitute (2018) . Although growth forecasts vary and more conser- 

ative estimates lie, for example, at $30 billion for the year 2021 

 Pitchbook, 2017 ), the overall trend is clear: The online grocery sec- 

or is likely to grow if some of its main challenges can be over-

ome. 

One of these challenges is managing the logistics as one of the 

ain cost-drivers. In particular, one can seek to exploit the flexi- 

ility of customers by offering delivery options at different prices 

o create delivery schedules that can be executed in a cost-efficient 

anner. To achieve this, recent proposals include giving customers 

he choice between narrow delivery time windows for high prices 

nd vice versa ( Campbell & Savelsbergh, 2006 ) or charging cus- 

omers different prices based on the area and their preferred deliv- 

ry time ( Asdemir, Jacob, & Krishnan, 2009; Yang & Strauss, 2017; 

ang, Strauss, Currie, & Eglese, 2016 ). 

In this paper, we focus on the latter. We refer to the problem 

f finding the profit-maximising delivery slot prices as the revenue 

anagement problem in attended home delivery , where “attended”
∗ Corresponding author. 

E-mail addresses: denis.lebedev@eng.ox.ac.uk (D. Lebedev), 

aul.goulart@eng.ox.ac.uk (P. Goulart), kostas.margellos@eng.ox.ac.uk (K. Margellos). 
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efers to the requirement that customers need to be present upon 

elivery of the typically perishable goods, which is in contrast to, 

or example, standard mail delivery. Note that attended home de- 

ivery problems are more complex than standard delivery services, 

ince goods need to be delivered in time windows that are pre- 

greed with the customers. 

We adopt a dynamic programming (DP) model of an expected 

rofit-to-go function, the value function of the DP, given the cur- 

ent state of orders and time left for customers to book a de- 

ivery slot. This DP was initially devised in the fashion industry 

 Gallego & van Ryzin, 1994 ), but subsequently adopted and refined 

y the transportation sector and the attended home delivery in- 

ustry ( Yang et al., 2016 ). This formulation could be thought of 

s an instance of a network revenue management problem with 

ustomer choice, which finds various applications, e.g. in trans- 

ortation, hospitality and appointment scheduling problems (see 

eissner & Strauss, 2012; Sauré, Patrick, Tyldesley, & Puterman, 

012; Zhang & Adelman, 2009 ). 

To find the (approximately) optimal delivery slot prices, we 

eed to compute the value function (at least approximately) for 

ll states and times. The main challenge is that the state space of 

he DP grows exponentially with the set of delivery time slots, i.e. 

t suffers from the “curse of dimensionality”. This means that for 

ndustry-sized problems, due to the prohibitively large number of 

tates, the value function cannot be computed exactly, even off- 

ine. Our ultimate objective is to compute improved value func- 

https://doi.org/10.1016/j.ejor.2020.11.010
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ion approximations. Therefore, we study in this paper how the 

alue function of the exact DP behaves mathematically in time and 

cross state variables. 

We show that the underlying DP operator has a unique fixed 

oint. We then provide a closed-form expression of the resulting 

xed point and derive a natural interpretation. Furthermore, we 

how that – under certain technical assumptions – for all time 

teps in the dynamic program, the value function admits a con- 

inuous extension, which is a finite-valued, concave function of its 

tate variables. 

Ultimately, our results open the road for achieving scalable im- 

lementations of the proposed formulation, as it becomes possible 

o make informed choices of basis functions in an approximate dy- 

amic programming context. We illustrate our findings on a low- 

imensional and an industry-sized numerical example using real- 

orld data from a case study by Yang and Strauss (2017) , for which

e derive an approximate value function based on our theoretical 

esults and a stochastic dual DP algorithm presented in Zhang and 

un (2019) . 

Improved value function approximations could finally be used 

or calculating approximately optimal delivery slot prices. For ex- 

mple, for continuous decision variables and under the multi- 

omial logit customer choice model, Dong, Kouvelis, and Tian 

2009) show that a unique set of optimal delivery slot prices exists, 

hich can be found using Newton root search algorithms or using 

he Lambert W function as shown in B.2 if estimates of the value 

unction are known for all states and times. Our mathematical re- 

ults have immediate implications on the monotonicity of (approx- 

mately) optimal prices with respect to changes in the number of 

laced orders, which we also characterise in this paper. This anal- 

sis complements the research on the price-inventory relationship 

nder multinomial logit customer choice (see e.g. Akçay, Natarajan, 

 Xu, 2010; Chen & Chen, 2015; Suh & Aydin, 2011 ). 

Our paper is structured as follows: In the remainder of 

ection 1 , we introduce some notation. In Section 2 , we define 

he revenue management problem in attended home delivery and 

ts DP formulation. In Section 3 , we present our main results, 

heorem 1 , which analytically characterises the fixed point of the 

P, and Theorem 2 , which shows that there exists a continuous 

xtension of the value function that is a finite-valued, concave 

unction in its state variables at every time step. Section 4 con- 

ains reformulations of the DP into mathematically more conve- 

ient forms and develops supporting results leading to the proofs 

f the main results. We also develop a result on the mono- 

onicity of prices with respect to the number of placed orders. 

ection 5 presents a numerical illustration of our theoretical results 

n a low-dimensional example and on an industry-sized problem, 

hile Section 6 concludes the paper and suggests directions for 

uture research. The Appendix contains the proofs of results not 

ncluded in the main body of the paper. 

Notation: Let 1 denote a vector with all elements equal to 1. 

iven some s, let 1 s be a vector of all zeros apart from the s -

h entry, which equals 1. Furthermore, we define the convention 

hat 1 0 is a vector of zeros. Let R +(+) be the non-negative (pos- 

tive) real numbers, let Z be the integers and let dim (·) denote 

he dimension of its argument. Let conv (·) denote the convex hull 

f its argument. We say that a function exhibits a monotonic be- 

aviour if the monotonicity property holds element-wise, e.g. a 

unction f : R 

N �→ R is monotonically increasing over its domain if 

f (y ) > f (x ) for all (x, y ) , such that at least one element of y is

reater than the corresponding element of x . 

. Revenue management problem formulation 

In this section, we derive a discrete-state formulation of the 

evenue management problem in attended home delivery. 
457 
.1. Problem statement 

We model an online business that delivers goods to locations of 

nown customers. We consider a local approximation of the rev- 

nue management problem by dividing the service area geograph- 

cally into a set of non-overlapping rectangular sub-areas, where 

he customers in each sub-area operate independently by being 

erved by one delivery vehicle. This model resembles the setting 

n the work of Yang and Strauss (2017) . Due to this independence, 

e only consider a single sub-area, while our development directly 

xtends to the case of multiple sub-areas. To cover all sub-areas in 

ractice, it is possible to simply replicate our approach for every 

elivery sub-area, which would increase computational complex- 

ty linearly in the number of sub-areas, but which is easily paral- 

elised. 

We consider a finite booking horizon with possibly unequally- 

paced time steps indexed by t ∈ T := { 1 , 2 , . . . , ̄t } . Based on the

evelopment of Yang et al. (2016 , Section 4.3), we obtain a cus- 

omer arrivals model using a Poisson process with time-invariant 

vent rate λ ∈ (0 , 1) for all t ∈ T from a Poisson process with ho-

ogeneous time steps, but time-varying event rate. 

Customers can choose from a number of (typically 1-hour wide) 

elivery time windows, which we call slots s ∈ S, where S := 

 1 , 2 , . . . , ̄s } . Let s = 0 correspond to a customer not choosing any

lot. Each delivery slot s is assigned a delivery charge d s ∈ 

[
d , d̄ 

]
∪ 

 

∞ } , for some minimum allowable charge d ∈ R (which is typically, 

hough not necessarily, non-negative) and some maximum allow- 

ble charge d̄ ≥ d . The role of d s = ∞ is a convention to indicate

hat slot s is not offered. This is explained in more detail when in- 

roducing the customer choice model below. We define the deliv- 

ry charge vector d := [ d 1 , d 2 , . . . , d s̄ ] T
 . Let the set of admissible de-

ivery charge vectors be D := 

{
d 
∣∣ d s ∈ 

[
d , d̄ 

]
∪ {∞} for all s ∈ S 

}
. 

For each delivery slot s ∈ S, we denote the number of placed 

rders by x s ∈ Z . We also define x := [ x 1 , x 2 , . . . , x s̄ ] T
 ∈ Z ̄

s as well

s X := { x | 0 ≤ x s ≤ x̄ s for all s ∈ S } , where x̄ s is a scalar indicat- 

ng the maximum number of deliveries that can be fulfilled in slot 

 . In general, we do not require the maximum number of deliv- 

ries to be the same for all slots, e.g. since this will depend on 

raffic patterns in the delivery area. Examples of computing this 

uantity can be found in Yang and Strauss (2017 , Section 4). Let 

s define x̄ := [ ̄x 1 , ̄x 2 , . . . , ̄x s̄ ] T
 as well as the set of feasible slots

 (x ) = { s ∈ S | x + 1 s ∈ X } . Let r ∈ R denote the expected net rev-

nue of an order, i.e. expected revenue minus costs prior to deliv- 

ry. This is assumed to be invariant across all orders. We define 

(x ) := 

{
C + (x ) , if x ∈ X 

∞ otherwise, 
(1) 

here C + : X → R + is a given function. The function C approxi- 

ates the delivery cost to fulfil the set of orders x . The delivery 

ost cannot be computed exactly, as it is the solution to a vehi- 

le routing problem with time windows, which is intractable for 

ndustry-sized applications ( Toth & Vigo, 2014 ). For the DP ap- 

roach that we adopt in this paper and introduce in the next 

ection, we need to know this function at the start of the book- 

ng horizon, i.e. before any orders are placed. Therefore, it is also 

rohibitive to include additional details like customer locations in 

his function, since this would increase the state-space to an in- 

ractable size. In principle, if a fast enough algorithm to com- 

ute approximately optimal delivery cost prices was available, one 

ould update the delivery cost function as orders are placed and 

djust the approximately optimal prices accordingly. In this pa- 

er, we mainly focus on the first part of the problem i.e. given 

ne approximate delivery cost function C, we would like to com- 

ute the approximately optimal delivery prices. We further discuss 

he possibility of updating the terminal condition with additional 
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etails like customer locations and updating the approximate DP 

olution between orders in the context of our numerical example 

n Section 5.3 . 

Let the probability that a customer chooses delivery slot s if 

ffered prices d be �s (d) , such that d �→ �s (d) ∈ [0 , 1) for all

 ∈ S. Note that 
∑ 

s ∈ S �s (d) = 1 − �0 (d) , where �0 > 0 denotes

he probability of a customer leaving the online ordering platform 

ithout choosing any delivery slot. A typical choice for �s is the 

ultinomial logit model that was also used in Yang and Strauss 

2017) : 

s (d) := 

exp (βc + βs + βd d s ) ∑ 

k ∈ S exp ( βc + βk + βd d k ) + 1 

, (2) 

here βc ∈ R denotes a constant offset, βs ∈ R represents a mea- 

ure of the popularity for all delivery slots and βd < 0 is a pa-

ameter for the price sensitivity. Note that the no-purchase util- 

ty is normalised to zero, i.e. for the no-purchase “slot” s = 0 , 

e have a no-delivery “charge” d 0 = 0 , such that βc + β0 + βd d 0 =
c + β0 = 0 and hence, the 1 in the denominator of (2) arises from

xp (βc + β0 ) = 1 . Furthermore, note that the constant offset βc is 

ot necessary, since it can be encompassed within the { βs } s ∈ S∪{ 0 } 
arameters. However, βc is often preserved to normalise one of the 

 βs } s ∈ S∪{ 0 } parameters to zero. This is also performed in Yang and 

trauss (2017) . 

Note that our results on the fixed point computation do not de- 

end on the particular form of the customer choice model. We 

equire only that it is a probability density function and that it 

atisfies one mild technical assumption stated further below in 

ection 3 . 

For convenience, let the probability that a customer arrives and 

hooses slot s given prices d be denoted by p s (d) := λ�s (d) . We

efine p(d) := [ p 1 (d) , p 2 (d ) , . . . , p s̄ (d )] T and P := { p(d) | d ∈ D } .
inally, it is to be understood that all sums over s are always com- 

uted over the entire set S. 

.2. Dynamic programming formulation 

We can express the problem described above as a DP. The ex- 

ected profit-to-go closely resembles the DP formulation in Yang 

nd Strauss (2017) and we define it as 

 t (x ) := max 
d∈ D 

{∑ 

s 

p s (d) [ r+ d s + V t+1 (x + 1 s ) −V t+1 (x ) ] +V t+1 (x ) 

}
, 

for all (x, t) ∈ X ×T , where V t̄ +1 (x ) = −C(x ) ∀ x ∈ X, 

(3) 

.e. C(·) denotes the terminal condition. This representation is accu- 

ate for all feasible orders, i.e. for all x ∈ X, such that x + 1 s ∈ X, for

ll s ∈ S. For infeasible orders, i.e. when for some s ∈ S, x + 1 s / ∈ X,

he term in square brackets can be undefined, since V t+1 (x + 1 s ) =
∞ and d s = ∞ . Since in this case p s (d) = 0 , we adopt the con-

ention that the product of p s (d) and the expression in square 

rackets equals zero. The interpretation of this is that we assign 

ero additional value to an infeasible slot. 

The difference V t+1 (x ) − V t+1 (x + 1 s ) in (3) represents the value

oregone by accepting an additional (discrete spatial) order, which 

n economic terms is the opportunity cost of an order. Note that –

imilar to Yang and Strauss (2017) – we ignore any vehicle load ca- 

acity constraints in the problem, as they are much less restricting 

han the time constraints on the delivery slots. Therefore, includ- 

ng the vehicle load capacity constraints would only increase com- 

utational costs, but would not substantially improve the decision 

olicy. For convenience in the sequel, we define the DP operator T 
o express (3) in a more compact form as 
 t−1 := T V t , for all t ∈ T . (4) 

458 
. Infinite and finite time horizon results 

.1. Infinite time horizon result 

We first consider the infinite horizon case, i.e. going backwards 

nfinitely many time steps. In this scenario, we can find a fixed 

oint of the DP described by (4) based on the following assump- 

ions. 

ssumption 1. The marginal cost of an additional, feasible order is 

lways smaller than the maximum marginal profit, i.e. C(x + 1 s ) −
(x ) ≤ d̄ + r, for all (x, s ) ∈ X × F (x ) . 

ssumption 2. We assume that the transition probability density 

unction has the following properties. For any s ∈ S: 

a) p s (d) > 0 , if d s ∈ [ d , d̄ ] . 

b) p s (d) d s = 0 , if d s = ∞ . 

Assumption 1 is not restrictive, since it offers the means to 

nsure that every additional, feasible order can generate profit. 

therwise, the delivery slot price, which maximises (3) , would 

e d s = ∞ for some s ∈ S, even if additional orders would still

e feasible for that slot. Assumption 2 (a) is not restrictive either, 

ince we can change d̄ to a value for which the choice probabil- 

ty for all slots is modelled to be arbitrarily small, yet positive. 

ssumption 2 (b) is also not restrictive, since it effectively ensures 

hat infinite prices do not generate infinite expected returns. Fur- 

hermore, it is easy to show that Assumption 2 (b) holds for the 

dopted multinomial logit model. Based on the aforementioned 

efinitions and Assumption 1 , we formulate our first result, proof 

f which is deferred to Section 4.1 . 

heorem 1. Under Assumptions 1 –2 , the unique fixed point of (4) is 

iven by 

 

∗(x ) := ( d̄ + r) 1 T

 ( ̄x − x ) − C( ̄x ) , for all x ∈ X. (5)

There is a natural interpretation of this perhaps surprisingly 

ompact result: The fixed point of the DP is a hyperplane in x, 

here each element of the gradient of V ∗ is equal to −( ̄d + r) ,

r equivalently, the opportunity cost of an order is V t (x ) − V t (x +
 s ) = d̄ + r for all (x, s ) ∈ X × F (x ) . Therefore, the only optimal se-

ection of delivery slot prices is to choose d̄ for all delivery slots 

 ∈ F (x ) . For any other choice the opportunity costs would be

arger than the revenue generated by any order. This result makes 

ntuitive sense as in the limit as t → −∞ , there will always ar-

ive enough customers who will be willing to pay d̄ for a deliv- 

ry. Therefore, in the infinite time horizon case, it is best to al- 

ays charge the maximum admissible delivery charge. Note that 

his result is not of direct practical use as a pricing policy. How- 

ver, it serves as a useful upper bound to the value function for all 

ime steps, which we exploit as an initial value function approxi- 

ation in the non-linear stochastic dual DP example in Section 5.3 , 

o speed up computation. 

.2. Finite time horizon result 

For finite t̄ , we establish a geometric property of the value func- 

ion V t , t ∈ T , related to concavity of a continuous function. As the

omain of V t is discrete, it is not possible to establish this property 

rom convexity theory. We provide some definitions before stating 

ur main result. 

Let the opportunity cost of an order in slot s at time t be de- 

oted by γs,t (x ) := V t (x ) − V t (x + 1 s ) ≥ 0 for all (x, s, t) ∈ X × S ×
 . Let γt (x ) := [ γ1 ,t (x ) , γ2 ,t (x ) , . . . , γs̄ ,t (x )] . We define the set of

tochastic vectors in a set A as 

 A := 

{ 

v ∈ R 

| A | 
+ 

∣∣∣∣∣
| A | ∑ 

i =1 

v i = 1 

} 

, (6) 
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here v i denotes the i -th component of v . Let x ∈ X and let Q ⊆ Z ̄

s 

e a finite set. Then Q is defined to be an enclosing set of x if

 ∈ conv (Q ) . We define Q (x ) as the set of all sets Q enclosing x .

he following two definitions are frequently used in discrete con- 

ex analysis: 

efinition 1 (cf. Murota and Shioura (2001 , (2.1))) . Let a ∈ R 

N and

 ∈ R . Then the concave closure ˜ f : R 

N → R ∪ {−∞} of a function

f : Z 

N → R ∪ {−∞} is defined as 

˜ f (x ) := inf 
a,b 

{
a T  x + b 

∣∣ a T  y + b ≥ f (y ) ∀ y ∈ Z 

N 
}
. (7) 

efinition 2 (cf. Murota and Shioura (2001 , Lemma 2.3) and 

Rockafellar & Wets, 1998, Proposition 2.31) ) . A function f : Z 

N →
 ∪ {−∞} is concave extensible if and only if any of the following

quivalent conditions hold: 

(a) The evaluations of f coincide with the evaluations of its con- 

cave closure ˜ f , i.e. f (x ) = 

˜ f (x ) for all x ∈ Z 

N . 

(b) For all x ∈ X and for all Q ∈ Q (x ) , the evaluation of f at x

does not lie below any possible linear interpolation of f on 

the points q ∈ Q, i.e. for all x ∈ X, for all Q ∈ Q (x ) and for all

μ ∈ V Q , such that x = 

∑ 

q ∈ Q μq q, it holds that 

f (x ) ≥
∑ 

q ∈ Q 
μq f (q ) . (8) 

Based on these definitions, we impose the following assump- 

ions on our finite time horizon result. 

ssumption 3. We assume that the opportunity cost at the ter- 

inal condition γs, ̄t +1 of all orders is increasing in x for all unit 

ypercubes in X, i.e. γs, ̄t +1 (x ) < γs, ̄t +1 (x + 1 s ′ ) for all (x, s, s ′ ) ∈ X ×
 (x ) × F (x ) , such that s 
 = s ′ . 

ssumption 4. The function −C is concave extensible. 

Assumption 3 is satisfied if V t̄ +1 is strictly submodular. This is 

ince for all strictly submodular functions f : Z 

n → R we have 

f ( max (y, z)) + f ( min (y, z)) < f (y ) + f (z) (9) 

or all y and z ∈ dom ( f ) , where the maximum and minimum are

aken componentwise (e.g. see Bertsimas and Weismantel (2005 , 

efinition 3.2)). This means that f has increasing opportunity 

osts, since, for all (x, s, s ′ ) ∈ X × S × S, such that s 
 = s ′ , we can set

f = V t̄ +1 , y = x + 1 s , z = x + 1 s ′ , which yields the desired inequal-

ty: 

V t̄ +1 (x + 1 s + 1 s ′ ) + V t̄ +1 (x ) < V t̄ +1 (x + 1 s ) + V t̄ +1 (x + 1 s ′ ) 

⇐⇒ V t̄ +1 (x ) − V t̄ +1 (x + 1 s ) < V t̄ +1 (x + 1 s ′ ) − V t̄ +1 (x + 1 s + 1 s ′ ) 

⇐⇒ γs, ̄t +1 (x ) < γs, ̄t +1 (x + 1 s ′ ) . (10) 

ince V t̄ +1 needs to be strictly submodular, this requires that C is 

trictly supermodular as V t̄ +1 (x ) = −C(x ) for all x ∈ X . This is not

he case for all C used in the literature. For example, Yang and 

trauss (2017) use an affine cost function. However, our results 

re also relevant for situations with affine cost functions, since 

as we show numerically in Section 5 – the value function can 

each a state where Assumption 3 is satisfied in a small number 

f iterations of the Bellman operator. Assumption 4 is weak as it 

s satisfied by any convex cost function, which also includes the 

forementioned affine cost functions. We can now state our sec- 

nd main result. 

heorem 2. Under Assumptions 1 , 3 and 4 , there exists a sufficiently 

mall λ > 0 , such that V t is finite-valued, concave extensible in x for

ll t ∈ T . 

In the following section, we prove our main two results. 

urthermore, we quantify a range of values for λ such that 

heorem 2 always holds. This condition is reported in B.2 . 
459 
. Proofs of main results 

.1. Proof of infinite time horizon theorem 

To prove Theorem 1 , we first note that the DP in (4) can be

eformulated as a so-called stochastic shortest path problem (see 

ebedev, Goulart, and Margellos, 2019 , Section 4.1.1). The Bellman 

perator mapping of this class of problems is known to be con- 

ractive (see Bertsekas (2012 , Chapters 1 and 3) and Lebedev et al. 

2019 , Lemma 5)). Therefore, the DP in (4) admits a unique fixed 

oint. We start with the necessary and sufficient condition for T to 

ave a fixed point V ∗, which is V ∗ = T V ∗. Setting V t (x ) = V t+1 (x ) =
 

∗(x ) in (3) yields 

ax 
d∈ D 

{∑ 

s 

p s (d)[ r + d s + V 

∗(x + 1 s ) − V 

∗(x )] 

}
= 0 . (11) 

Substituting the candidate V ∗ from (5) into (11) results then in 

ax 
d∈ D 

{∑ 

s 

p s (d)[ d s − d̄ ] 

}
= 0 . (12) 

Fix any s ∈ S and consider the following two possible cases: 

Case I: Suppose that d s ∈ [ d , d̄ ] . Then by Assumption 2 (a),

p s (d) > 0 . Furthermore, the value of [ d s − d̄ ] is non-positive and

 only if d s = d̄ . Hence, the maximum value that p s (d)[ d s − d̄ ] can

ake in this case is 0, namely when d s = d̄ . 

Case II: Suppose that d s = ∞ . Then by Assumption 2 (b), 

p s (d)[ d s − d̄ ] = 0 . 

Since in both cases the maximum attainable value of each term 

n the sum over s is 0, the equality in (12) holds. 

Finally, notice that V t ( ̄x ) = C( ̄x ) for all t ∈ T . Since the candidate

xed point satisfies V ∗( ̄x ) = V t̄ +1 ( ̄x ) = −C( ̄x ) , V ∗ is a fixed point of

 for all x ∈ X . �

.2. Proof of finite time horizon theorem 

In this section, we prove Theorem 2 . We start by reformulating 

3) as a maximisation over p ∈ P instead of d ∈ D . As shown by

ong et al. (2009) , this is possible, since, for all s ∈ S, the following

nique mapping between p and d exists: 

p s 

p 0 
= exp (βc + βs + βd d s ) , (13) 

here we recall that p 0 = λ�0 > 0 . We solve this equation with

espect to d s to obtain 

 s = β−1 
d 

[ 
ln 

(
p s 

p 0 

)
− βc − βs 

] 
. (14) 

e will prove the theorem by induction. To this end, we fix an ar- 

itrary t ∈ T , assume for an induction hypothesis that V t is concave

xtensible in x and now show that V t−1 = T V t is also concave ex-

ensible. Note that the base case in our induction proof is captured 

y Assumption 4 . By substituting (14) into (3) we obtain 

 V t (x ) = max 
p∈ P 

∑ 

s 

p s 

{
r + β−1 

d 
[ ln ( 

p s 

p 0 
) − βc − βs ] + V t (x + 1 s ) 

−V t (x ) 

}
+ V t (x ) 

= max 
p∈ P 

{ f (p) + g t (x, p) } , (15) 

here we have defined 

f (p) := 

∑ 

s 

p s 

{ 
r + β−1 

d 

[ 
ln 

(
p s 

p 0 

)
− βc − βs 

] } 
, 

 t (x, p) := 

∑ 

s 

p s { V t (x + 1 s ) − V t (x ) } + V t (x ) (16) 
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Table 1 

The parameters of the numerical example. 

(a) Fixed parameters. 

(λ, ̄t , ̄s ) (0.5,200,2) (
d , d̄ , r 

)
(0,2,2) 

x̄ [4 , 4] T 

(βc , βd , β1 , β2 ) (0 , −1 , 1 , −1) 

(b) Variable terminal conditions. 

Terminal condition 1 C + (x ) = 2 + 2 x 1 + x 2 
Terminal condition 2 C + (x ) = 2 + 2 x 1 + 2 x 2 
Terminal condition 3 C + (x ) = 2 + 2 x 1 + 3 x 2 
Terminal condition 4 C + (x ) = 2 + 2 x 1 + 4 x 2 
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or all (x, p) ∈ X × P . This allows us to formulate the following re-

ult, whose parts we prove in Appendices A and B, respectively. 

ecall that p s = λ�s for all s ∈ S. 

emma 3. For all t ∈ T , the functions f and g t have the following

roperties: 

(i) The function f is concave in p. 

(ii) Under Assumption 3 and if V t is concave extensible in x, there 

exists a sufficiently small λ > 0 such that the function g t is 

concave extensible in (x, p) . 

The proof of Lemma 3 (i) is given in Appendix A . In Lemma 3 (ii),

e assume that V t is concave extensible in x as this is embedded 

ithin our induction proof for Theorem 2 , where this corresponds 

o our induction hypothesis. The proof of Lemma 3 (ii) depends on 

he following self-contained result. Let us consider a relaxation of 

he constraint on the optimisation variable d in (3) and optimise 

ver R ̄

s instead of D . We refer to this problem as the unconstrained 

P as opposed to the original, constrained DP. 

roposition 4. The constrained and unconstrained version of the DP 

hare the following property: 

(i) Consider the unconstrained DP. Under Assumption 3 , the oppor- 

tunity cost γs,t of all orders is increasing for all unit hypercubes 

in X, i.e. 

γs,t (x + 1 s ′ ) > γs,t (x ) (17) 

for all (x, s, s ′ , t) ∈ X × F (x ) × F (x ) × T , such that s 
 = s ′ . 
(ii) Property (17) also holds for the constrained DP. 

We prove the two parts of Proposition 4 in B.2 and B.3 , respec-

ively. These results are then used in B.4 to prove Lemma 3 (ii). An

nteresting implication of Proposition 4 is that increasing oppor- 

unity costs in x imply that unconstrained optimal prices exhibit 

onotonic behaviour in x : 

emma 5. Under Assumptions 1 , 3 and 4 , there exists a sufficiently 

mall λ > 0 , such that for all slots s ∈ S, the optimal price in the un-

onstrained DP for this slot, for any state x ∈ X, denoted by d ∗s is non-

ecreasing in x s and non-increasing in x s ′ , for all s ′ ∈ S \ { s } . 
We prove this result in Appendix C . Lemma 5 also complements 

he research on the price-inventory relationship under multinomial 

ogit customer choice, i.e. the function describing prices in terms of 

emaining order capacity, i.e. d ∗ as a function of x̄ − x, for all time 

teps in the booking horizon (see Chen & Chen, 2015 for a review). 

t would be desirable to understand if the function exhibits mono- 

onic behaviour, e.g. if prices for a slot increase or decrease mono- 

onically as orders for that slot (or another slot) increase. For the 

ase of multinomial logit customer choice, such statements cannot 

e made without additional assumptions. For example, Akçay et al. 

2010 , Section 6.2) show that prices for a slot are not necessarily 

on-increasing as orders in a different slot increase. For the two- 

imensional case, i.e. s̄ = 2 in our notation, Suh and Aydin (2011 , 

roposition 2) show that prices for a slot are non-decreasing in 

he number of orders for that slot. Our results, however, provide 

he necessary assumptions and setting so that monotonicity state- 

ents can be made for the multi-dimensional case. We illustrate 

his numerically in the example of Section 5.2 . 

By Lemma 3 , there exists a sufficiently small λ such that g t has 

 continuous extension ˜ g t , which is jointly concave in (x, p) . By in-

pection, f is only a function of the continuously-valued variable 

p. Therefore, f (p) + ̃  g t (x, p) is also jointly concave in (x, p) . We

efine U(x ) := max p∈ P { f (p) + ̃  g t (x, p) } . By Rockafellar and Wets

1998 , Proposition 2.22) or Boyd and Vandenberghe (2004 , Sec- 

ion 3.2.5), partial maximisation with respect to some variables of 

 continuous multivariate function that is jointly concave in all its 
460 
ariables, preserves concavity in the resulting function. Therefore 

is a concave function of x . 

It remains to show that U(x ) = T V t (x ) for all gridpoints x ∈
. Repeating the same calculation, now with the discrete f (p) + 

 t (x, p) in place of f (p) + ̃  g t (x, p) , i.e. T V t (x ) = max p∈ P { f (p) +
 t (x, p) } , note that ˜ f (p) + ̃  g t (x, p) = f (x ) + g t (x, p) for all x ∈ X by

efinition 2 (a). Therefore, T V t (x ) = U(x ) for all x ∈ X . This shows

hat U is a continuous extension of T V t , which is concave in x .

ence, T V t is concave extensible in x . This concludes our induction 

rgument and shows that the value function V t is concave extensi- 

le in x for all t ∈ T . �

. Numerical examples 

In the following two sections, we illustrate the validity and 

ractical utility of our results. We first show a low-dimensional 

umerical example of a 2-slot problem and then how our results 

llow the application of a non-linear stochastic dual DP algorithm 

o a 17-slot problem. 

.1. Increasing opportunity costs in an illustrative 2-slot example 

To illustrate our results, consider a 2-slot problem, where we 

x the parameters listed in Table 1 (a) and vary the terminal con- 

itions as listed in Table 1 (b). 

Notice that all terminal conditions violate Assumption 3 . How- 

ver, after a few iterations of the Bellman operator, the opportu- 

ity costs become strictly increasing by inspection for all terminal 

onditions, thus satisfying Assumption 3 if t̄ is set to that time in- 

tance. This can be seen in Fig. 1 (a), where we plot the quantity 

min 

x,s,s ′ ) ∈ X×F (x ) ×F (x ) , s 
 = s ′ 
γs,t (x + 1 s ′ ) − γs,t (x ) (18) 

or all time steps t ∈ T . Observing that this quantity is always non-

egative shows numerically that the result in Proposition 4 with 

on-strict inequality holds if the terminal condition has non- 

ecreasing opportunity costs, i.e. constant in our case, since all C + 
re affine functions of x . Furthermore, it is easy to verify that the 

esulting value function is concave extensible by computing the 

oncave closure of V t for all t ∈ T and checking that the concave

losure ˜ V t (x ) = V t (x ) for all x ∈ X . For this example, we can ver-

fy by direct observation that the function is concave extensible by 

lotting V t against (x 1 , x 2 ) as shown in Fig. 1 (b) for the first termi-

al condition in Table 1 (b) at time step t = t̄ − 10 . 

In Fig. 1 (b), we also include the terminal condition (red, dashed 

ine) 

 t̄ +1 (x ) := −C + (x ) = −2 − 2 x 1 − x 2 (19) 

nd, from Theorem 1 , we also plot the fixed point (green, dotted 

ine) 

V 

∗(x ) := ( d̄ + r) 1 T

 ( ̄x − x ) − C( ̄x ) 
= 18 − 4(x 1 + x 2 ) , 

(20) 
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Fig. 1. Illustrative example of a 2-slot problem. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Monotonicity of prices. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

The parameters of the non-linear stochastic dual DP example. 

(λ, ̄t , ̄s ) (0.8,53,17) (
d , d̄ , r 

)
(0,10,34.53) 

x̄ [12 , . . . , 12] T 

(βc , βd ) (−2 . 5087 , −0 . 0766) 

{ βs } s ∈ S {−1 . 0305 , −0 . 3591 , 0 . 3107 , 0 . 5922 , 0 . 6154 , 0 . 0796 , 0 . 5356 , −0 . 2415 , 

−0 . 6286 , −1 . 6736 , −0 . 4351 , −0 . 161 , 0 , 0 . 2533 , 0 . 0736 , 0 . 562 , 0 . 2346 } 
C(x ) 0 . 1042 × 1 T x 

e

s

5

r

d

a

(  

t

p

2

hich corresponds to V ∗ = lim t→−∞ 

V t . When it comes to approxi- 

ating V t , e.g. by means of basis functions, we can use the obser- 

ation that V t always lies between the terminal condition and the 

xed point to limit the range of basis functions, such that the ap- 

roximated version of V t also falls between these lower and upper 

ounds. Also notice that the value function at t = t̄ − 10 is concave 

xtensible and has increasing opportunity costs. 

.2. Monotonicity of prices in the illustrative 2-slot example 

We now illustrate the results of Lemma 5 , namely that there 

xists a small enough λ > 0 such that, for all time steps t ∈ T , the

ptimal price of a slot is increasing in the number of orders of that 

lot and decreasing the number of orders of any other slot. 

Consider the parameters of the numerical example from the 

revious section, Table 1 (a) and the first terminal condition of 

able 1 (b). We obtain optimal prices for both slots by direct com- 

utation of the value function of the DP in Eq. ( 3 ). We show these

rices for the time step t = t̄ − 5 in Fig. 2 . 

It should be remarked that the monotonicity property of 

emma 5 was shown to hold for unconstrained problems. How- 

ver, it appears to hold for this numerical example even in the 

resence of constraints on admissible prices. Proving such a prop- 
461 
rty for constrained problems constitutes a direction of current re- 

earch. 

.3. Exploiting concave extensibility in non-linear stochastic dual DP 

We now consider a more realistic problem described by the pa- 

ameters in Table 2 , which we have adapted from a real-world 

ata, multi-subarea case study from Yang and Strauss (2017) to 

 single subarea. Notice that due to the large state space, | X| = 

 ̄x + 1) ̄s ≈ 8 . 65 × 10 18 , it is impossible to compute the value func-

ion by direct computation. 

Based on the ideas of Zou, Ahmed, and Sun (2019) for dynamic 

rogramming problems with binary state variables, (Zhang & Sun, 

019, Algorithm 3) have developed a stochastic dual dynamic pro- 
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Fig. 3. Plots of sample profits (grey dots), upper bound on expected profit (blue 

solid line) and cumulative moving average of sample profits, i.e. the stochastic lower 

bound on expected profit (red dashed line). (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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ramming algorithm for multi-stage stochastic mixed-integer non- 

inear optimisation problems. We implement this algorithm for the 

bove problem parameters. The exact details of this algorithm are 

eyond the scope of this paper and we refer the interested reader 

o Zhang and Sun (2019) . 

For this example, it suffices to state that the algorithm produces 

 value function approximation of the form of the pointwise mini- 

um of hyperplanes in x for all t ∈ T . Since this approximate func-

ion is concave extensible in x, the algorithm can only converge to 

he exact value function if the original value function is also con- 

ave extensible. Through an iterative procedure, hyperplanes are 

dded to refine the representation of the value function. Approx- 

mation progress across iterations is quantified by means of: 

1. The algorithm produces a deterministic upper bound u on the 

total expected profit, i.e. u ≥ V 1 (0) . 

2. The algorithm produces a stochastic lower bound l on the total 

expected profit, such that E l ≤ V 1 (0) , which is computed from 

sample profits obtained in simulations of the DP forward in 

time, while pricing is based on the approximate value function 

instead of the (unavailable) exact value function. Note that E 

denotes the associated expected value operator. The stochastic 

lower bound is then computed simply as the cumulative mov- 

ing average of the sample profits obtained in all previous itera- 

tions. 

Fig. 3 shows how these bounds converge for the simulated sce- 

ario. 

The deterministic upper and stochastic lower bounds of the al- 

orithm only converge if the exact value function is concave ex- 

ensible. Our theoretical analysis, which guarantees concave exten- 

ibility, allows us to employ this algorithm and provides theoretical 

upport for its convergent behaviour. A similar conclusion holds for 

he algorithm in Lebedev, Goulart, and Margellos (2020b) , which 

s derived based on ideas from stochastic dual DP theory (see 

hapiro, 2011 ). Hence, the concave extensibility preserving prop- 

rties of the DP in (3) , even in cases where we cannot numerically

erify them due to the prohibitive problem size, open the road to 

mploy techniques derived from stochastic dual DP theory. 

Furthermore, since this approach is quite fast – we compute 20 

terations on an i7-8565U CPU with 1.80 gigahertz base frequency 

nd with 16 gigabyte in 1 minute, 28 seconds – it is also possible 

o update the delivery cost function and hence the terminal con- 

ition of the DP using additional information like location of cus- 

omers that have already placed an order. One could then re-run 

he DP to obtain approximately optimal prices that have adjusted 
462 
o the perturbed delivery cost function before the next customer 

laces an order. 

As a final remark, we also use the infinite time horizon result 

rom Theorem 1 in the initialisation of this non-linear stochastic 

ual DP algorithm: The user-defined, initial value function approx- 

mation needs to be an upper bound to the exact value function. 

e can use the result of Theorem 1 for this purpose, since the 

xed point provides a non-trivial upper bound on the value func- 

ion for all time steps t ∈ T and can easily be implemented, due to

ts low complexity, i.e. only a single hyperplane is needed. 

Further algorithmic developments exploiting our theoretical re- 

ults are also possible. For example, we develop an algorithm, 

ermed gradient-bounded DP, based specifically on the theoretical 

roperties derived in this paper in Lebedev, Goulart, and Margel- 

os (2020a,b) . Furthermore, we conduct an extensive theoretical 

nd numerical case study comparing gradient-bounded DP with 

he non-linear stochastic dual DP algorithm above and the affine 

alue function approximation algorithm from Yang and Strauss 

2017) . We refer the interested reader to this comparative study 

n Lebedev, Margellos, and Goulart (2020c) . 

. Conclusions and future work 

.1. Summary of contributions 

We have studied the mathematical properties of the value func- 

ion of a dynamic program modelling the revenue management 

roblem in attended home delivery exactly. We have shown that 

he recursive dynamic programming mapping has a unique, finite- 

alued fixed point and concavity-preserving properties. Hence, we 

ave derived our main result stating that – under certain assump- 

ions – for all time steps in the dynamic program, the value func- 

ion admits a continuous extension, which is a finite-valued, con- 

ave function of its state variables. We have illustrated our findings 

n a low-dimensional numerical example and an industry-sized 

roblem. 

.2. Managerial insights and implications 

Monotonicity of optimal prices under multinomial logit customer 

hoice: In our theoretical analysis, we identify conditions under 

hich prices are monotonic in the number of placed orders (see 

emma 5 ). Furthermore, our numerical examples show that these 

onditions may even be violated while the monotonicity properties 

till hold. We verify this directly on a low-dimensional example 

nd indirectly by showing that an algorithm relying on these prop- 

rties converges for a high-dimensional example. The key manage- 

ial insight on the pricing of substitute goods under multinomial 

ogit customer choice is that “optimal” prices may exhibit mono- 

onic behaviour in many cases. Even when monotonic prices are 

ot “optimal” from a theoretical standpoint, they may still perform 

ndistinguishably well to an “optimal”, yet practically unobtainable, 

ricing policy (for a prohibitively large problem). 

Diminishing returns to inventory under multinomial logit customer 

hoice: A second important object for pricing in a dynamic pro- 

ramming framework is the value function describing the expected 

rofit-to-go for all time steps in the booking horizon and all states 

f orders. Having computed the value function, or an approxi- 

ation for prohibitively large problems, (approximately) optimal 

rices can be computed from the marginal value function, i.e. unit 

rder differences of the expected profit-to-go, which represent the 

pportunity cost of this order. Our characterisation of the value 

unction ( Theorem 2 and Proposition 4 ) implies that there are di- 

inishing marginal returns to inventory, which corresponds to the 

rder capacity of the delivery time slots in our setting. As inven- 

ory increases, total expected profit increases sub-proportionally. 
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ne intuitive explanation for this is that no matter how much 

he maximum order capacity is increased, total expected profit is 

ltimately limited by the expected number of customer arrivals. 

ence, in addition to the tactical decisions on dynamic pricing, 

ur insights on the structure of the value function can be used 

or strategical planning of inventory capacities. For example, our 

nalysis allows the computation of an approximate value function. 

he value of this function at the beginning of the booking hori- 

on and around the zero order state reveals the marginal value of 

dditional inventory. This insight can then help decide on the fea- 

ibility of expanding slot capacities. 

.3. Directions for future research 

Recent approaches have estimated V t as an affine function of x 

or each t ∈ T ( Yang & Strauss, 2017 ). Based on our result, we be-

ieve that closer approximations can be found by pursuing differ- 

nt approximation strategies. One such strategy would be to adapt 

pproximate DP algorithms from stochastic dual dynamic program- 

ing, also known as SDDP. The idea is to use a cutting plane al- 

orithm to successively form tighter upper bounds to the value 

unction described as the point-wise minimum of affine functions 

 Pereira & Pinto, 1991; Shapiro, 2011 ). One such algorithm is pre- 

ented in Lebedev et al. (2020a,b) . 

A second possible direction of future research involves inves- 

igating the use of parametric models comprising concave basis 

unctions. This idea can be exploited directly by using the given 

P formulation – as suggested in Powell (2007 , Section 8.2) – or 

y reformulating the problem as a linear program – as shown by 

e Farias and Roy (2003) . Note that a priori knowledge of con- 

ave extensibility of V t for all t ∈ T creates some intuitive regular- 

ty. Therefore, it can be expected to get good approximations of V t 
rom a relatively small sample size even with simple models. 

Another possible direction would be to adapt techniques that 

t convex functions (or equivalently concave functions for our pur- 

oses) to multidimensional data. For example, Kim, Lee, Vanden- 

erghe, and Yang (2004) and Magnani and Boyd (2009) show how 

ata can be fitted by a function defined as the maximum of a finite

umber of affine functions. More sophisticated examples of convex 

concave) function fitting techniques include adaptive partitioning 

 Hannah & Dunson, 2013 ) and Bayesian non-parametric regression 

 Hannah & Dunson, 2011 ). 

Finally, another possible direction for future research involves 

nvestigating pricing policies for delivery cost terminal conditions 

hich violate the imposed assumptions on increasing opportunity 

osts and concave extensibility. In some cases, it may be possible 

o find an approximation to the delivery cost function that satisfies 

he necessary assumptions and hence, makes it possible to use the 

esults presented in this paper. At the same time, we aim at inves- 

igating the potential of relaxing the assumptions on the terminal 

ondition and including additional information like customer loca- 

ion in the delivery cost function. 

cknowledgements 

This work was supported by SIA Food Union Management. The 

uthors are grateful for this financial support. 

ppendix A. Proof of Lemma 3(i) 

It is shown in Dong et al. (2009) that a structurally similar func- 

ion to f is concave in its variables. We adopt a similar approach 

computing the Hessian and showing that it is negative definite –

o verify that f is jointly concave in all components of the vector 
463 
p. We first compute the first-order partial derivatives of f : 

∂ f 

∂ p i 
= [ r + β−1 

d 
( ln (p i /p 0 ) − βc − βi )] + β−1 

d 
, for all i ∈ S, 

∂ f 

∂ p 0 
= 

∑ 

s 

−p s β
−1 
d 

p −1 
0 . (A.1) 

he second-order partial derivatives are: 

∂ 2 f 

∂ p 2 
i 

= β−1 
d 

p −1 
i 

, for all i ∈ S, 

∂ 2 f 

∂ p 2 
0 

= 

∑ 

s 

p s β
−1 
d 

p −2 
0 , 

∂ 2 f 

∂ p i ∂ p 0 
= −β−1 

d 
p −1 

0 , for all i 
 = 0 , 

∂ 2 f 

∂ p i ∂ p j 
= 0 , for all (i, j) ∈ S × S, such that i 
 = j. (A.2) 

he resulting Hessian H of f with its second partial derivatives 

ith respect to { p i } for all i ∈ S ∪ { 0 } is: 

 := β−1 
d 

⎡ 

⎢ ⎢ ⎣ 

p −1 
1 

. . . 0 −p −1 
0 

. . . 
. . . 

. . . 
. . . 

0 . . . p −1 
s̄ 

−p −1 
0 

−p −1 
0 

. . . −p −1 
0 

p −2 
0 

∑ 

s p s 

⎤ 

⎥ ⎥ ⎦ 

=: 

[
A B 

B T

 C 

]
, (A.3) 

here we have defined block sub-matrices A, B, B T and C of appro- 

riate dimension, such that C is a scalar corresponding to the last 

ntry of H. Note that A is negative definite, because p s ≥ 0 for all

 ∈ S ∪ { 0 } and β−1 
d 

< 0 . We compute the Schur complement of A

n H: 

 − B T

 A 

−1 B = β−1 
d 

(∑ 

s 

p s p 
−2 
0 − p −2 

0 

∑ 

s 

p s 

)
= 0 . (A.4) 

s a result of βd < 0 , A is negative definite and as H/A is non-

ositive, H is negative semi-definite (see e.g. Boyd and Vanden- 

erghe (2004 , Appendix A.5.5)). This implies that f is concave in 

p. �

ppendix B. Proof of Lemma 3(ii) 

The proof of Lemma 3 (ii) requires several intermediate results 

hich we present in the following sections before returning to the 

roof of Lemma 3 (ii). 

1. Auxiliary function definitions and properties 

In this section, we define some auxiliary functions and establish 

ome of their properties that are needed in the subsequent sec- 

ions. We define W : R + �→ R + as the inverse function of f : R + �→
 + , such that f (x ) := x exp (x ) , i.e. implicitly defined through the

elationship 

 = W (x )e W (x ) . (B.1) 

ote that W, as defined above, is the principal branch of the so- 

alled Lambert W function, which is uniquely defined over the 

on-negative real numbers. To simplify notation in the following 

roof, we define two more functions: We define ψ s : R + �→ R ++ as

 s (z) := exp (βc + βs + βd (z − r) − 1) (B.2) 

or all s ∈ S. We define the function φ : R ̄

s + �→ R ++ as 

(z) := −λβ−1 
d 

W 

(∑ 

s 

ψ s (z s ) 

)
, (B.3) 
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here z s indicates the s -th component of z. We can now estab- 

ish some properties of φ that are instrumental for the subsequent 

roof of Lemma 3 (ii). 

emma 6. The function φ has the following properties: 

(i) It is decreasing over its domain. 

(ii) It satisfies the inequality: 

φ(γt (x + 1 s ′ )) − φ( max { γt (x + 1 s ) , γt (x + 1 s ′ ) } ) 
+ φ(γt (x + 1 s )) 

≥φ( min { γt (x + 1 s ) , γt (x + 1 s ′ ) } ) (B.4) 

for all (x, s, s ′ ) ∈ X × S × S, such that s 
 = s ′ . 

roof. 

(i) It is useful to state the first derivative of W, which is 

d W 

d y 
(y ) = 

W (y ) 

y (1 + W (y )) 
. (B.5) 

It suffices to show that the first partial derivative of W with 

respect to the components z i for all i ∈ S is negative. To this 

end, fix any i ∈ S. Setting y = 

∑ 

s ψ s (z s ) , gives 

∂φ

∂z i 
(z) = −λβ−1 

d 

d W 

d y 
(y ) 

∂y 

∂z i 
(z) 

= −λβ−1 
d 

W ( 
∑ 

s ψ s (z s )) 

[ 
∑ 

s ψ s (z s ) ] (1 + W ( 
∑ 

s ψ s (z s ) ) 

×βd exp (βc + βi + βd (z i − r) − 1) 

= −λ
W ( 

∑ 

s ψ s (z s )) 

1 + W ( 
∑ 

s ψ s (z s )) 

ψ i (z i ) ∑ 

s ψ s (z s ) 
, (B.6) 

where the last equality follows from the definition of ψ i in 

(B.2) . The customer arrival rate λ ∈ (0 , 1) . The first fraction

in (B.6) lies in (0,1) as W (y ) ≥ 0 for all y ∈ dom (W ) , while

the second one lies in (0,1] as ψ s (y ) > 0 for all y ∈ dom (ψ s )

for all s ∈ S and s̄ ≥ 1 . Therefore, ∂ φ/∂ z i (z) ∈ (−1 , 0) for all

i ∈ S and hence, it is negative. 

(ii) Fix any i ∈ S. Let αi,t := max { γi,t (x + 1 s ) , γi,t (x + 1 s ′ ) } and

βi,t := min { γi,t (x + 1 s ) , γi,t (x + 1 s ′ ) } and notice that αi,t ≥
βi,t . Let us distinguish two cases. 

Case I: Suppose that γi,t (x + 1 s ) ≥ γi,t (x + 1 s ′ ) . For all j ∈
S, j 
 = i, define εα

j,t 
:= γ j,t (x + 1 s ) , εβ

j,t 
:= γ j,t (x + 1 s ′ ) and

εαβ
j,t 

:= max { γ j,t (x + 1 s ) , γ j,t (x + 1 s ′ ) } . Under these assign-

ments, the left-hand side of (B.4) can be equivalently written 

as 

φ(γt (x + 1 s ′ )) − φ( max { γt (x + 1 s ) , γt (x + 1 s ′ ) } ) 
+ φ(γt (x + 1 s )) 

= φ(εβ
1 ,t 

, . . . , βi,t , . . . , ε
β
s̄ ,t 

) − φ(εαβ
1 ,t 

, . . . , αi,t , . . . , ε
αβ
s̄ ,t 

) 

+ φ(εα
1 ,t , . . . , αi,t , . . . , ε

α
s̄ ,t ) . (B.7) 

Define the scalar function f θ : A �→ R , where A con- 

tains all real numbers no smaller than βi,t and θ := 

{{ εα
j,t 

, εβ
j,t 

, εαβ
j,t 

} j 
 = i , βi,t } , such that 

f θ (αi,t ) = φ(εβ
1 ,t 

, . . . , βi,t , . . . , ε
β
s̄ ,t 

) 

−φ(εαβ
1 ,t 

, . . . , αi,t , . . . , ε
αβ
s̄ ,t 

) 

+ φ(εα
1 ,t , . . . , αi,t , . . . , ε

α
s̄ ,t ) . (B.8) 

Consider the derivative of f θ , given by 

d f θ
d αi,t 

(αi,t ) = − ∂φ

∂αi,t 

(z αβ ) + 

∂φ

∂αi,t 

(z α) , (B.9) 

where we have defined z αβ := [ εαβ
1 ,t 

, . . . , αi,t , . . . , ε
αβ
s̄ ,t 

] as well

as z α := [ εα
1 ,t 

, . . . , αi,t , . . . , ε
α
s̄ ,t 

] . We compute the derivative of
464 
φ from the first equation in (B.6) to arrive at 

d f θ
d αi,t 

(αi,t ) = λβ−1 
d 

d W 

d y 
(y αβ ) 

∂y αβ

∂αi,t 

(z αβ ) 

−λβ−1 
d 

d W 

d y 
(y α) 

∂y α

∂αi,t 

(z α) , (B.10) 

where y αβ := 

∑ 

s ψ s (z 
αβ
s ) and y α := 

∑ 

s ψ s (z αs ) . Substituting 

for the derivatives of y αβ and y α and simplifying yields 

d f θ
d αi,t 

(αi,t ) = λψ i (αi,t ) 

[
d W 

d z 
(z αβ ) − d W 

d z 
(z α) 

]
≥ 0 . (B.11) 

The inequality follows from noting that z α ≥ z αβ and that W 

has a negative second derivative over its domain. We con- 

clude that f θ is non-decreasing in αi,t , which means that f θ
is non-increasing by decreasing αi,t to its minimum value 

αi,t = βi,t . Repeating this minimisation for all i ∈ S, we ob- 

tain the following bound: 

φ(γt (x + 1 s ′ )) − φ( max { γt (x + 1 s ) , γt (x + 1 s ′ ) } ) + φ(γt (x + 1 s )) 

≥ φ( min { γt (x + 1 s ) , γt (x + 1 s ′ ) } ) − φ( min { γt (x + 1 s ) , γt (x + 1 s ′ ) } ) 
+ φ( min { γt (x + 1 s ) , γt (x + 1 s ′ ) } ) 

= φ( min { γt (x + 1 s ) , γt (x + 1 s ′ ) } ) , (B.12) 

as required. 

Case II: Suppose that the roles of s and s ′ are now reversed, 

i.e. γi,t (x + 1 s ′ ) ≥ γi,t (x + 1 s ) . Via symmetric arguments, we 

reach the same conclusion as in Case I. 

As both cases reach the same conclusion and collectively ex- 

haust all possibilities, this concludes our proof and shows 

that (B.4) holds. 

�

2. Proof of Proposition 4(i) 

We start by reformulating the DP in (3) in terms of φ. Fix any 

 ∈ T \ { 1 } ∪ { ̄t + 1 } . The unique optimisers of the unconstrained

ptimisation problem at time t − 1 , denoted by d ∗s (x ) for all (x, s ) ∈
 × S, is given by Yang and Strauss (2017) based on the develop- 

ent of Dong et al. (2009) as 

 

∗
s (x ) = γs,t (x ) − r − β−1 

d 
h t (x ) (B.13) 

or all s ∈ S, where h t (x ) is the unique solution of 

h t (x ) − 1) exp ( h t (x ) ) = 

∑ 

s 

exp ( βc + βs + βd (γs,t (x ) − r) ) . 

(B.14) 

e rewrite (B.14) equivalently as 

⇐⇒ (h t (x ) − 1) exp ( h t (x ) − 1 ) = 

∑ 

s 

exp (βc + βs + βd (γs,t (x ) 

− r) − 1) 

⇐⇒ (h t (x ) − 1) exp ( h t (x ) − 1 ) = 

∑ 

s 

ψ s (γs,t (x )) , (B.15) 

here we have used ψ s from (B.2) . By the definition of W, we ob-

ain 

 t (x ) = 1 + W 

(∑ 

s 

ψ s (γs,t (x )) 

)
. (B.16) 

ow, we can substitute (B.16) into (B.13) : 

 

∗
s (x ) = γs,t (x ) − r − β−1 

d 

[
1 + W 

(∑ 

s 

ψ s (γs,t (x )) 

)]
. (B.17) 
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inally we can substitute (B.17) into the unconstrained version of 

3) to obtain 

 V t (x ) = 

∑ 

s 

p s (d ∗(x )) 

{ 

r + γs,t (x ) − r − β−1 
d 

[ 
1 + W 

( ∑ 

s ′ 
ψ s (γs ′ ,t (x )) 

) ] 

− γs,t (x ) 

}
+ V t (x ) 

= 

∑ 

s 

p s (d ∗(x )) 

{ 

−β−1 
d 

[ 
1 + W 

( ∑ 

s ′ 
ψ s (γs ′ ,t (x )) 

) ] } 

+ V t (x ) , (B.18) 

here we have defined d ∗(x ) := [ d ∗1 (x ) , d ∗2 (x ) , . . . , d ∗
s̄ 
(x )] T . We now

ubstitute the customer choice model p evaluated at the optimiser 

 

∗(x ) into (B.18) : 

 V t (x ) = 

∑ 

s 

λ exp (βc + βs + βd d 
∗
s (x )) ∑ 

s ′′ exp (βc + βs ′′ + βd d 
∗
s ′′ (x )) + 1 

×
{ 

−β−1 
d 

[ 

1 + W 

( ∑ 

s ′ 
ψ s (γs ′ ,t (x )) 

) ] } 

+ V t (x ) . (B.19) 

ote that – using the definitions of d ∗s and h t – the following rela- 

ionship holds: ∑ 

s 

exp (βc + βs + βd d 
∗
s (x )) 

= 

∑ 

s 

exp 

(
βc + βs + βd 

(
γs,t (x ) − r − β−1 

d 
h t (x ) 

))
= 

∑ 

s 

exp ( βc + βs + βd ( γs,t (x ) − r ) ) exp (−h t (x )) 

= ( h t (x ) − 1 ) exp (h t (x )) exp (−h t (x )) 

= h t (x ) − 1 , (B.20) 

here the third equality follows from (B.14) . Substituting 

B.20) into (B.19) , we obtain 

 V t (x ) = λ
h t (x ) − 1 

h t (x ) 

{
−β−1 

d 

[
1 + W 

(∑ 

s 

ψ s (γs,t (x )) 

)]}
+ V t (x ) . 

(B.21) 

ubstituting for h t (x ) using (B.16) yields the desired expression: 

 V t (x ) = 

λW ( 
∑ 

s ψ s (γs,t (x )) ) 

1 + W ( 
∑ 

s ψ s (γs,t (x )) ) 

{
−β−1 

d 

[
1 + W 

(∑ 

s 

ψ s (γs,t (x )) 

)]}
+ V t (x ) 

= − λβ−1 
d 

W 

(∑ 

s 

ψ s (γs,t (x )) 

)
+ V t (x ) 

= φ(γt (x )) + V t (x ) , (B.22) 

here the last inequality follows from the definition of φ in (B.3) . 

y Assumption 3 , the terminal condition of the DP satisfies the 

roperty of increasing opportunity costs. 

We can now prove Proposition 4 (i) by showing that a 

onotonic mapping exists between γs,t−1 (x + 1 s ′ ) − γs,t−1 (x ) and 

s,t (x + 1 s ′ ) − γs,t (x ) for all (x, s, s ′ , t) ∈ X × F (x ) × F (x ) × (T ∪ { ̄t +
 } \ { 1 } ) . 

To this end, fix any (x, s, t) ∈ X × F (x ) × (T ∪ { ̄t + 1 } \ { 1 } ) . By

sing the definition of opportunity costs and (B.22) we can write 

he opportunity cost in state x with respect to an arbitrary slot 

 ∈ S at time t − 1 as 

s,t−1 (x ) = γs,t (x ) + φ(γt (x )) − φ(γt (x + 1 s )) . (B.23)

ix any s ′ ∈ F (x ) , such that s ′ 
 = s . To prove the theorem, we require

s,t−1 (x + 1 s ′ ) − γs,t−1 (x ) > 0 (B.24) 
465 
or all t ∈ T ∪ { ̄t + 1 } \ { 1 } . Substitute (B.23) into the left-hand side

f (B.24) to obtain 

γs,t−1 (x + 1 s ′ ) − γs,t−1 (x ) 

= γs,t (x + 1 s ′ ) − γs,t (x ) + φ(γt (x + 1 s ′ )) 

−φ(γt (x + 1 s + 1 s ′ )) − φ(γt (x )) + φ(γt (x + 1 s )) . (B.25) 

irst note that γt (x + 1 s + 1 s ′ ) ≥ γt (x + 1 s ) and γt (x + 1 s + 1 s ′ ) ≥
t (x + 1 s ′ ) . As φ(γt (x + 1 s + 1 s ′ )) is decreasing in its argument by

emma 6 (i) and since it is subtracted on the right-hand side of the 

bove equation, we can create the following lower bound: 

γs,t−1 (x + 1 s ′ ) − γs,t−1 (x ) 

≥ γs,t (x + 1 s ′ ) − γs,t (x ) + φ(γt (x + 1 s ′ )) 

−φ( max { γt (x + 1 s ) , γt (x + 1 s ′ ) } ) − φ(γt (x )) + φ(γt (x + 1 s )) . 

(B.26) 

sing Lemma 6 (ii), we bound (B.26) from below by 

s,t−1 (x + 1 s ′ ) − γs,t−1 (x ) ≥ φ( min { γt (x + 1 s ) , γt (x + 1 s ′ ) } ) 
− φ(γt (x )) 

+ γs,t (x + 1 s ′ ) − γs,t (x ) , (B.27) 

here the minimum is taken element-wise. Since φ is both pos- 

tive by definition, we construct a lower bound on (B.27) by 

ropping the φ( min { γt (x + 1 s ) , γt (x + 1 s ′ ) } ) term on the right-

and side. Furthermore, since φ is decreasing in its argument by 

emma 6 (i), we create another lower bound on (B.27) by setting 

t (x ) = 0 . Hence, we obtain 

γs,t−1 (x + 1 s ′ ) − γs,t−1 (x ) 

> −φ(0) + γs,t (x + 1 s ′ ) − γs,t (x ) 

= λβ−1 
d 

W 

(∑ 

s 

ψ s (0) 

)
+ γs,t (x + 1 s ′ ) − γs,t (x ) . (B.28) 

ince only β−1 
d 

is negative, λβ−1 
d 

W ( 
∑ 

s ψ s (0) ) < 0 , independent of 

he choice of (s, s ′ , t, x ) . Therefore, the above inequality describes

 monotonic mapping from γs,t (x + 1 ′ s ) − γs,t (x ) to γs,t−1 (x + 1 ′ s ) −
s,t−1 (x ) for all (s, s ′ , t − 1 , x ) ∈ F (x ) × F (x ) × T × X, such that s 
 =
 

′ . The bound on γs,t (x + 1 ′ s ) − γs,t (x ) will therefore decrease as t

ecreases. Hence, γs,t (x + 1 ′ s ) − γs,t (x ) will be minimal at t = 1 . Us-

ng the monotonicity of this mapping, we can find a λ for which 

s, 1 (x + 1 ′ s ) − γs, 1 (x ) > 0 by repetitively applying the above equa-

ion starting from the terminal condition at t = t̄ + 1 to obtain 

s, 1 (x + 1 s ′ ) − γs, 1 (x ) ≥ t̄ λβ−1 
d 

W 

(∑ 

s 

ψ s (0) 

)
+ γs, ̄t +1 (x + 1 s ′ ) 

−γs, ̄t +1 (x ) , (B.29) 

here the right-hand side is positive if 

0 < t̄ λβ−1 
d 

W 

(∑ 

s 

ψ s (0) 

)
+ γs, ̄t +1 (x + 1 s ′ ) − γs, ̄t +1 (x ) 

⇐⇒ λ < −βd 

γs, ̄t +1 (x + 1 s ′ ) − γs, ̄t +1 (x ) 

t̄ W ( 
∑ 

s ψ s (0) ) 
(B.30) 

or all (x, s, s ′ ) ∈ X × F (x ) × F (x ) , such that s 
 = s ′ . The right-

and side of the above expression is strictly positive, because 

pportunity costs are increasing at the terminal condition by 

ssumption 3 and therefore, the numerator of the fraction is posi- 

ive, W only takes positive values, t̄ > 0 and βd < 0 . As both X and

 (x ) are finite sets, a small enough λ > 0 can be found that sat-

sfies all inequalities described by (B.30) . Therefore, a λ > 0 exists, 

uch that γs,t (x + 1 s ′ ) > γs,t (x ) for all (x, s, s ′ , t) ∈ X × F (x ) × F (x ) ×
 , such that s 
 = s ′ . 
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3. Proof of Proposition 4(ii) 

Fix any (x, t) ∈ X × T . Define u := γt (x ) and consider the func-

ion w : R ̄

s + �→ R ̄

s defined by 

 (u ) := u − r − β−1 
d 

[
1 + W 

(∑ 

s 

ψ s (u s ) 

)]
. (B.31) 

n comparison with (B.17) , notice that w (u ) is mathematically 

dentical to d ∗(x ) = [ d ∗
1 
(x ) , d ∗

2 
(x ) , . . . , d ∗

s̄ 
(x )] . Furthermore, W and

 s for all s ∈ S are invertible functions. In particular, their inverses 

n the domain of interest are 

x = W (x ) exp ( W (x ) ) and 

 = ( ln ( ψ s (u ) ) − βc − βs + 1 ) β−1 
d 

+ r (B.32) 

or all s ∈ S. Therefore, w is a composition of invertible functions 

nd hence, the mapping between w and u is bijective. Therefore, 

he mapping between d ∗(x ) and γt (x ) , equivalent to the mapping

etween w and u, is bijective. 

If we constrain d ∗(x ) to D ⊂ R ̄

s , we can conclude that there

till exists a bijective mapping between D and (an unknown) � ⊂
 ̄

s + corresponding to the range of values that γt (x ) can take in 

his constrained scenario. Conversely, this means that no mat- 

er which d ∗(x ) ∈ D maximises the constrained stage optimisation 

roblem, there exists ˆ γt (x ) ∈ �, which is linked to the same d ∗(x )

n the unconstrained problem. In other words, there exists ˆ γt (x ) ∈ 

, which produces the same V t−1 (x ) in the unconstrained problem 

s γt (x ) does in the constrained problem. Due to this equivalence, 

he following statement is a necessary and sufficient condition for 

roposition 4 (i) to hold: Evaluating the unconstrained problem at 

ˆ t (x ) , i.e. V t−1 (x ) = φ( ̂  γt (x )) + V t (x ) for all x ∈ X, there exists a

ufficiently small λ > 0 that yields a value function at time t − 1 , 

hose opportunity cost is increasing in x . From Proposition 4 (i), 

e know that this statement holds true for all opportunity costs 

ˆ t (x ) ∈ R ̄

s + under Assumption 3 . Since ˆ γt (x ) ∈ � ⊂ R ̄

s + , there exists

 sufficiently small λ > 0 such that the opportunity cost will also 

e increasing in the constrained DP. 

4. Completing the proof of Lemma 3(ii) 

From Definition 2 (b), g t is concave extensible in (x, p) if 

 t (x, p) ≥
∑ 

q ∈ Q 
μq g t 

(
q (x ) , q (p) 

)
(B.33) 

or all (x, p) ∈ X × P and for all enclosing sets Q, such that [ x, p] T =
 

q ∈ Q μq 

[
q (x ) , q (p) 

]ᵀ 
. We show that this inequality holds by start- 

ng from the right-hand side and substituting for g t (q (x ) , q (p) ) : 

 

 ∈ Q 
μq g t (q (x ) , q (p) ) = 

∑ 

q ∈ Q 
μq 

[∑ 

s 

q (p) 
s 

{
V t (q (x ) + 1 s ) − V t (q (x ) ) 

}
+ V t (q (x ) ) 

]

= 

∑ 

q ∈ Q 
μq 

[∑ 

s 

q (p) 
s V t (q (x ) + 1 s ) + 

(
1 −

∑ 

s 

q (p) 
s 

)
V t (q (x ) ) 

]
, (B.34) 

here we note that each of the summed terms in square brack- 

ts is a convex combination on the set A (q (x ) ) := { q (x ) ∪ { q (x ) +
 s } s ∈ F (q (x ) ) } , where the set of indices s is F (q (x ) ) instead of S, since

 

(p) 
s = 0 for all s / ∈ F (q (x ) ) , i.e. assigning zero transition probability

o infeasible slots. To show that (B.33) holds, we now derive the 

upporting result that there exists a small enough λ > 0 , such that 

he concave closure ˜ V t (y ) , evaluated at any point y ∈ X, is a hy-

erplane on the set A (y ) , which will make it possible to simplify

B.34) further. 

Fix any y ∈ X and consider the unit hypercube in 

he positive direction of y, which we define as B (y ) := 

z 
∣∣ y ≤ z ≤ y + 

∑ 

s ∈ F (y ) 1 s 
}

. We will show that only points in 

 (y ) form the concave closure around y by demonstrating that 
q
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or all y ′ ∈ B (y ) \ A (y ) , the line segment between (y, V t (y )) and

y ′ , V t (y ′ )) lies below a second line segment between two other 

oints (z, V t (z)) and (z ′ , V t (z ′ )) for some (z, z ′ ) ∈ B (y ) × B (y ) , i.e.

e will show that there exists some (z, z ′ ) ∈ B (y ) × B (y ) , such

hat 

V t (y ) + (1 − α) V t (y ′ ) < βV t (z) + (1 − β) V t (z ′ ) , (B.35)

here 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 , such that αy + (1 − α) y ′ = βz +
1 − β) z ′ for all y ′ ∈ B (y ) \ A (y ) . This means that the line segments

annot be part of the concave closure ˜ V t . We show this result by 

nduction on | F (y ) | . Consider the base case when | F (y ) | = 1 , then

B.35) is trivially satisfied as there is only a single element s ∈ F (y ) ,

eaning that the set B (y ) \ A (y ) = ∅ . Let n := | F (y ) | . Suppose by

eans of an induction hypothesis that (B.35) holds for all cardi- 

alities of F (y ) up to and including n − 1 . Then the only line seg-

ent that we need to consider is the one connecting y and y ′ =
 + 

∑ 

s ∈ F (y ) 1 s , because otherwise, we are in a lower-dimensional 

ase, for which (B.35) holds by the induction hypothesis. For this 

hoice of (y, y ′ ) , we can find a quadruple (z, z ′ , α, β) that satisfies

B.35) by repetitively invoking Proposition 4 (ii) as follows: There 

xists a sufficiently small λ > 0 , such that 

γ1 (y ) 
< γ1 (y + 1 2 ) 
< γ1 (y + 1 2 + 1 3 ) 
. . . 

< γ1 

(
y + 

∑ 

s ∈ σ 1 s 

)
, 

(B.36) 

here we have defined σ := F (y ) \ { 1 } , which – strictly speaking

depends on y and s = 1 , but we neglect this to ease notation. We

an expand the first and last line of the above chained inequality 

y using the definition of opportunity costs: 

γ1 (y ) < γ1 

(
y + 

∑ 

s ∈ σ
1 s 

)
⇐⇒ V t (y ) − V t (y + 1 1 ) < V t 

(
y + 

∑ 

s ∈ σ
1 s 

)
− V t 

(
y + 

∑ 

s ∈ F (y ) 

1 s 

)
⇐⇒ V t (y ) − V t (y + 1 1 ) < V t 

(
y + 

∑ 

s ∈ σ
1 s 

)
− V t (y ′ ) , (B.37) 

here we have used y ′ = y + 

∑ 

s ∈ F (y ) 1 s as previously. Rearranging 

nd multiplying both sides by 1 / 2 yields 

⇐⇒ 

1 

2 

V t (y ) + 

1 

2 

V t (y ′ ) < 

1 

2 

V t 

(
y + 

∑ 

s ∈ σ
1 s 

)
+ 

1 

2 

V t (y + 1 1 ) . (B.38)

omparing with (B.35) , we see that α = β = 1 / 2 , z = y + 

∑ 

s ∈ σ 1 s 
nd z ′ = y + 1 1 . To illustrate this for the case when n = 3 , we plot

he points y, y ′ , y + 

∑ 

s ∈ σ 1 s and y + 1 1 as well as the line segments

etween the former and latter pair of points in Fig. B.4 below. 

Since we have found a quadruple (z, z ′ , α, β) that satisfies 

B.35) , we conclude that no y ′ ∈ B (y ) \ A (y ) can be part of the con-

ave closure ˜ V t for all y ∈ B (y ) and for all n . Therefore, only points

n A (y ) can be part of the concave closure ˜ V t for all y ∈ B (y ) and,

n fact, they all are, since the | F (y ) | + 1 points in A (y ) uniquely de-

ne the support vectors of a hyperplane through { (y, V t (y )) } y ∈ A (y ) , 

.e. each y ∈ A (y ) giving rise to one linearly independent equality 

onstraint, such that all | F (y ) | gradients and the offset of the hy-

erplane are uniquely defined. This holds true for unit hypercubes 

 (y ) for all y ∈ X and hence, there exists a small enough λ > 0 ,

uch that ˜ V t is a hyperplane on the set A (y ) for all y ∈ X . 

Returning to (B.34) , we notice that the expression in square 

rackets is a convex combination on the set A (q (x ) ) , which means

hat ˜ V t is a hyperplane on this set. Hence, we can rewrite 

B.34) with equality as 

 

 ∈ Q 
μq g t (q (x ) , q (p) ) = 

∑ 

q ∈ Q 
μq ̃  V t 

(∑ 

s 

q (p) 
s 1 s + q (x ) 

)



D. Lebedev, P. Goulart and K. Margellos European Journal of Operational Research 292 (2021) 456–468 

Fig. B.4. Green, dotted line segment between y and y ′ and red, dotted line segment 

between y + 

∑ 

s ∈ σ 1 s and y + 1 1 . By (B.38) we have that at the intersection of the 

two lines, the interpolation of V t between the two extreme points of the red line 

lies above the interpolation of V t between the two extreme points of the green line. 

The light blue, solid line box spans all the points in B (y ) . (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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≤ ˜ V t 

( ∑ 

q ∈ Q 
μq 

[∑ 

s 

q (p) 
s 1 s + q (x ) 

]) 

= ̃

 V t 

( ∑ 

s 

1 s 

∑ 

q ∈ Q 
μq q 

(p) 
s + x 

) 

= ̃

 V t 

(∑ 

s 

1 s p s + x 

)
= 

∑ 

s 

p s { V t (x + 1 s ) − V t (x ) } + V t (x ) 

= g t (x, p) , (B.39) 

here the second-last equality follows from the observation that 

he convex combination of V t is evaluated on a set A (x ) , for

hich 

˜ V t is again a hyperplane, and the inequality is obtained by 

oticing that ˜ V t is concave in x and therefore, Jensen’s inequal- 

ty holds. From the above derivation, we conclude that g t (x, p) ≥
 

q ∈ Q μq g t (q (x ) , q (p) ) , as required. Therefore, there exists a suffi- 

iently small λ > 0 , for which g t is concave extensible in (x, p) if

 t is concave extensible in x . �

ppendix C. Proof of Lemma 5 

Fix any t ∈ T . We prove the result by first showing that oppor-

unity costs γt are non-decreasing in x and then showing that opti- 

al prices exhibit the desired monotonicity property with respect 

o opportunity costs. 

By Proposition 4 (i), the inequality γs,t (x + 1 s ′ ) > γs,t (x ) , for all

x, s, s ′ ) ∈ X × F (x ) × F (x ) , such that s 
 = s ′ , holds in the uncon-

trained DP. We now show that this inequality also holds for the 

ase when s = s ′ with non-strict inequality. By Theorem 2 , V t is

oncave extensible in x and hence 

 V t (x + 1 s ) ≥ V t (x ) + V t (x + 1 s + 1 s ) (C.1a) 

⇐⇒ V t (x + 1 s ) − V t (x + 1 s + 1 s ) ≥ V t (x ) − V t (x + 1 s ) 

⇐⇒ γs,t (x + 1 s ) ≥ γs,t (x ) , (C.1b) 

or all (x, s ) ∈ X × F (x ) , where (C.1) (a) follows directly from the

efinition of concavity and the fact that V t and its concave clo- 

ure ˜ V t agree on { x, x + 1 s , x + 1 s + 1 s } . Note that (C.1) (b) follows

rom the definition of γs,t . Taking both cases together, we conclude 
467 
hat γs,t (x + 1 s ′ ) ≥ γs,t (x ) , for all (x, s, s ′ ) ∈ X × F (x ) × F (x ) . Hence

pportunity costs are monotonically non-decreasing in x . 

We now show that the desired monotonicity property holds 

ith respect to opportunity costs, which in turn implies that the 

roperty holds with respect to x . Recall from (B.17) that 

 

∗
s (x ) = γs,t (x ) − r − β−1 

d 

[ 

1 + W 

( ∑ 

s ′ 
ψ s ′ (γs ′ ,t (x )) 

) ] 

, (C.2) 

here W and ψ s , for all s ∈ S are defined in B.1 . Let u := γt (x ) . By

B.6) , we have that 

∂d ∗s 
∂u s ′ 

= 

{ 

1 − W ( 
∑ 

s ψ s (u s ) ) 
1+ W ( 

∑ 

s ψ s (u s ) ) 
ψ s (u s ) ∑ 

s ψ s (u s ) 
, for s = s ′ 

− W ( 
∑ 

s ψ s (u s ) ) 
1+ W ( 

∑ 

s ψ s (u s ) ) 

ψ s ′ (u s ′ ) ∑ 

s ′ ψ s (u s ) 
, for s 
 = s ′ . 

(C.3) 

he value of the product of the fractions lies in (0,1), since the 

alue of W is non-negative and the value of ψ s is positive. Hence, 

e have 

∂d ∗s 
∂u s 

> 0 and 

∂d ∗s 
∂u s ′ 

< 0 , for all s ′ ∈ S \ { s } . (C.4)

oting that u = γt (x ) and that γt (x ) is monotonically non- 

ecreasing in x yields the desired property. �

eferences 

kçay, Y., Natarajan, H. P., & Xu, S. H. (2010). Joint dynamic pricing of multiple per-

ishable products under consumer choice. Management Science, 56 (8), 1345–1361. 
https://doi.org/10.1287/mnsc.1100.1178 . 

sdemir, K., Jacob, V. S., & Krishnan, R. (2009). Dynamic pricing of multiple home 
delivery options. European Journal of Operational Research, 196 (1), 246–257. 

https://doi.org/10.1016/j.ejor.20 08.03.0 05 . 
ertsekas, D. P. (2012). Dynamic Programming and Optimal Control, Vol. II (4th). 

Athena Scientific . 

ertsimas, D. , & Weismantel, R. (2005). Optimization over Integers . 
oyd, S. , & Vandenberghe, L. (2004). Convex Optimization . New York, NY, USA: Cam-

bridge University Press . 
ampbell, A. M., & Savelsbergh, M. (2006). Incentive schemes for attended home 

delivery services. Transportation Science, 40 (3), 327–341. https://doi.org/10.1287/ 
trsc.1050.0136 . 

hen, M., & Chen, Z.-L. (2015). Recent developments in dynamic pricing research: 

Multiple products, competition, and limited demand information. Production 
and Operations Management, 24 (5), 704–731. https://doi.org/10.1111/poms.12295 . 

ong, L., Kouvelis, P., & Tian, Z. (2009). Dynamic pricing and inventory control of 
substitute products. Manufacturing & Service Operations Management, 11 (2), 317–

339. https://doi.org/10.1287/msom.1080.0221 . 
e Farias, D. P., & Roy, B. V. (2003). The linear programming approach to ap-

proximate dynamic programming. Operations Research, 51 (6), 850–865. https: 

//doi.org/10.1287/opre.51.6.850.24925 . 
ood Marketing Institute (2018). Digital shopper. https://www.fmi.org/ 

digital-shopper/ . Accessed 4 October 2019. 
allego, G., & van Ryzin, G. (1994). Optimal dynamic pricing of inventories with 

stochastic demand over finite horizons. Management Science, 40 (8), 999–1020. 
https://doi.org/10.1287/mnsc.40.8.999 . 

annah, L. A., & Dunson, D. B. (2011). Bayesian nonparametric multivariate convex 

regression. https://arxiv.org/abs/1109.0322 . 
annah, L. A. , & Dunson, D. B. (2013). Multivariate convex regression with adaptive

partitioning. J. Mach. Learn. Res., 14 (1), 3261–3294 . 
im, J., Lee, J., Vandenberghe, L., & Yang, C.-K. K. (2004). Techniques for improving 

the accuracy of geometric-programming based analog circuit design optimiza- 
tion. In Ieee/acm international conference on computer aided design, 2004. iccad- 

2004. (pp. 863–870). https://doi.org/10.1109/ICCAD.2004.1382695 . 

ebedev, D., Goulart, P., & Margellos, K. (2019). A concave value function extension 
for the dynamic programming approach to revenue management in attended 

home delivery. In 18th european control conference, ECC 2019, naples, italy, june 
25-28, 2019 (pp. 999–1004). https://doi.org/10.23919/ECC.2019.8795697 . 

ebedev, D., Goulart, P., & Margellos, K. (2020a). Gradient-bounded dynamic pro- 
gramming for submodular and concave extensible value functions with proba- 

bilistic performance guarantees. Technical Report . Submitted for peer review at 
the Automatica journal. Available: https://arxiv.org/pdf/2006.02910.pdf . 

ebedev, D., Goulart, P., & Margellos, K. (2020b). Gradient-bounded dynamic pro- 

gramming with submodular and concave extensible value functions. In 21st ifac 
world congress 2020 . Available: https://arxiv.org/pdf/2005.11213.pdf . 

ebedev, D., Margellos, K., & Goulart, P. (2020c). Approximate dynamic program- 
ming for delivery time slot pricing: a sensitivity analysis. Technical Report . https: 

//arxiv.org/pdf/20 08.0 0780.pdf . 

https://doi.org/10.1287/mnsc.1100.1178
https://doi.org/10.1016/j.ejor.2008.03.005
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0005
https://doi.org/10.1287/trsc.1050.0136
https://doi.org/10.1111/poms.12295
https://doi.org/10.1287/msom.1080.0221
https://doi.org/10.1287/opre.51.6.850.24925
https://www.fmi.org/digital-shopper/
https://doi.org/10.1287/mnsc.40.8.999
https://arxiv.org/abs/1109.0322
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0013
https://doi.org/10.1109/ICCAD.2004.1382695
https://doi.org/10.23919/ECC.2019.8795697
https://arxiv.org/pdf/2006.02910.pdf
https://arxiv.org/pdf/2005.11213.pdf
https://arxiv.org/pdf/2008.00780.pdf


D. Lebedev, P. Goulart and K. Margellos European Journal of Operational Research 292 (2021) 456–468 

M

M

M

P  

P

P

R  

S

S

S

T

Y

Y  

Z

Z

Z

agnani, A., & Boyd, S. P. (2009). Convex piecewise-linear fitting. Optimization and 
Engineering, 10 (1), 1–17. https://doi.org/10.1007/s11081- 008- 9045- 3 . 

eissner, J., & Strauss, A. (2012). Network revenue management with inventory- 
sensitive bid prices and customer choice. European Journal of Operational Re- 

search, 216 (2), 459–468. https://doi.org/10.1016/j.ejor.2011.06.033 . 
urota, K., & Shioura, A. (2001). Relationship of m-/l-convex functions with dis- 

crete convex functions by miller and favatitardella. Discrete Applied Mathematics, 
115 (1), 151–176. https://doi.org/10.1016/S0166-218X(01)00222-0 . First Japanese- 

Hungarian Symposium for Discrete Mathematics and its Applications. 

ereira, M. V. F., & Pinto, L. M. V. G. (1991). Multi-stage stochastic optimization
applied to energy planning. Mathematical Programming, 52 (1), 359–375. https: 

//doi.org/10.1007/BF01582895 . 
itchbook (2017). Are meal-kit delivery companies a threat or an opportu- 

nity? https://pitchbook.com/news/articles/are- meal- kit- delivery- companies- a- 
threat- or- an- opportunity . Accessed 4 October 2019. 

owell, W. B. (2007). Approximate dynamic programming: solving the curses of dimen- 

sionality (Wiley series in probability and statistics) . New York, NY, USA: Wiley-In- 
terscience . 

ockafellar, R. T. , & Wets, R. J.-B. (1998). Variational analysis . Heidelberg, Berlin, New
York: Springer Verlag . 

auré, A., Patrick, J., Tyldesley, S., & Puterman, M. L. (2012). Dynamic multi- 
appointment patient scheduling for radiation therapy. European Journal of Op- 

erational Research, 223 (2), 573–584. https://doi.org/10.1016/j.ejor.2012.06.046 . 
468 
hapiro, A. (2011). Analysis of stochastic dual dynamic programming method. Euro- 
pean Journal of Operational Research, 209 (1), 63–72. https://doi.org/10.1016/j.ejor. 

2010.08.007 . 
uh, M., & Aydin, G. (2011). Dynamic pricing of substitutable products with limited 

inventories under logit demand. IIE Transactions, 43 , 323–331. https://doi.org/10. 
1080/0740817X.2010.521803 . 

oth, P., & Vigo, D. (2014). Vehicle Routing . Philadelphia, PA: Society for Industrial 
and Applied Mathematics. https://doi.org/10.1137/1.9781611973594 . 

ang, X., & Strauss, A. K. (2017). An approximate dynamic programming approach to 

attended home delivery management. European Journal of Operational Research, 
263 (3), 935–945. https://doi.org/10.1016/j.ejor.2017.06.034 . 

ang, X., Strauss, A. K., Currie, C. S. M., & Eglese, R. (2016). Choice-based demand
management and vehicle routing in e-fulfillment. Transportation Science, 50 (2), 

473–4 88. https://doi.org/10.1287/trsc.2014.054 9 . 
hang, D., & Adelman, D. (2009). An approximate dynamic programming approach 

to network revenue management with customer choice. Transportation Science, 

43 (3), 381–394. https://doi.org/10.1287/trsc.1090.0262 . 
hang, S., & Sun, X. A. (2019). Stochastic Dual Dynamic Programming for Multistage 

Stochastic Mixed-Integer Nonlinear Optimization. Technical Report . https://arxiv. 
org/pdf/1912.13278.pdf . 

ou, J., Ahmed, S., & Sun, X. A. (2019). Stochastic dual dynamic integer pro- 
gramming. Mathematical Programming, 175 (1), 461–502. https://doi.org/10.1007/ 

s10107- 018- 1249- 5 . 

https://doi.org/10.1007/s11081-008-9045-3
https://doi.org/10.1016/j.ejor.2011.06.033
https://doi.org/10.1016/S0166-218X(01)00222-0
https://doi.org/10.1007/BF01582895
https://pitchbook.com/news/articles/are-meal-kit-delivery-companies-a-threat-or-an-opportunity
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30956-5/sbref0025
https://doi.org/10.1016/j.ejor.2012.06.046
https://doi.org/10.1016/j.ejor.2010.08.007
https://doi.org/10.1080/0740817X.2010.521803
https://doi.org/10.1137/1.9781611973594
https://doi.org/10.1016/j.ejor.2017.06.034
https://doi.org/10.1287/trsc.2014.0549
https://doi.org/10.1287/trsc.1090.0262
https://arxiv.org/pdf/1912.13278.pdf
https://doi.org/10.1007/s10107-018-1249-5

	A dynamic programming framework for optimal delivery time slot pricing
	1 Introduction
	2 Revenue management problem formulation
	2.1 Problem statement
	2.2 Dynamic programming formulation

	3 Infinite and finite time horizon results
	3.1 Infinite time horizon result
	3.2 Finite time horizon result

	4 Proofs of main results
	4.1 Proof of infinite time horizon theorem
	4.2 Proof of finite time horizon theorem

	5 Numerical examples
	5.1 Increasing opportunity costs in an illustrative 2-slot example
	5.2 Monotonicity of prices in the illustrative 2-slot example
	5.3 Exploiting concave extensibility in non-linear stochastic dual DP

	6 Conclusions and future work
	6.1 Summary of contributions
	6.2 Managerial insights and implications
	6.3 Directions for future research

	Acknowledgements
	Appendix A Proof of Lemma 3(i)
	Appendix B Proof of Lemma 3(ii)
	B1 Auxiliary function definitions and properties
	B2 Proof of Proposition 4(i)
	B3 Proof of Proposition 4(ii)
	B4 Completing the proof of Lemma 3(ii)

	Appendix C Proof of Lemma 5
	References


