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Convexity and Feedback in Approximate Dynamic Programming for
Delivery Time Slot Pricing

Denis Lebedev , Kostas Margellos , Member, IEEE, and Paul Goulart , Member, IEEE

Abstract— We consider the revenue management problem of
finding profit-maximizing prices for delivery time slots in the
context of attended home delivery. This multistage optimal con-
trol problem admits a dynamic programming (DP) formulation
that is intractable for realistic problem sizes due to the so-called
“curse of dimensionality.” We therefore study three approximate
DP algorithms both from a numerical and control-theoretical
perspective. Our analysis is based on real-world data, from which
we generate multiple scenarios to stress-test the robustness of
the pricing policies to errors in model parameter estimates. Our
theoretical analysis and numerical benchmark tests indicate that
one of these algorithms, namely gradient-bounded DP, dominates
the others with respect to computation time and profit-generation
capabilities of the pricing policies that it generates.

Index Terms— Approximate dynamic programming (DP),
attended home delivery, revenue management.

I. INTRODUCTION

ONLINE grocery sales have been on the rise for the past
few years. U.S. households are predicted to spend up to

$133.8 billion per year on online grocery shopping according
to GlobalData [13]. However, one of the main impediments
for growth is the increased cost of home delivery compared
with the logistics of brick-and-mortar supermarkets. A further
logistical problem for online supermarkets is that they have to
fulfill attended home delivery, that is, to deliver groceries to
customers in pre-agreed delivery time windows. To this end,
customers are asked to select a delivery time window as part
of their purchase on a sales website. From the viewpoint of the
company, this poses an optimization question: How should one
adjust prices for delivery slots over time to maximize profits,
taking into account how customers respond to price changes
and how customer choice affects delivery costs? We call this
the revenue management problem in attended home delivery.

Broadly speaking, revenue management problems in
attended home delivery can be viewed as optimal control
problems. The dynamics of customers choosing delivery time
windows on the booking website form the plant that we seek
to control. We can measure the customer choice behavior
by keeping track of placed orders, which we treat as states.
An optimal control law would then use information from the
states to update delivery slot prices, which serve as control
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Fig. 1. Feedback control view of the pricing problem.

inputs to our plant, as shown schematically in Fig. 1. In princi-
ple, the exact state of orders is high-dimensional, for example,
since it represents locations of all customers and their chosen
delivery time slot. For industry-sized problems, the number
of states becomes prohibitively large to compute the optimal
pricing policy exactly. Therefore, simplified models have been
proposed in the literature (see [15] for an overview).

In this brief, we focus on the state-space representation
of [18] and [19]. In this model, we split the delivery area into
several sub-areas, each of which is served by a single delivery
vehicle. We can then solve the optimal delivery slot pricing
problem for each delivery sub-area separately. In that case,
the dimension of the state is the number of delivery time slots
of any delivery day. The state of orders can then be modeled
as a vector whose entries represent the number of deliveries
for every delivery time slot in a particular sub-area.

For this problem, Yang and Strauss [18] proposes a
dynamic programming (DP) formulation and an approximate
DP scheme. Their algorithm approximates the exact value
function of the DP as an affine function in the vector of states.
In this brief, we show that this method results in an open loop
controller, thus motivating the use of nonlinear value function
approximations, which provide state feedback, as suggested
in [6] and [18]. The recently developed approximate DP
algorithm in [20] was derived outside the attended home
delivery literature and it provides such nonlinear approximate
value functions. However, we show that this algorithm imposes
severe practical difficulties in the computation of the optimal
control policy, since it requires solving non-convex optimiza-
tion problems.

Finally, we show our gradient-bounded DP algorithm
from [9] that overcomes the limitations of the other two
algorithms, since it provides nonlinear value function approx-
imations, which can be computed using convex optimization.
We demonstrate its efficacy in numerical examples based on
data from [18], in which we benchmark the performance of
all three algorithms in the case of both exact and incomplete
knowledge (due to estimation errors) of model parameter
values. This comparative analysis is new for this problem
formulation and hence complements the numerical studies on
attended home delivery conducted on different formulations,
for example, in [6]. Heuristic algorithms are also examined in
the literature, for example, [18, Sec. 7] implements a myopic
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policy, which maximizes the stage revenue under simplified
opportunity costs.

The structure of the remaining brief is as follows: We define
the optimization problem and its DP formulation in Section II.
Section III presents a prototype, sample-based approximate DP
algorithm and we explain how the three algorithms considered
in this brief are special cases of it. In that section, we also
elaborate the main theoretical limitations of the first two
algorithms and how the third overcomes these. Since the
profits generated by all three algorithms are random variables,
we explain how we quantify their profit-generation perfor-
mance in Section IV. We then provide numerical evidence on
how the gradient-bounded DP algorithm outperforms the two
other algorithms in terms of both its profit-generation capa-
bilities and computation time in Section V. Finally, we con-
clude this brief and provide directions for future research in
Section VI.

Notation: Given some s ∈ N, let 1s be a column vector
of all zeros apart from the sth entry, which equals 1. We
adopt the convention that 10 is a vector of zeros. Let 1 denote
a vector of 1’s. Let 〈·, ·〉 denote the standard inner product.
Let E denote the expectation operator. Let Pr(·) denote the
probability of its argument. Let �(·) denote the indicator
function.

II. PROBLEM STATEMENT

A. Multistage Optimal Control Problem Formulation

Revenue management in attended home delivery can
be formulated as the following multistage optimal control
problem for any delivery sub-area served by a single
delivery vehicle: Customers are assumed to be allowed
to make bookings in a finite time horizon and there are
only a finite number of times that the online vendor can
change delivery slot prices. Therefore, we consider a finite
and discrete time horizon T := {1, 2, . . . , t̄}. There is an
additional time step t̄ + 1, at which no bookings happen
anymore, which we will use to define the terminal condition
of the problem. Suppose that the delivery day is split
into n delivery time slots. Denote the set of delivery time
slots by S := {1, 2, . . . , n}. As mentioned in Section I,
we focus on an aggregated state-space representation, where
for any time step t ∈ T ∪ {t̄ + 1}, we define a state
vector xt ∈ X ⊂ Z

n , whose entries are the number of
orders placed in the respective delivery time slots. The
set X is defined by the maximum state vector x̄ , that is,
X := {xt ∈ Z

n | 0 ≤ xt ≤ x̄ }. For any t ∈ T , we define
the delivery charge vector dt := [d1,t , d2,t , . . . , dn,t ]ᵀ.
Let the set of admissible delivery charge vectors be
D := {

dt

∣∣ ds,t ∈ [d, d̄ ] ∪ {∞} for all s ∈ S
}
.

For any s ∈ S, define the transition probability between
two states xt and xt+1 = xt + 1s under delivery price vector
dt as Ps(dt), where we require Ps(dt) ≥ 0 for all (s, dt ) ∈
S × D. We require that

∑
s∈S Ps(dt) < 1, such that the

probability of the customer not choosing any slot is defined
as P0(dt) = 1 − ∑

s∈S Ps(dt). This implies that transitions
from xt to xt+1 are only possible in the positive direction
and by at most a unit step along one dimension. We restrict

Ps(dt) = 0 if xt + 1s /∈ X , that is, we do not allow infeasible
orders. Such models are typical for order-taking processes
(see [1], [16], [18], and [19]). Note that multi-product pricing,
for example, as in [5], is stated in terms of inventory which
depletes over time (down to 0), rather than orders which
accumulate (up to x̄). We assume that customer choice follows
a multinomial logit model, like in [5], [18], and [19], that is,

Ps(dt) := exp(βc + βs + βdds,t)∑
k∈S exp(βc + βk + βd dk,t )+ 1

(1)

for all (s, d) ∈ S×D, where βc ∈ R denotes a constant offset,
βs ∈ R represents a measure of the popularity for all delivery
slots, and βd < 0 is a parameter for the price sensitivity.
Note that the no-purchase utility is normalized to zero, that
is, for the no-purchase “slot” s = 0, we have a no-delivery
“charge” d0,t = 0, such that βc + β0 + βdd0,t = βc + β0 = 0
and hence, the 1 in the denominator of (1) arises from
exp(βc + β0) = 1. Furthermore, note that the constant offset
βc is not necessary, since it can be absorbed in the {βs}s∈S∪{0}
parameters. However, βc is often kept in practice to normalize
one of the {βs}s∈S∪{0} parameters to zero (see, e.g. [18]).
Finally, we define an average revenue per order r ∈ R,
an expected customer arrival rate (on the booking system) per
time step λ ∈ (0, 1], and an approximate delivery cost function
C : Zn → R ∪∞, which we assume is Lipschitz continuous.
Infinite delivery costs indicate infeasible states. We construct
a multistage optimal control problem in the form

max
{dt∈D}t̄t=1

E

[
−C(xt̄+1)+

∑
t∈T

〈xt+1 − xt , dt + r〉
]

subject to xt+1 = xt + ξt , for all t ∈ T, x1 = 0 (2)

where E is the expectation operator associated with the
probability distribution of ξt ∈ {0, 1}n, defined as follows:
For all (s, t) ∈ S × T , ξt = 1s with probability λPs(dt)
and ξt = 0 with probability 1 − ∑

s∈S λPs(dt). From an
economic perspective, the objective value is the total expected
operational contribution margin, that is, revenue from sales and
delivery charges minus delivery costs. For simplicity, we will
refer to this as the expected profit that we seek to maximize.

B. DP Formulation

The objective function in (2) is separable across stages and
there is stage-wise coupling of the states xt for all t ∈ T .
These can only be decoupled if x̄ is sufficiently large, such
that xt < x̄ , for all t ∈ T , and if C is a linear function.
In the general case, however, we can derive the following DP
recursion, analogous to [18], by introducing the value function
Vt : Z

n → R ∪ −∞, which represents the expected profit-
to-go for any state–time pair (x, t) ∈ X × T , as shown in the
following equation:

Vt(x) := max
d∈D

{
λ

∑
s∈S

Ps(d)(r + ds + Vt+1(x + 1s))

+
(

1− λ
∑
s∈S

Ps(d)

)
Vt+1(x)

}

∀(x, t) ∈ X × T

Vt̄+1(x) = −C(x) ∀x ∈ X. (3)
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Algorithm 1 Prototype, Sample-Based Approximation

We assume that Vt(x) = −∞ for all infeasible states x /∈ X .
Notice that we have dropped subscripts t for x and d to sim-
plify notation and since the time step is evident from the value
function. Furthermore, we adopt the convention that when, for
any s ∈ S, it happens that ds = ∞ and Vt+1(x + 1s) = −∞,
we have Ps(d)(r + ds + Vt+1(x + 1s)) = 0. This corresponds
to the additional profit of accepting an unavailable slot, which
is undefined in (3), but practically it is zero. To represent the
DP in (3) more compactly, we define the Bellman operator
T through the relationship Vt = T Vt+1, for all t ∈ T . It is
not possible to solve the DP in (3) by direct computation
of the value function for realistic problem instances due
to the prohibitively large number of states. However, given
an approximate value function, one can find approximately
optimal prices at relatively low computational cost for the
multinomial logit model using Newton’s method [5].

III. PROTOTYPE, SAMPLE-BASED APPROXIMATION

A key to solving this revenue management problem is to
approximate the value function in (3) effectively. A popular
strategy, not only for this problem (see [6] and [18]), but also
for other stochastic multistage problems (see [12] and [14]),
is to use a sample-based approach and to refine the value
function along states that are likely to be visited under the
approximately optimal decision policy. Approximations can
then be improved by iterating between generating samples and
refining the value function along the sample paths obtained.

We first present a prototype, sample-based, iterative approx-
imate DP procedure in Algorithm 1. The three algorithms that
we investigate are special cases of this prototype algorithm and
differ only in step 11. We detail how this step is computed for
each of the individual specific algorithms in the sequel.

We first initialize all parameters of the DP in (3)
(see step 1). Denote the maximum number of iterations by
imax ∈ N and let I := {0, 1, . . . , imax}. Let the value function
approximation be denoted by Qi

t for all (i, t) ∈ I × T .
We could initialize Q0

t to any value as long as it does not
violate any assumptions on the approximation algorithm used,

as discussed further below. However, one effective way to
satisfy the assumptions of all three algorithms considered, and
to speed up computation, is to initialize Q0

t for all t ∈ T using
the unique fixed point of DP, V ∗ (see step 2). In [7], it is shown
that under mild technical assumptions the fixed point is

V ∗(x) := (d̄ + r)〈1, x̄ − x〉 − C(x̄), for all x ∈ X. (4)

Note that V ∗ is an upper bound to Vt for all t ∈ T , since T
is a monotone operator (see [3, Ch. 3]). Furthermore, notice
that the fixed point is affine in x and that the components of
the gradient are given by d̄ + r . Using (3), we can compute
the optimal delivery slot prices at the fixed point, which is d̄
for all feasible slots. The intuition behind this is that the fixed
point corresponds to the limit of the value function as t tends
to −∞. Hence, going backwards infinitely many time steps,
the probability of selling out the entire delivery capacity tends
to 1 for all prices d ∈ D. To maximize profits over an infinite
horizon, one would charge customers the maximum admissible
delivery charge d̄ for all delivery time slots. Finally, we also
initialize Qi

t̄+1(x) := Vt̄+1(x) = −C(x) for all (x, i) ∈ X × I
(see step 3).

Now fix any iteration i ∈ I \ {0}. In each “forward sweep,”
we solve an approximate version of (3) forward in time by
replacing Vt with its approximation Qi−1

t (see step 7), that is,

d∗(x i
t ) := argmax

d∈D

{
λ

∑
s∈S

Ps(d)
(
r + ds + Qi−1

t+1

(
x i

t + 1s
))

+
(

1− λ
∑
s∈S

Ps(d)

)
Qi−1

t+1

(
x i

t

)}
. (5)

Notice that [5, Th. 1] shows that for the multinomial choice
model, the maximizers are unique for the above expression,
hence we use equality in (5). Using (5), we compute a
suboptimal di

t for all t ∈ T and simulate state transitions by
sampling from the transition probability distribution given the
approximately optimal decisions (see step 8). This defines a
sample path x i

t for all t ∈ T ∪ {t̄ + 1}.
In each “backward sweep,” we update the approxima-

tion using one of the three algorithms in this brief (see
step 11). These two sequences—“forward sweep” and “back-
ward sweep”—are repeated for imax iterations. In Sections III-
A–III-C, we describe the exact mechanisms of the three algo-
rithms considered in this brief, making step 11 in Algorithm 1
explicit.

A. Affine Value Function Approximation Update

This approach, proposed in [18], approximates the value
function by an affine function of the form

Qi
t (x) := γ i

0 + (t̄ + 1− t)θ i −
∑

s

γ i
s xs (6)

for all (x, i, t) ∈ X × I × T and where γ i
s , for all s ∈ S ∪ {0}

and θ i are real scalar parameters, for all i ∈ I . The updating
rule in step 11 of Algorithm 1 is a gradient descent step to
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minimize (Qi
t (x i

t+1)− T Qi
t+1(x i

t+1))
2, which thus becomes

γ i
0 = γ i−1

0 −α1
(
Qi−1

t

(
x i

t+1

)−T Qi−1
t+1

(
x i

t+1

))
γ i

s = γ i−1
s −α2

(
Qi−1

t

(
x i

t+1

)−T Qi−1
t+1

(
x i

t+1

))
x i

s,t+1 ∀s ∈ S

θ i = θ i−1−α3
(
Qi−1

t

(
x i

t+1

)−T Qi−1
t+1

(
x i

t+1

))
(t̄ + 1− t) (7)

where α1, α2, and α3 are (positive) step sizes, chosen to
be sufficiently small for convergence of the above iterative
procedure (see, e.g. [2, Lemma 8.2]).

One important observation from a control perspective is
that a value function approximation that is affine in x implies
that the pricing control will have no state feedback for all
states x such that x + 1s ∈ X for all s ∈ S. To see
this, notice that (5) can be rewritten in terms of differences
Qi−1

t+1(x i
t )− Qi−1

t+1(x i
t + 1s) for all s ∈ S as follows:

argmax
d∈D

{
λ

∑
s∈S

Ps(d)(r + ds

+ Qi−1
t+1

(
x i

t + 1s
)− Qi−1

t+1

(
x i

t

))+ Qi−1
t+1

(
x i

t

)}

= argmax
d∈D

{
λ

∑
s∈S

Ps(d)
(
r + ds − γ i−1

s

)+ Qi−1
t+1

(
x i

t

)}

for all x ∈ X , such that x + 1s ∈ X for all s ∈ S, and
where we have first substituted for Qi−1

t+1 from (6). Notice that
Qi−1

t+1(x i
t ) is independent of d and thus irrelevant for the argmax

operator. Hence, the approximately optimal pricing policy does
not depend on the state x i

t for all (x, t) ∈ X × T such that
x + 1s ∈ X for all s ∈ S. This ultimately means that the affine
value function approximation generates a feedforward pricing
policy, which is incapable of adjusting prices based on changes
in the vector of orders. This insight also provides theoretical
support for the suggestions of [6] and [18] to explore nonlin-
ear value function approximations: The preceding discussion
shows that nonlinear value functions are necessary in order to
enable state feedback in the pricing policy.

B. Nonlinear Stochastic Dual DP Update

In contrast to the affine value function update above, non-
linear stochastic dual DP generates nonlinear value function
approximations that make it possible to include state feed-
back in the pricing policy. Similar to [20] and [21], this
update is computed in step 11 of Algorithm 1 as Qi

t ←
min{H ∗, Qi−1

t }, where the minimum is taken pointwise and
the so-called Lagrange dual cut H ∗ is defined as H ∗(x) :=
v∗ − 〈μ∗, x i

t+1 − x〉, for all x ∈ X and where

v∗ := min
μ∈M

max
d∈D,z∈X

{
λ

∑
s∈S

Ps(d)
(
r + ds + Qi−1

t+1(z + 1s)
)

+
(

1− λ
∑
s∈S

Ps(d)

)
Qi−1

t+1(z)

+ 〈
μ, x i

t+1 − z
〉}

(8)

and where μ∗ is the minimizer of (8). In [20, Proposition 5],
it is shown that the resulting value function approximation is

an upper bound to the exact value function if we additionally
assume that the initial approximation Q0

t is an upper bound
to Vt for all t ∈ T . The formulation in [20] differs from (8),
since it includes an additional regularization term. See [10]
for an equivalent proof for this formulation.

From a control perspective, the benefit of having a nonlinear
value function approximation, in comparison with the affine
value function approximation from Section III-A, comes at
a different cost: The problem of finding the optimal cut
coefficients μ in (8) is a non-convex optimization problem
and there are consequently no guarantees that it can be solved
to global optimality. For the particular form of the problem
in this brief, we can find the cut coefficients from a refor-
mulation of the problem, resulting in a bi-concave objective
function that can be exploited to solve this problem as outlined
in [10, Appendix A]. Nevertheless, since global optimality
is required to ensure that the approximate value function
constitutes an upper bound on the exact value function, in
practice we cannot easily guarantee that all approximations are
indeed upper bounds on the exact value function. We illustrate
how this results in computational problems in Section V.

C. Gradient-Bounded DP Update

Gradient-bounded DP was introduced in [9] for the specific
application of revenue management in attended home delivery.
This method makes two assumptions on the exact value
function of the DP.

First, the value function must be concave extensible. This
means that its concave closure Ṽt : Rn → R, defined as the
smallest concave upper bound on the exact value function,
coincides with the exact value function for all state–time pairs,
that is, Ṽt(x) = Vt (x) for all (x, t) ∈ X×(T ∪{t̄+1}). Second,
the exact value function must be submodular, that is,

Vt(max(y1, y2))+ Vt(min(y1, y2)) ≤ Vt(y1)+ Vt(y2) (9)

for all (y1, y2, t) ∈ X × X × (T ∪ {t̄ + 1}).
These two assumptions result in a particular segmentation

of the convex hull of Vt : For any t ∈ T , construct the
unique hyperplane H through the set of pairs (y, Vt(y)) for all
y ∈ Y+(x i

t+1) := {x i
t+1 + 1s}s∈(S∪{0}). Then H is a separating

hyperplane, that is, H (x) ≥ Vt(x) for all x ∈ X , where
the inequality holds with equality for all y ∈ Y+(x). The
gradient-bounded DP algorithm exploits this property. We refer
the interested reader to [9] for details on the above-mentioned
assumptions and to [11, Th. 2 and Proposition 4(ii)] for proofs
that these assumptions hold for the revenue management
problem under study.

For gradient-bounded DP, let the value function approxima-
tion Qi

t for all (i, t) ∈ I × T be the pointwise minimum
of a finite number of affine functions, that is, Qi

t (x) :=
min

j∈{0,1,...,i}
H j

t (x), for all x ∈ X , where H j
t : X �→ R describes

a hyperplane, that is, H j
t (x) := 〈a j

t , x〉 + b j
t , for all x ∈ X ,

with a j
t ∈ R

n, b j
t ∈ R for all (t, j) ∈ T × I . Furthermore,

this approximation is an upper bound on the exact value
function, that is, Qi

t (x) ≥ Vt(x) for all (x, t, i) ∈ X × T × I .
To this end, it is important to initialize Q0

t for all t ∈ T
at an upper bound. The gradient-bounded DP update then
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Algorithm 2 Gradient-Bounded DP Update

ensures that the approximate value functions remain upper
bounds to the exact value function for all iterations i ∈ I ,
as shown in [9, Proposition 1]. Notice that both nonlinear
stochastic dual DP and gradient-bounded DP are similar in that
they compute approximate value functions as the pointwise
minima of a finite number of hyperplanes, which are upper
bounds to the exact value function. In step 11 of Algorithm 1,
gradient-bounded DP generates updates for the approximate
value function, as shown in Algorithm 2 and explained further
below.

Fix any iteration i ∈ I . We first check if Qi−1
t+1 is submodular

[see (9)] on the set Z(x i
t+1) := {x i

t+1 + 1s + 1s ′ }, for all
(s, s′) ∈ (S ∪ {0}) × (S ∪ {0}), that is, if and only if 0 ≤
Qi−1

t+1(y1)+Qi−1
t+1(y2) −Qi−1

t+1(min{y1, y2})−Qi−1
t+1(max{y1, y2})

holds for all (y1, y2) ∈ Z(x i
t+1)× Z(x i

t+1) (see steps 1 and 2).
Note that this is not necessarily the case for the approximate
value function, even if the exact value function is submodular.
We then distinguish between two cases:

Case I: If Qi−1
t+1 is submodular on Z(xt+1i ), we locally com-

pute the exact DP stage problem on the set Y+(xt +1)i−1, that
is, {T Qi−1

t+1(y)}y∈Y+(xi
t+1)

, to construct the hyperplane through
{(y, (T Qi−1

t+1)(y))}y∈Y+(xi
t+1)

(see step 3).
Case II: If Qi−1

t+1 is not submodular on Z(xt+1i ), we need
to compute a submodular upper bound on Qi−1

t+1, which
is readily given by the hyperplanes from which Qi−1

t+1
is constructed. Therefore, we select the hyperplane
H j∗−1

t+1 that minimizes the value at the evaluation point
x i

t , that is, Qi
t = min{T H j∗−1

t+1 , Qi−1
t }, where j∗ ∈

argmin j∈J i−1
t+1
{(T H j−1

t+1 )(x i
t+1)} and where J i−1

t+1 is the

set of supporting hyperplanes, that is, J i−1
t+1 (x) :=

argmin j∈{0,1,...,i−1}H
j

t+1(x), for all (i, t, x) ∈ I × T × X
(see steps 5 and 6). Therefore, this creates the locally tightest
upper bound. Finally, we take the pointwise minimum of the
approximate value function at the previous iteration Qi−1

t and
the newly created hyperplane H ∗ to obtain the new value
function approximation (see step 8).

Similar to the nonlinear stochastic dual DP update from
Section III-B and in contrast to the affine value function
approximation update from Section III-A, the approximate
value function generated by the gradient-bounded DP update
is nonlinear in x as it is given by the pointwise minimum of
affine functions in x . Assuming that the initializer is an upper
bound on the exact value function, which can be satisfied if

we choose the fixed point for this purpose (as discussed at
the beginning of Section III), the approximate value function
is an upper bound to the exact value function, as shown in
[9, Proposition 1]. Finally, the advantage of gradient-bounded
DP over nonlinear stochastic dual DP is that only convex
optimization problems must be solved to compute the update,
which makes gradient-bounded DP more resilient against com-
putational stability problems than nonlinear stochastic dual DP,
as shown in Section V.

IV. PROFIT-GENERATION PERFORMANCE CRITERION

Since the profits that all three algorithms generate are
random variables, we can quantify their performance with
probabilistic guarantees by performing validation runs, that is,
by simulating customer decisions forward in time and pricing
based on the most refined approximate value function. Let the
profit that we obtain in each of kmax validation runs be lv (k)
for all k ∈ K := {1, . . . , kmax}. Let [l−, l+] denote the (finite)
support of the distribution of lv (k) for any k ∈ K . In our
case, l+ = V ∗(0) = (d̄ + r)〈1, x̄〉 − C(x̄), where we use
the fixed point from (4) and l− = −C(0). We then compute
the empirical mean as l̄v := k−1

max

∑kmax
k=1 lv (k) and empirical

standard error as σv := [k−1
max

∑kmax
k=1(lv (k) − l̄v )2]1/2. For any

of the three algorithms considered, we can then quantify the
performance of a pricing policy using the maximum of the two
following bounds, presented in [8, Proposition 7], which state
the expected profit which can be guaranteed with confidence
(1−α) ∈ (0, 1) after observing kmax validation samples. Recall
that E denotes the expectation operator and that Pr(·) denotes
the probability of its argument.

Proposition 1: Fix any significance level α ∈ (0, 1). Then
Pr(El̄v ≥ l∗) ≥ 1− α, for all l∗ ∈ {lA, lB}, where

lA := l̄v −
√

2σv ln
(

2
α

)
kmax

− 7(l+ − l−) ln
(

2
α

)
3(kmax − 1)

(10a)

and

lB :=
∫ ∞

l=0
1−min

⎧⎨
⎩1, FK (l)+

√
ln

(
1
α

)
2kmax

⎫⎬
⎭ dl (10b)

where FK denotes the empirical cumulative distribution func-
tion of {lv(k)}k∈K , that is, FK (l) := k−1

max

∑
k∈K �(lv(k) ≥ l),

where � denotes the indicator function.
The proof can be found in [8, Appendix A.6]. Strictly

speaking, we assume non-positive fixed costs C(0) for the
bounds to hold (see [8, Assumption 5]). Hence, we set l− =
−C(0) = 0 for our case study. However, since the fixed costs
do not impact the pricing policy of any of the algorithms
considered, these become irrelevant for our analysis.

V. NUMERICAL EXAMPLES

In Sections V-A and V-B, we present a numerical analy-
sis that compares the three value function approximation
algorithms stated and analyzed in Section III. To this end,
we generate particular instances of the revenue management
problem in attended home delivery presented in Section II.
We use the parameter values in [18] as a base case and
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TABLE I

PARAMETERS OF THE EXACT MODEL

Fig. 2. Delivery sub-area with length L and width W . Crosses indicate
customer locations served in a particular time slot.

modify these parameters to simulate various scenarios and
conduct a sensitivity analysis. In Section V-A, we analyze
the performance of the three algorithms under the assumption
that the model parameters are known accurately. Then, in
Section V-B, we simulate how well the algorithms perform
when they are trained on the data in V-A, but tested on
scenarios where the customer choice parameters differ from
the model.

A. Exact Model Analysis

In this section, we adapt the numerical case study para-
meters from [18] to arrive at the setup defined in Table I.
We use the same step sizes for the affine value function update
(see (7) in Section III-A) as in [18], that is, α1 := 0.0001,
α2 := 0.00025, and α3 := 0.00014. Additionally, we consider
two parameters, which we vary as described further below.

First, we vary the delivery capacity of each time slot by
varying the size of the delivery sub-area under consideration
to simulate urban, suburban, and rural scenarios. Each scenario
has a different value of capacity per delivery time slot x̄ , which
influences the variable delivery cost. In practice, the map-
ping between the characteristics of the delivery sub-area and
the delivery capacity for all delivery time slots depends on
many additional factors, including infrastructure, traffic, and
weather conditions. However, for the purpose of our numerical
analysis, we use a simplified model from [4] and [18], which
derives the delivery slot capacity as follows: Suppose that the
delivery sub-area is rectangular and has length L and width
W , as shown in Fig. 2.

Furthermore, suppose an average delivery truck velocity of
ω = 25 mph and a cost per mile of ξ = £0.25. We assume
that in each delivery time slot, the truck travels back and
forth along the length L of the delivery sub-area; along the
half-width [0, W/2] of the delivery sub-area in one direction
and along the other half-width [W/2, W ] in the other direction.
We then assume that customer locations are random, uniformly
distributed in the delivery sub-area and that the truck travels
Manhattan distances. This implies that the average distance
traveled between two customers along the axis aligned with the
width of the sub-area is one-third times the half-width W/2.

Fig. 3. Computational time to reach 95% of the maximum expected profit
with 99% confidence for each of the three algorithms against demand factor
and delivery slot capacities.

This results in a variable delivery cost of cvar := ξ × W/6,
as shown in [4]. We find W from the condition that, in any
delivery slot, the delivery truck must be able to make x̄
deliveries and an additional assumption that L = 2W . The last
choice is arbitrary and our results do not change qualitatively
for other ratios L/W . The total traveling distance in every
delivery time slot thus becomes ω×1h = 2L+ x̄W/6⇒ W =
ω/(4+ x̄/6). This finally implies that cvar := ξω/(24+ x̄).

Second, we vary the expected demand, that is, the expected
number of customer arrivals on the booking website, given by
λt̄ . Since it is reasonable to keep λ ≈ 0.8 for customer choice
parameter estimation purposes (see [19]), we fix λ = 0.8
and vary t̄ to achieve a total demand level corresponding
to φnx̄ , where nx̄ is the total delivery capacity for all slots
and φ ∈ R is a demand factor, such that φ ∈ � :=
{1/8, 1/4, 1/2, 1, 2, 4, 8}. Hence, t̄ ≈ φnx̄/λ, for all φ ∈ �
and where the approximation comes from rounding t̄ to the
nearest integer. For all scenarios, we compute the profit that
is reached in expectation with confidence 99%, by computing
100 validation samples for each scenario and each algorithm
and using the tighter of the two bounds from Section IV.

In general, we observe that the nonlinear stochastic dual
DP algorithm produces higher expected profits than the affine
value function approximation algorithm, while taking sig-
nificantly more time to compute a good solution. However,
the gradient-bounded DP algorithm exhibits the strengths of
other algorithms: very similar profit generation performance
to nonlinear stochastic dual DP and similar speed to the affine
value function approximation algorithm. For example, Fig. 3
shows the computation time that it takes for the three algo-
rithms to reach at least 95% of their maximum expected profit
with 99% confidence for various demand factors and delivery
time slot capacities. Nonlinear stochastic dual DP always takes
longest to compute out of the three algorithms. Computation
time also tends to increase for nonlinear stochastic dual DP
as demand factor or slot capacity increase. For capacity 20,
it takes about four times longer to compute the solution
for demand factor 8, compared with the other algorithms.
This time factor increases to about 10 as the demand factor
decreases to 1/8.

Affine value function approximation and gradient-bounded
DP take similar time to converge to their respective opti-
mal solutions. Computation time does not vary across slot
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Fig. 4. Expected profits of nonlinear stochastic dual DP (demand factor 8,
slot capacity 12) decrease over time.

capacities for these algorithms for all but one scenario: For
demand factor 1 and slot capacity 6, affine value function
approximation takes twice as long to converge compared with
gradient-bounded DP. A possible explanation is that, for this
particular scenario, it might be computationally involved to
find the optimal affine value function approximation since
for a medium demand factor it is difficult to find a single
affine value function approximation that works well for all
sample paths. Some slots might sell out, some might not,
which increases the need for a more flexible solution that
gradient-bounded DP can provide.

Another issue observed is that the nonlinear stochastic dual
DP algorithm becomes computationally unstable under certain
conditions. For example, for demand factor 8 and slot capacity
12, its profit-generation performance decreases over time as
can be seen in Fig. 4. This might appear counter-intuitive
at first, but is in line with our theoretical analysis from
Section III-B: We conjecture that this is due to the difficulty of
finding global maxima of non-convex optimization problems.
If the algorithm converges to a local maximum, the value
function approximation is no longer guaranteed to be an upper
bound on the exact value function. Over time, this then leads
to a compounding of errors caused by suboptimality, that is,
instead of increasing, the expected profit decreases as more
cuts are added to the approximate value function. A practical
way to circumvent this problem is to compute the expected
profit with 99% confidence after each iteration and to pick the
iteration which produces the maximum expected profit with
99% confidence. In the example of Fig. 4, the best solution is
found after the first iteration—the optimal policy is dominated
by pricing all slots at the maximum charge d̄ for all time
steps, since the high demand factor 8 almost guarantees that
all slots will be sold out for any choice of admissible prices.
Hence, over time invalid cuts accumulate, which results in a
degradation of the profit performance.

Comparing the expected profits obtained between the three
algorithms, we observe that gradient-bounded DP either gen-
erates the highest expected profit with 99% confidence or
is within 1% of the optimal value, when the demand factor
is so high that demand saturates and all three algorithms
perform very similarly. This saturation behavior can be seen
in Fig. 5, where we also show that for demand factors 1 and
lower, gradient-bounded DP produces between 10% and 15%
more expected profit with 99% confidence than affine value
function approximation. At the same time, gradient-bounded

Fig. 5. Expected profits with 99% confidence of the three algorithms against
demand factor, for all delivery slot capacities.

DP performs similar to nonlinear stochastic dual DP in most
scenarios. However, gradient-bounded DP generates up to
10% more profit than nonlinear stochastic dual DP for small
demand factor 1/8 and capacity 6 as well as for large demand
factor 8 across all slot capacities.

Overall, we conclude that gradient-bounded DP performs
best in this exact model experiment, because it outperforms
affine value function approximation in terms of profit gen-
eration while being similarly fast and at the same time,
gradient-bounded DP is more than four times faster than
nonlinear stochastic dual DP while generating very similar
profit.

B. Parameter Sensitivity Analysis

We assume in Section V-A that the customer choice model
parameters are known exactly, which is not the case in practice.
Hence, we now investigate how well the pricing policies
obtained by the three algorithms in Section V-A perform
on perturbed models. To this end, we corrupt the parameter
estimates βc, βd , and {βs}s∈S∪{0} by additive Gaussian noise.
This choice of distribution is justified because, in the limit
as the number of data points used for estimating the customer
choice parameters tends to infinity, the error between estimated
and true customer choice parameter value vector is a Gaussian
with zero mean [17, Ch. 8.6].

We consider three scenarios in which we set the variance of
the Gaussian to σ 2 ∈ {0.01, 0.1, 1}. With these noise levels,
we sample customer choice parameters, which we hold fixed
for all validation runs. Note that we do not have to worry about
normalizing the probability distribution, since the multinomial
choice model is normalized for all possible parameter values.
The numerical values used in our analysis are documented
in [10, Appendix B]. We show how the profit generation
performance of the three algorithms degrades compared with
the ideal scenario in Section V-A in Fig. 6.

As we see in Fig. 6(b) and (c), nonlinear stochastic dual
DP and gradient-bounded DP are both robust against model
uncertainty. Only for σ 2 = 1, there is a substantial degradation
in profit-generation performance. In contrast, Fig. 6(a) shows
that even small uncertainties in the customer choice model
have substantial negative impact on the affine value function
approximation algorithm, decreasing expected profit with 99%
confidence by about an order of magnitude for σ 2 = 1.
We believe that this is due to the lack of state feedback in
the affine value function approximation solution as detailed in
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Fig. 6. Expected profits under perturbed model parameters. Lines: σ 2 =
0.01. Shaded regions: σ 2 increases to 0.1 and 1. (a) Affine value function
approximation. (b) Non-linear stochastic dual dynamic programming. (c)
Gradient-bounded dynamic programming.

Section III-A: For any t ∈ T , the suggested optimal slot price
vector is identical for all x strictly inside the set of feasible
states X , because the affine value function approximation has
constant gradient for all these points. Since the other two
algorithms both generate a piecewise affine approximate value
function, gradients and hence optimal delivery prices vary
depending on the particular state–time pair (x, t) ∈ X × T .

We conclude that both gradient-bounded DP and
nonlinear stochastic dual DP increase their relative
profit-generation advantage over affine value function approx-
imation under imperfect customer choice model parameter
estimates.

VI. CONCLUSION AND FUTURE WORK

In this brief, we analyzed three approximate DP algo-
rithms to find approximately optimal delivery slot prices in
the revenue management problem in attended home delivery.

From a control-theoretical perspective, we identified limita-
tions in the affine value function approximation algorithm
and the nonlinear stochastic dual DP algorithm. We provided
numerical evidence on how gradient-bounded DP can over-
come these limitations. Possible directions for future work
include investigating the numerical performance of these algo-
rithms for other revenue management problems and extending
the promising gradient-bounded DP approach to other cus-
tomer decision models than multinomial logit.
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