
REMARKS AND ERRATA∗

Abstract. We provide some remarks and corrections for “Hamilton–Jacobi Formulation for Reach–Avoid Differential Games”,
Margellos & Lygeros, IEEE Trans. Autom. Control, 56(8), 2011, hereafter referred to as [11].

1. Victory domains. Based on [3], the following two victory domains are considered.
1. Victor’s victory domain is the set (“lower” value problem): there exists a non-anticipative strategy for the
control input (Victor), such that for all time measurable disturbance inputs (Ursula), the solution remains in
some set K for all time instances.
2. Ursula’s victory domain is the complement of the set (“upper” value problem): for all disturbance non-
anticipative strategies (Ursula), for all ε > 0, T ≥ 0, there exists a time measurable control input (Victor), such
that the solution remains in K + εBall, for all time instances up to time T .

Note that in Ursula’s victory domain, K + εBall appears in place of K (to account for the fact that unlike
Victor, Ursula’s victory domain would involve an open set if K is closed). If we only consider K, Example 1
below provides an instance where there exists a non-anticipative strategy for Ursula to leave K for any choice of
Victor, so Ursula’s victory domain would be Rn while 0 belongs to Victor’s victory domain (as shown in the next
subsection). As a result the victory domains would no longer form a partition, and starting at 0 the player that
knows the other’s input (i.e., the one playing a non-anticipative strategy) could win the game.

Example 1 (taken from remark below Theorem 2.3 in [3]): Consider a vector field f(x, u, v) = u + v, with
u, v ∈ [−1, 1], and target set K = {0}. For the following non-anticipative strategy for Ursula there is no control
input for Victor to keep the system state in {0}. Such a strategy is γ[v] = v if v 6= 0, and γ[v] = 1 if v = 0.

2. Discriminating and leadership kernels. Discriminating and leadership kernels are defined either via
inequalities satisfied by the Hamiltonian of the corresponding optimal control problem using non-smooth analysis
techniques (see [3], [6] for infinite horizon problems), or via zero-sublevel sets in the sense {x : V (x, t) ≤ 0} for
“lower” and “upper” value functions – we do not need their explicit characterization but the fact that these are
linked to a Hamilton-Jacobi-Bellman equation [9], [12]. These value functions can be related to Victor’s and the
complement of Ursula’s victory domain, respectively. Kernels and victory domains coincide with each other only
if non-anticipative strategies are used. In fact, Victor’s victory domain is a subset of the discriminating kernel,
while Ursula’s victory domain is a subset of the complement of the leadership kernel, if the corresponding player
is restricted to feedback strategies [4]. Consider the following example [4], [8].

Example 2 : Consider a vector field f(x, u, v) = (1 + |x|)u+ v, with u, v ∈ [−1, 1], and target set K = [−1, 1].
It is shown that under feedback strategies on (x, t), 0 is not included in the victory domain of Victor, while it is
included in the discriminating kernel (see discussion below for a justification). For any feedback strategy v(x, t)
of Victor, the following time measurable strategy for Ursula leaves K in finite time: u(t) = v(0, t) if v(0, t) 6= 0
and u(t) = u0 6= 0 otherwise, where u0 is an arbitrary admissible input. The vector field f(0, u(t), v(0, t)) is never
zero so the state trajectory escapes {0} in finite time. After that time, setting u(t) = x0/‖x0‖ (where x0 is the
state when the trajectory escapes {0}) will guarantee leaving K.

Consider [11] for the reach-avoid variant of the problem, where the role of u and v is reversed. Note also
that the value function V (x, t) = infγ∈Γ[t,T ]

supv∈V[t,T ]
max

{
l(φ(T, x, γ(·), v(·))),maxτ∈[t,T ] h(φ(τ, x, γ(·), v(·)))

}
considered in [11] is a “lower” value function. We introduce the subscript F in RAF (t,R,A) and VF (x, t), when
feedback as opposed to non-anticipative strategies are used. With a proof identical to the sufficiency part of
Proposition 1 in [11], however, using feedback strategies instead, we have that RAF (t,R,A) ⊆ {x : VF (x, t) ≤ 0}.
Notice that for any (x, t), V (x, t) ≤ VF (x, t), since the class of feedback strategies is restricted with respect to
the one of non-anticipative strategies (feedback strategies are non-anticipative and playable in the sense of [2],
Definition 3.1, p. 449) and the control input is minimizing in the definition of V and VF . Hence, we have that
{x : VF (x, t) ≤ 0} ⊆ {x : V (x, t) ≤ 0}, and as a result RAF (t,R,A) ⊆ {x : V (x, t) ≤ 0}. Note that we are
interested in relating RAF (t,R,A) that depends on feedback strategies with V , that in turn depends on non-
anticipative strategies, as the latter is computable as it is the (unique) solution of a quasi-variational inequality
(involving an infinite number – one for each x – of finite dimensional optimization problems). This is established
in Theorem 1 of [11], where non-anticipative strategies are implicitly required in the proof of Theorem 1 therein.

Example 2 offers additional insight on this issue, showing that the established inclusion under feedback
strategies might be strict, namely RAF (t,R,A) ⊂ {x : V (x, t) ≤ 0}. In fact, “0” might not be contained in
RAF (t,R,A) (equivalent to Victor’s victory domain), while it is included in {x : V (x, t) ≤ 0} (equivalent to
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the discriminating kernel for reach-avoid problems). To see the latter notice that V is related to the “lower”
Hamiltonian H(p, x) = supv infu p

>f(x, u, v) which is zero when x is zero as a result of the bang-bang nature
and the symmetry of the problem. In fact, the costate vector is zero in that case, and the value function is
differentiable and satisfies a Hamilton-Jacobi equation in the classical sense, as shown in [8]. At initialization
(terminal condition at time instance T ), “0” is included in the sublevel set of the value function, hence V (0, T ) ≤ 0.

As ∂V (0,t)
∂t + H(p, 0) = ∂V (0,t)

∂t = 0, we obtain that V (0, t) = V (0, T ) ≤ 0 for all t ∈ [0, T ], showing that
0 ∈ {x : V (x, t) ≤ 0}. In fact, x = 0 is a semipermeable barrier [3], [4] (Isaac’s equation), i.e., part of the
boundary of the discriminating kernel but not of the boundary of K, such that for the winning non-anticipative
strategy of Victor, there exists an input for Ursula (in this example for all Ursula’s inputs) so that the system
trajectories stay at the boundary. To see this, notice that the non-anticipative strategy for Victor (u in the
notation of [11]) is γ[v] = −v, for any admissible input v. For x = 0, this results in f = 0, hence trajectories
emanating from x = 0 will never escape that point under the adopted strategies.

3. Value of game. A game has a value if any initial state x belongs exactly to one of the two victory
domains, or in other words if the victory domains form a partition of the space [4]. Under Isaacs condition the
order of the inf (control) and sup (disturbance) operators in the Hamiltonian1 of the optimal control problem can
be reversed without affecting its value. As a result, the “lower” and the “upper” value functions will coincide. The
corresponding zero-sublevel sets will also be the same giving rise to a partition of the space, thus the discriminating
and leadership kernels will be equal to each other. However, the victory domains are not necessarily the same with
the discriminating and leadership kernels (e.g., recall that Victor’s victory domain is a subset of the discriminating
kernel), thus not forming a partition, unless non-anticipative strategies are used (see last paragraph of Section 2,
where we may have RAF (t,R,A) ⊂ {x : V (x, t) ≤ 0}). Therefore, a game has a value if Isaacs condition holds
and non-anticipative strategies are used [3].

4. Existence of a non-anticipative strategy. Consider the setting and notation of [11], where the “lower”
value problem is analyzed (recall that the roles of u and v are reversed here). We point out an omission in the proof
of the second part in Proposition 1 (also in Proposition 2 which follows similar arguments) of [11]. In particular, ε
cannot be set to δ/2 as δ depends on the chosen non-anticipative strategy, which in turn depends on ε. Therefore,
rather than claiming that for all ε > 0, there exists a non-anticipative strategy, existence of a non-anticipative
strategy needs to be ensured in an alternative manner. This can be achieved by invoking the measurable viability
theorem with target [1], and revising the proof according to the necessity part of the proof of Theorem 3 in [6].
To this end, we further need to assume that for all x and v ∈ V , the set

⋃
u f(x, u, v) is convex and compact (see

eq. (17) in [4]); compactness follows from boundedness of f and compactness of U . Alternatively, convexity of
U – Victor’s domain in that notation – and affinity in u could be imposed, but the latter is a stricter condition
[3]. Note that the union is over u, as we effectively require (upon the control non-anticipative strategy is fixed)
that for each v(·), a possibly different u(·) exists such that the reachability specification is met. For the “upper”
value problem this assumption is not required as the order of the quantifiers is reversed, and due to the presence
of the ε-ball in the associated victory domain (see eq. (6) in [3], Assumption 3 in [6]). By Filippov’s theorem
[7], convexity and compactness of

⋃
u f(x, u, v) ensures that the sets reached by the trajectories φ(t, x, γ, v) of the

dynamical system are compact; alternatively, relaxed controls should be employed (see p. 444 in [2] or [5]).
Formally, to show that {x : V (x, t) ≤ 0} ⊆ RA(t,R,A), it is assumed for the sake of contradiction that

x 6∈ RA(t,R,A), hence for all γ, there exists v such that l(φ(T, x, γ, v)) > 0, where l(·) encodes the reach set; no
need to introduce δ > 0. A similar reasoning applies for the time that the system trajectories enter the avoid
set, replacing l(·) with the function h(·) that encodes the avoid set. However, by the fact that V (x, t) ≤ 0, there
exists a sequence of εk > 0 tending to zero as k → ∞, such that for each εk, there exists γk, such that for
all v, l(φ(T, x, γk, v) ≤ εk (equivalently, “for all v there exists uk that gives rise to a non-anticipative strategy
γk”, hence we are interested in convexity and compactness of

⋃
u f(x, u, v)). By the convexity and compactness

1In the definition of the Hamiltonian the order of the inf and sup operators is reversed compared to the one in the corresponding
value function definition (see p. 434 in [2]). To see this, take as an example the value function V (x, t) considered in [11]. The inner
operator (sup) is taken with respect to time measurable functions for the disturbance, while the outer operator (inf) is with respect
to non-anticipative strategies for the control (which are functions of the opponent’s time measurable input); in the Hamiltonian both
operators are with respect to the same class, namely the set of valuations of each player’s input. Intuitively, once a non-anticipative
strategy is fixed, then the disturbance makes a choice (plays first) and the control tailors its action to it (plays second) according to
the chosen strategy, hence for each disturbance a possibly different control exists. Thinking of the Hamiltonian of the same problem,
the inner operator is inf (control) and the outer is sup (disturbance), thus control is parametric with respect to disturbance, consistent
with the order of play following the definition of V (x, t). Like weak duality, sup inf ≤ inf sup, thus justifying the fact that sup inf in
the Hamiltonian is related to the “lower” value function V (x, t). As the discriminating kernel is the zero-sublevel set of V (x, t), it is
always a superset (or equal) to the leadership kernel, since it corresponds to a lower value function, and hence a larger sublevel set.
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assumption, reachable sets are compact, hence there exists a subsequence such that φ(T, x, γk, v) converges to a
system trajectory φ(T, x, γ, v) (corresponding to some non-anticipative strategy γ) across this subsequence. Since
l(·) is Lipschitz continuous with Lipschitz constant Cl > 0, we have that

0 < l(φ(T, x, γ, v)) ≤ l(φ(T, x, γk, v)) + Cl‖φ(T, x, γk, v)− φ(T, x, γ, v)‖(4.1)

≤ εk + Cl‖φ(T, x, γk, v)− φ(T, x, γ, v)‖.

Taking the limit k → ∞ across the aforementioned subsequence, we have that 0 < l(φ(T, x, γ, v)) ≤ 0, thus
establishing a contradiction. This proof line follows the one adopted for single input reachability problems in [10].

The convexity assumption is omitted from [11] (it is only needed for the proofs of Propositions 1 and 2, while
it is not required in the proofs of Theorems 1 and 2 therein), and [12], while in [9] the statement does not require
such an assumption as the sets are assumed to be open and a single input setting is considered. In fact, such an
assumption is not needed in reachability or invariance calculations in single input problems – it appears to be
needed when having an interplay of existential and universal quantifiers as in two player games involving viability
or controlled invariance (also in reach-avoid) computations.

To synthesize the players’ strategies, we need to determine the optimizers of the associated Hamiltonian.
These are state feedback strategies (depending on the costate vector) apart from singular cases where for the
game to have a value we need to rely on knowledge of the current opponent’s strategy, thus constructing a non-
anticipative strategy. As an example, in the pathological situation in Example 2 where the costate vector is zero
at x = 0, for any admissible control/disturbance 0 ∈ {x : V (x, t) ≤ 0} (multiple optimizers exist), however, only
for the optimizers corresponding to the non-anticipative strategy 0 ∈ RA(t,R,A). From a numerical point of
view this is typically not a consideration as such singular points are often of measure zero, as in Example 2.

5. Correction to proof of Theorem 1 in [11]. Note that the equation above (10), pp. 1853, should be

(5.1) sup
v(·)∈V[t0,t0+δ3]

h(φ(τ0, t0, x0, γ(·), v(·))) = sup
v(·)∈V[t0,t0+δ3]

max
τ∈[t0,t0+δ3]

h(φ(τ, t0, x0, γ(·), v(·))).

This in turn implies that maxτ∈[t0,t0+δ3] h(φ(τ, t0, x0, γ(·), v̂(·))) 6= h(φ(τ0, t0, x0, γ(·), v̂(·))), as τ0 is the time
where h is maximized across the worst-case v(·) and not only for v̂(·). However, all statements remain valid if we
maximize with respect to time τ0 prior to fixing the strategy in the equation below (10), Case 1.1, Part 1, proof of
Theorem 1 (similarly for Case 1.2). By Lemma 1, and since supv(·)∈V[t0,τ0]

maxτ∈[t0,τ0] h(φ(τ, t0, x0, γ(·), v(·))) ≤
supv(·)∈V[t0,t0+δ3]

maxτ∈[t0,t0+δ3] h(φ(τ, t0, x0, γ(·), v(·))) as 0 < τ0 ≤ t0 + δ3, we have the first inequality below,

V (x0, t0) ≤ sup
v(·)∈V[t0,t0+δ3]

[
max

{
max

τ∈[t0,t0+δ3]
h(φ(τ, t0, x0, γ(·), v(·))), V (φ(τ0, t0, x0, γ(·), v(·)), τ0)

}]
(5.2)

= sup
v(·)∈V[t0,t0+δ3]

[
max

{
h(φ(τ0, t0, x0, γ(·), v(·))), V (φ(τ0, t0, x0, γ(·), v(·)), τ0)

}]
≤ max

{
h(φ(τ0, t0, x0, γ(·), v̂(·))), V (φ(τ0, t0, x0, γ(·), v̂(·)), τ0)

}
+ ε,

where the eequality is by exchanging sup−max and due to (5.1), and the last inequality is since for any ε > 0, we
can choose v̂(·) ∈ V[t0,t0+δ3] such that the inequality holds. This issue does not appear in single-input problems.
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