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On the Connection Between Compression Learning and Scenario
Based Single-Stage and Cascading Optimization Problems

Kostas Margellos, Maria Prandini, and John Lygeros

Abstract—We investigate the connections between compression
learning and scenario based optimization. We first show how to
strengthen, or relax the consistency assumption at the basis of
compression learning and provide novel learnability conditions for
the underlying algorithms. We then consider different constrained
optimization problems affected by uncertainty represented by
means of scenarios. We show that the compression learning per-
spective provides a unifying framework for scenario based opti-
mization, since the issue of providing guarantees on the probability
of constraint violation reduces to a learning problem for an appro-
priately chosen algorithm that satisfies some consistency assump-
tion. To illustrate this, we revisit the scenario approach within
the developed context. Moreover, using the compression learning
machinery we provide novel results on the probability of con-
straint violation for the class of cascading optimization problems.

Index Terms—Compression learning, consistent algorithms,
randomized optimization, scenario approach, statistical learning
theory.

I. INTRODUCTION

Optimal decision making in the presence of uncertainty is impor-
tant for the efficient and economic operation of systems affected by
endogenous, or exogenous uncertainties. One approach to deal with
uncertainty is through robust optimization. In this case, a decision
is made such that the constraints are satisfied for all admissible
values of the uncertainty [2]. Tractability of the developed techniques
relies heavily on the geometry of the uncertainty set. On the other
hand, chance constrained optimization allows for constraint violation
but with an a-priori specified probability [3], [4]. In [5] and [6],
different approximations to such problems are proposed under certain
assumptions on the for the underlying probability distribution and on
the dependency of the constraints on the uncertainty.

In many cases, however, we are only provided with data, e.g.,
historical values of the uncertainty. Therefore, research has been
devoted towards the development of a data driven decision making
paradigm. Under such a set-up, an alternative to robust optimization is
scenario based optimization, which involves solving an optimization
problem whose constraints depend only on a finite number of uncer-
tainty instances called “scenarios”. It does not require any specific
assumption on the probability distribution of the uncertainty neither

Manuscript received March 4, 2014; revised November 21, 2014 and
January 8, 2015; accepted January 15, 2015. Date of publication January 21,
2015; date of current version September 23, 2015. This work was supported
by the European Commission under the projects MoVeS and SPEEDD.
Recommended by Associate Editor C. Seatzu.

K. Margellos is with the Department of Industrial Engineering and Op-
erations Research, UC Berkeley, Berkeley, CA 94720 USA (e-mail: kostas.
margellos@berkeley.edu).

M. Prandini is with the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, Milano 20133, Italy (e-mail: prandini@
elet.polimi.it).

J. Lygeros is with the Department of Information Technology and Elec-
trical Engineering, ETH Zürich, Zürich 8092, Switzerland (e-mail: lygeros@
control.ee.ethz.ch).

Digital Object Identifier 10.1109/TAC.2015.2394874

on the way in which the uncertainty enters the problem, but gener-
alizes the properties of the solution to unseen uncertainty instances,
providing guarantees on the probability of constraint satisfaction. For
problems that are convex with respect to the decision variables the so
called scenario approach [7]–[9] and subsequent contributions [10],
[11], offers an already mature theoretical framework for analyzing the
generalization properties of the optimal solution. In the non-convex
case, tools from statistical learning [12]–[14] based on the Vapnik-
Chervonenkis (VC) theory offer guarantees on the probability that any
feasible solution of a scenario based optimization problem satisfies the
constraints of the original program [15]–[17].

In this technical note we explore the links between learning theory
and the scenario approach [7]–[9], without resorting to VC theoretic
results. To this end, we exploit the results of [1] and consider com-
pression learning algorithms, which are based on an alternative notion
of learning under an assumption referred to as consistency. A formal
definition of consistency will be given in the next section; roughly
speaking it refers to the empirical agreement between a set that we seek
to learn and our estimate for this set. Our contributions are threefold: 1)
We first show how using ideas from the scenario approach theory one
can strengthen or relax the consistency assumption which is at the basis
of the learning algorithms in [1]. This allows us to extend the key theo-
rem (Theorem 6) of [1] and provide novel learnability conditions (The-
orems 3, 4) for a general class of algorithms, not necessarily related to
scenario based optimization. 2) The compression learning perspective
provides a unifying framework for scenario based optimization since it
reveals sufficient conditions for providing guarantees on the probabil-
ity of constraint satisfaction. In particular, we show that the latter can
be equivalently thought of as a learning problem for an appropriately
chosen algorithm. In this context we revisit the scenario approach [7]–
[9] and show how the existing probabilistic feasibility bounds follow
from our compression learning results. 3) Using the compression
learning machinery we address the problem of providing guarantees on
the probability of constraint satisfaction for the class of cascading op-
timization problems. Such problems arise in different contexts, yet, to
the best of our knowledge, providing probabilistic bounds on the fea-
sibility of the system constraints has proven to be elusive (e.g., [18]).

Section II introduces the notion of compression and provides certain
learnability conditions. In Section III the learning theoretic results are
related to scenario based optimization. Section IV deals with cascading
optimization and Section V provides some concluding remarks. All
omitted proofs can be found in [19].

II. LEARNING RESULTS

A. Compression Learning

We start by describing some learning concepts and results from [1].
We consider problems affected by an uncertain parameter δ, which is
a vector of nδ elements, taking values in some set Δ ⊆ R

nδ , endowed
with a σ-algebra D. Let P be a probability measure defined over D.
Throughout the technical note we impose the following assumption.

Assumption 1: For m ∈ N, let {δi}mi=1 be a collection of m samples
δi ∈ Δ extracted according to P. Assume that all samples are i.i.d.

We refer to {δi}mi=1 as an m-multisample. For any C ∈ D let 1lC(·) :
Δ → {0, 1} be the standard indicator function of C, i.e., 1lC(δ) = 1
if δ ∈ C and zero otherwise. Denote by T ∈ D a fixed but possibly
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unknown target set for which we assume that an oracle is available,
providing the labeling 1lT (δ) for any δ ∈ Δ. In Section III, we consider
as target set the entire uncertainty space; this is a case where T may be
unknown and only historical data of the uncertainty may be available.
The following basic definitions are adapted from [15], where elements
of D are referred to as concepts.

Definition 1. [Labeled m-Multisample]: Consider an m-
multisample and a target set T ∈ D. A labeled m-multisample
is the collection {(δi, 1lT (δi))}mi=1 ∈ [Δ× {0, 1}]m.

The labeled multisample is a description of the possibly unknown
target set and contains pairs of samples and labels, where the label
dictates whether the corresponding sample belongs to the target set.

Definition 2. [Consistent Hypothesis]: Consider a labeled m-
multisample and a target set T ∈ D. An element H ∈ D is called
hypothesis. H is said to be consistent with {(δi, 1lT (δi))}mi=1 if and
only if 1lH(δi) = 1lT (δi), for all i = 1, . . . ,m.

Definition 2 implies that H is a consistent hypothesis if it provides
the same labeling of δi, i = 1, . . . ,m, as the target set T . The error
of H as an approximation of the target set T can then be quantified
through the probability measure of the set of uncertainty instances δ ∈
Δ such that H and T give a different label. This error can be encoded
by the measure of the symmetric difference (Chapter 2.2.2 of [15]) of
T and H , i.e., dP(T,H) = P(δ ∈ Δ : 1lH(δ) �= 1lT (δ)), where dP(·, ·)
takes as arguments two sets and returns a probability.

Definition 3. [Algorithm]: An algorithm is an indexed family
of maps {Am}m≥m0

for some m0 ∈ N. The map Am : [Δ×
{0, 1}]m → D takes as input a labeled m-multisample and returns a
hypothesis Am({(δi, 1lT (δi))}mi=1).

The objective is to construct an approximation of the unknown
target set T by constructing an algorithm such that the hypothesis
Hm = Am({(δi, 1lT (δi))}mi=1) is consistent with the m-multisample.
Since Hm depends on the extracted multisample, it is a random
quantity defined on the product space Δm with measure P

m. We
can therefore state the quality of the obtained approximation only
probabilistically, determining the probability with respect to P

m with
which the approximation error dP(T,Hm) exceeds a given threshold.

Definition 4: Let T ∈ D be a target set. Suppose there exists
m0 ∈ N so that the algorithm {Am}m≥m0

generates hypotheses
{Hm}m≥m0

such that for any ε ∈ (0, 1), m ≥ m0

P
m {(δ1, . . . , δm) ∈ Δm : dP(T,Hm) > ε} ≤ q(m, ε) (1)

for some function q(m, ε) : N× (0, 1) → [0, 1] such that
limm→∞ q(m, ε) = 0. Algorithm {Am}m≥m0

is then said to
be Probably Approximately Correct for the target set T (PAC-T).

The statement of Definition 4 is clearly related to PAC learnability
[15] (p. 56), where some C ⊆ D is considered and an algorithm is said
to be PAC for C if (1) holds uniformly over target sets T ∈ C. Here,
we restrict attention to a specific target set in view of the analysis of
Section III. For details the reader is referred to [13], [15].

Fix d ∈ N and consider m ≥ d. We shall denote by Id =
{i1, . . . , id} a set of d indices from {1, . . . ,m} and by Id the set of
cardinality

(
m
d

)
containing all Id sets with d indices.

Theorem 1. [Thm. 5 in [1]]: Let T ∈D be a target set. Fix d∈N,
consider m>d and denote by Gd : [Δ×{0, 1}]d→D a map that, for
any Id∈Id, takes as input the labeled d-multisample {(δi,1lT (δi))}i∈Id

and returns a hypothesis1 HId = Gd({(δi, 1lT (δi))}i∈Id
) consistent

with {(δi, 1lT (δi))}i∈Id
. Then, for any ε ∈ (0, 1) and any m ≥ d

P
m {(δ1, . . . , δm) ∈ Δm : there exists Id ∈ Id such that

HId is consistent with {(δi, 1lT (δi))}mi=1

and dP(T,HId) > ε
}
≤
(
m
d

)
(1− ε)m−d. (2)

1Unlike Hm, the subscript of HId is not an integer, but a set. The interpre-
tation is that HId is the output of Gd when fed with {δi}i∈Id

.

Since for a fixed d, limm→∞
(
m
d

)
(1− ε)m−d = 0, Theorem 1 im-

plies that for a sufficiently high number of samples m, the probability
that there exists a subset Id with cardinality d of the m samples such
that the hypothesis HId generated by Gd is consistent with respect to
all m samples (i.e., it agrees with the target set on the m-multisample)
but the approximation error exceeds ε is low. On the other hand, as
m → d the statement of the theorem is trivial and implies that the left-
hand side of (2) tends to one, i.e., if we use all samples to construct the
hypothesis, then consistency with respect to the labeled multisample
does not posses any generalization properties. This theorem was stated
in [1] in the context of sample compression, where the map Gd is
referred to as the compression function.

Assumption 2: Let T ∈ D be a target set. Assume that there exists
d and Gd : [Δ× {0, 1}]d → D such that:

1) For all Id ∈ Id, HId is consistent with {(δi, 1lT (δi))}i∈Id
.

2) With P
m-probability one, for any {(δi, 1lT (δi))}mi=1 with m ≥

d, there exists Id ∈ Id such that HId = Gd({(δi, 1lT (δi))}i∈Id
)

is consistent with {(δi, 1lT (δi))}mi=1.

The second part of Assumption 2 is an empirical generalization
statement, since a hypothesis constructed using only d samples is con-
sistent with the entire m-multisample. Its first part is trivially satisfied
for the optimization problems of the next section. Let the map md :
[Δ× {0, 1}]m → Id return a set of d indices such that Gd({(δi,
1lT (δi))}i∈md

) is consistent with the entire {(δi, 1lT (δi))}mi=1. Con-
struct the algorithm {Am}m≥d, where Am : [Δ× {0, 1}]m → D
takes as input a labeled m-multisample and returns a hypothesis
Hm = Am({(δi, 1lT (δi))}mi=1) = Gd({(δi, 1lT (δi))}i∈md

). We often
refer to the set md({(δi, 1lT (δi))}mi=1) without its argument. It will
always be clear from the context whether md refers to the underlying
map or to the set of indices md({(δi, 1lT (δi))}mi=1). We then have the
following theorem, which is stated in [1] without a proof; we provide
the proof in the Appendix.

Theorem 2. [Thm. 6 in [1]]: Let T ∈ D be a target set. Under
Assumption 2, {Am}m≥d is PAC-T with q(m, ε) =

(
m
d

)
(1− ε)m−d.

B. Strengthening the Consistency Assumption

We show how Assumption 2 can be strengthened, allowing us to
tighten the bound in Theorem 2. Our analysis builds on [8] and [9],
and enables us to extend the learning theoretic results of [1].

Assumption 3: Let T ∈ D be a target set. Assume that there exists
d and Gd : [Δ× {0, 1}]d → D such that:

1) For all Id ∈ Id, HId is consistent with {(δi, 1lT (δi))}i∈Id
.

2) With P
m-probability one, for any {(δi, 1lT (δi))}mi=1 with

m ≥ d, there exists a unique Id ∈ Id such that HId =
Gd({(δi, 1lT (δi))}i∈Id

) is consistent with {(δi, 1lT (δi))}mi=1.

The addition over Assumption 2 is that the set Id ∈ Id for which
the requirements of Assumption 3 are satisfied is unique. Define md,
{Am}m≥d as in Section II-A and note that, under Assumption 3, md :

[Δ× {0, 1}]m → Id is uniquely defined in this case.
Theorem 3: Let T ∈ D be a target set. Under Assumption 3,

{Am}m≥d is PAC-T with q(m, ε) =
∑d−1

i=0

(
m
i

)
εi(1− ε)m−i and in

particular (1) holds with equality.
Theorem 3 constitutes a tighter version of Theorem 2 and the result

holds with equality for problems that satisfy Assumption 3. The proof
of Theorem 3 is similar to the second part of the proof of Theorem 1
in [8], and relies on the fact that, under Assumption 3, the sets
{(δ1, . . . , δm) ∈ Δm: HId is consistent with {(δi, 1lT (δi))}mi=1}, for
all Id ∈ Id with HId = Gd({(δi, 1lT (δi))}i∈Id

) form a partition of
Δm up to a set of measure zero (see [19] for more details).

C. Relaxing the Consistency Assumption

We now relax Assumption 2 and study its effect on Theorem 2.
Motivated by [9], [20], we show how “sampling-and-discarding” ideas
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from scenario based optimization can be incorporated in the set-up of
Section II-A, enriching the analysis of [1]. Fix r, d ∈ N and consider
m ≥ d+ r. Given a set Ir ∈ Ir , let Im−r

d with cardinality
(
m−r

d

)
contain all sets Id with d indices from {1, . . . ,m} \ Ir .

Assumption 4: Let T ∈ D be a target set. Assume that there exists
d and Gd : [Δ× {0, 1}]d → D such that:

1) For all Ir ∈ Ir and Id ∈ Im−r
d , HId is consistent with

{(δi, 1lT (δi))}i∈Id
.

2) With P
m-probability one, for any {(δi, 1lT (δi))}mi=1 with m ≥

d+ r, for all Ir ∈ Ir there exists Id ∈ Im−r
d such

that HId = Gd({(δi, 1lT (δi))}i∈Id
) is consistent with

{(δi, 1lT (δi))}i∈{1,...,m}\Ir .
3) With P

m-probability one, for any {(δi, 1lT (δi))}mi=1 with m ≥
d+ r, there exists Ir ∈ Ir such that for any Id ∈ Im−r

d that
satisfies the first two parts of the assumption, HId = Gd({(δi,
1lT (δi))}i∈Id) is not consistent with {(δi,1lT (δi))}, for all i∈Ir .

The relaxation compared to Assumption 2 is that we now allow
HId = Gd({(δi, 1lT (δi))}i∈Id

) to be inconsistent with r elements of
the labeled m-multisample. Suppose that Assumption 4 is satisfied and
denote by Īr ∈ Ir the set of indices such that the third part of the
assumption holds. Let m̄r

d : [Δ× {0, 1}]m → Id be the map that for
each labeled m-multisample {(δi, 1lT (δi))}mi=1 returns a set of
d indices for which the corresponding hypothesis Gd({(δi, 1lT ×
(δi))}i∈m̄r

d
) is consistent with {(δi, 1lT (δi))}i∈{1,...,m}\Īr and is not

consistent with (δi, 1lT (δi)), for all i ∈ Īr . Construct {Am}m≥d+r ,
where Am : [Δ× {0, 1}]m→D takes as input a labeled m-
multisample and returns a hypothesis Hm=Am({(δi, 1lT (δi))}mi=1) =
Gd({(δi, 1lT (δi))}i∈m̄r

d
).

Theorem 4: Let T ∈ D be a target set and fix r ∈ N.
Under Assumption 4, {Am}m≥d+r is PAC-T with q(m, ε) =(
m
d

)∑r

i=0

(
m−d

i

)
εi(1− ε)m−d−i.

The proof of Theorem 4 follows closely the proof of Theorem 2.1
in [20], but it is not concerned with optimization problems. It requires
also modifying the last part of the proof of Theorem 2.1 in [20],
which involves integration by parts of a quantity that depends on
the bound of Theorem 2, instead of the one of Theorem 3. We can
strengthen Assumption 4 by requiring the set Id ∈ Im−r

d that satisfies
its requirements to be unique. Theorem 4 holds then with q(m, ε) =(
r+d−1

r

)∑r+d−1

i=0

(
m
i

)
εi(1− ε)m−i. This result is then identical to

the one obtained in an optimization context in [20]. The possibility of
learning while being inconsistent with a certain fraction of the samples
is mentioned in [1], but to the best of our knowledge no specific results
in this direction have been published.

III. CONNECTION TO OPTIMIZATION

A. Scenario Based Optimization as a Learning Problem

We show how scenario based optimization can be thought of as a
learning problem in the sense of Section II-A. To this end consider the
robust optimization problem

P : min
x∈X

cTx subject to : g(x, δ) ≤ 0, ∀δ ∈ Δ (3)

where X ⊂ R
nx , c ∈ R

nx and g : X ×Δ → R. Note that nx denotes
the number of elements of the vector x ∈ X . As in Section II, assume
that Δ is endowed with a σ-algebra and a probability measure P. We
consider here only one scalar-valued constraint function without loss
of generality; in case of multiple constraint functions gj : X ×Δ →
R, j = 1, . . . , nc, we can set g(x, δ) = maxj=1,...,nc gj(x, δ). Con-
sidering a linear objective function is also without loss of generality;
in case of a generic objective function, an epigraphic reformulation can
be employed [7].

Problem P is generally difficult to solve when Δ is a continuous set.
We replace Δ by the discrete set {δi}mi=1 ∈ Δm, where the m samples

are extracted i.i.d according to P, and

P
[
{δi}mi=1

]
:min
x∈X

cTx subject to : g(x, δ)≤0, ∀δ∈{δi}mi=1. (4)

where P[{δi}mi=1] is known as a scenario program corresponding to
P . In the set-up of Section II, let T = Δ be the target set, so that
1lT (δ) = 1 for all δ ∈ Δ. Fix d ∈ N and consider m ≥ d and any map
xd : Δd → X . Define then Gd : [Δ× {0, 1}]d → D such that for any
Id ∈ Id, it returns a hypothesis HId constructed as

HId =Gd

(
{(δi, 1lT (δi))}i∈Id

)
=

{
δ ∈ Δ : g

(
xd

(
{δi}i∈Id

)
, δ
)
≤ 0

}
. (5)

Since T = Δ, for any Id ∈ Id, dP(T,HId) is the probability
of constraint violation, i.e., dP(T,HId) = P({δ ∈ Δ : δ �∈ HId}) =
P({δ ∈ Δ : g(xd({δi}i∈Id

), δ) > 0}). Suppose that d, Gd are
such that Assumption 2 is satisfied. Then there exists a set
of indices md({(δi, 1lT (δi))}mi=1) ∈ Id such that Hmd

= {δ ∈ Δ :
g(xd({δi}i∈md

), δ) ≤ 0} is consistent with {(δi, 1lT (δi))}mi=1. Note
that Assumption 2 implicitly requires Hmd

to be non-empty, since it
must include {δi}mi=1. This implies that xd({δi}i∈md

) is feasible for
P[{δi}mi=1].

Lemma 1: Let T =Δ be the target set and consider Assumption 2.
Let xm : Δm → X be such that xm({δi}mi=1) = xd({δi}i∈md

) for
a set md({(δi, 1lT (δi))}mi=1) ∈ Id that satisfies the second part of
Assumption 2. Then, for any ε ∈ (0, 1), P

m{(δ1, . . . , δm) ∈ Δm :

P(δ ∈ Δ : g(xm({δi}mi=1), δ) > 0) > ε} ≤
(
m
d

)
(1− ε)m−d.

Lemma 1 shows that under Assumption 2, for any feasible solution
xm of P[{δi}mi=1] such that xm({δi}mi=1) = xd({δi}i∈md

), we can
provide probabilistic feasibility guarantees. With probability at least
1−

(
m
d

)
(1− ε)m−d, xm satisfies (3) except for a set with P-measure

at most ε. The proof of Lemma 1 is based on showing that an
algorithm is PAC-T for T = Δ. This algorithm can be constructed
as {Am}m≥d, where Am : [Δ× {0, 1}]m → D is such that Hm =

Am({(δi, 1lT (δi))}mi=1) and Hm = Hmd
, where Hm = {δ ∈ Δ : g ×

(xm({δi}mi=1), δ) ≤ 0}. Hm = Hmd
is equivalent to xm({δi}mi=1) =

xd({δi}i∈md
). The latter is satisfied in the set-up of Section III-B and

the other cases in [19].
Replacing Assumption 2 with Assumption 3, Lemma 1 remains

valid with its bound replaced by the one of Theorem 3; in fact the
result will hold with equality. One can also relax Assumption 2 (see
discussion at the end of Section II-C) such that the bound of Lemma 1
is replaced by

(
r+d−1

r

)∑r+d−1

i=0

(
m
i

)
εi(1− ε)m−i. The interpretation

of a hypothesis that is not consistent with some elements of the multi-
sample in an optimization context is that we allow for some of the
constraints to be violated. For problems that are convex with respect to
the decision variables, this procedure is referred to as sampling-and-
discarding in [20] and as constraint removal in [9].

B. The Scenario Approach

We next consider the set-up of the scenario approach as proposed in
[7]. We show that by appropriately selecting the constraint functions
of P[{δi}mi=1] and the map xm : Δm → X , Assumption 2 is satisfied,
obtaining feasibility guarantees by virtue of Lemma 1.

Assumption 5: The set X ⊂ R
nx is convex and for any δ ∈ Δ,

the constraint function g(·, δ) is convex. For any m-multisample, the
feasibility region {x ∈ X : g(x, δ) ≤ 0, ∀δ ∈ {δi}mi=1} of P[{δi}mi=1]
has a non-empty interior and the minimizer of P[{δi}mi=1] exists and
is unique.

The uniqueness and the feasibility part of the assumption can be
relaxed as shown in [8], [9]. However, we keep these assumptions
here to simplify the presentation. Under Assumption 5, let xm be the
minimizer of P[{δi}mi=1] and note that xm belongs to the feasibility
region of P[{δi}mi=1]. The scenario approach is based on the notion of
support constraints. A constraint in P[{δi}mi=1] is said to be a support
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constraint, if its removal results in an improvement in the objective
value (see also Definition 4 in [7]). In [9], under the convexity part of
Assumption 5, it is shown that, with P

m-probability one, the number
of support constraints is bounded by the so called Helly’s dimension.
In [7], [8] it is shown that Helly’s dimension is upper-bounded by nx,
whereas in [10], [11], an improved bound based on the dimension of
the unconstrained decision space is provided. The subsequent analysis
is valid for any upper bound on the number of support constraints.
Therefore, let the number of support constraints be at most ζ < ∞.

Lemma 2: Let T = Δ be the target set and consider
Assumption 5. Fix d = ζ and consider m ≥ d. For any Id ∈ Id,
let Gd : [Δ× {0, 1}]d → D return a hypothesis HId = {δ ∈ Δ : g ×
(xd({δi}i∈Id), δ) ≤ 0}, where xd is the minimizer of P[{δi}i∈Id

].
Gd then satisfies Assumption 2.

Under Lemma 2, there exists md({(δi, 1lT (δi))}mi=1) ∈ Id with d =
ζ such that Hmd

= {δ ∈ Δ : g(xd({δi}i∈md
), δ) ≤ 0} is consistent

with {(δi, 1lT (δi))}mi=1. As shown in the proof of Lemma 2, the set
md({(δi, 1lT (δi))}mi=1) for which Assumption 2 is satisfied is such
that xd({δi}i∈md

) = xm({δi}mi=1), where xm is the unique (under
Assumption 5) minimizer of P[{δi}mi=1]. Therefore, the bound of
Lemma 1 holds. Such a conclusion is identical to Theorem 1 of [7]
(with nx in place of ζ).

An improved bound is given in Theorem 1 of [8]. To recover this,
in addition to Assumption 5 assume that P[{δi}mi=1] is such that, with
P
m-probability one, the number of support constraints is equal to ζ.

The following cases can then be distinguished: 1) In the particular case
where d=ζ=nx, we have the class of fully supported problems [8].
Considering problems where P[{δi}mi=1] has exactly ζ support con-
straints is a sufficient condition for Assumption 3 to be satisfied (see
[19, Prop. 4]). In that case the bound of Lemma 1 can be replaced by
the bound of Theorem 3. Moreover, the result would be tight and would
hold with equality. 2) If the problem does not have exactly ζ support
constraints almost surely, we can still obtain similar probabilistic guar-
antees following [8], [9]. Specifically, if a problem is non-degenerate
and has at most ζ support constraints, then by a procedure called
regularization [9], [10], it can be transformed to a different problem
with exactly ζ support constraints. One can then bound the probability
in the left-hand side of the bound of Lemma 1 by the probability
of constraint violation for the regularized problem, which is equal to∑ζ−1

i=0

(
m
i

)
εi(1−ε)m−i. 3) If the problem does not have exactly ζ sup-

port constraints almost surely, but is degenerate, the aforementioned
bound is still valid, as shown in [8] using a “heating-cooling” procedure.

IV. CASCADING OPTIMIZATION PROBLEMS

We consider here the class of cascading optimization problems
and show how we can employ the learning theoretic machinery of
Section II-A to obtain guarantees on the probability of satisfying
the constraints in all problems in the cascade. Every problem in the
cascade is a scenario program that depends on the solution of the
preceding problem, while the same uncertainty scenarios are used
in all problems in the cascade. Such problems arise in different
contexts (e.g., multi-objective optimization, bilinear descent type of
algorithms, approximate dynamic programming), yet, to the best of our
knowledge, obtaining guarantees on the probability of simultaneous
satisfaction of the constraints of all problems in the cascade has proven
to be elusive. Our analysis provides such guarantees for a cascade of
two problems, but our results can be immediately extended to any finite
number of cascading problems.

For any m ∈ N, consider the following family of problems:

P̃
[
x, {δi}mi=1

]
: min
y∈Y

c̃T y subject to : g̃(y, x, δ) ≤ 0,

∀δ ∈ {δi}mi=1 (6)

which is parametric in the vector of decision variables x ∈ X of an
optimization problem of the form of P[{δi}mi=1] in (4), Y ⊂ R

ny , c̃ ∈

R
ny , and g̃ : Y × X ×Δ → R. Note that ny denotes the number of

elements of the vector of decision variables y ∈ Y .
Assumption 6: Suppose that P[{δi}mi=1] satisfies Assumption 5.

The set Y ⊂ R
ny is convex and for any x ∈ X and any δ ∈ Δ,

the constraint function g̃(·, x, δ) is convex. For any x ∈ X and any
m-multisample {δi}mi=1, the feasibility region {y ∈ Y : g̃(y, x, δ) ≤
0, ∀δ ∈ {δi}mi=1} of P̃[x, {δi}mi=1] has a non-empty interior and the

minimizer of P̃[x, {δi}mi=1] exists and is unique.
Under Assumption 6, Lemma 2 implies that Assumption 2 is

satisfied for some d1 ∈ N, Gd1 : [Δ× {0, 1}]d1 → D, which for any
Id1 ∈ Id1 returns the hypothesis HId1

={δ ∈ Δ:g(xd1({δi}i∈Id1
),

δ) ≤ 0}, where xd1 : Δd1 → X is the minimizer of P[{δi}i∈Id1
].

Similarly, for any x ∈ X , Assumption 2 is also satisfied for some
d2 ≤ ny , G̃d2 [x] : [Δ× {0, 1}]d2 → D, which for any Id2 ∈ Id2 re-

turns the hypothesis H̃Id2
[x] = G̃d2 [x]({(δi, 1lT (δi))}i∈Id2

) = {δ ∈
Δ : g̃(yd2 [x]({δi}i∈Id2

), x, δ) ≤ 0}, where yd2 [x] : Δ
d2 → Y is the

unique, under Assumption 6, minimizer of P̃[x, {δi}i∈Id2
].

Lemma 3: Let T =Δ be the target set and consider Assumption 6.
Fix d = d1 + d2 and consider m ≥ d. For any Id ∈ Id, construct Gc

d :
[Δ× {0, 1}]d → D as in (7). Gc

d then satisfies Assumption 2.

Gc
d

(
{(δi, 1lT (δi))}i∈Id

)
= HId ∩ H̃Id

[
xd

(
{δi}i∈Id

)]
=
{
δ ∈ Δ :

(
g
(
xd

(
{δi}i∈Id

)
, δ
)
≤ 0

)
and

(
g̃
(
yd

[
xd

(
{δi}i∈Id

)] (
{δi}i∈Id

)
,

xd

(
{δi}i∈Id

)
, δ
)
≤ 0

)}
. (7)

Lemma 3 shows that if there exist a compression function for
two optimization problems, then there exists a compression func-
tion for the cascade of these problems. Under Lemma 3, there ex-
ists md({(δi, 1lT (δi))}mi=1) ∈ Id such that the hypothesis Hc

md
=

Gc
d({(δi, 1lT (δi))}i∈md

) is consistent with {(δi, 1lT (δi))}mi=1.
Theorem 5: Let T =Δ be the target set and consider Assumption 6.

Fix d = d1 + d2 and consider m ≥ d. Then, for any ε ∈ (0, 1)

P
m {(δ1, . . . , δm) ∈ Δm : P (δ ∈ Δ : (g(xm, δ) > 0)

or (g̃ (ym[xm], xm, δ) > 0)) > ε} ≤
(
m

d

)
(1− ε)m−d (8)

where xm and ym[xm] are the minimizers of P[{δi}mi=1] and

P̃[xm, {δi}mi=1], respectively.
Note that, in a scenario approach context, d is the sum of the number

of support constraints of each problem in the cascade. Theorem 5
provides a bound on the probability with which xm, ym violate
either the constraints of P[{δi}mi=1], or the constraints of P̃[xm,
{δi}mi=1]. Its proof is based on showing that an algorithm, {Am}m≥d,
is PAC-T for the target set T = Δ. This algorithm comprises Am :
[Δ× {0, 1}]m → D such that Hm = Am({(δi, 1lT (δi))}mi=1) and
Hm = Hc

md
. The hypothesis Hm is defined as Hm = {δ ∈ Δ :

(g(xm, δ) ≤ 0) or (g̃(ym[xm], xm, δ) ≤ 0)}. Ensuring that Hm =
Hmd

is equivalent to xm({δi}mi=1) = xd({δi}i∈md
) and ym[xm]×

({δi}mi=1) = yd[xd]({δi}i∈md
). The latter follows from the proof of

Lemma 2. We refer to {Am}m≥d as cascading algorithm since it is
constructed based on a cascade of two sequentially dependent hypothe-
ses. We only need to invoke Assumption 6 in the proof of Lemma 3 and
Theorem 5, where a by-product of Lemma 2 is employed. In [19] we
discuss how this assumption can be relaxed.

Note that, under Assumption 6, we need P̃[x, {δi}mi=1] to be feasible
for any x ∈ X . To relax this requirement consider the set F = {(δ1,
. . . , δm) ∈ Δm :∀x∈{x∈X : g(x, δ) ≤ 0, ∀δ ∈ {δi}mi=1}, {y ∈ Y :
g̃(y, x, δ) ≤ 0, ∀δ ∈ {δi}mi=1} �= ∅}. F is a restriction of Δm on the
set of multisamples for which the second problem in the cascade has
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a non-empty feasibility region (feasibility of the first one is ensured
under Assumption 5), not for any x ∈ X , but for any x ∈ {x ∈ X :
g(x, δ) ≤ 0, ∀δ ∈ {δi}mi=1}, i.e., for any x for which the first problem
in the cascade is feasible. The result of Theorem 5 will then still hold
if we replace Δm with F in (8).

Theorem 5 implies that the solution comprising the solutions of the
individual problems in the cascade is feasible for the constraints of
both problems. It follows then directly from (8) that the probability
of constraint violation for each of the two problems is also bounded
by the quantity on the right-hand side of (8). Note that the second
problem in the cascade is allowed to have an arbitrary dependence
on x (see Assumption 6). One example of a problem with constraint
functions that are not jointly convex with respect to x and y can
be found in bilinear descent type of algorithms. Suppose we seek to
minimize some convex objective function subject to constraints that
should hold for all δ ∈ {δi}mi=1, and the constraint functions are bi-
convex with respect to x and y. One way to deal with this is to follow
an iterative algorithm with an a-priori fixed number of iterations,
alternating between optimization problems that involve either x or
y, having the other decision vector fixed to the value obtained at the
preceding iteration. Alternatively, since the problem is non-convex, to
provide guarantees in the form of (8) one should resort to VC theory,
which involves, however, the computation of an upper bound of the
VC dimension, which is not necessarily easy to determine.

Another important feature of the proposed approach is that in
both P[{δi}mi=1] and P̃[x, {δi}mi=1] the same samples {δi}mi=1 are
used. This is required, for example, in the stochastic model predictive
control context considered in [18], where a cascade of two scenario
programs was formulated to address the multi-objective nature of the
problem, but the violation properties of the resulting solution were
not discussed. The first problem in the cascade was in the form of
P[{δi}mi=1] (satisfying Assumption 5) with the constraint function
encoding the input constraints. At the second problem in the cascade,
a bound on the system sate was introduced and was considered as a
decision variable. The objective was to minimize this (soft) bound,
subject to both input and state constraints and the additional constraint
cT y ≤ cTxm + α, where xm is the minimizer of the first problem,
y includes the decision variables of the second problem and α > 0
is a pre-specified degradation parameter. The second problem is then
also in the form of P[{δi}mi=1], and it is necessary to use the same
samples with the first one to ensure feasibility. This two-step approach
allows us to relax the state constraints by deciding upon their bound
in the second problem in the cascade, while ensuring that the objective
value deteriorates at most by a fixed amount α compared to the value
obtained at the first problem. This set-up fits our cascading framework
with ny = nx + 1 (the additional variable is due to the soft bound) and
F = Δm. Using the same samples for both problems in the cascade is
not only crucial for feasibility purposes. In bilinear descent type of
algorithms, using the same samples at every problem in the cascade,
the objective function is confined to decrease at every iteration of the
algorithm. For more applications and comparison with other scenario-
based implementations, the reader is referred to [21].

Unfortunately, for cascading problems we cannot provide the
tighter bound of Theorem 3. Even if we replace Assumption 2 with
Assumption 3 in Lemma 3, there does not necessarily exists a unique
set Id ∈ Id with d = d1 + d2 such that the map Gc

d, constructed as in
Lemma 3, satisfies Assumption 3 (see also the construction of a set Id
that satisfies Assumption 2 in the proof of Lemma 3). However, one
can relax Assumption 2 in Theorem 5 to Assumption 4 and replace
the right-hand side of (8) according to Theorem 4. To ensure that the
obtained solution violates the removed constraints, thus satisfying the
last part of Assumption 4, we can follow the sampling and discarding
procedure outlined in [8]. Removing a sample according to this pro-
cedure results in a reduction in the objective value of the optimization
problem involved. In the cascading set-up, however, we have multiple
objective functions and since both problems in the cascade are based

on the same samples {δi}mi=1, removing a sample affects the con-
straints in both problems. If for example we are interested, as in most
applications, in the value of the last problem in the cascade, then re-
moving a sample does not necessarily lead to a reduction in that objec-
tive value, since it may result in a different solution of the first problem
in the cascade, which in turn affects the solution of the second problem.
To incorporate this requirement in the removal procedure, we eliminate
a sample only if it results in a reduction in the objective value of the
subproblem of interest.

V. CONCLUDING REMARKS

We considered a compression learning paradigm for algorithms
that satisfy some consistency assumption. It was shown how using
results from the scenario approach we can strengthen or relax this
assumption, providing novel learnability conditions for a general class
of algorithms, not necessarily related to optimization. Concentrated on
scenario based optimization problems we then showed that guarantees
on the probability of constraint violation can be provided by treating
them as learning problems. We also showed how one can exploit the
developed machinery to provide guarantees on the probability of con-
straint satisfaction for the class of cascading optimization problems.
These novel results demonstrate how compression learning can prove
useful for scenario based multi-objective and sequential optimization
problems. Our developments extend also to other cases, like those in
[22]. Details can be found in [19].

APPENDIX

Proof of Theorem 2: Consider any ε ∈ (0, 1). Under Assumption 2,
let md({(δi, 1lT (δi))}mi=1) ∈ Id be such that the hypothesis Hmd

=
Gd({(δi, 1lT (δi))}i∈md

) is consistent with {(δi, 1lT (δi))}mi=1. Then,
P
m{(δ1, . . . , δm)∈Δm :dP(T,Hmd

)>ε}=P
m{(δ1, . . . , δm)∈Δm :

Hmd
is consistent with {(δi, 1lT (δi))}mi=1 and dP(T,Hmd

)>ε}. Now
since the last term is upper bounded by P

m{(δ1, . . . , δm)∈Δm :
∃Id ∈ Id such that HId is consistent with {(δi, 1lT (δi))}mi=1 and dP(T,
HId) > ε}, by Theorem 1, we have that P

m{(δ1, . . . , δm) ∈ Δm :

dP(T,Hmd
) > ε} ≤

(
m
d

)
(1− ε)m−d. Set q(m, ε)=

(
m
d

)
(1− ε)m−d.

Since
(
m
d

)
≤
∑d

i=0

(
m
i

)
≤ (me/d)d (the second inequality is

due to Lemma 4.3 of [15]), we have that limm→∞ q(m, ε) ≤
limm→∞(me/d)d(1− ε)m−d = 0. Therefore, limm→∞ q(m, ε)=0.
Construct then algorithm {Am}m≥d, where Am : [Δ× {0, 1}]m →
D returns a hypothesis Hm = Am({(δi, 1lT (δi))}mi=1) such that
Hm = Hmd

. By Definition 4, algorithm {Am}m≥d is PAC-T. �
Proof of Lemma 1: Under Assumption 2, Hmd

={δ∈Δ:g(xd ×
({δi}i∈md

), δ)≤0} is consistent with {(δi, 1lT (δi))}mi=1. This implies
that xd({δi}i∈md

) belongs to the feasibility region of P[{δi}mi=1].
Consider an algorithm {Am}m≥d, where Am : [Δ×{0, 1}]m→
D is such that Hm=Am({(δi, 1lT (δi))}mi=1) with Hm={δ∈Δ:
g(xm({δi}mi=1), δ)≤0}. Moreover, by the assumption of the lemma
xm({δi}mi=1)=xd({δi}i∈md

), which entails that Hm=Hmd
=

Gd({(δi, 1lT (δi))}i∈md
), for Gd defined according to (5). Theorem 2

implies then that {Am}m≥d is PAC-T with q(m, ε)=
(
m
d

)
(1−ε)m−d.

The latter, together with the fact that, since T =Δ, dP(T,Hm)=
P({δ∈Δ:g(xm({δi}mi=1), δ) > 0}), concludes the proof. �

Proof of Lemma 2: Fix d=ζ and consider m≥d. By the defini-
tion of the support constraints, and under Assumption 5, with P

m-
probability one, there exists md({(δi, 1lT (δi))}mi=1)∈Id such that
xm({δi}mi=1)=xd({δi}i∈md

) [8], where xm, xd denote the unique
(under Assumption 5) minimizers of P[{δi}mi=1] and P[{δi}i∈md

],
respectively. The solution xd({δi}i∈md

) satisfies all constraints that
correspond to samples whose indices are not included in md({(δi,
1lT (δi))}mi=1), otherwise we would not have xd({δi}i∈md

)=xm. In
other words, g(xd({δi}i∈md

), δi)≤0 for all i∈{1, . . . ,m}\md. But,
since xd({δi}i∈md

) is the optimal solution of P[{δi}i∈md
] it will
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satisfy its constraints, i.e., g(xd({δi}i∈md
), δi)≤0 for all i∈md.

Therefore, g(xd({δi}i∈md
), δi)≤0 for all i∈{1, . . . ,m} and since

Hmd
={δ∈Δ:g(xd({δi}i∈md

), δ)≤0}, we have that 1lHmd
(δi)=

1, for all i=1, . . . ,m. The last statement, together with the fact
that T =Δ, implies that Hmd

=Gd({(δi, 1lT (δi))}i∈md
) is consistent

with {(δi, 1lT (δi))}mi=1, showing the second part of Assumption 2.
It remains to show the first part of Assumption 2. For any Id ∈ Id,

since xd({δi}i∈Id
) is the minimizer of P[{δi}i∈Id

] it will satisfy its
constraints, i.e., g(xd({δi}i∈md

), δi) ≤ 0 for all i ∈ Id. By definition,
it then follows that HId is consistent with {(δi, 1lT (δi))}i∈Id

. �
Proof of Lemma 3: Under Assumption 5, Assumption 2 holds for

d1∈N, Gd1 : [Δ×{0, 1}]d1 →D, i.e., ∃md1({δi}
m
i=1)∈Id1 : Hmd1

=

Gd1({(δi, 1lT (δi))}i∈md1
) is consistent with {(δi, 1lT (δi))}mi=1.

Since Hmd1
= {δ ∈ Δ : g(xd1({δi}i∈md1

), δ) ≤ 0}

g
(
xd1

(
{δi}i∈md1

)
, δi

)
≤ 0, for all i = 1, . . . ,m. (9)

Moreover, under Assumption 6, for all x ∈ X , Assumption 2
is satisfied for d2 ∈ N, G̃d2 [x] : [Δ× {0, 1}]d2 → D. This im-
plies that, for all x ∈ X , there exists md2 [x]({δi}

m
i=1) ∈ Id2 such

that the hypothesis H̃md2
[x][x] = G̃d2 [x]({(δi, 1lT (δi))}i∈md2

[x])

is consistent with {(δi, 1lT (δi))}mi=1. Since H̃md2
[x][x] = {δ ∈ Δ :

g̃(yd2 [x]({δi}i∈md2
[x], x, δ)) ≤ 0}, for any x ∈ X

g̃
(
yd2 [x]

(
{δi}i∈md2

[x], x, δi

))
≤ 0, for all i = 1, . . . ,m. (10)

Set d = d1 + d2 and consider m ≥ d. Choose a set of indices
md({(δi, 1lT (δi))}mi=1) ∈ Id such that md({(δi, 1lT (δi))}mi=1) ⊇
md1({(δi, 1lT (δi))}

m
i=1) ∪md2 [xd1({δi}i∈md1

({(δi,1lT (δi))}mi=1
))]({(δi,

1lT (δi))}mi=1). We do not have equality since some indices may belong
to both md1 and md2 [x], implying that some constraints are of support
for both problems. Recall that xd1({δi}i∈md1

) is the minimizer of

P[{δi}i∈md1
] used to construct Hmd1

. For simplicity, we do not show

the argument ({δi}mi=1) of md1 , md2 [xd1({δi}i∈md1
)]. As shown

in the proof of Lemma 2, since md ⊇ md1 , xd({δi}i∈md
) =

xd1({δi}i∈md1
). Therefore, (9) implies that g(xd({δi}i∈md

), δi)≤0,

for all i = 1, . . . ,m. We also have that md⊇md2 [xd1({δi}i∈md1
)] =

md2 [xd({δi}i∈md
)], with the equality due to the fact that

xd({δi}i∈md
) = xd1({δi}i∈md1

). Similarly to the previous case,

as shown in the proof of Lemma 2, yd[xd({δi}i∈md
)]({δi}i∈md

) =

yd2 [xd({δi}i∈md
)]({δi}i∈md2

[xd({δi}i∈md
)]). By (10) we then have

that g̃(yd[xd({δi}i∈md
)]({δi}i∈md

), xd({δi}i∈md
), δi)) ≤ 0, for all

i = 1, . . . ,m. Therefore, for all i = 1, . . . ,m

g
(
xd

(
{δi}i∈md

)
, δi

)
≤ 0

and g̃
(
yd
[
xd

(
{δi}i∈md

)](
{δi}i∈md

)
, xd

(
{δi}i∈md

)
, δi)

)
≤0.

(11)

Since T = Δ, (11), (7) imply that Gc
d({(δi, 1lT (δi))}i∈md

) = Hmd
∩

H̃md
[xd({δi}i∈md

)] is consistent with {(δi, 1lT (δi))}mi=1. To con-
clude the proof it remains to show the first part of Assumption 2; this
is done as in the proof of Lemma 2. �

Proof of Theorem 5: Under Assumption 6, Lemma 3 im-
plies that Gc

d satisfies Assumption 2. Then, there exists md({(δi,
1lT (δi))}mi=1) ∈ Id such that Hc

md
= {δ ∈ Δ : (g(xmd

, δ) ≤ 0) and
(g̃(ymd

[xmd
], xmd

, δ) ≤ 0)} is consistent with {(δi, 1lT (δi))}mi=1.
Consider an algorithm {Am}m≥d, where Am : [Δ× {0, 1}]m → D
is such that Hm = Am({(δi, 1lT (δi))}mi=1) with Hm = {δ ∈ Δ :

(g(xm, δ)≤0) and (g̃(ym[xm], xm, δ)≤0)}. Under Assumption 6,
from the proof of Lemma 2 we have xm({δi}mi=1) = xd({δi}i∈md

),
ym[xm]({δi}mi=1) = yd[xd]({δi}i∈md

) and hence Hm = Hc
md

=

Gc
d({(δi, 1lT (δi))}i∈md

). By Theorem 2, {Am}m≥d is then PAC-T

with q(m, ε) =
(
m
d

)
(1− ε)m−d. The latter, together with the

fact that, since T = Δ, dP(T,Hm) = P(δ ∈ Δ : (g(xm, δ) > 0)
or (g̃(ym[xm], xm, δ) > 0)), leads to (8). �
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