
REMARKS AND OMITTED PROOFS∗

Abstract. We provide remarks and omitted proofs from “On the Connection Between Compression Learning and Scenario Based
Single-Stage and Cascading Optimization Problems”, Margellos, Prandini & Lygeros, IEEE Trans. Autom. Control, 60(10), 2015.

1. Proof of Theorem 1. The proof of this theorem is based on the proof of Theorem 5 in [1], and The-
orem 1 in [7]. Without loss of generality fix Id = {1, . . . , d} ∈ Id and let (δ1, . . . , δd) in ∆̄d = {(δ1, . . . , δd) ∈
∆d : dP(T,HId) > ε}, where ε ∈ (0, 1). We have that

P
{
δ ∈ ∆ : HId is consistent with

(
δ,1T (δ)

)
and dP(T,HId) > ε

}
(1.1)

= P
{
δ ∈ ∆ : HId is consistent with

(
δ,1T (δ)

)}
= 1− dP(T,HId) ≤ 1− ε,

where the first step follows from the fact that dP(T,HId) does not depend on δ but only on (δ1, . . . , δd) ∈ ∆̄d,
and the second step follows from the definition of a consistent hypothesis (Definition 2). In fact, the inequality
in (1.1) is strict as dP(T,HId) > ε. Since the samples are extracted independently we have that

Pm−d
{

(δd+1, . . . , δm) ∈ ∆m−d : HId is consistent with
{(
δi,1T (δi)

)}m
i=d+1

and dP(T,HId) > ε
}

(1.2)

= Pm−d
{

(δd+1, . . . , δm) ∈ ∆m−d : HId is consistent with
{(
δi,1T (δi)

)}m
i=d+1

}
=

m∏
j=d+1

P
{
δj ∈ ∆ : HId is consistent with

(
δj ,1T (δj)

)}
≤ (1− ε)m−d,

where the first equality is due to the fact that dP(T,HId) does not depend on δd+1, . . . , δm, and since by the
theorem’s hypothesis, HId is consistent with

{(
δi,1T (δi)

)}
i∈Id

. However, (1.2) can be rewritten by the following

conditional probability as ∆̄d is a cylinder set with base the cartesian product of the domains of the first d
multi-sample elements (since it is independent of {δi}mi=d+1), i.e.,

Pm
{{

(δ1, . . . , δm) ∈ ∆m : HId is consistent with
{(
δi,1T (δi)

)}m
i=1

} ∣∣∣ {(δ1, . . . , δd) ∈ ∆̄d
}}

(1.3)

≤ (1− ε)m−d.

Deconditioning, we get

Pm
{

(δ1, . . . , δm) ∈ ∆m : HId is consistent with
{(
δi,1T (δi)

)}m
i=1

and dP(T,HId) > ε
}

(1.4)

≤
∫

∆d

(1− ε)m−d1{
(δ1,...,δd)∈∆̄d

}dPd
(
{δi}i∈Id

)
≤ (1− ε)m−d.

The left-hand side of (2) in the statement of Theorem 1 can be then expressed as follows

Pm
{ ⋃
Id∈Id

{
(δ1, . . . , δm) ∈ ∆m : HId is consistent with

{(
δi,1T (δi)

)}m
i=1

and dP(T,HId) > ε
}}

(1.5)

≤
∑
Id∈Id

Pm
{

(δ1, . . . , δm) ∈ ∆m : HId is consistent with
{(
δi,1T (δi)

)}m
i=1

and dP(T,HId) > ε
}

≤
(
m

d

)
(1− ε)m−d,

concluding the proof (the first inequality is by the subadditivity of Pm and the second one due to (1.4)). If ∆̄d

was empty, then the corresponding term in the summation would be zero, thus bounded by (1− ε)m−d.
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2. Proof of Theorem 3. The proof of this theorem is based on the first part of the proof of Theorem 1
in [8]. Without loss of generality fix Id = {1, . . . , d} ∈ Id. Let V : ∆d → [0, 1] be a random variable such
that V ({δi}di=1) = dP(T,HId) for all {δi}di=1 ∈ ∆d. For v ∈ [0, 1] denote its probability distribution function by

F (v) = Pd
{
{δi}di=1 ∈ ∆d : dP(T,HId) ≤ v

}
= Pd

{
V −1

(
[0, v]

)}
= PdV

{
V ≤ v

}
, where PdV denotes the image

probability of Pd through V , defined over the Borel σ-algebra on [0, 1] (see Chapter 2 in [Campi, Selected Topics
in Probability, Lecture Notes, 2008]). We used that, for a < b, V −1

(
[a, b]

)
=
{
{δi}di=1 ∈ ∆d : V ({δi}di=1) ∈ [a, b]

}
.

By the first part of Assumption 3 and due to the fact that for a fixed (δ1, . . . , δd) ∈ ∆d, dP(T,HId) =
V ({δi}di=1), (1.3) becomes

Pm
{{

(δ1, . . . , δm) ∈ ∆m : HId is consistent with
{(
δi,1T (δi)

)}m
i=1

} ∣∣∣ {(δ1, . . . , δd) ∈ ∆d
}}

(2.1)

=
(

1− V ({δi}di=1)
)m−d

.

Deconditioning and using the equivalences between a probability and its image, (2.1) yields then

Pm
{

(δ1, . . . , δm) ∈ ∆m : HId is consistent with
{(
δi,1T (δi)

)}m
i=1

}
(2.2)

=

∫
∆d

(
1− V ({δi}di=1)

)m−d
dPd

(
{δi}i∈Id

)
=

∫ 1

0

(1− v)m−d dF (v).

By Assumption 3 the sets
{{

(δ1, . . . , δm) ∈ ∆m : HId is consistent with
{(
δi,1T (δi)

)}m
i=1

}}
Id∈Id

form a parti-

tion of ∆m up to a set of measure zero1. Since there are
(
m
d

)
sets in Id, we have that

(
m
d

)
Pm
{

(δ1, . . . , δm) ∈

∆m : HId is consistent with
{(
δi,1T (δi)

)}m
i=1

}
= 1, which due to (2.2) leads to(

m

d

) ∫ 1

0

(1− v)m−d dF (v) = 1, for all m ≥ d =⇒ F (v) = vd,(2.3)

where the F (v) above is the unique solution satisfying the previous identities. This is due to [8], based on the
fact that this is a moment problem for a distribution with finite support ([0, 1] here); see, e.g., Chapter 2, Section
12.9, Corollary 1 of [A. Shiryaev, Probability, Springer, 1996]. It can be verified using integration by parts. In
place of (1.4) we thus have

Pm
{

(δ1, . . . , δm) ∈ ∆m : HId is consistent with
{(
δi,1T (δi)

)}m
i=1

and dP(T,HId) > ε
}

(2.4)

=

∫
∆d

Pm
{{

(δ1, . . . , δm) ∈ ∆m : HId is consistent with
{(
δi,1T (δi)

)}m
i=1

}
∣∣∣ {(δ1, . . . , δd) ∈ ∆d : dP(T,HId) > ε

}}
1{

V −1
(

(ε,1]
)} dPd

(
{δi}i∈Id

)
=

∫
∆d

(
1− V ({δi}di=1)

)m−d
1{

V −1
(

(ε,1]
)} dPd

(
{δi}i∈Id

)
=

∫ 1

ε

(1− v)m−ddF (v) =

∫ 1

ε

(1− v)m−ddvd−1dv,

where we used (2.1)2, since we still condition on some fixed δ1, . . . , δd, and (2.3) as dF (v) = dvd−1 dv.

1To see this, for all Id ∈ Id let SId =
{

(δ1, . . . , δm) ∈ ∆m : HId is consistent with
{(
δi,1T (δi)

)}m
i=1

}
. We first show that

Pm
{

(δ1, . . . , δm) ∈ ∆m : ∆m\∪Id∈IdSId

}
= 0. Equivalently, ∪Id∈IdSId = ∆m up to a set of measure zero. Since ∪Id∈IdSId ⊆ ∆m,

we show that ∪Id∈IdSId ⊇ ∆m, i.e. if (δ1, . . . , δm) ∈ ∆m then there exists Id ∈ Id such that (δ1, . . . , δm) ∈ SId . With Pm-probability
one, the last statement follows from Assumption 3 and the definition of SId . We now show that SI1

d
∩SI2

d
= ∅ for all I1d , I

2
d ∈ Id with

I1d 6= I2d . For the sake of contradiction assume that there exist I1d , I
2
d ∈ Id with I1d 6= I2d such that SI1

d
∩ SI2

d
6= ∅. By the definition

of SI1
d
, SI2

d
, this implies that there exists (δ1, . . . , δm) ∈ ∆m such that both HI1

d
and HI2

d
are consistent with

{(
δi,1T (δi)

)}m
i=1

.

However, by Assumption 3 a unique hypothesis consistent with respect to the m-multisample should exist almost surely, establishing
a contradiction up to a measure zero set.

2Alternatively, we could see this by setting A = {(δ1, . . . , δm) ∈ ∆m : HId is consistent with
{(
δi,1T (δi)

)}m
i=1
}, B = (ε, 1], and

writing (2.4) as Pm{A ∩ {V ∈ B}} =
∫
B Pm{A|V = v} dF (v) (see [A. Shiryaev, Probability, Springer, 1996], Chapter 2, Section 7.5,

eq. (17)). Noticing then that due to (2.1), Pm{A|V = v} = (1− v)m−d the last statement yields the result in (2.4).
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Notice now that the first inequality in (1.5) holds with equality since the union in the left-hand side of (1.5)
is disjoint as by Assumption 3 the associated sets form a partition of ∆m almost surely. We thus have

Pm
{ ⋃
Id∈Id

{
(δ1, . . . , δm) ∈ ∆m : HId is consistent with

{(
δi,1T (δi)

)}m
i=1

and dP(T,HId) > ε
}}

(2.5)

=

(
m

d

)∫ 1

ε

(1− v)m−ddvd−1dv =

d−1∑
i=0

(
m

i

)
εi(1− ε)m−i,

where the last equality follows by repeated integration by parts [8], and is the cumulative distribution of a binomial
random variable. By the second part of Assumption 3, there exists a unique md

(
δi,1T (δi)

)
∈ Id such that Hmd

is a consistent hypothesis. Eq. (2.5) is thus Pm
{

(δ1, . . . , δm) ∈ ∆m : dP(T,Hmd
) > ε

}
, concluding the proof.

3. Proof of Theorem 4. The proof of this theorem is based on the proof of Theorem 2.1 in [20]. Fix any

r ∈ N and Ir ∈ Ir, and let mr
d

({(
δi,1T (δi)

)}
i∈{1,...,m}\Ir

)
be a set of d indices satisfying the first two parts of

Assumption 4. Letting V
(
{δi}i∈{1,...,m}\Ir

)
= dP(T,Hmr

d
), we have

P
{
δ ∈ ∆ : Hmr

d
is not consistent with

(
δ,1T (δ)

)}
= dP(T,Hmr

d
) = V

(
{δi}i∈{1,...,m}\Ir

)
.(3.1)

Since the samples are extracted independently we have that

Pr
{
{δj}j∈Ir ∈ ∆r : Hmr

d
is not consistent with

{(
δj ,1T (δj)

)}
j∈Ir

}
(3.2)

=
∏
j∈Ir

P
{
δj ∈ ∆ : Hmr

d
is not consistent with

(
δj ,1T (δj)

)}
= V

(
{δi}i∈{1,...,m}\Ir

)r
.

Let F̄ (v) = Pm−r
{
{δi}i∈{1,...,m}\Ir ∈ ∆m−r : dP(T,Hmr

d
) ≤ v

}
denote the distribution function of V . Similarly

to (2.4) in the proof of Theorem 3, we then have that

Pm
{

(δ1, . . . , δm) ∈ ∆m : Hmr
d

is not consistent with
{(
δi,1T (δi)

)}
i∈Ir

and dP(T,Hmr
d
) > ε

}
(3.3)

=

∫ 1

ε

Pm
{{

(δ1, . . . , δm) ∈ ∆m : Hmr
d

is not consistent with
{(
δi,1T (δi)

)}
i∈Ir

}
∣∣∣ V ({δi}i∈{1,...,m}\Ir) = v

}
dF̄ (v)

=

∫ 1

ε

vrdF̄ (v).

Construct the algorithm
{
Am−r

}
m−r≥d, such that Am−r

({(
δi,1T (δi)

)}
i∈{1,...,m}\Ir

)
= Hm−r = Hmr

d
. By Theo-

rem 1, since mr
d satisfies the second part of Assumption 4, with m− r in place of m and v in place of ε, we have

that the constructed algorithm is PAC-T, hence for any v ∈ (0, 1),

Pm−r
{
{δi}i∈{1,...,m}\Ir ∈ ∆m−r : dP(T,Hmr

d
) > v

}
≤
(
m− r
d

)
(1− v)m−r−d(3.4)

=⇒ F̄ (v) ≥ F (v) := 1−
(
m− r
d

)
(1− v)m−r−d.

We then have that∫ 1

ε

vrdF̄ (v) ≤
∫ 1

ε

vrdF (v) =

∫ 1

ε

(m− r − d)

(
m− r
d

)
vr(1− v)m−r−d−1dv(3.5)

=

(
m− r
d

)
1(

m−d
r

) r∑
i=0

(
m− d
i

)
εi(1− ε)m−d−i,

where the first equality is due to the definition of F (v), and the second one follows by repeated integration by
parts. To see the inequality, notice that∫ 1

ε

vrdF̄ (v) = 1− εrF̄ (ε)−
∫ 1

ε

F̄ (v)rvr−1dv(3.6)

≤ 1− εrF (ε)−
∫ 1

ε

F (v)rvr−1dv =

∫ 1

ε

vrdF (v),
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where the equality follows from Theorem 11, Chapter 2, Section 6.11 of [A. Shiryaev, Probability, Springer, 1996],
since vr is an increasing function of v, hence it is treated as a generalized distribution (see also [20]). The inequality
is since F̄ (v) ≥ F (v) by (3.4). Intuitively, F̄ (v) ≥ F (v) is a dominance condition for cumulative distributions,
implying that F is concentrated to higher values compared to F̄ (if they admit a density, the density of F is also

concentrated to higher values); hence, the associated expected value (
∫ 1

ε
vrdF (v) is related to the expected value

of an increasing function of v) would be higher compared to the one corresponding to F̄ .
Consider the third part of Assumption 4. Denote then by Īr ∈ Ir the associated set of indices, and let

m̄r
d

({(
δi,1T (δi)

)}
i∈{1,...,m}\Īr

)
be a set of d indices such that Hm̄r

d
= Gd

({(
δi,1T (δi)

)}
i∈m̄r

d

)
is not consistent

with
{(
δi,1T (δi)

)}
i∈Īr

. Since this happens with Pm-probability one, we have the first inequality (this is not

equality since Īr is not necessarily unique) below, i.e.,

Pm
{

(δ1, . . . , δm) ∈ ∆m : dP(T,Hm̄r
d
) > ε

}
(3.7)

≤ Pm
{ ⋃
Ir∈Ir

{
(δ1, . . . , δm) ∈ ∆m : Hmr

d
is not consistent with

{(
δi,1T (δi)

)}
i∈Ir

and dP(T,Hmr
d
) > ε

}}
≤
(
m

r

)(
m− r
d

)
1(

m−d
r

) r∑
i=0

(
m− d
i

)
εi(1− ε)m−d−i =

(
m

d

) r∑
i=0

(
m− d
i

)
εi(1− ε)m−d−i,

where the second inequality is by the subadditivity of Pm since there are
(
m
r

)
sets in the union, and by (3.3)

and (3.5). Set q(m, ε) =
(
m
d

)∑r
i=0

(
m−d
i

)
εi(1 − ε)m−d−i. Similarly to the last part of the proof of Theorem 2,

limm→∞ q(m, ε) = 0. Construct then algorithm
{
Am
}
m≥d+r

, where Am : [∆ × {0, 1}]m → D takes as input

a labeled m-multisample and returns a hypothesis Hm = Am
({(

δi,1T (δi)
)}m
i=1

)
such that Hm = Hm̄r

d
. By

Definition 4, algorithm
{
Am
}
m≥d+r

is PAC-T, thus concluding the proof.

4. Tightening Theorem 4. If we strengthen Assumption 4 by further requiring that the set Id ∈ Im−rd that

satisfies its conditions is unique, we could replace the right-hand side of (3.7) with
(
r+d−1
r

)∑r+d−1
i=0

(
m
i

)
εi(1−ε)m−i.

The proof of this fact is identical to the one of Theorem 4, with the difference that (3.4) is replaced by F̄ (v) =

F (v) := 1−
∑d−1
i=0

(
m−r
i

)
vi(1− v)m−r−i. Eq. (3.5) would then hold with equality, however, the final result would

still hold with inequality due to the inequalities in (3.7).
Specializing this in a convex scenario optimization context, adopt an algorithm that removes the samples with

indices in Īr, and generates a hypothesis Hm̄r
d

such that dP(T,Hm̄r
d
) is the probability of constraint violation. We

further require that Hm̄r
d

is inconsistent with the removed samples (i.e., the associated minimizer violates the
constraints for the removed samples), and for any given (δ1, . . . , δm), dP(T,Hm̄r

d
) ≤ dP(T,Hmr

d
) for any set Ir in

the family of sets of inconsistent hypotheses3. In words, we consider a conservative design, removing samples that
lead to the lowest probability of constraint violation. We then have that,

(
r + d− 1

r

)
Pm
{

(δ1, . . . , δm) ∈ ∆m : dP(T,Hm̄r
d
) > ε

}(4.1)

=

∫
∆m

1{
(δ1,...,δm): dP(T,Hm̄r

d
)>ε
} ∑
Ir∈Ir

1{
(δ1,...,δm): Hmr

d
is not consistent with

{(
δi,1T (δi)

)}
i∈Ir

} dPm
(
{δi}mi=1

)
≤
∫

∆m

∑
Ir∈Ir

1{
(δ1,...,δm): Hmr

d
is not consistent with

{(
δi,1T (δi)

)}
i∈Ir

}1{
(δ1,...,δm): dP(T,Hmr

d
)>ε
} dPm

(
{δi}mi=1

)
=
∑
Ir∈Ir

Pm
{

(δ1, . . . , δm) ∈ ∆m : Hmr
d

is not consistent with
{(
δi,1T (δi)

)}
i∈Ir

and dP(T,Hmr
d
) > ε

}

=

(
r + d− 1

r

) r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i,

3For the class of fully-supported scenario programs, for each (δ1, . . . , δm),
(r+d−1

r

)
denotes the number of sets of r samples, such

that the minimizer obtained upon removing the samples in any of these sets violates the constraints corresponding to all r samples of
that set; see Theorem 4.1 in [Gaertner & Welzl, “A Simple Sampling Lemma: Analysis and Applications in Geometric Optimization”,
Discrete Comput. Geom. vol. 35, pp. 569-590, 2001], and Theorem 2.3 in [Matusek, “On Geometric Optimization with Few Violated
Constraints”, Discrete Comput. Geom. vol. 14, pp. 365-384, 1995]. Figure 4.1 provides a pictorial illustration of this fact.
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x1

x2

x1

x2

x1

x2optimization

direction

optimization

direction

optimization

direction

Fig. 4.1. Pictorial example of a convex scenario program with nx = 2 decision variables, x1, x2 ∈ R, and m = 4 samples
giving rise to V -shaped constraints. The downwards pointing arrow indicates the optimization direction, i.e., minimizing x2, while
the feasibility region is outside the shaded area. Assume that each V -shaped constraint is a translation of the other with its vertex
being sampled along the x1-axis from a distribution that admits a density, thus rendering the scenario program non-degenerate and
in fact fully-supported with Pm-probability one, i.e., d = nx = 2. We discard r = 2 samples/constraints (the ones indicated by

“dashed-red”), and the resulting solution drifts to the point indicated by the “dot”. There are exactly
(r+d−1

r

)
= 3 sets of r = 2

samples that can be discarded, such that the minimizer obtained upon the sample removal violates the constraints corresponding to
the discarded samples, i.e., the associated hypothesis is not consistent with the two samples discarded each time. These three sets of
discarded samples that exhibit this property are depicted in the three figure panels.

where the first equality is due to the definition of a probability as an integral, and since for each (δ1, . . . , δm) the
summation inside the integral is equal to

(
r+d−1
r

)
(by footnote 3, for each multisample this is exactly the number

of nonzero terms in that summation), while the inequality is due to the fact that for any given (δ1, . . . , δm), if
dP(T,Hm̄r

d
) > ε then dP(T,Hmr

d
) > ε. The second last equality is by the interplay between integral and probability,

and the last one is due to (3.7) specialized to the case where Assumption 4 is strengthened. By (4.1),

Pm
{

(δ1, . . . , δm) ∈ ∆m : dP(T,Hm̄r
d
) > ε

}
≤
r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i,(4.2)

which is a sharper result compared to
(
r+d−1
r

)∑r+d−1
i=0

(
m
i

)
εi(1 − ε)m−i. However, it holds only for the class

of fully-supported, convex optimization programs, and for the constructed removal scheme that returns the
solution with the lowest probability of constraint violation, while to compute the latter requires knowledge of P
which might be unavailable. A byproduct of this fact is that r + d constitutes the cardinality of a compression
set for this problem, i.e., there exist r + d samples such that following the same procedure using only these
samples yields the same solution had all the samples been employed. The result is tight, i.e., we have equality
in (4.2), if the sets of multisamples for which the probability of constraint violation for each of the

(
r+d−1
r

)
solutions that violate the r removed samples exceeds ε, are equally likely. This occurs when we have that

Pm
{

(δ1, . . . , δm) ∈ ∆m : Hmr
d

is not consistent with
{(
δi,1T (δi)

)}
i∈Ir

and dP(T,Hmr
d
) > ε

}
is the same for

each of the
(
r+d−1
r

)
sets Ir giving rise to Hmr

d
. In that case the inequality in (4.1) becomes an equality. An

example where this is the case, is the scenario program corresponding to the minimum width interval when the
samples are generated in an i.i.d. fashion from a uniform distribution on [0, 1].

This derivation is inspired by a dual in some sense analysis in Section 5.2 of [20], where it is established
that the right-hand side of (4.2) constitutes a lower bound for the case where the hypothesis is generated by an
algorithm that returns the solution with the highest probability of constraint violation instead.

5. Scenario approach and support constraints. Consider the setting of Section III-B. Helly’s dimension
is defined (see Definition 3.1 in [9]) as the least integer ζ <∞ such that for any finite m ≥ 1, with Pm-probability
one with respect to the choice of an m-multisample, the number of support samples is at most ζ, i.e.,

max
m≥1

ess sup{δi}mi=1∈∆m

{
# of support constraints of P[{δi}mi=1]

}
≤ ζ.(5.1)

It follows then that we ought to have m ≥ ζ. Notice that ζ is independent of the multi-sample; this implies that
with non-zero probability there would exist a multisample of some length where the support constraints would
be equal to ζ (otherwise a tighter bound would exist), but this is not necessarily the case for all multisamples.
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Proposition 5.1. Consider Assumption 5 and fix d = ζ. For any m ≥ d, with Pm-probability one with
respect to the choice of an m-multisample {δ1, . . . , δm}, there exists Id ∈ Id such that xd({δi}i∈Id) = xm({δi}mi=1),
where xm({δi}mi=1) is the minimizer of P[{δi}mi=1], and xd({δi}i∈Id) denotes the optimizer of the same problem
when fed only with the samples {δi}i∈Id .

Proof. We show this by means of induction.
Base case m = d: The statement holds trivially for any d-multisample, as we have exactly d samples.
Induction hypothesis for some m > d: Consider an arbitrary m > d. Suppose that with Pm-probability one with
respect to the choice of an m-multisample {δ1, . . . , δm}, there exists Id ∈ Id such that xd({δi}i∈Id) = xm({δi}mi=1).
The (m + 1)-th case: Consider an (m + 1)-multisample {δ1, . . . , δm, δm+1}. Since the number of support con-
straints is bounded by d = ζ (independently of the multisample length) and by the definition of ζ, with Pm+1-
probability one, at least m + 1 − d > 1 of these samples will not be of support. Pick one of these, and
without loss of generality assume this is the (m + 1)-th sample, namely, δm+1. By the definition of support
constraints, removing the constraint associated to this sample will not change the (unique under Assumption
5) solution, i.e., xm+1({δi}m+1

i=1 ) = xm({δi}mi=1) with Pm+1-probability one due to the fact that δm+1 is not
of support almost surely. By the induction hypothesis, with Pm-probability one with respect to the choice of
the remaining m-multisample {δ1, . . . , δm}, there exists Id ∈ Id such that xm({δi}mi=1) = xd({δi}i∈Id). The
latter also holds with Pm+1-probability one with respect to the choice of {δ1, . . . , δm, δm+1}. To see this, let
A = {(δ1, . . . , δm, δm+1) ∈ ∆m+1 : ∃Id ∈ Id such that xm({δi}mi=1) = xd({δi}i∈Id)} ⊂ ∆m+1, and notice that
Pm+1{A} =

∫
∆
Pm+1{A | δm+1 ∈ ∆} dP(δm+1) = 1, where we used the fact that Pm+1{A | δm+1 ∈ ∆} =

Pm{(δ1, . . . , δm) ∈ ∆m : ∃Id ∈ Id such that xm({δi}mi=1) = xd({δi}i∈Id)} = 1, as the statement in event A does
not depend on δm+1 and samples are i.i.d., while equality with one is due to the induction hypothesis holding up
to a Pm-measure zero set. Overall,

xm+1({δi}m+1
i=1 ) = xm({δi}mi=1) = xd({δi}i∈Id), with Pm+1-probability one,(5.2)

i.e., there exists a subset of the (m + 1)-multisample with length d that results in xm+1({δi}m+1
i=1 ), up to a

Pm+1-measure zero set, thus concluding the induction proof.

A direct consequence of the construction in the proof, is that in the set of ζ samples that are sufficient to return
the same solution with the one that would have been obtained if all the samples were used, the support samples
are always included. To see this, notice that if a support sample was not included in that set, i.e., it was removed
from the m-multisample, then the solution would have to change by definition of support samples/constraints.
A set of ζ samples that satisfies the statement of Proposition 1 is not necessarily unique; in the particular case
where, for a given ζ < ∞, the number of support constraints is (almost surely) equal to ζ for any m ≥ ζ, i.e.,

ess sup{δi}mi=1∈∆m

{
# of support constraints of P[{δi}mi=1]

}
= ζ for all m ≥ ζ, then such a set is unique and is

equal to the set of support samples.
If the number of support constraints is at most ζ = nx, then Proposition 1 holds for any m-multisample as

opposed to almost surely since the number of support constraints for convex problems cannot exceed nx (e.g.,
see Theorem 3 in [7]), while if it is exactly equal to nx we need to exclude measure zero cases that would prevent
this from happening always, like selecting the same sample m times.
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