
Received XX October 2025; revised ; accepted XX October 2025; Date of publication XX Octobe 2025; date of current version XX
October 2025.

Digital Object Identifier 10.1109/OJCSYS.2025.Doi Number

Machine Learning Adversarial Attacks
using Partial Sinkhorn Optimization
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ABSTRACT The vulnerability of machine learning models to adversarial perturbations has motivated the
development of robust optimization frameworks that ensure reliability under distributional uncertainty. In this
work, we frame adversarial attacks as a Distributionally Robust Optimization problem, modeling adversarial
shifts in the data distribution measured by the Wasserstein metric rather than isolated perturbations of
individual samples. This formulation provides a link between adversarial robustness and optimal transport
theory, enabling a more general and structured characterization of adversarial effects.
We show that this formulation naturally captures a distributionally robust approach to modeling attacks but
leads to a non-convex optimization problem with linear constraints. To address the resulting computational
challenges, we propose an entropic relaxation to obtain a Difference-of-Convex structure. Building on this
reformulation, we develop the Partial Sinkhorn algorithm, a novel iterative method inspired by Sinkhorn-type
updates that approximates local optima while guaranteeing convergence to stationary points.
Numerical experiments on synthetic and benchmark datasets demonstrate that our method yields more
effective and computationally efficient adversarial attacks. Beyond adversarial learning, the proposed
framework establishes a theoretical and algorithmic bridge between distributional robustness, optimal
transport, and control-oriented optimization, contributing to the design of systems resilient to structured
distributional shifts.

INDEX TERMS Optimization, Robust Optimization, Non-convex optimization, Machine Learning,
Adversarial Learning, Optimal Transport

I. Introduction
Since the reporting of intriguing limitations in neural networks
regarding their susceptibility to adversarial manipulation [1]–
[3], research has increasingly focused on studying adversarial
attacks [1], [3]–[10] and in addressing vulnerabilities to
enhance model robustness and reliability via robust [4], [11]
and adversarial training [10], [12]–[17]. Yet, even before these
findings, researchers had already identified and questioned
the security limitations of these models [18], [19].

In most cases, adversarial attacks have focused on minimal
modifications for misclassification, approached through either
penalty-based optimization or distance-specific methods, often
using p-norms [20]. An alternative to using p-norms is to
produce adversarial perturbations through a more flexible
and general, yet computationally more demanding, approach:
Distributionally Robust Optimization (DRO) procedures with
Wasserstein metric constraints [21]–[27]. In fact, Adversarial
Training (AT) is shown to be a special case of DRO [21].

DRO [28]–[32] provides a structured approach to integrate
data with decision-making, immunizing against uncertainty
in the probability distribution. Two established paradigms
for handling uncertainty are Stochastic Optimization (SO)
and Robust Optimization (RO), which differ fundamentally
in their modeling approaches. RO represents uncertainty as
deterministic variability in the parameters of a problem or
its solution, aiming for performance that is reliable even in
worst-case scenarios. In contrast, SO models uncertainty prob-
abilistically, using random variables to capture randomness
in objectives or constraints and often optimizing expected
outcomes.

Building on these two paradigms DRO serves as a unifying
framework that balances the probabilistic rigor of SO with
the conservatism of RO. Unlike stochastic optimization (SO),
which requires complete distributional knowledge, DRO
relies on partial information. If the uncertainty set includes
only the true distribution, DRO reduces to SO whereas if
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it includes all distributions over the support, it reduces to
Robust Optimization (RO). Thus, an appropriate choice of the
uncertainty set positions DRO between SO and RO, making it
a less conservative alternative to RO and a unifying framework
for both [31].

Particularly to adversarial attacks, adversarial training aims
at achieving robustness by countering individual perturbations
to each example. In contrast, DRO provides a framework
for robustness by considering adversarial shifts to the entire
training set [21].

A. Related work
Research on adversarial robustness in machine learning
has advanced through approaches that connect Adversarial
Training (AT) with Distributionally Robust Optimization
(DRO). AT can be interpreted as a specific instance of
DRO, as shown by [21], which also proposes an efficient
DRO algorithm to improve neural network resilience against
adversarial perturbations. Subsequent work applies DRO
with a Wasserstein penalty to train neural networks robust
to adversarial examples by accounting for worst-case data
perturbations, achieving provable robustness at minimal cost
and outperforming heuristic defenses for subtle attacks [22].
In addition, a related study introduces a threat model based
on the Wasserstein distance that captures natural image
transformations such as scaling and rotation, generating
Wasserstein adversarial examples that significantly degrade
model accuracy, while adversarial training partially restores
robustness [23].

Adversarial Distributional Training (ADT) offers a broader
immunization framework by learning adversarial distributions
around natural examples through a minimax optimization
approach, incorporating an entropic regularizer to prevent
the inner maximization from collapsing into standard ad-
versarial training [24]. This method expands robustness
beyond AT or DRO alone. Further work reformulates DRO
and regularization in deep neural networks as a calculus
of variations problem, linking adversarial robustness with
optimal control techniques and deriving regularized risk
minimization approximations [25]. This approach models
neural network layers within an infinite structure as a
discretized optimal control problem, showing that regularized
minimization can be viewed as a DRO problem.

A distributionally robust classification model with Wasser-
stein ambiguity which minimizes the conditional value-at-risk
of the misclassification distance and connects with maximum-
margin classifiers and previous adversarial models has also
been developed [26]. Wasserstein DRO has also been applied
to adversarial attacks using a novel threat model that permits
non-uniform perturbations across inputs. First-order attack
algorithms extend methods like Fast Gradient Sign Method
(FGSM) and Projected Gradient Descent (PGD), and an
asymptotic estimate of adversarial accuracy provides out-of-
sample performance guarantees [27], validated on large-scale
datasets.

Furthermore, stochastic programs with limited data have
been approached by constructing a Wasserstein ball around
the empirical distribution and optimizing for the worst-case
distribution within it, enabling tractable convex or linear
reformulations under convexity assumptions and yielding
strong finite-sample performance guarantees [30]. Building
on these developments, [33] fruther advances the theory of
DRO by introducing the Sinkhorn DRO framework. The work
establishes strong duality results, characterizes continuous
worst-case distributions under entropic regularization of
the Wasserstein distance and proposes a stochastic mirror-
descent algorithm with convergence guarantees for convex
formulations.

These studies collectively highlight the close relationship
between adversarial robustness and distributional robustness,
motivating the development of more general frameworks that
can handle non-convex objectives and complex perturbation
structures.

B. Contribution
Building on these foundations [21]–[23], our approach
extends distributionally robust optimization techniques to
non-convex settings, thereby accommodating a wider class
of objective functions. Unlike previous work that focuses
primarily on convex formulations and relies on approximate
projection methods [23], [30], we reformulate the problem as
a Difference-of-Convex (DC) program with linear constraints
and introduce an iterative algorithm to solve it efficiently.

In parallel with recent theoretical progress on entropically
regularized distributionally robust optimization, particularly
the Sinkhorn DRO framework [33], our work investigates
similar robustness principles within the adversarial machine-
learning setting. While [33] provides theoretical results
on Sinkhorn-based robustness and duality, our formulation
focuses on the data-driven, often non-convex nature of adver-
sarial optimization problems. We introduce a computationally
tractable framework that retains the regularization benefits of
the Sinkhorn distance while operating directly on empirical
data. In this context, we propose the Partial Sinkhorn
algorithm, which generalizes Sinkhorn-type iterations to
handle non-convex objectives and guarantees convergence to
stationary points within a practical, sample-based optimization
framework.

More precisely, we propose an adversarial attack based
on Optimal Transport, framed as a DRO problem, which
addresses the non-convex nature of the adversarial process
through a tailored optimization procedure. Our main contri-
butions are:

‚ Adversarial attack modeling: We formulate adversarial
attacks in a more general and flexible manner, namely, as
a DRO problem, using Optimal Transport, and provide a
data-driven robustness framework that extends existing
adversarial methods. This development constitutes a
novel adversarial methodology, thus complementing the
related literature [21].
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‚ Reformulation as DC-problem: We show that this
formulation leads to a non-convex optimization problem
with linear constraints, a problem which is computa-
tionally hard to solve. To address this challenge, we
introduce an entropic penalization term to the original
problem which allows casting it as a DC-programming
problem. Beyond enabling convergence, the entropic
regularization mitigates the tendency of adversarial
methods to further manipulate already misclassified
samples solely to increase loss, encouraging instead
the generation of new adversarial examples.

‚ Convergent algorithm: Exploiting the DC structure,
we introduce the Partial Sinkhorn algorithm, which
efficiently approximates local optima and whose conver-
gence we provably guarantee. This algorithm resembles
the Sinkhorn method but differs crucially in the rescaling
step. As will be explained in the sequel, instead of pro-
jecting onto both fixed adversarial marginals, it projects
only partially on the original marginal while iteratively
adjusting toward an extremum on the adversarial one.

‚ Numerical validation: We provide an empirical analysis
on both synthetic and real-world datasets, demonstrating
that our approach achieves more efficient attacks com-
pared to conventional adversarial training techniques.

Overall, our work contributes a new class of DRO-driven
adversarial attacks that are both theoretically grounded and
practically efficient, offering provable convergence, com-
putational tractability, and enhanced adversarial power, as
validated by empirical results.

The remainder of this paper is organized as follows. We
formulate the problem in Section II formalizing both learner’s
and adversary’s problems as well as presenting the adversary
model under the lens of optimal transport, followed by
a section highlighting our main results, Section III, the
data-driven DRO and the partial Sinkhorn algorithm and
a discussion on numerical results on Section IV.

II. Problem Formulation
Let pΩ,F , µq be a probability space and consider the
following mappings,

X :pΩ,Fq Ñ pΞ,X q,

Y :pΩ,Fq Ñ pΥ,Yq,

taking elements of them event space Ω equipped with the
appropriate σ-algebra, F , into the spaces Ξ,Υ with their
respective σ-algebras X ,Y .

For each of these mappings we define the respective
measures, PX and PY ,

PXpAq “ µpX´1pAqq, for any A P X ,
PY pBq “ µpY ´1pBqq, for any B P Y.

Consider further a mapping g : Ξ Ñ Ξ, resulting into a
new random variable V “ gpXq,

V : pΩ,Fq Ñ pΞ,Vq,

inducing a measure,

PV pCq “ µpV ´1pCqq, for any C P V.
Let us also define the product measures,

P “ PX ˆ PY ,

Q “ PV ˆ PY .

The learner and adversary are playing a game in which
the learner wishes to find the hypothesis, h from a class H,
that minimizes the risk, RP

“

ℓphpXq, Y q
‰

. Each hypothesis
h P H being a function mapping Ξ Ñ Υ, where Ξ Ď

Rd represents the domain of features and Υ the domain
of response variables. Conversely, the adversary’s goal is
to find an adversarial policy, g, which maximizes the risk,
RP

“

ℓphpgpXqq, Y q
‰

. The only requirement imposed here is
that the adversary can only tamper with the input X up to a
certain level ζ.

In this work we will focus on the adversary’s problem,
however we fell insightful to introduce the learner’s problem
as well as this will present the necessary context for the
adversary’s problem.

A. The learner’s problem
In the learning problem, the learner wishes to find the best
hypothesis in a hypothesis class, h P H. In classification
context such a hypothesis can be simply termed classifier.

The learner proceeds by finding the hypothesis that
minimizes a certain risk, i.e.,

inf
h P H

RP
“

ℓphpXq, Y q
‰

, (1)

where ℓ : Υ ˆ Υ Ñ R` is a loss function and RP
“

¨
‰

is
a functional quantifying the risk. Often, the risk is taken
to be the expected value associated with P, leading to, the
following problem,

inf
h P H

EP
“

ℓphpXq, Y q
‰

“ inf
h P H

ż

ΞˆΥ

ℓphpxq, yqdPpx, yq.

(2)
As the learner does not know the distribution P, but has

access to samples S “ ppx1, y1q, . . . pxn, ynqq, the problem
is often solved empirically, by means of empirical risk
minimization (ERM) framework that results in,

inf
h P H

n
ÿ

i“1

ℓphpxiq, yiq. (3)

Such empirical approaches are fundamental in statistical
learning, providing a practical way to estimate the best
hypothesis from data.

B. The adversary’s problem
The adversary’s goal is to find an algorithm, or attack, g :
Ξ Ñ Ξ, not necessarily linear, that tampers with the input
such that it increases the loss relative to the unbiased data.
This attack results in a new random map V “ gpXq, and
induces the measures PV and Q already introduced in the
previous section.
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More precisely, the adversary aims to maximize the loss
while tampering with the input X up to a certain level ζ,

sup
g P G

RP
“

ℓphpgpXqq, Y q
‰

s.t. ∥gpXq ´X∥ ď ζ.
(4)

In which parameter ζ can be thought of as the power of the
adversary.

Similarly to the learner, the adversary also does not
know the distribution P, but has access to sample points
S “ ppx1, y1q, . . . pxn, ynqq. The problem is then solved
empirically, with the risk as the expected value associated
with P.

C. Adversary model under the lens of optimal transport
A related problem was proposed in an optimal transport
context by Monge [34], whose goal was to find the measurable
map g : Ξ Ñ Ξ, called transport map, that transforms one
distribution P of mass into another Q (pushes P onto Q)
while minimizing a cost function. Later on, Kantorovich [35]
proposed an alternative, relaxed formulation, which uses the
concept of transportation plan by considering the set of joint
distributions ΠpP,Qq with marginals P and Q.

Now, restricting to the space MpΞq of measures supported
on Ξ with finite p-moment,

ş

Ξ
|x|pdPpxq ă 8, the p-

Wasserstein, Wp for p ě 1 is defined by,

WppP,Qq “

´

inf
π P ΠpP,Qq

ż

ΞˆΞ

|x´ v|pdπpx, vq

¯
1
p

.

(5)
Specifically for p “ 1, the Wasserstein metric is also

known as the Monge-Rubinstein [36], [37] metric, or the
earth mover distance [36]. The usual adversarial constraint,
as defined in (4), that the adversary can only tamper with
the input X up to a certain level ζ, is equivalent to, finding
Q [21], such that,

W1pP,Qq ď ζ,

for a given ζ.
These ideas inspire the following reformulation of (4),

sup
Q

EQ
“

pℓphpV q, Y q
‰

s.t. W1pP,Qq ď ζ,
(6)

i.e., the adversary is now seeking for the worst case distribu-
tion that tampers with the original data.

As neither the learner nor the adversary have access to P
but instead they observe its empirical version denoted by pPn

through the samples S “ ppx1, y1q, . . . , pxn, ynqq. Hence we
proceed by taking the Wasserstein norm in relation to the
empirical distribution resulting in,

sup
Q

EQ
“

pℓphpV q, Y q
‰

s.t. W1ppPn,Qq ď ζ,

(7)

where ℓphpV q, Y q may be a convex loss function, resulting
in a non-convex optimization problem 1.

Such a data-driven DRO has been explored with limited
data using a Wasserstein uncertainty set, optimizing decisions
for worst-case scenarios [30]. The authors have shown that
under convexity assumptions, these complex problems can
be simplified into convex or linear programs with strong
performance guarantees. In our context, the problem is
generally non-convex, since we allow for a broad class of
loss functions naturally arising in such settings. Nevertheless,
we extend [30] and reformulate the problem as data-driven
Difference Convex (DC) program with linear constraints,
and then apply DC programming tools to derive an iterative
solution algorithm.

III. Main Results
We present our results in two main parts, the first focusing
on establishing a relationship among different optimization
problems related to the adversary problem and the other
presenting and discussing a numerical algorithm to solve the
proposed optimization.

A. Data-driven DRO
Our primary objective is to solve a more flexible and general
formulation of an adversarial attack expressed as a non-convex
DRO problem,

D˚ :“ sup
Q

EQ
“

ℓphpV q, Y q
‰

s.t. W1ppPn,Qq ď ζ.

(8)

However, this infinite-dimensional problem is generally
intractable and difficult to solve in practice. To overcome
this challenge, we turn to a finite-dimensional, data-driven
surrogate,

L˚ :“ sup
tvi P Ξuni“1

1

n

n
ÿ

i“1

ℓphpviq, yiq

s.t.
1

n

n
ÿ

i“1

∥xi ´ vi∥1 ď ζ.

(9)

These two problems are related in that replacing the
infinite-dimensional ambiguity set with its finite, empirical
counterpart, the data-driven surrogate (9) becomes a tighter
version of the original formulation (8). This tightening arises
due to the problem’s non-convexity (strong duality does not
hold). The result is formalized by,

Proposition III.1. Consider a convex, lower-semi continuous
loss ℓphp¨q, yq and a bounded, closed space Ξ Ă Rd and

1Well-posedness: As a technical remark, although our formulation is
similar to other problems in the DRO literature, it differs in the definition
of the Wasserstein metric constraint, as in our case, P and Q are already
joint distributions. Considering problem (7) and the definition in (5), a
natural question involves whether the problem is well-defined regarding
the constraint W1pP,Qq and the existence of π P ΠpP,Qq. The Gluing
Lemma [37], stated in Appendix A, ensures the existence of such a coupling,
confirming that the set is non-empty.

4 VOLUME 00 2025



Υ Ă R, then, problems (8) and (9) are related such that,

L˚ ď D˚.

Proof:
The proof explores duality principles and the structure of the
Wasserstein metric and explores the fact that the problem
is separable and can be cast as a point-wise optimization
problem. The arguments used here follow closely those used
by [30] together with results presented in [38] but differing
from the former work in that we consider a convex ℓphp¨q, yq.
For the full proof see Appendix B.

However, as we shall see later in the manuscript, while
optimizing (9) naturally leads to an increased loss, the
process may counterintuitively emphasize samples already
misclassified raising their loss without actually increasing the
number of misclassified instances, opposing the adversary’s
goal of generating new misclassifications. To address this, we
introduce a transport-based formulation that allows incorpo-
rating a penalization term, which guides the optimization
toward genuinely expanding misclassification rather than
merely amplifying the loss.

For this reason, we build upon Proposition III.1 and lift the
finite-dimensional surrogate (9) by introducing a transport
plan, Pi, mapping xi to vi, resulting in,

K˚ :“ sup
tvi P Ξuni“1,

tPi Pr0, 1sdˆduni“1

1

n

n
ÿ

i“1

ℓphpviq, yiq

s.t.
1

n

n
ÿ

i“1

xPi, CyF ď ζ

Pi ¨ 1 “ xi,@i “ 1, . . . , n

PT
i ¨ 1 “ vi,@i “ 1, . . . , n,

(10)
where xA,ByF “

ř

i

ř

j AijBij is the Frobenius inner
product and C is an appropriate cost matrix, related to the
Wasserstein metric.

For the problem at hand, this lifted formulation (10) is
equivalent to the original surrogate (9) as formalized by,

Proposition III.2. Let x and v be non-negative and normal-
ized,

ř

i xi “
ř

j vj “ 1 and let C be a cost matrix such
that Cij “ 2 ¨1i‰j , then, solving (10) is equivalent to solving
(9), that is,

K˚ “ L˚.

Proof:
The proof exploits the fact that the transport constraint in
our specific data-driven DRO reduces itself to a discrete
Kantorovic transport problem, and shows the equivalence
of the total-variation and the Kantorovich problem. It is
worth noting that the result does not hold in the continuous
setting, as there exists extremal points in dπ which are
not concentrated on any graph [39]. For the full proof see
Appendix C.

D˚
λ :“ inf

tvi P Ξuni“1,

tPi P r0, 1sdˆduni“1

1

n

n
ÿ

i“1

´ℓphpviq, yiq`

λ

n

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

Pijk logPijk

s.t.
1

n

n
ÿ

i“1

xPi, CyF ď ζ

Pi ¨ 1 “ xi,@i “ 1, . . . , n

PT
i ¨ 1 “ vi,@i “ 1, . . . , n.

(11)
The advantage of (10) is that it naturally allows us to introduce
an entropic penalization term which we use to control the
algorithm’s tendency to tamper with already misclassified
samples as further tampering those prove to be better in
increasing the loss function, but not necessarily increase
misclassification.

Remark III.1. Combining the result of both previous
propositions we have that,

K˚ ď D˚ ď D˚
λ .

An adversary who solves the penalized problem (11)
instead of the original one (8) ends up with a less effective
attack, but with greater computational efficiency. As we shall
see in the numerical experiment session, despite this lower
effectiveness, the adversary still shows enhanced adversarial
power, that is, achieves a higher misclassification with less
need to tamper with the data when compared to the FGSM2

[3].

B. Partial Sinkhorn Optimization Algorithm
Having established the link between (8) and (11), we now
focus on developing an algorithmic solution for the latter,
whose non-convexity renders it challenging to optimize
directly. Accordingly, in this subsection we derive an iterative
algorithm (Algorithm 1) to solve the non-convex penalized
formulation (11) and provide a formal convergence guarantee
to a stationary point, as stated in Proposition III.3.

First note that (11) is a Difference Convex (DC) problem,

inf
x P C

f0pxq ´ g0pxq

s.t. fipxq ´ gipxq ď 0

i “ 1, . . . , n,

(12)

2FGSM is an one-step adversarial attack that perturbs an input sample in
the direction of the gradient of the loss function to maximize the model’s
prediction error by solving,

argsup
δ

ℓphpx ` δq, yq

s.t. ∥δ∥8 ď ε,

in which ϵ controls the magnitude of the perturbation. Given a model with
loss function ℓphp¨q, yq, the adversarial example v is generated in one step,

v “ x ` ε ¨ signp∇xℓphpxq, yqq,

This small, simple and carefully crafted change can mislead the model while
remaining nearly imperceptible to the learner.
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with,

x “ rv1, . . . , vn, P1, . . . , Pns,

f0pxq “
λ

n

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

Pijk logPijk ,

g0pxq “
1

n

n
ÿ

i“1

ℓphpviq, yiq,

fipxq “ Pi ¨ 1 ´ xi,@i “ 1, . . . n

fn`ipxq “ PT
i ¨ 1 ´ vi,@i “ 1, . . . n

f2n`1pxq “
1

n

n
ÿ

i“1

xPi, CyF ´ ζ

gipxq “ 0,@i “ 1, . . . n

and C “ pΞ ˆ r0, 1sdˆdq
n is a convex set.

The class of DC functions is very broad, for instance,
C2 functions can be expressed as a difference of convex
functions [40]. This kind of problem has been addressed in the
literature and solved using DC algorithms (DCA) [41], [42].
Alternatively, one can use the Convex Concave Procedure
(CCP) which finds a local optimal [43] of (12). CCP can
be seen as a version of DCA that linearizes the concave
functions instead of solving a dual problem as DCA does.
That is, starting with an initial value x0, the CCP algorithm
iteratively solves,

xpk`1q Ð argmin
x P C

f0pxq ´
`

g0pxpkqq`

∇T
g0pxpkqqpx´ xpkqq

˘

s.t.
fipxq ´

`

gipx
pkqq`

∇T
gipx

pkqqpx´ xpkqq
˘

ď 0

@i “ 1, . . . , n,
(13)

until a tolerance is achieved.
We proceed in a CCP fashion by iteratively solving the

following optimization problem, with tv
pk`1q

i uni“1 being the
argument that solves,

min
tvi Pr0, 1sduni“1,

tPi Pr0, 1sdˆduni“1

λ

n

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

Pijk logPijk

´
1

n

n
ÿ

i“1

∇T

ℓphppv
pkq

i q,yiq
pv

pkq

i qpvi ´ v
pkq

i q

s.t.
1

n

n
ÿ

i“1

xPi, CyF ď ζ

Pi ¨ 1 “ xi,@i “ 1, . . . , n

PT
i ¨ 1 “ vi,@i “ 1, . . . , n,

(14)
where we established Ξ “ r0, 1sd.

This is equivalent so solving the following,

min
tvi Pr0, 1sduni“1,

tPi Pr0, 1sdˆduni“1

λ

n

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

Pijk logPijk

´
1

n

n
ÿ

i“1

∇T

ℓphppv
pkq

i q,yiq
pv

pkq

i qvi

s.t.
1

n

n
ÿ

i“1

xPi, CyF ď ζ

Pi ¨ 1 “ xi,@i “ 1, . . . , n

PT
i ¨ 1 “ vi,@i “ 1, . . . , n.

(15)

To illustrate the need for the penalization term, consider
for a moment the non-penalized problem, that is, take λ “ 0,

min
tvi Pr0, 1sduni“1,

tPi Pr0, 1sdˆduni“1

´
1

n

n
ÿ

i“1

∇T

ℓphppv
pkq

i q,yiq
pv

pkq

i qvi

s.t.
1

n

n
ÿ

i“1

xPi, CyF ď ζ

Pi ¨ 1 “ xi,@i “ 1, . . . , n

PT
i ¨ 1 “ vi,@i “ 1, . . . , n,

(16)

This is a Linear Program (LP) that can be efficiently solved
using standard convex optimization solvers. When employing
convex, smooth, and differentiable loss functions, such as
Binary Cross Entropy, the gradient naturally amplifies as
the loss increases, pushing the adversary to adjust in the
direction that increases loss. While this behavior aligns with
the attacker’s goal of promoting misclassification, it can
undermine the attacker’s effectiveness as the optimization
tends to push already misclassified samples deeper into the
wrong class, merely increasing the expected loss rather than
expanding the set of misclassified instances. This behavior
focuses on maximizing loss magnitude instead of achieving
true misclassification, thereby undermining the adversary’s
core goal. We illustrate and discuss this unintended effect in
detail using low-dimensional synthetic datasets in Section A.

The entropic penalization term allows us to regulate the
adversarial deviation from the original samples, counteracting
excessive drift and maintaining meaningful perturbations. A
further advantage of this formulation is its computational
efficiency: it can be solved by leveraging ideas from the
Sinkhorn-Knopp matrix scaling algorithm [44], [45] and its
projected variant [23], thereby avoiding the need to solve
a constrained optimization problem directly. The classical
Sinkhorn algorithm iteratively rescales the rows and columns
of a transport matrix so that their sums match the prescribed
source and target marginals, effectively producing a balanced
(doubly stochastic) transport plan.

In our case, we modify the classical Sinkhorn iterations
by performing only partial rescaling to match the source
distribution while optimizing over the target, resulting in a
new method that we term the Partial Sinkhorn algorithm.
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Algorithm 1 results from applying the iterative CCP
procedure combined with the Partial Sinkhorn algorithm
to maximize the loss. Its convergence to a stationary point
of the penalized formulation is established in the following
proposition,

Proposition III.3. The limit of any convergent subsequence
of tv

pkq

i u8
k“0 generated by Algorithm 1, which iteratively

solves (15), is a stationary point tv˚
i uni“1 of problem (11).

Proof:
The algorithm follows by formulating and solving the dual
problem and its convergence leverages Zangwill’s global
convergence theorem. The convergence properties of CCP
have been briefly discussed in [43] and explored in detail
in [46]. In the following, we draw upon concepts from these
previous works, particularly Zangwill’s global convergence
theorem [47], which serves as the foundation of the proof
provided in [46]. The full proof is on Appendix D.

Algorithm 1 Partial Sinkhorn CCP procedure

1: function CCP(ℓ, h, C, λ, vp0q

1 , . . . , v
p0q
n )

2: l Ð 0
3: repeat
4: βi Ð ´λ∇

ℓphppv
plq

i q,yiq
pv

plq
i q

5: αi Ð log 1
n

6: γ Ð 1
7: repeat
8: for i “ 1, . . . , n do
9: for j “ 1, . . . , d do

10: αij Ð log
`

řd
k“1 e

´βik
´γCjk´1

˘

11: ´ log xij
12: Pijk Ð e´αij

´βik
´γCjk´1

13: end for
14:
15: end for

16: Lγ Ð

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

CjkPijk ´ nζ

17: Lγγ Ð ´

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

C2
jkPijk

18: γ Ð γ ´
Lγ

Lγγ

19: until stopping criteria
20: v

pl`1q

i Ð PT
i ¨ 1

21: until stopping criteria
22: return tPiu

n
i“1, tv

pl`1q

i uni“1

23: end function

Remark III.2 (Interpretation). The proposed algorithm is
similar to the Projected Sinkhorn algorithm [23], the αi

step rescales the rows of eγC´1 to sum up to xi while γ
ensures the budget constraint is satisfied. However, unlike the
Projected Sinkhorn version, in which βi rescales the columns
of eγC´1 to sum up to vi, in the present algorithm βi rescales

the columns of eγC´1 while approaching an extremal, in our
case, the minimum, as the problem is a linear program.

IV. Numerical Examples
We applied the methodology to generate adversarial data and
perform adversarial training considering different models and
datasets ranging from synthetic to real datasets.

A. Synthetic Data
We began by examining synthetic data to analyze the
algorithm and visualize its behavior in low dimensions.
Figure 2 shows the results of simulations generating linearly
separable classes (blue and red) in 2D space. We sampled
1000 data points and fitted a linear model by minimizing
Binary Cross Entropy (BCE) loss with a sigmoid layer, using
batch Stochastic Gradient Descent across multiple epochs. We
continued by generating DRO and penalized DRO adversarial
samples considering that the adversary could disturb the
sample up to norm 0.1.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

tangent at p “ 0.1

p

L
os

s

Figure 1: BCE loss and gradient effect: derivative when
correctly classifying (dashed-red) and when incorrectly clas-
sifying (dashed-green).

Because losses normally used in classification, such as the
BCE loss, exhibit increasingly larger gradients for poorly
classified samples than to correctly classified ones (see
Figure 1), the iterative algorithm prioritize updates on these
misclassified samples, further adjusting them at each iteration.
Consequently, these samples are pushed toward reaching a
constraint, while the algorithm allocates less attention to other
samples. This is counter productive as the adversary wishes
to maximize misclassifications, not only the loss.

This result of this effect is visible in the top image of
Figure 2. As highlighted in Section B, to counter this, we
introduced a penalization term, resulting in the more stable
behavior shown at the bottom of Figure 2, where we see that
points close to the boundary just move over the boundary so
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that they are misclassified instead of being pushed to extreme
values.
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Non-penalized DRO
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0.4

0.6

0.8

1

Partial-Sinkhorn DRO

Figure 2: Effect of entropic penalization illustrated in a
synthetic dataset for a binary classifier, 2D, linearly separable:
blue/red ˝ (samples class 0/1), blue/red ` (adversarial
samples 0/1). Overlapping points are a result of the attacker
not tampering with that specific sample.

B. Real Datasets
We continue our numerical studies by applying the same
methodology on the MNIST data-set. We start by training a
classifier h on a training set, and proceed by attacking the
trained model on a separate test set. We then compare both
accuracy, measured as the proportion of correctly classified
instances on an out-of-sample adversarial test set, and the
average absolute deviation, 1

n

řn
i“1

řd
j“1 |xij ´vij |, from the

sample set, a metric quantifying the perturbation introduced
by the adversary in performing the attack. This metric is
directly proportional to the adversarial power ζ but present

itself as a more fair metric to compare attacks which are
different in nature. Notably, lower values of this metric
indicate less tampering with the data.

1) Linear binary classifier
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Figure 3: Accuracy of linear classifiers using out-of-sample
adversarial tampered data considering non-adversarial train-
ing, FGSM (blue) and proposed Partial-Sinkhorn (green).
Datasets: MNIST 0/1 (top), MNIST 3/8 (bottom). Figures
obtained using logistic loss as surrogate.

Figure 3 shows the results of an experiment considering
a linear classifier, hpxq “ aTx ` b using the logistic-loss
(depicted in Figure 1). Note that in this case, the resulting
problem is concave, as per our previous assumptions. We
conducted a series of experiments on the MNIST dataset,
focusing on distinguishing between two digit pairs: 0/1
and 3/8. The results (see Figure 3) compare our approach
with FGSM. It can be observed that the proposed Partial-
Sinkhorn method outperforms FGSM, achieving lower ac-
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curacy levels (the attacker’s objective) for the same degree
of data perturbation (measured by absolute deviation). This
advantage is particularly pronounced for realistic adversaries,
those with just enough power to induce misclassification
without significantly distorting the image (that is, at lower
levels of absolute deviation), while its performance remains
comparable to other approaches when considering more
powerful adversaries.

V. Conclusion
In this work, we introduced a new approach to understanding
and defending against adversarial attacks by framing them
as a problem of distributional shift, rather than just small
input changes. Using tools from Optimal Transport and
Distributionally Robust Optimization (DRO), we developed
a method that considers how entire data distributions can be
subtly shifted to fool a model.

This perspective leads to a more complex, non-convex
optimization problem, which we addressed by introducing
a relaxation and designing a new algorithm inspired by the
Sinkhorn method. Our algorithm, called Partial Sinkhorn,
comes with theoretical guarantees and is both efficient and
practical.

We also showed that common loss functions used in
adversarial settings can sometimes unintentionally focus on
already misclassified data points, rather than creating new,
effective adversarial examples. Our method overcomes this
by encouraging perturbations that are more meaningful and
more likely to cause true misclassifications.

Experiments on synthetic and real-world datasets confirmed
that our approach improves model robustness compared to
traditional adversarial training methods. Overall, this work
provides a principled and effective way to design adversarial
attacks and defenses by combining ideas from Optimal
Transport and robust optimization, offering both theoretical
insights and practical benefits.
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Birkhäuser Basel, 1988.

[43] T. Lipp and S. Boyd, “Variations and extension of the convex–concave
procedure,” Optimization and Engineering, vol. 17, pp. 263–287, Jun
2016.

[44] R. Sinkhorn and P. Knopp, “Concerning nonnegative matrices and
doubly stochastic matrices,” Pacific Journal of Mathematics, vol. 21,
pp. 343–348, 1967.

[45] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport,” in Advances in Neural Information Processing Systems
(C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger,
eds.), vol. 26, Curran Associates, Inc., 2013.

[46] G. Lanckriet and B. K. Sriperumbudur, “On the convergence of
the concave-convex procedure,” in Advances in Neural Information
Processing Systems (Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams,
and A. Culotta, eds.), vol. 22, Curran Associates, Inc., 2009.

[47] W. I. Zangwill, Nonlinear programming; a unified approach, by
Willard I. Zangwill. Prentice-Hall international series in management,
Englewood Cliffs, N.J: Prentice-Hall, 1969.

[48] W. Rudin, Real and Complex Analysis. New York: McGraw-Hill, 3 ed.,
1987.

[49] M. Sion, “On general minimax theorems,” Pacific Journal of Mathe-
matics, vol. 8, no. 1, pp. 171–176, 1958.

[50] A. Gunawardana and W. Byrne, “Convergence theorems for generalized
alternating minimization procedures,” Journal of Machine Learning
Research, vol. 6, no. 69, pp. 2049–2073, 2005.

Appendix
A. Well-posedness
Lemma 1 (Gluing Lemma [37]). Let pXi, µiq, i “ 1, 2, 3,
be Polish probability spaces. If pX1, X2q is a coupling of
pµ1, µ2q and pY2, Y3q is a coupling of pµ2, µ3q, then one can

construct a triple of random variables pZ1, Z2, Z3q such that
pZ1, Z2q has the same law as pX1, X2q and pZ2, Z3q has
the same law as pY2, Y3q.

B. Proof of Proposition III.1

Proof:
The optimization problem (6) in integral form becomes,

sup
Q P MpΞq

ż

ΞˆΥ

pℓy ˝ hqpvqdQpv, yq

s.t. inf
π P ΠpP,Qq

ż

ΞˆΥˆΞ

∥x´ v∥dπpx, y, vq ď ζ,

(17)

which can be simplified to,

sup
Q P MpΞq, π P ΠpP,Qq

ż

ΞˆΥ

pℓy ˝ hqpvqdQpv, yq

s.t.

ż

ΞˆΥˆΞ

∥x´ v∥dπpx, y, vq ď ζ,

(18)
where MpΞq the space of measures supported on Ξ with

finite 1-moment, that is,
ş

Ξ
| ¨ |dPp¨q ă 8. The equivalence

holds since in (17) we seek a Q for which there exists a π
such that the constraint in (17) holds. This is equivalent to
optizmizing with respect to both as in (18).

As, neither the learner nor the adversary have access to
P but instead they observe pPn through the samples S “

ppx1, y1q, . . . , pxn, ynqq, the Wasserstein norm is taken in
relation to the empirical distribution, leading to,

sup

Q P MpΞq, π P ΠppPn,Qq

ż

ΞˆΥ

pℓy ˝ hqpvqdQpv, yq

s.t.

ż

ΞˆΥˆΞ

∥x´ v∥dπpx, y, vq ď ζ.

(19)
Now, we construct the joint distribution π by the marginal

pPn and the conditional distribution QipAq “ QpA|X “

xi, Y “ yiq, for any A P Ξ,

πpAq “
1

n

n
ÿ

i“1

QipAq ˆ δxi,yi
, (20)

where δxi,yi
is the Dirac mass on pxi, yiq.

With this, and Tonelli’s theorem [48], (19) becomes,

sup
Qi P MpΞq

1

n

n
ÿ

i“1

ż

Ξ

pℓyi
˝ hqpvqdQipvq

s.t.
1

n

n
ÿ

i“1

ż

Ξ

∥v ´ xi∥dQipvq ď ζ.

(21)

Dualizing the constraint in (21) with the Lagrange multi-
plier, the above is equivalent to,

sup
tQiu

n
i“1 P MpΞq

inf
λ ě 0

!

λζ `
1

n

n
ÿ

i“1

ż

Ξ

´

pℓyi
˝ hqpvq

´λ∥v ´ xi∥
¯

dQipvq

)

(22)
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and through duality (note that equality holds because of
Sion’s min-max theorem [49] - the objective function is linear
on Qi and λ ) this is equivalent to,

inf
λ ě 0

sup
tQi P MpΞquni“1

!

λζ `
1

n

n
ÿ

i“1

ż

Ξ

´

pℓyi ˝ hqpvq

´λ∥v ´ xi∥
¯

dQipvq

)

(23)
This problem is separable, that is, we can optimize for

each Qi independently,

sup
Qi P MpΞq

ż

Ξ

´

pℓyi ˝ hqpvq ´ λ∥v ´ xi∥
¯

dQipvq. (24)

This can alternatively be written as,

sup
Vi P MpΞq

ż

Ω

´

pℓyi
˝ hqpVipωqq ´ λ∥Vipωq ´ xi∥

¯

dµpωq.

(25)
By Theorem 14.60 in [38], we can interchange the sup

and the integral for spaces that are decomposable, i.e., spaces
of measurable functions such that, for any function V0pωq

in the space, any measurable set A P Ω, and any bounded
measurable function V1pωq on A, the function,

V pωq “

#

V1pωq, ω P A,

V0pωq, ω R A

also belongs to the space. Since Vi P MpΞq, where MpΞq is
the space of measures supported on Ξ with finite 1-moment.
The space of random variables with finite 1-moment is closed
under such local patching, since,

ż

Ω

|V pωq|dω “

ż

A

|V1pωq|dω `

ż

Ac

|V0pωq|dω ă 8.

hence, it is decomposable, and the theorem applies, leading
to,

ż

Ω

sup
vi P Ξ

´

pℓyi ˝ hqpviq ´ λ∥vi ´ xi∥
¯

dµpωq. (26)

This means, that since the given distribution is discrete, we
optimize over discrete masses too.

As the integrating function is independent of ω and µ is a
probability measure, the above becomes,

sup
vi P Ξ

´

pℓyi ˝ hqpviq ´ λ∥vi ´ xi∥
¯

ż

Ω

dµpωq, (27)

but µ is a probability measure, and we are left with,

sup
vi P Ξ

´

pℓyi
˝ hqpviq ´ λ∥vi ´ xi∥

¯

. (28)

As a result returning to (23) this can be simplified to,

inf
λ ě 0

λζ `
1

n

n
ÿ

i“1

sup
vi P Ξ

´

pℓyi ˝ hqpviq ´ λ∥v ´ xi∥
¯

,

(29)

or, in epigraphic form,

inf
λ ě 0, γi P R

λζ `
1

n

n
ÿ

i“1

γi

s.t. sup
vi P Ξ

´

pℓyi
˝ hqpviq ´ λ∥vi ´ xi∥

¯

ď γi,

for all i “ 1, . . . n.
(30)

From this point forward, we transition between the dual space
and the primal space. Specifically, using the definition of the
dual norm,

∥y∥˚ “ sup
x P Ξ

xy, xy

s.t. ∥x∥ ď 1,

for y P Ξ˚, the dual space of Ξ.
With this, the problem in epigraph form can be expressed

as follows,

inf
λ ě 0, γi

λζ `
1

n

n
ÿ

i“1

γi

s.t. sup
vi P Ξ

´

pℓyi ˝ hqpviq ´ max
∥zi∥˚ ď λ

xzi, vi ´ xiy
¯

ď γi

for all i “ 1, . . . n.
(31)

Since sup
vi

min
zi

ě min
zi

sup
vi

by weak duality and (32) is

less constrained than (32) (equality holds under strong duality,
but we cannot claim it here since we consider pℓyi

˝ hqp¨q to
be convex),

inf
λ ě 0, γi

λζ `
1

n

n
ÿ

i“1

γi

s.t. min
zi

sup
vi P Ξ

´

pℓyi
˝ hqpviq ´ xzi, vi ´ xiy

¯

ď γi

∥zi∥˚ ď λ

for alli “ 1, . . . n,
(32)

and can be simplified to (by redefining zi “ ´zi),

inf
λ, γi, zi

λζ `
1

n

n
ÿ

i“1

γi

s.t. sup
vi P Ξ

´

pℓyi
˝ hqpviq ` xzi, viy

¯

´ xzi, xiy ď γi

∥zi∥˚ ď λ

for all i “ 1, . . . n.
(33)

Dualizing the constraint in (33) with multipliers αi, βi

sup
αi, βi

inf
λ, γi, zi

λζ `

n
ÿ

i“1

´

αi

´

sup
vi P Ξ

´

pℓyi ˝ hqpviq (34)

`
γi
n

` xzi, viy
¯

´ xzi, xiy ´ γi

¯

` βip∥zi∥˚ ´ λq

¯

.
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This is equal to the following when substituting for the
optimal λ and γi (as those are unconstrained problems),

sup
βi ě 0

inf
zi

n
ÿ

i“1

sup
vi P Ξ

´ 1

n
pℓyi ˝ hqpviq ` xzi,

vi ´ xi
n

y

¯

` βi∥zi∥˚

s.t.
n

ÿ

i“1

βi “ ζ.

(35)
By the definition of the dual norm this is equivalent to,

sup
βi ě 0

inf
zi

n
ÿ

i“1

sup
vi P Ξ

´ 1

n
pℓyi

˝ hqpviq ` xzi,
vi ´ xi
n

y

¯

` max
∥ui∥ ď βi

xzi, uiy

s.t.
n

ÿ

i“1

βi “ ζ,

(36)
which is equivalent to,

sup
βi ě 0

max
∥ui∥ ď βi

inf
zi

n
ÿ

i“1

sup
vi P Ξ

! 1

n
pℓyi

˝ hqpviq`

xzi, ui `
vi ´ xi
n

y

)

s.t.
n

ÿ

i“1

βi “ ζ.

(37)
Since ui and βi are related but the constraint ∥ui∥ ď βi

and we are maximizing both, we opt to only keep ui, leading
to,

sup
ui

inf
zi

n
ÿ

i“1

sup
vi P Ξ

1

n
pℓyi

˝ hqpviq ` xzi, ui `
vi ´ xi
n

y

s.t.
n

ÿ

i“1

∥ui∥ ď ζ.

(38)
Each term in the sum depends only on vi the supremum

over all vi can be distributed across the sum, that is, the
sum of the sup is equal to the sup of the sum. Furthermore,
since the variable vi does not affect the ordering of the inf
over zi, the sup over vi can be commuted with the inf over
zi, allowing us to take the sup jointly over xi and vi while
keeping the inf over zi. As a result, (38) is equivalent to,

sup
ui, vi P Ξ

inf
zi

n
ÿ

i“1

1

n
pℓyi

˝ hqpviq ` xzi, ui `
vi ´ xi
n

y

s.t.
n

ÿ

i“1

∥ui∥ ď ζ,

(39)
The inner inf is only bounded if xzi, ui ` vi´xi

n y “ 0,
in fact, only if ui ` vi´xi

n “ 0. This concludes the proof,

resulting in,

max
tvi P Ξuni“1

1

n

n
ÿ

i“1

pℓyi ˝ hqpviq

s.t.
1

n

n
ÿ

i“1

∥xi ´ vi∥ ď ζ.

(40)

C. Proof of proposition III.2

Proof:
In the previous proof we have shown that the problem is
separable and we can optimize for each Qi independently. We
continued by using Theorem 14.60 from [38] and in doing that
show that the problem of finding the measure is equivalent
to that of optimizing point-wise, deeming the problem a
discrete-discrete transport problem, that is, one that transports
a discrete distribution to another discrete distribution.

Given these observations, let us focus on one pair x, v (we
will omit the index i in this case for simplicity in notation).
If we have that these are non-negative and normalized, that is,
ř

xi “
ř

vj “ 1, then we can interpret those as empirical
distributions,

pP “ t
1

d
δxi

udi“1,
pQ “ t

1

d
δvj udj“1.

As stated in [39], any measure πppP, pQq can be represented by
a bistochastic dˆd matrix P and in this case, the Kantorovich
problem becomes,

min
P

xP,CyF

s.t. P ¨ 1 “ x

PT ¨ 1 “ v,

(41)

for an appropriate cost matrix C.
This is a Linear Programming in the bounded convex set

of bistochastic matrices. Borrowing from [39], we know that
by Choquet’s theorem that this problem admits a solution in
the extremal points of the set of bistochastic matrices and
by Birkhoff’s theorem [39], we know that these extremal
points are permutation matrices, P pkq. Thus, the Kantorovich
problem coincides with Monge’s problem. In this case, the
optimal transport consists in finding an optimal matching
between the points in x and the target points v.

Consider, C such that Cij “ 1i‰j , that is,

Cij “

#

1, i ‰ j

0, otherwise.

In tis case, the Kantorovich problem, for given x and v,
becomes,

min
P

ÿ

i

ÿ

j

Pij1i‰j

s.t. P ¨ 1 “ x

PT ¨ 1 “ v,

(42)
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which is equivalent to finding P that solves,

max
P

ÿ

i

Pii

s.t. P ¨ 1 “ x

PT ¨ 1 “ v,

(43)

since
ř

i

ř

j Pij1i‰j “ 1 ´
ř

i Pii, because P is a doubly
stochastic matrix.

We wish to maximize the diagonal of the transport plan
matrix P , meaning to keep as much mass as possible
unmoved. First, note that any admissible solution to this
problem must satisfy the constraints,

ř

j Pij “ xi and
ř

i Pij “ vj , which naturally lead to,

Pii ď xi, and Pii ď vi, for all i,

or, combined,
Pii ď minpxi, viq,

since all values in P are positive.
Hence, the optimal is to choose,

P˚
ii “ minpxi, viq.

This solution is feasible (it satisfies the constraints) and given
that Pii is positive for any i, it holds that max

ř

i Pii “
ř

i maxPii. As a result the best solution is to choose
the maximum value for each i, which is bounded by the
minpxi, viq.

Note that, for any a, b ě 0, minpa, bq “
a`b´|b´a|

2 , which
results in,

1 ´
ÿ

i

P˚
ii “ 1 ´

ÿ

i

xi ` vi ´ |vi ´ xi|

2
“

1

2
∥v ´ x∥1,

because x and v are such that
ř

i xi “
ř

i vi “ 1. Hence,
1

2
∥x´ v∥1 “ min

P
xP,CyF

s.t. P ¨ 1 “ x

PT ¨ 1 “ v

(44)

and (40) is equivalent to,

M˚ “ max
tvi P Ξuni“1

1

n

n
ÿ

i“1

pℓyi
˝ hqpviq

s.t.
1

n

n
ÿ

i“1

min
Pi

xPi, CyF ď
ζ

2

s.t. Pi ¨ 1 “ xi

PT
i ¨ 1 “ vi.

for all i “ 1, . . . , n

(45)

Consider now the problem

K˚ “ max
tvi P Ξuni“1,

tPi Pr0, 1sdˆduni“1

1

n

n
ÿ

i“1

pℓyi ˝ hqpviq

s.t.
1

n

n
ÿ

i“1

xPi, CyF ď
ζ

2

Pi ¨ 1 “ xi

PT
i ¨ 1 “ vi.

for all i “ 1, . . . , n

(46)

we have that,
K˚ “ M˚,

since in (45) we seek the existence of Pi satisfying the
constraint in (45), thus, we can equivalently maximize for it
as in (46).

D. Proof of proposition III.3

Proof:
The proof is divided into two parts, one which shows that
the optimization problem can be solved using a Sinkhorn-
like algorithm and another which studies the convergence
properties of the iterative procedure.

Algorithm
Let us start by deriving the dual formulation of (11). First,
we look at the Lagrangian,

Lpvi, Pi, αi, βi, γq “λ
n

ÿ

i“1

´∇T
pℓyi˝hqpv

pkq

i qvi`

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

Pijk logPijk`

γ
´

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

PijkCjk ´ nζ
¯

`

n
ÿ

i“1

αT
i pPi ¨ 1 ´ xiq`

n
ÿ

i“1

βT
i pPT

i ¨ 1 ´ viq,

(47)

and continue by solving for vi and Pi, in a similar fashion
to that of [23], [45],

B

BPijk

Lpvi, Pi, αi, βi, γq “ 0,

B

Bvi
Lpvi, Pi, αi, βi, γq “ 0,

(48)

which leads to,

Pijk “ e´αij
´βik

´γCjk´1,

βi “ ´λ∇pℓyi˝hqpv
pkq

i q.
(49)
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Now, substituting this on the Lagrangian, results in,

Lpαi, γq “ ´

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

Pijk ´ γnζ ´

n
ÿ

i“1

αT
i ¨ xi. (50)

Note that βi is already known in (49), we just keep it on
the RHS for readability purposes. The dual formulation of
(11) is,

max
tαi P Rduni“1,

γ P R`

´

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

Pijk ´ γnζ ´

n
ÿ

i“1

αT
i ¨ xi.

(51)
Since this is an unconstrained, convex problem, we can

proceed by solving it directly, taking the partial derivatives
w.r.t. αi and γ and solving for equality to 0, resulting in,

α˚
ij “

´

log
`

d
ÿ

k“1

e´βik
´γ˚Cjk´1

˘

´ log xij

¯

βi “ ´λ∇pℓyi˝hqpv
pkq

i q,

(52)

and γ˚ cannot be solved analytically but it is solvable using
Newton’s second order procedure,

γ “ γ ´

B
BγL
B2

Bγ2L

B

Bγ
L “

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

CjkPijk ´ nζ

B2

Bγ2
L “ ´

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

C2
jkPijk .

(53)

Finally, the optimal solution for the primal problem is,

P˚
ijk

“ e
´α˚

ij
´βik

´γ˚Cjk´1
,

v˚
i “ P˚

T

i ¨ 1.
(54)

Convergence
We continue by simplifying (11) and (15). Note that we can
remove tvi P r0, 1sduni“1 but still recover vi “ PT

i ¨ 1 and
get lower dimension problems,

min
tPi P r0, 1sdˆduni“1

1

n

n
ÿ

i“1

´pℓyi ˝ hqpPT
i ¨ 1q`

λ

n

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

Pijk logPijk

s.t.
1

n

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

PijkCjk ď ζ

Pi ¨ 1 “ xi,

i “ 1, . . . , n,

(55)

and

min
tPi P r0, 1sdˆduni“1

1

n

n
ÿ

i“1

´∇T
pℓyi˝hqpv

pkq

i q ¨ PT
i ¨ 1`

λ

n

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

Pijk logPijk

s.t.
1

n

n
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

PijkCjk ď ζ

Pi ¨ 1 “ xi,

i “ 1, . . . , n.
(56)

But (55) is a DC optimization problem such as the one in
(12),

min
x P C

upxq ´ vpxq

s.t. fpxq ď 0

gipxq “ 0

i “ 1, . . . , n,

(57)

in which u and v are convex functions and f, g1, . . . , gn are
linear functions.

Consider now the objective function,

ϕpxq “ upxq ´ vpxq. (58)

Since v is convex,

vpxq ě vpyq ` px´ yqT∇vpyq,

then

ϕpxq ď upxq ´ vpyq ´ px´ yqT∇vpyq :“ ψpx, yq.

As a result,

ϕpxpk`1qq ď ψpxpk`1q, xpkqq.

Furthermore, if xpk`1q P argmin
x P C

ψpx, xpkqq,

ψpxpk`1q, xpkqq ď ψpxpkq, xpkqq.

This tells us that,

ϕpxpk`1qq ď ψpxpk`1q, xpkqq ď ψpxpkq, xpkqq “ ϕpxpkqq.
(59)

Let is call our algorithm A. Note that this algorithm is a
point-to-set, that is, an algorithm that maps a initial guess,
xp0q, into a sequence txpkqu8

k“0 through the iteration,

xpk`1q P argmin
x P C

upxq ´ vpxpkqq ´ px´ xpkqqT∇vpxpkqq

s.t. fpxq ď 0

gipxq “ 0

i “ 1, . . . , n.
(60)

Given the point to set map, we call a fixed point, x˚, of
the map, A, the point such that x˚ “ Apx˚q. That is, it is a
point in which if we start at the point the algorithm stays at
the same point.
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Given all these functions and observations we can use
Zangwill’s convergence theorem [47] to show our main result
following a similar approach to [46].

Theorem. (Convergence Theorem [47]) Let A be a point-to-
set map that given a point xp0q P X generates a sequence
txpkqu8

k“0 through the iteration xpk`1q P Apxpkqq. Also let a
solution set Γ P X be given. Suppose

1) All points xpkq are in a compact set S Ă X .

2) There is a continuous function ϕ : X Ñ R such that:

a) x R Γ ùñ ϕpyq ă ϕpxq,@y P Apxq,

b) x P Γ ùñ ϕpyq ď ϕpxq,@y P Apxq.

3) A is closed at x if x R Γ.

Then the limit of any convergent subsequence of txpkqu8
k“0 is

in Γ. Furthermore, lim
kÑ8

ϕpxpkqq “ ϕpx˚q for all limit points
x˚.

In our problem, we satisfy all requirements:

Assumption 1
First, we show that assumption 1 in the above theorem holds.
From proof C we know that tPi P r0, 1sdˆduni“1 is an element
of the bounded convex set of bistochastic matrices, which
implies that all points tP

pkq

i uni“1 are in a compact space.

Assumption 2
Now, take Γ be the set of all fixed points, x˚ of (60), i.e.,
all points x˚ such that x˚ “ Apx˚q and ϕ as in (58), then
2b in the convergence theorem follows with equality by the
definition of Γ and 2a follows by the defintion of Γ and the
descent inequality (59).

Assumption 3
Closeness follows directly from Lemma 6 in [46] which has
first been proposed in [50]

Convergence
With these we apply the convergence theorem and get that
any convergent subsequence txpkqu8

k“0 produced by A is in
Γ and that lim

kÑ8
ϕpxpkqq “ ϕpx˚q for all limit points x˚.

We would like however to relate the solution of the
algorithm to the original problem (57) and this can be checked
by verifying the KKT conditions. Let x˚ be a fixed, limiting
point in (60), then we know Dα˚, β˚

1 , . . . β
˚
n , Lagrange

multipliers, that satisfy the KKT sufficient conditions,

∇upx˚q ´ ∇vpx˚q ` α˚∇fpx˚q `

n
ÿ

i“1

β˚
T

i ¨ ∇gipx˚q “ 0

fpx˚q ď 0

gipx
˚q “ 0

α˚ ě 0.

These are also the KKT conditions for the original problem
(57). Hence, the limit points x˚ are also stationary points of
the original problem.
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