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Probabilistically Robust Stabilizing Allocations
in Uncertain Coalitional Games

George Pantazis , Filippo Fabiani , Filiberto Fele , and Kostas Margellos , Member, IEEE

Abstract—In this letter we consider multi-agent coali-
tional games with uncertain value functions for which we
establish distribution-free guarantees on the probability of
allocation stability, i.e., agents do not have incentives to
defect from the grand coalition to form subcoalitions for
unseen realizations of the uncertain parameter. In case the
set of stable allocations, the so called core of the game,
is empty, we propose a randomized relaxation of the core.
We then show that those allocations that belong to this
relaxed set can be accompanied by stability guarantees in a
probably approximately correct fashion. Finally, numerical
experiments corroborate our theoretical findings.

Index Terms—Coalitional games, randomized algo-
rithms, statistical learning.

I. INTRODUCTION

MULTI-AGENT systems are ubiquitous in applications
ranging from engineering [1]–[3] to economics and

social sciences [4]. In such systems, agents typically act as
selfish entities that optimize their own payoff function. In some
cases, however, due to their limited ability to increase their
own utility when working on their own, agents have an incen-
tive to form coalitions aiming at receiving a higher individual
payoff. This gives rise to a coalitional game setup [5]. Since
each agent is interested in maximizing their own welfare, the
problem of allocating the total value of the coalition in order to
guarantee that none of the agents has an incentive to defect it,
is key from both a collective and an individual point of view.
This concept is known as stability of the agents’ allocations
and it is related to the agents’ coalitional values.

In real-world applications, the values of each coalition are
typically affected by uncertainty. This can be due to various
reasons. The most predominant ones refer to the effects of
exogenous factors acting on the agents’ network, or uncertainty
inherent in the coalition formation process. This letter focuses
on the former case, where uncertainty in the environment
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results in changes in the values of agents’ coalitions. Encoding
uncertainty in the value functions of a coalitional game was
initially explored in the seminal works [6]–[8]. Therein, the
authors focus on the extension of well-known solution concepts
to provide stability-wise robust allocations. In [9] it is shown
that for a certain class of stochastic games, properties such
as the non-emptiness of the core of a deterministic game
continue to hold for their stochastic counterpart. References [10]
and [11] tackled uncertainty in the values of the coalitions by
leveraging Bayesian learning methods, while [12] investigated
which stability solution concepts maximize the probability that
the allocations will be stable in an a posteriori fashion, that
is after the samples of the uncertainty have been revealed.
Finally, [13] and [14] addressed uncertainty by studying the
dynamics of repeated stochastic coalitional games.

Unlike the aforementioned works, we construct a data-
driven methodology that allows the provision of distribution-
free guarantees on the stability of allocations in a probably
approximately correct (PAC) fashion, i.e., ensure that, with
high confidence, the agents’ probability to defect from the
grand coalition and form subcoalitions is bounded by a
prespecified threshold. Specifically, this bound depends on the
amount of available data, the confidence parameter and which
samples from the data are crucial to obtain this particular allo-
cation or set of allocations. Connecting PAC learning with
uncertain coalitional games has also been considered in [15].
Therein, the authors use a sampling-based approach to learn
the value function using a randomly generated subset out of
the total number of potential coalitions. The spirit of [16] is
similar, using Vapnik-Chervonenkis (VC) theory to learn the
winning coalitions for the class of the so-called simple games.

Our main contributions in comparison with the existing lit-
erature are as follows. Focusing on coalitional games with
uncertain value functions, we leverage recent results from the
scenario approach [17]–[19] to provide distribution-free PAC-
type stability guarantees for agents’ allocations. With respect
to [15], our results do not suffer from the conservatism asso-
ciated with VC-theoretic results. Furthermore, [15] focuses on
a complementary problem where only a randomized subset of
possible coalitions is considered; in contrast, we include all of
them but account in a randomized manner for uncertainty in
the value functions.

Our analysis is based on mild assumptions, as we assume
no prior knowledge of the sample space or the probability dis-
tribution of the uncertainty. Note that using robust versions of
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the core that take into account all possible uncertainty real-
izations (see, for example, [1]), as our main solution concept
for stability would pose significant challenges in such a gen-
eral setting. To start with, the evaluation of the robust core
under our set-up constitutes a challenging task as the uncer-
tainty support set � is in general unknown in the definition
of the robust core (Definition 1); even in cases where this
is known, finding the maximum coalitional value could be
computationally unviable when � is a continuous set, unless
we impose additional structural assumptions on its geometry.
Furthermore, the robust versions of the core do not provide
flexibility, as [1] considers the highest value realizations that
can possibly occur for each coalition. This unveils the conser-
vatism that accompanies such worst-case paradigms, as it is
not possible to account for cases where allocations are allowed
to be unstable with a small probability as common in a more
general chance-constrained framework. These challenges are
circumvented in our work by adopting a data-driven paradigm
with the scenario approach as its backbone. Our first contribu-
tion hence involves the introduction of a data-driven stability
concept, i.e., the scenario core. Our approach allows then to
provide stability guarantees collectively for all allocations that
belong to this randomized solution set.

A significant impediment on allocation stability that spans
the literature of cooperative game theory is the fact that the
core of a game, i.e., the set of stable allocations, can be empty.
In such cases, a relaxed deterministic version of the core is
usually proposed to provide stable solutions by charging the
formation of alternative sub-coalitions. This set is known in
the literature as the ε-core of the game, where ε is a param-
eter that determines the level of relaxation. In certain cases,
the ε-core can be viewed as a set of nearly stable solutions.
Our work generalizes this concept in a data-driven frame-
work. Leveraging recent results on the scenario approach with
relaxation [18], [19], we formulate the problem of finding an
allocation in a randomized ε-core of a game and we pro-
vide probabilistic stability guarantees for this allocation. As
a byproduct of the proposed approach, the emptiness of the
original core can be easily revealed along with the part of the
data that is responsible for the emptiness of the scenario core.
For notational reasons, we will refer to the relaxed core as the
ζ -core in the remainder of the document.

The rest of this letter is organized as follows. Section II
formulates the problem under study establishing a data-driven
framework for uncertain coalitional games. Section III pro-
vides then probabilistic stability guarantees for allocations that
belong to the scenario core and, in case the scenario core
is empty, for those allocations inside the randomized ζ -core.
Section IV corroborates our theoretical findings by means of a
numerical example, while Section V concludes this letter and
proposes future research directions of potential interest.

II. A DATA-DRIVEN APPROACH TO UNCERTAIN

COALITIONAL GAMES

A. Problem Formulation and Stability of Allocations

Let N = {1, . . . , N} be the index set of N agents and
consider any subset S ⊆ N as a coalition. In the proposed

setting, selfish agents have the incentive to form coalitions in
order to achieve a higher individual payoff, or as the means
to perform a certain task. The value of a coalition S ⊆ N
is represented by the so-called value function, denoted by
u(S), S ⊆ N . Exogenous uncertainties affecting a system
of agents are prominent in applications [1]–[4], e.g., in eco-
nomic systems, collaborations of companies can be affected
by sociopolitical factors, while in energy markets electricity
price fluctuations can affect the coalitional values related to
the collective minimization of electricity cost of peer-to-peer
coalitions.

We consider in this letter a model of a coalitional game
where the underlying network is affected by some exogenous
uncertainty δ that takes values in a set � according to a prob-
ability distribution P. Note that our model considers � and P

to be fixed but possibly unknown, thus managing to capture
several external factors that could potentially lead to changes
of the coalitions’ values. In this setting, the value functions
are extended to their uncertain counterpart u : 2N ×�→ R

which, given a coalition S ⊂ N and an uncertainty realization
δ ∈ �, returns a scalar value. The value function realizations
for any subcoalition could be either available from histori-
cal data or extracted from some synthetic dataset obtained by
some prediction model. In our setting we consider the value
function of the grand coalition to be deterministic. An uncer-
tain game is then defined as the tuple G� = (N , u,�,P). A
vector x = col((xi)i∈N ) ∈ R

N , where xi is the payoff received
by agent i is called an allocation. An allocation is strictly
feasible for a coalition S if

∑
i∈S xi < u(S). Feasibility of a

coalition implies that agents have an incentive to form this
coalition. The so-called grand coalition N is called efficient
if

∑
i∈N xi = u(N ). In this letter we are interested in find-

ing efficient allocations (in the grand coalition sense) that are
not strictly feasible by any other coalition. Such allocations
are called stable, as there are no incentives for agents to form
coalitions different from the grand one. The set of all sta-
ble allocations is called the core of the game. However, in
our setting, the value function is considered to be uncertain,
and hence, the standard definition of the core [5] is not suf-
ficient to capture the desired stability properties. To this end,
we extend the notion of the core to account for the presence
of uncertainty, as in the following definition.

Definition 1 (Robust Core): The robust core C(G�) of an
uncertain game G� is given by C(G�) = {x ∈ R

N :
∑

i∈N xi =
u(N ),

∑
i∈S xi ≥ maxδ∈� u(S, δ) for all S ⊂ N }.

Definition 1 shares a similar spirit with [1, Definition 6].
The robust core C(G�) provides the coalitional game under
study with a measure of robust stability in the sense that, for
any allocation x ∈ C(G�), agents have no incentive to defect
from the grand coalition to originate sub-coalitions.

B. A PAC-Learning Approach to Allocation Stability

Unfortunately, computing explicitly the robust core is hard,
as we assume no knowledge on the uncertainty support �

and the underlying probability distribution P. To circum-
vent this challenge, we adopt a data-driven methodology
and approximate the robust core by drawing a finite number
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of K independent and identically distributed (i.i.d.) samples
δK := (δ(1), . . . , δ(K)) ∈ �K , where �K denotes the carte-
sian product consisting of K copies of �. We refer to vectors
δK as multi-samples. This gives rise to the scenario game
GK = (N , u, δK). The core of GK , referred to as the scenario
core, is then defined as C(GK) = {x ∈ R

N :
∑

i∈N xi = u(N ),∑
i∈S xi ≥ maxk=1,...,K u(S, δ(k)) for all S ⊂ N }. Furthermore,

we impose the following assumption:
Assumption 1: For any multi-sample δK ∈ �K , the scenario

core C(GK) is non-empty.
Assumption 1 implies the existence of stable allocations. We

will investigate how to waive this assumption for cases where
the presence of uncertainty results in an empty scenario core
in Section III. On the basis of available data, we then wish to
provide guarantees on the probability that payoff allocations
x ∈ R

N inside the scenario core will remain stable even for
future, yet unseen, uncertainty realizations. Borrowing tools
from the scenario approach [20], [21], we define two proba-
bilities of instability. The first one denotes the probability that
a certain allocation will become unstable for a new unseen
realization of the uncertainty. The second extends this notion
to the probability of instability of the entire scenario core.

Definition 2 (Probability of Instability):
1) Let V : RN → [0, 1]. For any x ∈ R

N , we call

V(x) = P{δ ∈ � :
∑

i∈S

xi < u(S, δ) for some S ⊂ N }

probability of allocation instability.
2) Let V : 2R

N → [0, 1]. We call

V(C(GK)) = P{δ ∈ � : ∃ x ∈ C(GK) :
∑

i∈S

xi < u(S, δ),

for some S ⊂ N }
probability of core instability.

The probability of core instability thus denotes the prob-
ability that there exist δ and S with value function u(S, δ),
parameterized by the uncertainty δ, such that at least one of
the stable allocations in the scenario core will become unsta-
ble, i.e., the agents will defect from the grand coalition to
form S.

By leveraging available data, we then aim at bounding with
high confidence the probability of core instability, i.e., in a
PAC fashion. To achieve this we introduce two key concepts
from statistical learning theory, namely the algorithm and the
compression set [22].

Definition 3 (Algorithm): A mapping A : �K → 2R
N

that
takes as input a multi-sample δK ∈ �K and returns the scenario
core of game C(GK) is called an algorithm.

Note that some samples are more important than others in
the decision making procedure. In fact, only a subset of δK

may be sufficient to produce the same scenario core. As we
will see later in this letter, this subset, known as a compression
set, dictates the quality of the probabilistic stability guarantees
that we can provide and is defined as follows.

Definition 4 (Compression Set): With P
K-probability one

with respect to the choice of δK , a subset I ⊆ {δ(1), . . . , δ(K)}
is a compression set of A if A(δI) = A(δK), where δI is a
vector whose elements are the samples included in I.

Fig. 1. The violation level ε(sK ) as a function of the cardinality of the
minimal compression set for β = 10−6 and three different multi-sample
sizes, i.e., K = 500, 1000, 2000.

A compression set of A with minimal cardinality is hence
called minimal compression set. A procedure that enumerates
such a set is called a compression function.

III. PROBABILISTIC STABILITY GUARANTEES OF

ALLOCATIONS

A. Stability Guarantees for a Non-Empty Scenario Core

The following theorem provides collective guarantees on the
stability of allocations in the scenario core against yet unseen
value function realizations.

Theorem 1 (A Posteriori Collective Stability Guarantees):
Consider Assumption 1 and algorithm A as in Definition 3
along with its compression function. Fix a confidence param-
eter β ∈ (0, 1) and define the violation level ε:{0, . . . , K} →
[0, 1] as a function such that

ε(K) = 1 and
K−1∑

s=0

(
K

s

)

(1− ε(s))K−s = β. (1)

We then have that

P
K{

δK ∈ �K :V(C(GK)) ≤ ε(sK)
} ≥ 1− β (2)

where P
K =∏K

k=1 P and sK is the cardinality of the minimal
compression set.

Proof: The proof follows by re-adapting [23, Th. 6].
Roughly speaking, Theorem 1 states that, with confidence at

least 1−β, the probability that a new, yet unseen, uncertainty
sample will make an allocation in the scenario core unstable
is bounded by ε, a function of sK .

A simple choice of ε(s) can be obtained by splitting β

evenly among the K terms in the sum of (2), and solving with
respect to ε(s). This results in [17, eq. (7)], and is illustrated
numerically in Fig. 1. Note that the nature of Theorem 1 is a
posteriori, i.e., we can claim the probabilistic bound in (2) only
once the samples have been revealed. In fact, this is required
to quantify both the solution and the cardinality sK of the
minimal compression set.

Algorithm 1, introduced in the next page, plays the role
of the compression function used to compute sK . Note that
the problem at hand has a similar structure to the problem
in [24]. Algorithm 1 involves solving a linear optimization
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program (specifically, a feasibility problem) for each coali-
tion S′ ⊂ N , where we enforce in step 3 the constraint∑

i∈S′ xi = maxk=1,...,K u(S′, δ(k)), while all other constraints
remain unchanged. If the problem is feasible, the sample that
maximized the right-hand side of this equality constraint is
included in the compression set I, as feasibility in this case
implies that this sample belongs to the compression set of the
algorithm A that forms the scenario core C(GK). Using the
union in step 5 ensures that no sample is counted more than
once when we compute the cardinality sK of the compression
set I in step 8.

Instead of following the a posteriori methodology of
Theorem 1, one can provide collective guarantees on the sta-
bility of the scenario core also in an a priori fashion, whenever
the number of samples is greater than the number of possible
subcoalitions. As shown in Lemma 1, the a priori bound on
the cardinality of the compression set coincides with the num-
ber of possible coalitions that can be formed; if constraints on
the latter are in place, tighter bounds could be provided. The
following lemma establishes this observation.

Lemma 1: Assume that K > |2N |. The cardinality of the
minimal compression set is bounded by the number of possible
subcoalitions.

Proof: By the definition of C(GK), for each S ⊂ N , the
largest value on the right-hand side of the inequality

∑
i∈S xi ≥

maxk=1,...,K u(S, δ(k)) is attained at a given sample (assum-
ing no degenerate instances where multiple maximizers exist).
Assuming K > |2N |, in a worst-case setting, for each S ⊂ N
the maximizing sample may be different. Therefore, for each
S ⊂ N each inequality

∑
i∈S xi ≥ maxk=1,...,K u(S, δ(k)) is a

randomized facet of the non-redundant polytope C(GK). Each
of these facets corresponds to exactly one coalition, irrespec-
tive of the number of samples. This observation concludes the
proof.

Under Lemma 1, by [22, Th. 2], for a fixed confidence level
β ∈ (0, 1), we can claim that

P
K{

δK ∈ �K : V(C(GK)) > ε
} ≤ β,

where ε can be chosen a priori such that
(K

d

)
(1− ε)K−d = β,

with d being the number of possible subcoalitions. However,
note that for games with a high number of agents, the a pos-
teriori result of Theorem 1 might be preferable as the a priori
one tends to be conservative.

B. The Case of Empty Core

In our framework there might exist some realization δ ∈ �

resulting in C(G�) = ∅ (and hence the same can happen to
its scenario counterpart, C(GK)). Establishing whether C(G�)

is nonempty amounts to solving the feasibility program
⎧
⎪⎨

⎪⎩

min
x≥0

0

subject to
∑

i∈N xi = u(N ),∑
i∈S xi ≥ maxδ∈� u(S, δ) for all S ⊂ N .

To circumvent the possibly infinite cardinality of the constraint
set which must hold for all δ ∈ �, we adopt a data-driven

Algorithm 1 Compression Function of Algorithm A
1: initialization: I = ∅
2: input: δK

3: for all S′ ⊂ N

x∗S′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmin
x≥0

0

subject to
∑

i∈N
xi = u(N ),

∑

i∈S′
xi = max

k=1,...,K
u(S′, δ(k)),

∑

i∈S

xi ≥ max
k=1,...,K

u(S, δ(k)) ∀ S ⊂ N .

(3)
4: if x∗S′ �= ∅
5: I← I ∪ arg max

k=1,...,K
u(S′, δ(k))

6: endif
7: endfor
8: sK = |I|
9: output: sK

formulation, thus obtaining the following scenario program
⎧
⎪⎨

⎪⎩

min
x≥0

0

subject to
∑

i∈N xi = u(N ),∑
i∈S xi ≥ maxk=1,...,K u(S, δ(k)) for all S ⊂ N .

In this case, we lift Assumption 1 on non-emptiness of the
scenario core and provide through Theorem 2 guarantees on
the probabilistic stability of an allocation in a relaxed version
of the scenario core, the so called scenario ζ -core:

Definition 5 (Scenario ζ -Core): Given some ζ ≥ 0, the
scenario ζ -core of a scenario game GK coincides with the
set Cζ (GK) = {x ∈ R

N :
∑

i∈N xi = u(N ),
∑

i∈S xi ≥
maxk=1,...,K u(S, δ(k))− ζ for any S ⊆ N }.

Note that the standard notion of the scenario core is recov-
ered as a special case of the scenario ζ -core by setting ζ = 0.
In other words, the scenario ζ -core is a set of allocations based
on available data, where no agent can improve its payoff by
leaving the grand coalition. If it happens, then it must pay a
penalty of ζ for leaving. We first aim at finding a solution
inside the least-core, i.e., the set where allocations are stable
with the minimum value of ζ . Finding such a solution in our
set-up amounts to solving the following tractable optimization
program, formulated in the spirit of the scenario approach with
relaxation [18], [19],

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
x≥0, ξ≥0

∑K
k=1 ξk

subject to
∑

i∈N xi = u(N ),∑
i∈S xi ≥ maxk=1,...,K u(S, δ(k))− ξk,

for all S ⊂ N , k = 1, . . . , K.

(4)

Note that the proposed results hold independently of the
way (3) and (4) are solved. In this regard, we point out
that they amount to linear programs, hence amenable to dis-
tributed computation [25], [26]. Let ξ∗K := col({ξ∗k }Kk=1) and
ζ ∗ = maxk=1,...,K ξ∗k . A solution to (4) is a pair (x∗K, ξ∗K),
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where x∗K is an allocation in the ζ ∗-core (the least core). We
make use of the following assumptions:

Assumption 2 (Uniqueness) [18]: For any multi-sample
δK ∈ �K , the solution (x∗K, ξ∗K) of (4) is unique.

In case the solution is not unique, a solution can be singled
out by applying a convex tie-break rule [18].

Assumption 3 (Non-Accumulation) [18]: For every alloca-
tion x ∈ R

N , P{δ ∈ � :
∑

i∈S xi = u(S, δ)} = 0.
Assumption 3 is related to nondegeneracy [27] and it is

often satisfied when the uncertain parameter δ does not accu-
mulate, e.g., when δ admits a density function [18]. From
[19, Th. 1], consider the polynomial equation

(
K

s

)

tK−s − β

2N

K−1∑

i=s

(
i

s

)

ti−s − β

6K

4K∑

i=K+1

(
i

s

)

ti−s = 0, (5)

for any s = 0, . . . , N − 1, while for s = K consider

1− β

6K

4K∑

i=K+1

(
i

K

)

ti−K = 0. (6)

For any s = 0, . . . , N − 1, equation (5) has exactly two solu-
tions in [0,+∞) (see [28, Th. 1]), which we denote as t(s)
and t(s) with t(s) ≤ t(s). Equation (6) has only one solu-
tion in [0,+∞) which we denote as t(K), while we define
t(K) = 0. Let ε(s) = max{0, 1 − t(s)} and ε(s) = 1 − t(s),
s = 0, 1, . . . , K. We are now ready to introduce our main the-
orem on the provision of stability guarantees for allocations
inside a scenario ζ -core.

Theorem 2: Consider Assumptions 2 and 3 and fix a con-
fidence parameter β ∈ (0, 1). We then have that

P
K{δK ∈ �K : ε(s∗) ≤ V(x∗K) ≤ ε(s∗)} ≥ 1− β, (7)

where x∗K is obtained from (4), s∗ is the number of δ(k)’s for
which there exists a coalition S ⊂ N such that

∑
i∈S x∗i ≤

u(S, δ(k)), and ε(·), ε(·) are as defined below (6).
Proof: Note that for any δ ∈ � we can equivalently rewrite∑
i∈S xi ≥ u(S, δ) for all S ⊂ N as max�=1,...,2N−1 (b�(δ) −

A�x) ≤ 0, where the �-th row A� of the matrix A ∈
R

(2N−1)×N selects those agents generating the �-th sub-
coalition S� among the possible 2N − 1, while b(δ) :=
[u(S1, δ) · · · u(S2N−1, δ)]

� ∈ R
2N−1. As such, the program

in (4) takes the form
⎧
⎪⎨

⎪⎩

min
x≥0,ξ≥0

∑K
k=1 ξk

s.t.
∑

i∈N xi = u(N )

f (x, δ(k)) ≤ ξk, for all k = 1, . . . , K,

(8)

with f (x, δ) := max�=1,...,2N−1 (b�(δ) − A�x). Since, in
our setting, [19, Assumption 1] is satisfied and considering
Assumptions 2 and 3, direct application of [19, Th. 1] to (8)
allows the provision of probabilistic stability guarantees for an
allocation x∗K inside the scenario least core obtained once the
values of {ξ∗k }Kk=1 have been computed.

The formulation in (4) brings several benefits. Specifically,
after solving (4), which is always feasible, if each ξ∗k = 0,
then the scenario core C(GK) is nonempty, meaning that, for
the collected data, the grand coalition admits at least a stable
solution whose robustness can be quantified following the dis-
cussion in Section III-A or the bound in Theorem 2. However,

TABLE I
UNCERTAIN VALUE FUNCTIONS FOR EACH COALITION

no conclusion can be drawn on the nonemptiness of the origi-
nal robust core, C(G�). In case there exists some ξ∗k > 0, this
means that the scenario core C(GK) is empty and the same
holds for the robust core C(G�) (since C(G�) ⊆ C(GK)).
Interestingly, Theorem 2 allows us to quantify the penalty to be
imposed on the formation of sub-coalitions in order to obtain
a solution with a provable probabilistic bound on stability.

IV. NUMERICAL STUDY

We consider an uncertain coalitional game with N = 4
agents and the value functions for each coalition summarized
in Table I. Each element of the uncertainty δ = {δS}S⊂N that
affects the coalitional values is assumed to be drawn according
to a uniform distribution with support in [−0.5, 0.5]. Drawing
a total number of K = {200, 300, 400, 500, 1000, 1500, 2000}
samples we use Algorithm 1 to find the cardinality of the com-
pression, which for this particular example is always upper
bounded by 4. Fixing the confidence parameter to β = 10−4

and considering 106 test samples, we calculate the empiri-
cal probability of violation V̂(C(GK)) by checking which of
these test samples give rise to values of coalitions that ren-
der at least one allocation in the scenario core unstable. Then,
we compare in Figure 2 this probability with the a posteriori
theoretical violation level ε(sK) of the scenario core for each
value of K. Note that the empirical probability of violation is
always below the theoretical level, thus verifying the result of
Theorem 1 numerically.

Next, we focus on instances of games where the scenario
core as defined in Section II is empty due to the presence of
uncertainty. We consider the same coalitional game as before
where the uncertainty δ follows instead a gaussian distribu-
tion with mean 0 and standard deviation 0.3 truncated at
[−1.5, 1.5]. In this case, the scenario core is empty for a large
enough number of samples. Using the relaxation technique of
Section III-B we find a solution that lies inside the randomized
least core. Then, Theorem 2 allows to provide guarantees on
the stability of an allocation x∗K in this relaxed core. Drawing
a different number of samples K each time from the set
{200, 300, 400, 500, 1000, 1500, 2000} and fixing β = 10−5,
we calculate s∗ for each multi-sample size and compute the
lower and upper violation levels ε(s∗), ε(s∗), respectively.
Using a total number of 106 test samples we calculate the
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Fig. 2. The violation level ε(sK ) (blue line) vs the empirical probability
of violation V̂ (C(GK )) (red line) for the scenario core of the uncertain
game as defined by Table I.

Fig. 3. The violation levels ε(s∗), ε(s∗) vs the empirical probability of vio-
lation V̂ (x∗K ) for a solution inside the scenario ζ -core of the considered
uncertain game.

empirical probability V̂(x∗K) and we compare it with the the-
oretical bounds ε(s∗), ε(s∗) (these are obtained as discussed
below (6), using the code made available in [28]) for each
multi-sample size. The results are summarized in Figure 3.
In general, a lower probability of violation is expected by
increasing the number of samples. However, note that a larger
number of samples implies in our case that a larger number
of relaxed constraints is generally needed to find an allocation
by solving (4). Thus, such allocations in the relaxed core have
similar or only slightly decreasing empirical probabilities of
violation as the number of samples increases.

V. CONCLUSION

Focusing on coalitional games with uncertain value func-
tions, we borrow tools from the scenario theory to provide
distribution-free guarantees on the probability that agents will
not defect from the grand coalition to originate subcoalitions for
unseen uncertainty realizations. We provided collective stabil-
ity guarantees for the entire core set in a PAC learning fashion,
and accounted for the case where the scenario core can be
empty, proposing a methodology to accompany allocations in
a relaxed core with stability certificates. Future work will focus
on establishing tighter stability guarantees on a specific core

subset where desired qualities of the solution, e.g., fairness
within a certain amount of tolerance, are taken into account.
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