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ABSTRACT

We investigate the probabilistic feasibility of randomized solutions to two distinct classes of uncertain
multi-agent optimization programs. We first assume that only the constraints of the program are af-
fected by uncertainty, while the cost function is arbitrary. Leveraging recent developments on a posteriori
analysis within the scenario approach, we provide probabilistic guarantees for all feasible solutions of
the program under study. This is particularly useful in cases where the numerical implementation of
the solution-seeking algorithm prevents the exact quantification of the optimal solution. Furthermore,
this result provides guarantees for the entire solution set of optimization programs with uncertain con-
vex constraints and (possibly) non-convex cost function. We then focus on optimization programs with
deterministic constraints, where the cost function depends on uncertainty and admits an aggregate repre-
sentation of the agents’ decisions. By exploiting the structure of the program under study and leveraging
the so called support rank notion, we provide agent-independent robustness certificates for the optimal
solution, i.e., the constructed bound on the probability of constraint violation does not depend on the
number of agents, but only on the dimension of each agent’s decision space. This substantially reduces
the amount of samples required to achieve a certain level of probabilistic robustness for a larger number
of agents. All robustness certificates provided in this paper are distribution-free and can be used along-
side any optimization algorithm. Our theoretical results are accompanied by a numerical case study of a
charging control problem for a fleet of electric vehicles.

© 2021 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background

cost function locally and then communicate their strategies to a
central authority. In the distributed case, a central authority is ab-
sent and agents communicate with each other over a network, ex-
changing information with agents considered as neighbours given

A vast amount of today’s challenges in the domains of energy
systems [23,28], traffic networks [33], economics [1] and the so-
cial sciences [2,22] revolve around multi-agent systems, i.e., sys-
tems which comprise different entities/agents that interact with
each other and make decisions, based on individual or collective
criteria. Existing literature provides a plethora of methods to solve
such problems. Each method is appropriately designed to fit the
structure of these interactions and the agents’ incentives. To ad-
dress computational complexity and privacy concerns of solving
a multi-agent optimization problem in a centralised fashion, sev-
eral decentralised or distributed coordination schemes have been
proposed [5,36]. In the decentralised case, agents optimize their
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the underlying communication protocol. In either case, the pres-
ence of uncertainty in such problems constitutes a critical factor
that, if not taken into account, could lead to unpredictable be-
haviour, hence it is of major importance to accompany the solu-
tions of such algorithms with robustness certificates. In this paper
we assume that the probability distribution of the uncertainty is
unknown and adopt a data-driven approach, where the uncertainty
is represented by means of scenarios that could be either available
as historical data, or extracted via some prediction model. To this
end, we work under the framework of the so called scenario ap-
proach.

The scenario approach is a well-established mathematical
technique [9,10,12], and still a highly active research area (see
[11,13] for some recent developments), originally introduced to
provide a priori probabilistic guarantees for solutions of uncertain
convex optimization programs. Recently, the theory was extended
to non-convex decision making problems [11,13] where the prob-
abilistic guarantees are obtained in an a posteriori fashion. The
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Table 1
Classification of main results according to their main features and comparison with existing literature.
Type of solution Nature of certificate Scalability Class of problems Result
Entire feasible set A posteriori Agent dependent Feasibility programs with Thm. 2
uncertain convex constraints
Subset of feasible solutions A priori Agent dependent Feasibility programs with Thm. 2 of [27]
uncertain convex constraints
Variational inequality solution set A posteriori Agent dependent Variational inequality problems Thm. 1 of [18]
with uncertain convex
constraints
Variational inequality solution set A posteriori Agent dependent Aggregative games with Thm. 1 of [17]
uncertain affine constraints
Unique optimizer A priori Agent independent Optimization programs with Thm. 3

Unique variational inequality solution A posteriori & a priori

Agent dependent

uncertain aggregative term in
the cost

Variational inequalities with
uncertain cost or constraints

Cor. 1 of [32], Thm. 7
and Thm. 8 of [20], Thm.
5 of [19] (only a
posteriori)

main advantage of the scenario approach is its applicability under
very general conditions, since it does not require the knowledge of
the uncertainty set or the underlying probability distribution, un-
like other stochastic [6] or robust [4] methodologies. According to
the scenario approach, the original problem can be approximated,
yielding a computationally tractable problem. The so called sce-
nario program consists of a finite number of constraints, each of
them corresponding to a different realization of the uncertain pa-
rameter. In this realm we present some of the challenges that per-
tain to uncertain multi-agent systems.

1.2. Challenges to be addressed and main contributions

In a plethora of problems of practical interest, agents’ decisions
are feasible, though not necessarily optimal. This can be due to
the specific numerical implementation of the solution-seeking al-
gorithm, that might hinder the exact quantification of the optimal
solution. Even under the assumption that the computed optimizer
is exact, many optimization programs can have multiple (local) op-
tima.

Another major challenge is the dependence of the provided
certificates on the number of agents. Given that we wish to ob-
tain identical probabilistic guarantees as the population increases,
a larger number of samples is required. However, increasing the
sample size is, in general, a major issue, which can also lead to
increased computational complexity. This fact hinders the provi-
sion of non-conservative guarantees for large scale applications. As
such, it is of utmost importance to show that for certain classes
of problems, common in practical applications, the obtained prob-
abilistic guarantees can be agent independent.

The main contributions of this paper are as follows:

1. We address the challenges related to the lack of optimality of
the agents’ decisions and the presence of multiple local solu-
tions, by considering an optimization set-up, where the choice
of the cost function can be arbitrary and the uncertainty af-
fects only the constraints. We, then, leverage recent results of
[13] in order to provide a posteriori robustness certificates for
the entire feasibility region' The theoretical framework of the
preliminary work in [35], initially developed only for uncertain
feasibility problems with polytopic constraints, is extended in
our set-up to account for general (possibly coupling) uncertain

1 While this paper focuses on optimization programs, our results are applicable
to more general uncertain feasibility programs. This allows providing certificates for
the feasibility region of other classes of problems, such as variational inequalities
and generalised Nash equilibrium problems [35].

187

convex constraints. This result is interesting per se, as it com-
plements the results in [13] allowing to provide guarantees col-
lectively for a set of points, thus departing from the existing
stream of literature in the scenario approach which typically
refers to a single solution (e.g., see [9-13,30]). Moreover, it ac-
counts for problems with multiple optimizers, or for problems
with non-convex objective functions, where a different opti-
mal, locally optimal or even suboptimal solution might be re-
turned by a solution-seeking algorithm, hence it is of impor-
tance to provide guarantees for all of them. We also discuss in
Remark 1 that, as a byproduct of our approach, computing the
number of support samples for the entire feasibility region (a
notion at the core of the scenario approach developments that
will be formally introduced in the sequel) is computationally
less sensitive compared to the approach suggested in [13] for
determining the support samples of a specific solution to the
underlying optimization program.

. We then focus on a specific class of uncertain multi-agent pro-
grams, prevalent in many practical applications, where the cost
is considered to be a function of the aggregate decision and af-
fected by uncertainty. A similar problem formulation was con-
sidered in [15] and is extended to our set-up to account for
the presence of uncertainty in the cost function. Other prob-
lems whose structure shares similarities with our work can
be found in [24-26], though under a purely deterministic and
game-theoretic set-up. Following the recent developments in
[34] we show, based on the notion of the support rank [37],
that the obtained probabilistic feasibility certificates do not de-
pend on the number of agents. This result directly outperforms
probabilistic feasibility statements obtained by a direct applica-
tion of the scenario approach theory [10], and shows superior
scalability properties in multi-agent environments.

The contributions of our main results in comparison with re-
sults in the literature are summarised in Table 1. Our first contri-
bution provides probabilistic guarantees, in an a posteriori fashion,
that hold for the entire feasibility region (or a subset of interest as
detailed in Remark 2) in contrast with the a priori result in [27].
Therein, the feasible subset is obtained by taking the convex hull
of randomized optimizers whose position is in general not known.
This may in certain cases produce a “thin” subset of the feasible
region. The recent contributions [17], [18] use a similar approach
to [35] to provide guarantees applicable not for feasible sets, but
for a set of game equilibria. For our second contribution, the na-
ture of the certificates is a priori. Assuming uniqueness of the so-
lution, we exploit the aggregative structure of the cost to provide
results that are agent-independent. The aggregative nature of the
cost has been exploited in several works (see [17,19,20]), however,
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guarantees provided in these works are dependent on the num-
ber of agents. It should be apparent from Table 1 that our results
are the first of their kind to provide guarantees for the entire fea-
sibility region, as well as the first agent independent result for a
particular class of optimization programs.

The rest of the paper is organized as follows: In Section 2 prob-
abilistic guarantees for sets of feasible solutions of optimization
programs with arbitrary cost and uncertain convex constraints
are provided. Section 3 focuses on providing agent-independent
robustness certificates for the optimal solution set of a specific
class of aggregative optimization programs with uncertain cost.
The aforementioned results are used in Section 4 in the context
of a numerical study on the charging control problem for a fleet of
electric vehicles. Section 5 concludes the paper and provides some
potential future research directions.

1.3. Notation

Let A ={1,...,N} be the index set of all agents, where N de-
notes their total number and x; the strategy of agent i taking values
in the set X; C R". We denote X = (X;)icyr € X = [Ticy Xi € R™ the
collection of all agents’ strategies and bdry(X) the boundary of a
set X. Similarly, the vector X_; = (X;) jex jzi € [Tjen jui Xj € R*N-D
denotes the collection of the decision vectors of all agents’ strate-
gies except for that of agent i. The symbols x and (x;, x_;) are used
interchangeably in this paper, depending on the context.

Let & be an uncertain parameter defined on the probability
space (©, F,P), where O is the sample space, equipped with a o-
algebra 7 and a probability measure P. Furthermore, let {6 }men €
OM, M ={1,...,M} be a finite collection of M independent and
identically distributed (i.i.d.) scenarios/realisations of the uncertain
vector @, where ®M is the cartesian product of multiple copies of
the sample space ®; finally, PM is the associated product probabil-
ity measure.

2. Optimization programs with uncertainty in the constraints
2.1. The convex case

Consider the following optimization program

Po : 11151)%1](x) subject to x € (1] X, (1)

0ec®

where the cost function J(x) can be chosen arbitrarily (feasibility
programs are admitted), x is a decision vector taking values in the
deterministic set X c RY, while X, is dictated by the uncertain pa-
rameter 6. We seek to provide probabilistic guarantees for all fea-
sible solutions of this class of programs.

Solving instances of Pg is generally hard without imposing any
further assumptions on the uncertainty support ® and/or the un-
derlying probability distribution P [10]. We address this by con-
sidering the following approximation of Pg, the so called scenario
program, formulated upon a finite set {Om}menr Of ii.d. samples
from ®:

Py : I‘gl)?j(x) subject to x € (1] X,
meM

(2)

Our results depend on a convex constraint structure, thus we im-
pose the following assumption:

Assumption 1.

1. The deterministic constraint set X is non-empty, compact and
convex.

2. For any sample 6 € ®, we have that Xy = {x e R? : u(x,6) <0},
where u: R? x ©® — RY is a vector-valued convex function.
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3. For any fixed multi-sample {0 }mer € OM the convex set Gy =
{Nmeam Xo, ) NX ={xeX :u(x.0m) <0.Y me M} has a non-
empty interior.

Assumption 1 guarantees that Py admits at least one solu-
tion for any chosen multisample {0p}merm € OM. Note that the
set Cy above is the feasibility domain of problem Py. It follows
that the optimization program Py can be equivalently written as
minJ(x) subject to x € C;. We are interested in investigating the
robustness properties collectively for all the points of this domain
to yet unseen uncertainty realizations. To this end, we first intro-
duce the notion of probability of violation of a given point x € ;.
By Definition 1 in [9]
V(x):IP’{Ge(H): x¢X9}. 3)
In other words, V(x) in (3) quantifies the probability of occurrence
of a sample 6 € ® such that the corresponding constraint Xy is not
satisfied by x € Cy.

By Assumption 1, the probability of violation can be equiva-
lently written as V(x) = P{6 € ® : u(x,0) > 0}. We can now define
the probability of violation for the entire convex set Cy.

Definition 1. Let ¢ € 2X be the set of all non-empty, compact and
convex sets contained in X. For any Cy; € C we define the probabil-
ity of violation of the set Cy; as a mapping V : C — [0, 1] given by
the following relation:
V(Cy) = supV (x).
xeCy

In Definition 2 below, we adapt from [13] two concepts of cru-

cial importance for our analysis.

Definition 2.

1. For any M, an algorithm is a mapping Ay : ©M — ¢ < 2X that
associates the multi-sample {0 }mers € OM to a unique convex

set Gy € C.
2. Given a multi-sample {0n}mer € OM, a set of samples
{Om}mer, € {Ombmer, where I = {my,my,...,m}, is called a

support subsample if Ay({Om}mer,) = Av({Om}tmert) ie., the set
returned by the algorithm when fed with {fm}me), coincides
with the one obtained when the entire multi-sample is used.

3. A support subsample function is a mapping of the form B, :
{Bm}merm — {mq, my, ..., my} that takes as input all the samples
and returns as output only the indices of the samples that form
a given support subsample.

Note that the notions of support subsample and support sub-
sample function in Definitions 2.2, 2.3 are respectively referred to
as compression set and compression function in [30]. A support
subsample with the smallest cardinality among all the possible
support subsamples is known as minimal support subsample. In
the following, we assume that By, always returns the indices of a
minimal support subsample. Such a requirement is not restrictive,
and only rules out degenerate cases where samples lead to con-
straint accumulation [11]. If the underlying probability distribution
admits a density, such a case will not occur.

We note that in our set-up a minimal support subsample con-
sists of those samples that are of support for the entire feasibility
region. The following definition formalises this notion:

Definition 3. (Support sample for the feasibility region) A sample
0 € {Om}mer is said to be of support for the feasible set Gy of
Py if it belongs to the minimal support subsample returned by
BM({gm}meM)'

In other words, if 6; belongs to the minimal support subsample,
then its removal may lead to an enlargement of the feasible region,
ie, {Ninem Xo, ) \ng D Cy- The number of support samples of the
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Fig. 1. The feasibility region Gy and its connection with random convex constraints
produced by eight iid. samples {0;,6,...,60g}. The constraint in green corre-
sponds to the deterministic constraint X. Note that only the indices of the samples
63,65, 65,07 belong to the minimal support subsample since their corresponding
constraints (in red) form, along with the deterministic constraint X, the boundary
of Cy. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

feasible region or, equivalently, the cardinality of the minimal sup-
port subsample is denoted as Fy.

The constraints that correspond to indices from the minimal
support subsample can be alternatively viewed as an adaptation
of the notion of the facets of a polytope (see Definition 2.1 in [31])
to the more general case of compact and convex sets. Note that a
single constraint may give rise to multiple “facets”. Fig. 1 illustrates
the concept of the minimal support subsample by showing the fea-
sible region formed by random convex constraints. Note that only
the indices of the samples 63, 65, 6, 67 belong to the minimal sup-
port subsample, since if we feed only these samples as input into
the algorithm Ay, the feasible set Cy; is returned.

Another important notion used in our work is the notion of an
extreme point. An extreme point can be viewed as an extension of
the vertex of a polytope for arbitrary compact and convex sets and
is defined as a point which is not in the interior of any line seg-
ment lying entirely in the set. This property is formally presented
in the following definition.

Definition 4. (Extreme points) [38]. An extreme point of a convex
set C is a point x € C for which the following property holds: If x
can be written as a convex combination of the form x = Ax; + (1 —
A)x, with x1,x, e C and X € [0, 1], then X; = X or x, = x.

Note that the number of extreme points of a convex set de-
pends on the geometry of the set under study and can also be in-
finite, e.g., in the case of a d-dimensional sphere.

Our work focuses on compact and convex sets defined over a
finite-dimensional space, where the following theorem can be ap-
plied.

Theorem 1. (Minkowski Caratheodory Theorem) [38]. Let C be a
compact convex subset of RY of dimension d. Then any point in C
is a convex combination of at most d + 1 extreme points.

We equip the set of extreme points of the convex set Cy; with
indices and denote this set of indices E(Cy), while bdry(Cy) refers
to the boundary of Cy,. It is important to emphasize that the de-
pendence of the convex set Cy; on the multi-sample {6 }mer im-
plies that |By| (and |E(Cy)|) are random variables that depend on
{Om}mem € OM.

Next we define the set

Co={CeC:u(x;,0)<0, VjeE©)}

—{Cec:Cc Xyl (4)
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of all the non-empty, compact and convex sets where elements C
satisfy the constraint associated with the sample 6 € ®. Note that
if all the extreme points of the set satisfy the inequality u(-,6) <0,
then every point x € C of the set satisfies it as well. To see this,
note that x can always be expressed as a convex combination of
the set’s extreme points.

Our aim is to provide probabilistic guarantees for a non-empty,
convex and compact set Cy constructed by the intersection of M
random realizations of the uncertain convex constraint Xy = {x €
RY : u(x,0) <0}, where u: RY x ® — RY is a convex function with
respect to the decision variable x.

The following lemma shows how the probability of violation of
a convex set is related to the probability of violation of its extreme
points.

Lemma 1. Consider a fixed multi-sample {0m}mesm € OM and let
E(Cy) be the set of extreme points of Cy;. Then,

van=pf U {00 u.0)>0}}.

JeECu)

(5)

Proof. For a fixed multi-sample {6i}mes € ®M consider an arbi-
trary point x € Cy. Then, the following inequalities are satisfied

V(x):IP{Ge@: x<,i_X9}=IP’{9€®: u(x,9)>0}

(21@[96@: u(Y )\jx,,e)>0}
Jelan
@ IP’{@ cO: Y hu;,0) - o}
Jela
< IP’{G €®: Z Y r,g?;(u(xjﬁ) > O}
Jeliy
=]P{0 c®: mlaxu(xj,@) > 0}
J€lg41
:n»{ U {ee@): u(x,,9)>0}}
Jelin
el {9 cO®: u(x;.0) >o}}, (6)
JjeE(Cn)

Equality (i) is derived from Theorem 1, where the set under study
is the convex set Cy. In our case, the Minkowski-Caratheodory
theorem states that any arbitrary point of the set x e Cy can
be represented as a convex combination of at most d +1 ex-
treme points of Cy, which means that there exists a subset of
extreme points {x]—}jeld+1 < {xj}jeec,) such that x= Zj€1d+1 AjXj,
where Zjdw Aj=1and A;>0, V jelgq. Equality (ii) stems
from the fact that u is a convex function of x for any given 6 € ®.
The last inequality follows from the fact that I;, ¢ is a set of indices
corresponding to extreme points and as such is a subset of E(Cy).
Since (6) holds for all x € Gy, it can equivalently be written as

U {peo: uw.0 -0l

V(Cy) =supV(x) < [P’{
JeE(Cu)

xeCy

which concludes the proof. O

Lemma 1 shows that the probability of constraint violation of
Cy is bounded by the probability that at least one of the extreme
points violates the constraint and is key towards providing proba-
bilistic feasibility guarantees for the feasible region, a result estab-
lished in the following theorem.

Theorem 2. Consider Assumption 1 and any Ay, By as in Definition
2. Fix Be(0,1) and define the violation level function € :
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{0,...,M} — [0, 1] such that

M _
(k>(1 —e(k)Mr=p.

M-1

e(M)=1and )
k=0

We have that
PM{{em}mM cOM: V(G > e(k*)} < B,

where k* =Fy is the number of support samples according to
Definition 3.

Proof. By Lemma 1, for any multi-sample {0 }mer € ©M and for

any cardinality (not necessarily minimal) of the support subsample
M}, the following inequalities are satisfied:

PM{{em}mM cOM: V(Cy) > e(k)}
< PM{{em}mgM cOM:

p{ U {9 cO:ux.0)> o} - e(k)}}

J€E(Cu)

P {Onbnerc O
{
{
{

ploco: cngg} >e(k>},

PlocO:3jcEC. ux.0) > o} . e(k)}

pM {Om}mem € eM:

(8)

where the last equality is due to (4). Define now an algorithm
Ay as in Definition 2.1, that returns the convex set confined by
the feasibility region of Cy. By construction, Ay satisfies Assump-
tion 1 of [13], since for any multi-sample {Om}men it holds that
Ap({Om}mer) € Cg,,, for all m e M. The satisfaction of Assumption
1 paves the way for the use of Theorem 1 of [13]. In particular, for
k > k* = Ry, Theorem 1 of [13] implies that the right-hand side of
(8) can be upper bounded by .
As such, we have that

PM{{Qm}meM cOM; IP’{@ cO: Cu gxg} . e(k*)} _

]P’M{{Qm}meMe@M: ]P’{@e@: CM¢c9} >e(k*)}§,3. 9)
From (8) and (9) we obtain that:
PM{{Gm}mEM cOM: V(Cy) > e(k*)} < B, (10)

thus concluding the proof. O

The result of Theorem 2 implies that with confidence at least
1 — B, the probability that there exists at least one feasible solution
of Gy that violates the constraints for a new realization 6 € O, is
at most equal to € (k*). Note that our guarantees trivially hold for
any subregion of the feasible set. However, the support subsample
cannot be easily computed in the general case. Restricting our at-
tention to programs subject to uncertain affine constraints provides
the means to quantify the support subsample.

2.2. The polytopic case

Assuming the presence of affine constraints only, we replace
Assumption 1 with the following:

190
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Assumption 2. Consider Assumption 1 and further assume that
X is polytopic? and u(x,0) = a’x — b <0, where a € RY, b e R and
0 = (a’ b) e R4+,

We denote polytopic feasibility sets with IT and II,;, rather
than C and Cy, respectively. Under Assumption 2, the cardinality
of the minimal support subsample returned by By coincides by
definition with the number of random facets (see Definition 2.1 in
[31]) of the polytope. Then, Theorem 2 gives rise to the following
corollary.

Corollary 1. Consider Assumption 2 and any Ay, By as in Definition

2. Fix B € (0,1) and define the violation level € : {0, ..., M} — [0, 1]
as a function such that
M1 /yr
_ _ M—k _
e(M)=1 and ,;:) (k)(l e(k)) B. (11)

We have that
P! Ondmess € O 2 V(I =€)} < B,
where k* = Fy is the number of facets of I1y,.

Note that, even though in the proof of our theorem we also
use the vertices of the polytope, only the number of facets is
needed to provide probabilistic guarantees for the entire feasibil-
ity region. This feature is appealing from a computational point
of view as, in most practical cases, the constructed polytope has
a significantly smaller number of facets than extreme points. To
illustrate this, consider a finite horizon multi-agent control prob-
lem with N agents, where each agent’s decision is subject to upper
and lower bounds at each time instance t € {1,..., n}. Hence, for
a multi-sample {6}M_, € OM, the feasibility domain of the prob-
lem is a hyperrectangle whose number of facets F = 2Nn grows
linearly with respect to the number of decision variables, while the
number of vertices is given by V = 2N which grows at an expo-
nential rate with respect to Nn. Such constraints arise in several
applications including the electric vehicle scheduling problem of
Section 4. Note that, as the dimension of the decision vector in-
creases, evaluating the minimal support subsample becomes com-
putationally challenging. However, several efficient algorithms have
been proposed for detecting redundant constraints out of the ini-
tial set of affine constraints. The currently fastest algorithm for
redundancy detection is Clarkson’s algorithm [14]. Reducing the
computational complexity of Clarkson’s algorithm is still an active
research area in computational geometry and combinatorics. One
recent noteworthy attempt can be found in [21].

Remark 1. Corollary 1 allows retrieving the support samples of
the feasibility region by enumerating its facets. Calculating these
is straightforward for a wide class of problems like those that have
the structure of the example in Section 4.2 (see also [16,25,29,33]).
The relevance of this result can be seen by considering, for exam-
ple, the case where an iterative algorithm is obtained to return an
optimizer/feasible solution of the underlying problem. The quan-
tification of the support samples using the methodology suggested
in [13] can be challenging due to the numerical sensitivity of the
latter and the fact that it would require calling the iterative (typi-
cally with asymptotic convergence guarantees) algorithm multiple
times. This difference becomes more pronounced if the objective

2 A polytope ITeR? can be expressed by its H-representation, ie. the in-
tersection of a finite number of halfspaces, and also as the convex hull of its
vertex set v(IT) = {x,..., Xq} ie, TT = conv(v(IT)) = {ij?‘!:1 XjAj: Z?Zl Aj=14;>
0, j=1,..., Q}, where v(-) and conv(-) denote the set of vertices of the poly-
tope and the convex hull, respectively. This representation is generally known as
V-representation.
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function of the underlying problem is non-convex, thus possibly
exhibiting multiple local optima.

In case we wish to provide guarantees only for a specific subset
of the feasible region, the following remark clarifies how this can
be achieved by leveraging our results.

Remark 2. Let Ay, be an algorithm that returns only a subset of
the feasible region. Following the same steps with the proof of
Theorem 2, we can provide probabilistic feasibility guarantees for
the subset of interest with By, returning the support samples that
correspond to this subset and not to the entire feasibility region.
This might be useful in cases where we have prior knowledge that
a certain subregion of the feasible domain is of importance, e.g.,
a neighbourhood around the optimizer and we wish to investigate
the probabilistic feasibility of this region only. In case the cardi-
nality of the support subsample for the region is less than that of
the entire feasible domain, this leads to less conservative feasibility
certificates.

3. Optimization programs with uncertainty in the cost
3.1. Optimization setting

In this section we show that for a specific class of problems fre-
quently arising in practical applications, the probabilistic feasibil-
ity guarantees for the optimizers of the problem can be substan-
tially improved by leveraging the notion of the so called support
rank [37]. Assuming an uncertain cost function of a specific form
and deterministic local constraints, we consider the following pro-
gram

P: I}(}Eixnj(x), (12)

where ](x):f(x)-i-%qa(g(g(x,e) and f: X >R, g:Xx® >R is
pars

the deterministic and the uncertain part of the cost function, re-
spectively. In addition, the cost under study satisfies the following
assumption

Assumption 3.

1. f is jointly convex with respect to all agents’ decision vectors,
and the set X is non-empty, compact and convex.
2. g takes the aggregative form

g(xv 9) = Zgi(xi’xfh 0) and

ieN
8i(xi,x_,0) = x{ (A(6)o (x) + b(6)),

where o : X - R" is a mapping (X;)ijcnv— > X and A: ® —
ieN

R™™ b:® — R" are uncertain mappings with A(f) being a

symmetric positive semi-definite matrix for all 6 € ©.

Under Assumption 3 the function J is convex, as the pointwise
maximum of an arbitrary number of convex functions is itself a
convex function [7]. From Assumption 3.2 the uncertain counter-
part of the cost function under study takes the form

g(x,0) = o () (AB)o (X) + b(®)).

The proposed structure captures a wide class of engineering prob-
lems, including the electric vehicle charging problem detailed in
Section 4. Since g is convex, using an epigraphic reformulation we
recast P to the equivalent semi-infinite program

P i S0+
subject to h(x,y,0) <0, V6 € O, (13)

where h(x,y,0) =g(x,6) — y. In addition, if (x*, y*) is the opti-
mal solution of problem P, then x* is the optimal solution of the
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original problem P. Due to the presence of uncertainty and the
possibly infinite cardinality of ®, problem P is very difficult to
solve, without imposing any further assumptions on the geome-
try of the sample set ® and/or the underlying probability distri-
bution P. To overcome this issue, we adopt again a scenario-based
scheme [8]. The corresponding scenario program of the uncertain
semi-infinite program P’ is thus given by

Py in_ fG) +y

subject to h(x,y,0n) <0, Vme M, (14)

where {Om}mer € ®M is an iid. multi-sample of cardinality M. For
the scenario program under study, we introduce the following as-
sumption:

Assumption 4.

1. For any multi-sample {On}mer, the scenario program Ps/c ad-
mits a feasible solution.

2. The optimal solution (x*, y*) of the scenario program Ps/c is
unique.

In case multiple optimal points exist, one can use a convex tie-
break rule to select a unique solution. The following concept, at
the core of the scenario approach, is important for the derivation
of the results in the next subsection, where agent-independent ro-
bustness certificates are provided for the optimal solution. Note
that this is similar to Definition 3, but it refers now to the opti-
mal solution and not to the feasibility region.

Definition 5. (Support constraint [10]) Fix any i.i.d. multisample
{Bm}mer € OM and let xp = X5 ({Om}merr) be the unique optimal
solution of the corresponding scenario program of P, when all the
M samples are taken into account. Let x* ¢ = x* ;({Om}mer \ 65) be
the optimal solution obtained after the removal of sample 6;. If
X§ # x*; we say that the constraint that corresponds to sample 6s
is a support constraint.

3.2. Agent independent probabilistic feasibility guarantees for a
unique solution

In many practical applications there are cases where a random
constraint may leave a linear subspace unconstrained for any pos-
sible sample 6 € ®. This observation motivated the concept of the
support rank as introduced in [37], which allows us to provide
tighter probabilistic guarantees for the problem under study. Let
y €Y CR? and consider the following semi-infinite optimization
program

minc’y
yeY

subject to I[(y,0) <0, V 0 € O. (15)

Notice that the objective function is linear without loss of general-
ity and in the opposite case an epigraphic reformulation could be
introduced. Denoting the collection of all the linear subspaces of
RY as £, we consider all the linear subspaces L € £ that, under the
presence of the random constraint (15), remain unconstrained for
any uncertainty realization 6 € ® and any point y € Y, i.e., the set

U= WLeL:LcFy.0)}

0e® yeY
where F(y,0) ={£ eRY : I(y+£.,0) =1(y,0)}.

Definition 6. (Support rank [37])

The support rank p € {0, ...,d} of a random constraint equals
to the dimension of the problem d minus the dimension of
the maximal unconstrained linear subspace Lmaix, ie, p=d—
dim(Lpax). By maximal unconstrained subspace we mean the
unique maximal element Lyax € U for which L € Liyay, for all L € U.
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From the support rank definition (see Lemma 3.8 in [37]) we
have that Helly’s dimension can be upper bounded by the support
rank instead of the dimension d of the problem, which is a more
conservative upper bound [10]. Keeping this relation in mind, our
main goal is to obtain a bound for the support rank of the random
constraint of problem P, thus improving the robustness certificates
of its optimal solution. The following proposition aims at finding
an upper bound for the support rank p of the random constraint
(13), that is independent from the number of agents involved in
the optimization program.

Proposition 1. Under Assumptions 3 and 4, the support rank p of the
random constraint (13) in P', has an agent independent upper bound,
and in particular, p <n+1.

Proof. The dimension of the problem under study is d =nN +1,
due to the presence of the epigraphic variable. Let £ be the col-
lection of all linear subspaces in R™+1, We aim at finding the di-
mension of the subspace that remains unconstrained for a scenario
program subject to the random constraint h(x,y,0) <0 for any
uncertain realisation # € ® and any decision vector (x,y) € X x R.
We first define the collection of linear subspaces that are contained
in all the sets F(x,y,60):

u=N N

6e® (x,y)eRnN+1

{LeL:LcF(x, y,0)}, where

F(x,y.0) ={(§,§) e R™":
hx+&.y +§".60) =h(x,y.0)}
In our case, h(x + &,y +&',0) = h(x, y,0) yields:
o(x+&)(AWB)0 (x+E&)+b@®)) - (v +&)
=0 (X)"(A@)o (x) +b(0)) — v,
= 0T (NVAB)T (&) +0"(E)AWB)0 (x)
+ o' (E)AB)o (§)+0"(§)b(O) —& =0,
= o (E)AT(O)o (x) + 0 (§)(AB)o (x) + b(0))
+ oT(§)AB)o () -& =0,

where the first equivalence stems from the fact that o (x + &) is
linear with respect to its arguments, and the second one after
some algebraic rearrangement.

Note that each of the terms above is scalar, which means that
it is equal to its transpose for all x e X and 6 € ®, while by
Assumption 3, AT(9) = A(9) for any 0 € ®. As such,

o (§)(2A(0)0 (x) +b(0)) + o' (§)A()o (§) — &' =0. (16)

Using the equalities o7 (£)(2A0)0 (x) +b(B)) = (11N ®
(A0)a (x) +b(0)))E and o (§)AB)0 (§) =& (In.n ®AD))E,
where 1,y denotes a row vector with all elements being equal to
one and ® denotes the Kronecker product, (16) can be written in
the following form:

(L1xv ® (20T (X)AO) + b7 (0)))&
+ ET(Inn ®A0))E — & =0,

Let C:Xx©®—>RW, A:0@ - RN where C(x,0) =11,y ®
20T (x)A(0) +bT(0)) and A(0) = Iy,n ® A(O), respectively. Then,
Eq. (17) can be written as:

C(x.0)5 +ETAWO)E - &' =0,

= (C(x.0) —1)<§,>

+(s s’)(’i”) 00)<§)

(17)

0,
O]an
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— V(x 0)w+wP@B)w=0,

where, V(x.0)=(C(x.0) -1), P©®)= A®)  Onvx1 ) ang
01><nN 0

w= §/ . We need to find an unconstrained linear subspace that

is a subset of F(x, y,0). We define

L(x.y.0) ={weR™: (VIZ)((%JW =0}

We can easily see that L(x,y,6) c F(x,y,6). As such, the random
constraint h(x,y,0) <0 cannot constrain any of the dimensions
of L(x,y,0) (also denoted as L for simplicity). Let Q(x,y,6) =
P(6)
Vx,0) )
nullity-rank theorem [3] we have that dim(L(x,y,0)) =nN +
1 —rank(Q(x, y,6)). Since rank(P()) =n and rank(V(x,60)) =1,
this means that rank(Q(x,y,0)) =n+1, which implies that
dim(L(x,y,0)) =nN+1— (n+1). Notice that the unconstrained
subspace that we chose may not be the maximal one. This
means that the support dimension is p =nN+1—dim(Lmax)
<nN+1-dim(L) = n+ 1, thus concluding the proof. O

Then L(x,y,60) =nullspace(Q(x,y,6)) and from

An immediate consequence of Proposition 1 when combined
with Theorem 4.1 of [37] is the following theorem.

Theorem 3. Let (x*, y*) denote the optimal solution of the scenario
program PS’C. Under Assumptions 3 and 4 we have that

PM{{Om}mer € OM 1 P{@ € ® : h(x*, y*,0) >0} > €} < B, (18)
"M\ .

whereﬂ:Z(j>61(l—e)M i (19)
=0

The bound obtained from Theorem 3 constitutes a major im-
provement for this class of problems, since, irrespective of the
number of agents N, the same number of samples M is required
to provide identical robustness certificates given a local decision
vector of size n. The proof of this theorem, is a direct application
of the scenario approach theory (see Theorem 2.4 in [10], and The-
orem 4.1 in [37], where the number of support constraints is re-
placed by the obtained bound for the support rank, namely, n + 1).
Note that in the absence of Proposition 1, a direct application of
the scenario approach theory [10] to the problem under consider-
ation would still result in (18), however, (19) would be replaced
by

nN
B=>" <M>6f(1 — )M,
o \J

where the dependence of the guarantees on the number of agents
N is apparent.

Corollary 2 establishes a link between Theorem 3 and the ini-
tial program under study P by providing probabilistic performance
guarantees for the optimal solution. Specifically, it quantifies, in an
a priori fashion, the probability that the cost that corresponds to
the optimal value x* of P, will deteriorate, when a new sample 6 e
® is encountered. To formalise this, with a slight abuse of notation
let J(x) =J(x, {6m}merm) be the cost function of the corresponding
scenario program of program P and J* (x) = J(X, {Om}mert U {0}) the
cost defined over M + 1 scenarios by taking into account the new
sample 6.

(20)

Corollary 2. Under Assumptions 3 and 4 we have that

P'{On}meri e OM 1 PO € © 1 JT(x*) > J(x*)} > €} < B, (21)
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where 8 = Xn: (?’)ef(l —e)M-i (22)
=0

Proof. Let (x*, y*) be the optimal solution of program P, which
implies that y* = m%(g(x*, Om). As such,
me.

PO ec®: h(x*,y*0)>0}=P{0 c®:g(x*0)>y* =
P{H c®: gx*,0) > rrgla/&(g(x*,@m)} =

P{0 € ©: max{g(x",0), maxg(x", Om)} > maxg(x*, Om)} =
PO O : Jt(x*) > J(x*)), (23)

where the second equality follows from the fact that y* =
m.‘;}\)/{(g(x*,@m), and the last one from the definitions of J and J*.
me

Direct substitution of (23) in (18) of Theorem 3 concludes then the
proof. O

4. Numerical study

4.1. Probabilistic guarantees for all feasible electric vehicle charging
schedules

In the following set-up, a cooperative scheme is considered,
where agents-vehicles minimize a common electricity cost, while
their charging schedules are subject to constraints. However, most
of the work up to this point assumed that these constraints are
purely deterministic [16,29,33]. We extend this framework by im-
posing uncertainty on the constraints by considering the following
program

min J(x) subject to
XeR™N

xe (i e x©).%6)]: ix}“ > E(6)}. (24)

9e®icN t=1
The two main requirements for the operation of the system under
study, namely, the lower and upper bounds imposed on the power
rate of each vehicle and the total energy level to be achieved at the
end of charging, can be modelled as constraints of affine form. The
variables x; = (xi(t))?:1 denote the charging schedule for all time
instances t € {1,...,n}.

The corresponding scenario program of (24) is given by

min J(x) subject to
XERHN

xe () [T € [%:(6m). % (6m)] : ixf” > Ei(Om)}.

meM ieN t=1

(25)

The cost function J is allowed to have any arbitrary form. In our
set-up we assume that the upper and lower bounds of the charg-
ing rate, (X;(6u))icxs %;(60)))icn € R™ are affected by the uncertain
parameters 6, 6, € R™N, respectively, with uncertainty representing
volatile grid power restrictions. Each of the parameters’ elements is
extracted according to the same probability distribution A(0, 0.5),
where NV (w, o) is a Gaussian distribution with mean p and stan-
dard deviation o. The distribution is truncated by a prespecified
quantity to avoid infeasibility issues. We further assume that the
uncertainty is additive, i.e., X(8,) =x"" + 6, and x(6,) = "™ + 6,
where each element of X" is drawn from a uniform probability
distribution with support [10,20] kW and x™™ is set to 2 kW. Fi-
nally, the energy capacity of the battery can be affected by a vari-
ety of factors such as battery aging and lithium plating for Li-ion
batteries. These phenomena can have an important effect on the
amount of energy required by each vehicle to fully charge, thus
imposing uncertainty on the final energy level to be achieved by
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Fig. 2. Empirical probability of violation of the feasibility region (red line)
versus the theoretical violation level for a different number of samples M =
{5000, 6000, ..., 10000}. To calculate the probability of violation a total of Mes =
40000 samples is used. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

each of them by the end of the charging cycle. In our set-up, the
uncertainty in the total energy E = (E;);ic, (in kWh) of each vehi-
cle at the end of charging is yet again assumed to be additive, i.e.,
E = E"om 4 9, where the elements of 8, € RN are extracted accord-
ing to the probability A'(0, 1) and E°™ € R is the nominal final en-
ergy demand of each agent i € A. The uncertainty vector is given
by 0 = [6,. 6,, 0] € RN@+1),

Considering N =5 vehicles and n = 12 time slots we construct
the feasibility region of the corresponding scenario program (25).
Using Miesr = 40000 test samples we empirically compute the
probability that a new yet unseen constraint will be violated by
at least one element of the feasible region and compare it with
the theoretical violation level €(k) from Theorem 2. The results
are shown in Fig. 2, where the red line corresponds to the em-
pirical probability and the blue line corresponds to the theoretical
bound. Note that an upper bound for the theoretical violation level
€(k) can be obtained by counting the number of the facets k = Fy
of the feasible set or by leveraging the geometry of our numerical
example to provide an upper bound for Fy, that is F; < 2nN + N.
This bound can be easily derived noticing that the feasible region
is in fact a cartesian product of N rectangles intersected by a half-
space that corresponds to the energy constraint. As such the worst
case number of facets for the entire polytope in our example is
NQ@2n+1).

In general, for samples that give rise to more than one affine
constraints, the number of facets constitutes only an upper bound
for the cardinality of the minimal support subsample. This bound
is tight only in the case when there is a one to one correspon-
dence between a sample realization and a scalar-valued constraint.
This implies that the guarantees for the feasible subset of the prob-
lem under study can be significantly tighter. The reason behind the
use of the looser bound k = 2nN + N in our example lies in the fact
that its quantification is straightforward and the use of a support
subsample function is thus not required. In other cases, however,
where an upper bound for k is absent, the methodologies for the
detection of redundant affine constraints provided by [21] and ref-
erences therein can be used as minimal support subsample func-
tions.

Fig. 3 illustrates the violation level e(k) with respect to the
number of agents N for a fixed confidence level 1— g, a fixed
multi-sample of size M = 10000 and k = 2Nn + N. It is clear that
for the same number of samples the probabilistic guarantees pro-
vided by Theorem 2 for all feasible solutions become more conser-
vative as the number of vehicles in the fleet increases. This means
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Fig. 3. The violation level ¢ with respect to the number of agents N for 8 = 106
and a multi-sample of size M = 10,000. Note how the violation level for a fixed
number of samples is agent dependent, i.e., the guarantees become more conserva-
tive as the number of agents increases.

that more samples are required to provide the same probabilistic
guarantees as the dimension grows.

4.2. Agent independent robustness certificates for the optimal electric
vehicle charging profile

In this set-up the cost to be minimized is influenced by the
electricity price, which in turn is considered to be a random
variable affected by uncertainty. Uncertainty here refers to price
volatility. All electric vehicles cooperate with each other choosing
their charging schedules so as to minimize the total uncertain elec-
tricity cost, while satisfying their own deterministic constraints.
To this end, we consider the following uncertain electric vehicle
charging problem

Pey : min f(x) + maxg(x,0),
BV xeRan()+ee(~)g( )

n
subject to x; € [x;.%]. Y _x{" > E; for all i e V.,
-1

(26)

where f(x) = Y fi(xi.x_;)) =0 (x)Tpg(o(x)) is the deterministic
ieN
part of the electricity cost that depends on a nominal electric-

ity price pg(o (x)) = Ago (x) + by that is, in turn, a function of the
aggregate consumption of the vehicles. g(x,0) = Y g;j(x;,x_;,0) =
ieN

o (x)Tp(o(x),0) constitutes the uncertain part of the electricity
cost, where the price p(o(x),0) =A(0)o (x) + b(0) is additionally
affected by the uncertain parameter 6 extracted from the support
set ® according to a probability distribution P, where ® and P
are considered unknown. The elements of Ay € R™" and by € R"
are deterministic with Ay being a symmetric positive semi-definite
matrix, while the uncertain mappings A:® — R™" and b: ® —
R" are defined as in Section 3. The vectors x;,X; € R" constitute
the lower and upper bound of the charging rate of vehicle i e A,
respectively, while E; € R is the final energy to be achieved by each
vehicle i € N by the end of the charging cycle.

Following the same lines as in Section 3, we apply an epi-
graphic reformulation and use samples for ® to obtain the follow-

ing scenario program
P, :  min X))+,
EV (X,}/)G]R"N“ f( ) y

(27)

n
subject to x; € [x;, X;], fot) >F, forallieN,
=1
g(x,0m) <y, forall me M.

In our set-up A(f) € R™" is assumed to be a diagonal matrix with
non-negative diagonal elements for any uncertain realization 6 €

194

European jJournal of Control 63 (2022) 186-195

011
o 0.08 —<&— Worst-case probability of violation
.8 —©— Mean probability of violation
% — — — Theoretical violation level
'S 0.06
o
e}
3:
f'—‘; 0.04 |
=
E
A 0.02 1

o
0 1 I |
10 20 30 40 50

Number of agents N

Fig. 4. Mean and worst-case empirical probability of violation of the optimal solu-
tion with respect to the number of agents versus the theoretical violation level € =
0.0885. The number of samples used is M = 500 and 8 = 10-. By drawing a differ-
ent multi-sample for each choice of the number of agents N = {10, 20, 30, 40, 50},
we solve the corresponding scenario program for a fixed number of time slots
n = 12. We then repeat this process 20 times (note that the multi-sample used for
each repetition is also different) and compute the empirical probability of violation
of the obtained optimal solutions, using M. = 100, 000 test samples.

©®. The diagonal elements of A(f) and the elements of h(0) ¢ R?
are extracted according to uniform distributions. For each agent
i e N the upper bound x; takes a random value in the set [6,15]
kW, the lower bound x; is set to 2kW and the final energy to be
achieved by the end of the charging cycle is appropriately chosen
to be feasible, considering the number of timesteps n and the up-
per bound of the power rate of each agent. Ay € R™" is assumed
to be a diagonal matrix, whose diagonal entries are all set to 0.01
and bg is derived by rescaling a winter weekday demand profile in
the UK.

Note that our results can be used alongside any optimization
algorithm irrespective of its nature, i.e., centralised, decentralised
or distributed; here we solved the problem in a centralised fashion.
The number of samples we use for each problem is M = 500. By
fixing B = 10~ and using the bound
1
B
which is a sufficient condition (see [8, (p.42)]) for satisfaction of
(19), we obtain the theoretical violation level € = 0.0885. Note that
the dimension we use to provide probabilistic guarantees for the
optimal solution is set, in accordance to Theorem 3 to n+1 in-
stead of nN + 1, which circumvents the computational issues re-
lated to the rapid surge in dimension due to the multiplication of
the number of agents with the number of time slots. By drawing
a different multi-sample for each choice of the number of agents
N € {10, 20, 30, 40, 50} we solve the corresponding scenario pro-
gram for a fixed number of time slots n = 12. We then repeat this
process 20 times (note that the multi-sample used for each repeti-
tion is also different) and compute the empirical probability of vio-
lation of the obtained optimal solutions, using M;es = 100000 test
samples each time. The mean and worst-case empirical probability
of violation is depicted in Fig. 4 in comparison with the theoret-
ical violation level €. The empirical values are always below the
theoretical level of violation, which is constant with the number
of agents due to the agent independent nature of our Theorem 3.
In addition, the trend in Fig. 4 shows, as expected by Theorem 3,
that the number of agents does not affect the empirical probability
of violation. This result highlights the fact that, for fixed number
of time periods n, the number of samples M required to provide
identical probabilistic guarantees, as the size of the fleet of elec-
tric vehicles increases, remains constant. This is illustrated in Fig. 5,
where we show the number of samples required (for € = 0.0885,

€= %(ln +nin2), (28)
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Fig. 5. The number of samples required with respect to the number of agents N =

{10, ...,50} using the results of Theorem 3 versus the one that would have been
obtained if (19) is used instead. We consider a charging cycle of duration n = 12.
The red line corresponds to Theorem 3, while the blue line corresponds to (20). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

B =10"6 and n = 12) using the results of Theorem 3 versus the
number of samples needed to provide the same robustness certifi-
cates using the classic results in scenario approach for a different
number of agents N = 10, ..., 50. The red line corresponds to Theo-
rem 3 and shows the agent independent nature of our guarantees,
while the blue line corresponds to the conservative agent depen-
dent result of (20).

5. Concluding remarks

We first considered a general class of optimization programs
with an arbitrary cost function and uncertain convex constraints
and provided a posteriori bounds for the probability of violation of
all feasible solutions. We then focused on a different class of multi-
agent programs that involved an uncertain aggregative term and
deterministic constraints. For such problems we provided agent in-
dependent probabilistic guarantees for the optimal solution in an a
priori fashion. Effort is being made towards extending our results
to provide agent independent probabilistic guarantees in a non-
cooperative set-up, giving rise to aggregative games. In addition,
we aim at extending our first contribution by formalising addi-
tional tools to provide, in an a posteriori fashion, tighter robustness
certificates that depend only on a subset of the feasible region cir-
cumscribing the game solutions.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] D. Acemoglu, M.K. Jensen, Aggregate comparative statics, Games Econ. Behav.
81 (2013) 27-49.

[2] D. Acemoglu, A. Ozdaglar, Opinion dynamics and learning in social networks,
Dyn. Games Appl. 1 (1) (2011) 3-49.

[3] S. Axler, Linear Algebra Done Right, Springer, 1997.

[4] D. Bai, T. Carpenter, J. Mulvey, Making a case for robust optimization models,
Manag. Sci. 43 (1997) 895-907, doi:10.1287/mnsc.43.7.895.

[5] D. Bertsekas, J. Tsitsiklis, Parallel and distributed computation: numerical
methods |/ dimitri p. bertsekas, john n. tsitsiklis, Athena Sci. (1989).

[6] J.R. Birge, F. Louveaux, Introduction to Stochastic Programming, Springer-Ver-
lag, New York, NY, USA, 1997.

195

European jJournal of Control 63 (2022) 186-195

[7] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press,
USA, 2004.

[8] M. Campi, S. Garatti, Introduction to the scenario approach, in: Society of in-
dustrial and applied mathematics (SIAM), 2018.

[9] M.C. Campi, G.C. Calafiore, The scenario approach to robust control design, IEEE
Trans. Autom. Control 51 (5) (2006) 742-753.

[10] M.C. Campi, S. Garatti, The exact feasibility of randomized solutions of uncer-
tain convex programs, SIAM J. Optim. 19 (3) (2008) 1211-1230.

[11] M.C. Campi, S. Garatti, Wait-and-judge scenario optimization, Math. Program.
167 (1) (2018) 155-189, doi:10.1007/s10107-016-1056-9.

[12] M.C. Campi, S. Garatti, M. Prandini, The scenario approach for systems and
control design, Annu. Rev. Control 33 (2008) 149-157.

[13] M.C. Campi, S. Garatti, FA. Ramponi, A general scenario theory for nonconvex
optimization and decision making, IEEE Trans. Autom. Control 63 (12) (2018)
4067-4078.

[14] K.L. Clarkson, More output-sensitive geometric algorithms, in: Proceedings of
the 35th Annual Symposium on Foundations of Computer Science, in: SFCS’
94, IEEE Computer Society, USA, 1994, pp. 695-702.

[15] L. Deori, K. Margellos, M. Prandini, Regularized Jacobi iteration for decen-
tralized convex quadratic optimization with separable constraints, I[EEE Trans.
Control Syst. Technol. 27 (2016) 1636-1644.

[16] L. Deori, K. Margellos, M. Prandini, Price of anarchy in electric vehicle charg-
ing control games: when Nash equilibria achieve social welfare, Automatica 96
(2018) 150-158.

[17] F. Fabiani, K. Margellos, P. Goulart, On the robustness of equilibria in general-
ized aggregative games, Proceedings of the 59th IEEE Conference on Decision
and Control (2020b).

[18] F. Fabiani, K. Margellos, P. Goulart, Probabilistic feasibility guarantees for solu-
tion sets to uncertain variational inequalities, Automatica (2020a).

[19] E. Fele, K. Margellos, Probabilistic sensitivity of Nash equilibria in multi-agent
games: a wait-and-judge approach, in: 2019 IEEE 58th Conference on Decision
and Control (CDC), 2019, pp. 5026-5031.

[20] F. Fele, K. Margellos, Probably approximately correct Nash equilibrium learning,
IEEE Transactions on Automatic Control, (conditionally accepted) 66 (9) (2020),
doi:10.1109/TAC.2020.3030754.

[21] K. Fukuda, B. Gdrtner, M. Szedlak, Combinatorial redundancy detection, Annals
of operations research 265 (2018).

[22] J. Ghaderi, R. Srikant, Opinion dynamics in social networks with stub-
born agents: equilibrium and convergence rate, Automatica 50 (12) (2014)
3209-3215.

[23] B. Gharesifard, T. Basar, A. Dominguez-Garcia, Price-based coordinated aggre-
gation of networked distributed energy resources, IEEE Trans. Autom. Control
61 (10) (2016) 2936-2946, doi:10.1109/TAC.2015.2504964.

[24] S. Grammatico, Aggregative control of competitive agents with coupled
quadratic costs and shared constraints, in: 2016 IEEE 55th Conference on De-
cision and Control (CDC), 2016, pp. 3597-3602.

[25] S. Grammatico, Dynamic control of agents playing aggregative games with
coupling constraints, IEEE Trans. Autom. Control 62 (9) (2017) 4537-4548.

[26] S. Grammatico, F. Parise, M. Colombino, J. Lygeros, Decentralized convergence

to Nash equilibria in constrained deterministic mean field control, IEEE Trans.

Autom. Control 61 (11) (2016) 3315-3329.

S. Grammatico, X. Zhang, K. Margellos, P. Goulart, ]. Lygeros, A scenario ap-

proach for non-convex control design, IEEE Trans. Autom. Control 61 (2) (2016)

334-345.

D. Ioli, L. Deori, A. Falsone, M. Prandini, A two-layer decentralized approach to

the optimal energy management of a building district with a shared thermal

storage, IFAC-PapersOnLine 50 (2017) 8844-8849, doi:10.1016/j.ifacol.2017.08.

1540.

Z. Ma, D. S. Callaway, I. Hiskens, Decentralized charging control of large popu-

lations of plug-in electric vehicles, IEEE Trans. Control Syst. Technol. 21 (2013)

67-78.

K. Margellos, M. Prandini, J. Lygeros, On the connection between compression

learning and scenario based single-stage and cascading optimization problems,

[EEE Trans. Autom. Control 60 (10) (2015) 2716-2721.

M. M.Ziegler, Lectures on Polytopes, Springer-Verlag, New York, Inc, 1995.

D. Paccagnan, M. Campi, The scenario approach meets uncertain variational

inequalities and game theory, IEEE Trans. Autom. Control (2019).

[33] D. Paccagnan, B. Gentile, F. Parise, M. Kamgarpour, ]. Lygeros, Nash and
wardrop equilibria in aggregative games with coupling constraints, IEEE Trans.
Autom. Control 64 (4) (2019) 1373-1388, doi:10.1109/TAC.2018.2849946.

[34] G. Pantazis, F. Fele, K. Margellos, Agent independent probabilistic robustness

certificates for robust optimization programs with uncertain quadratic cost, in:

Proceedings of the 59th IEEE Conference on Decision and Control, 2020.

G. Pantazis, F. Fele, K. Margellos, A posteriori probabilistic feasibility guar-

antees for Nash equilibria in uncertain multi-agent games, in: IFAC World

Congress, 2020.

N. Parikh, S. Boyd, Proximal algorithms, Found. Trends Optim. 1 (3) (2014)

127-239.

G. Schildbach, L. Fagiano, M. Morari, Randomized solutions to convex pro-

grams with multiple chance constraints, SIAM ]. Optim. 23 (2012), doi:10.1137/

120878719.

[38] B. Simon, Convexity: an Analytic Viewpoint, Cambridge University Press, 2011.

(27]

(28]

[29]

(30]

[31]
(32]

[35]

(36]

[37]


http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0001
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0001
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0001
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0002
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0002
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0002
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0003
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0003
https://doi.org/10.1287/mnsc.43.7.895
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0005
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0005
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0005
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0006
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0006
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0006
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0007
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0007
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0007
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0008
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0008
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0008
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0009
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0009
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0009
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0010
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0010
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0010
https://doi.org/10.1007/s10107-016-1056-9
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0012
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0012
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0012
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0012
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0013
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0013
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0013
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0013
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0014
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0014
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0015
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0015
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0015
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0015
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0016
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0016
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0016
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0016
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0017
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0017
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0017
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0017
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0019
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0019
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0019
https://doi.org/10.1109/TAC.2020.3030754
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0021
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0021
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0021
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0021
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0022
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0022
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0022
https://doi.org/10.1109/TAC.2015.2504964
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0024
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0024
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0025
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0025
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0026
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0026
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0026
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0026
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0026
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0027
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0027
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0027
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0027
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0027
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0027
https://doi.org/10.1016/j.ifacol.2017.08.1540
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0029
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0029
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0029
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0029
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0030
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0030
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0030
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0030
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0031
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0031
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0032
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0032
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0032
https://doi.org/10.1109/TAC.2018.2849946
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0034
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0034
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0034
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0034
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0035
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0035
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0035
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0035
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0036
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0036
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0036
https://doi.org/10.1137/120878719
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0038
http://refhub.elsevier.com/S0947-3580(21)00126-6/sbref0038

	On the probabilistic feasibility of solutions in multi-agent optimization problems under uncertainty
	1 Introduction
	1.1 Background
	1.2 Challenges to be addressed and main contributions
	1.3 Notation

	2 Optimization programs with uncertainty in the constraints
	2.1 The convex case
	2.2 The polytopic case

	3 Optimization programs with uncertainty in the cost
	3.1 Optimization setting
	3.2 Agent independent probabilistic feasibility guarantees for a unique solution

	4 Numerical study
	4.1 Probabilistic guarantees for all feasible electric vehicle charging schedules
	4.2 Agent independent robustness certificates for the optimal electric vehicle charging profile

	5 Concluding remarks
	Declaration of Competing Interest
	References


