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a b s t r a c t 

We investigate the probabilistic feasibility of randomized solutions to two distinct classes of uncertain 

multi-agent optimization programs. We first assume that only the constraints of the program are af- 

fected by uncertainty, while the cost function is arbitrary. Leveraging recent developments on a posteriori 

analysis within the scenario approach, we provide probabilistic guarantees for all feasible solutions of 

the program under study. This is particularly useful in cases where the numerical implementation of 

the solution-seeking algorithm prevents the exact quantification of the optimal solution. Furthermore, 

this result provides guarantees for the entire solution set of optimization programs with uncertain con- 

vex constraints and (possibly) non-convex cost function. We then focus on optimization programs with 

deterministic constraints, where the cost function depends on uncertainty and admits an aggregate repre- 

sentation of the agents’ decisions. By exploiting the structure of the program under study and leveraging 

the so called support rank notion, we provide agent-independent robustness certificates for the optimal 

solution, i.e., the constructed bound on the probability of constraint violation does not depend on the 

number of agents, but only on the dimension of each agent’s decision space. This substantially reduces 

the amount of samples required to achieve a certain level of probabilistic robustness for a larger number 

of agents. All robustness certificates provided in this paper are distribution-free and can be used along- 

side any optimization algorithm. Our theoretical results are accompanied by a numerical case study of a 

charging control problem for a fleet of electric vehicles. 

© 2021 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Background 

A vast amount of today’s challenges in the domains of energy 

ystems [23,28] , traffic networks [33] , economics [1] and the so- 

ial sciences [2,22] revolve around multi-agent systems, i.e., sys- 

ems which comprise different entities/agents that interact with 

ach other and make decisions, based on individual or collective 

riteria. Existing literature provides a plethora of methods to solve 

uch problems. Each method is appropriately designed to fit the 

tructure of these interactions and the agents’ incentives. To ad- 

ress computational complexity and privacy concerns of solving 

 multi-agent optimization problem in a centralised fashion, sev- 

ral decentralised or distributed coordination schemes have been 

roposed [5,36] . In the decentralised case, agents optimize their 
� This work was supported by the U.K. Engineering and Physical Sciences Research 
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ost function locally and then communicate their strategies to a 

entral authority. In the distributed case, a central authority is ab- 

ent and agents communicate with each other over a network, ex- 

hanging information with agents considered as neighbours given 

he underlying communication protocol. In either case, the pres- 

nce of uncertainty in such problems constitutes a critical factor 

hat, if not taken into account, could lead to unpredictable be- 

aviour, hence it is of major importance to accompany the solu- 

ions of such algorithms with robustness certificates. In this paper 

e assume that the probability distribution of the uncertainty is 

nknown and adopt a data-driven approach, where the uncertainty 

s represented by means of scenarios that could be either available 

s historical data, or extracted via some prediction model. To this 

nd, we work under the framework of the so called scenario ap- 

roach. 

The scenario approach is a well-established mathematical 

echnique [9,10,12] , and still a highly active research area (see 

11,13] for some recent developments), originally introduced to 

rovide a priori probabilistic guarantees for solutions of uncertain 

onvex optimization programs. Recently, the theory was extended 

o non-convex decision making problems [11,13] where the prob- 

bilistic guarantees are obtained in an a posteriori fashion. The 
rved. 
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Table 1 

Classification of main results according to their main features and comparison with existing literature. 

Type of solution Nature of certificate Scalability Class of problems Result 

Entire feasible set A posteriori Agent dependent Feasibility programs with 

uncertain convex constraints 

Thm. 2 

Subset of feasible solutions A priori Agent dependent Feasibility programs with 

uncertain convex constraints 

Thm. 2 of [27] 

Variational inequality solution set A posteriori Agent dependent Variational inequality problems 

with uncertain convex 

constraints 

Thm. 1 of [18] 

Variational inequality solution set A posteriori Agent dependent Aggregative games with 

uncertain affine constraints 

Thm. 1 of [17] 

Unique optimizer A priori Agent independent Optimization programs with 

uncertain aggregative term in 

the cost 

Thm. 3 

Unique variational inequality solution A posteriori & a priori Agent dependent Variational inequalities with 

uncertain cost or constraints 

Cor. 1 of [32] , Thm. 7 

and Thm. 8 of [20] , Thm. 

5 of [19] (only a 

posteriori ) 
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ain advantage of the scenario approach is its applicability under 

ery general conditions, since it does not require the knowledge of 

he uncertainty set or the underlying probability distribution, un- 

ike other stochastic [6] or robust [4] methodologies. According to 

he scenario approach, the original problem can be approximated, 

ielding a computationally tractable problem. The so called sce- 

ario program consists of a finite number of constraints, each of 

hem corresponding to a different realization of the uncertain pa- 

ameter. In this realm we present some of the challenges that per- 

ain to uncertain multi-agent systems. 

.2. Challenges to be addressed and main contributions 

In a plethora of problems of practical interest, agents’ decisions 

re feasible, though not necessarily optimal. This can be due to 

he specific numerical implementation of the solution-seeking al- 

orithm, that might hinder the exact quantification of the optimal 

olution. Even under the assumption that the computed optimizer 

s exact, many optimization programs can have multiple (local) op- 

ima. 

Another major challenge is the dependence of the provided 

ertificates on the number of agents. Given that we wish to ob- 

ain identical probabilistic guarantees as the population increases, 

 larger number of samples is required. However, increasing the 

ample size is, in general, a major issue, which can also lead to 

ncreased computational complexity. This fact hinders the provi- 

ion of non-conservative guarantees for large scale applications. As 

uch, it is of utmost importance to show that for certain classes 

f problems, common in practical applications, the obtained prob- 

bilistic guarantees can be agent independent. 

The main contributions of this paper are as follows: 

1. We address the challenges related to the lack of optimality of 

the agents’ decisions and the presence of multiple local solu- 

tions, by considering an optimization set-up, where the choice 

of the cost function can be arbitrary and the uncertainty af- 

fects only the constraints. We, then, leverage recent results of 

[13] in order to provide a posteriori robustness certificates for 

the entire feasibility region 

1 The theoretical framework of the 

preliminary work in [35] , initially developed only for uncertain 

feasibility problems with polytopic constraints, is extended in 

our set-up to account for general (possibly coupling) uncertain 
1 While this paper focuses on optimization programs, our results are applicable 

o more general uncertain feasibility programs. This allows providing certificates for 

he feasibility region of other classes of problems, such as variational inequalities 

nd generalised Nash equilibrium problems [35] . 
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187 
convex constraints. This result is interesting per se, as it com- 

plements the results in [13] allowing to provide guarantees col- 

lectively for a set of points, thus departing from the existing 

stream of literature in the scenario approach which typically 

refers to a single solution (e.g., see [9–13,30] ). Moreover, it ac- 

counts for problems with multiple optimizers, or for problems 

with non-convex objective functions, where a different opti- 

mal, locally optimal or even suboptimal solution might be re- 

turned by a solution-seeking algorithm, hence it is of impor- 

tance to provide guarantees for all of them. We also discuss in 

Remark 1 that, as a byproduct of our approach, computing the 

number of support samples for the entire feasibility region (a 

notion at the core of the scenario approach developments that 

will be formally introduced in the sequel) is computationally 

less sensitive compared to the approach suggested in [13] for 

determining the support samples of a specific solution to the 

underlying optimization program. 

2. We then focus on a specific class of uncertain multi-agent pro- 

grams, prevalent in many practical applications, where the cost 

is considered to be a function of the aggregate decision and af- 

fected by uncertainty. A similar problem formulation was con- 

sidered in [15] and is extended to our set-up to account for 

the presence of uncertainty in the cost function. Other prob- 

lems whose structure shares similarities with our work can 

be found in [24–26] , though under a purely deterministic and 

game-theoretic set-up. Following the recent developments in 

[34] we show, based on the notion of the support rank [37] , 

that the obtained probabilistic feasibility certificates do not de- 

pend on the number of agents. This result directly outperforms 

probabilistic feasibility statements obtained by a direct applica- 

tion of the scenario approach theory [10] , and shows superior 

scalability properties in multi-agent environments. 

The contributions of our main results in comparison with re- 

ults in the literature are summarised in Table 1 . Our first contri- 

ution provides probabilistic guarantees, in an a posteriori fashion, 

hat hold for the entire feasibility region (or a subset of interest as 

etailed in Remark 2 ) in contrast with the a priori result in [27] .

herein, the feasible subset is obtained by taking the convex hull 

f randomized optimizers whose position is in general not known. 

his may in certain cases produce a “thin” subset of the feasible 

egion. The recent contributions [17] , [18] use a similar approach 

o [35] to provide guarantees applicable not for feasible sets, but 

or a set of game equilibria. For our second contribution, the na- 

ure of the certificates is a priori . Assuming uniqueness of the so- 

ution, we exploit the aggregative structure of the cost to provide 

esults that are agent-independent. The aggregative nature of the 

ost has been exploited in several works (see [17,19,20] ), however, 
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uarantees provided in these works are dependent on the num- 

er of agents. It should be apparent from Table 1 that our results 

re the first of their kind to provide guarantees for the entire fea- 

ibility region, as well as the first agent independent result for a 

articular class of optimization programs. 

The rest of the paper is organized as follows: In Section 2 prob- 

bilistic guarantees for sets of feasible solutions of optimization 

rograms with arbitrary cost and uncertain convex constraints 

re provided. Section 3 focuses on providing agent-independent 

obustness certificates for the optimal solution set of a specific 

lass of aggregative optimization programs with uncertain cost. 

he aforementioned results are used in Section 4 in the context 

f a numerical study on the charging control problem for a fleet of 

lectric vehicles. Section 5 concludes the paper and provides some 

otential future research directions. 

.3. Notation 

Let N = { 1 , . . . , N} be the index set of all agents, where N de-

otes their total number and x i the strategy of agent i taking values 

n the set X i ⊆ R 

n . We denote x = (x i ) i ∈N ∈ X = 

∏ 

i ∈N X i ⊆ R 

nN the

ollection of all agents’ strategies and bdry (X ) the boundary of a 

et X . Similarly, the vector x −i = (x j ) j ∈N , j � = i ∈ 

∏ 

j ∈N , j � = i X j ⊆ R 

n (N−1) 

enotes the collection of the decision vectors of all agents’ strate- 

ies except for that of agent i . The symbols x and (x i , x −i ) are used

nterchangeably in this paper, depending on the context. 

Let θ be an uncertain parameter defined on the probability 

pace (�, F , P ) , where � is the sample space, equipped with a σ -

lgebra F and a probability measure P . Furthermore, let { θm 

} m ∈M 

∈ 

M , M = { 1 , . . . , M} be a finite collection of M independent and

dentically distributed (i.i.d.) scenarios/realisations of the uncertain 

ector θ , where �M is the cartesian product of multiple copies of 

he sample space �; finally, P 

M is the associated product probabil- 

ty measure. 

. Optimization programs with uncertainty in the constraints 

.1. The convex case 

Consider the following optimization program 

 � : min 

x ∈ X 
J(x ) subject to x ∈ 

⋂ 

θ∈ �
X θ , (1) 

here the cost function J(x ) can be chosen arbitrarily (feasibility 

rograms are admitted), x is a decision vector taking values in the 

eterministic set X ⊂ R 

d , while X θ is dictated by the uncertain pa- 

ameter θ . We seek to provide probabilistic guarantees for all fea- 

ible solutions of this class of programs. 

Solving instances of P � is generally hard without imposing any 

urther assumptions on the uncertainty support � and/or the un- 

erlying probability distribution P [10] . We address this by con- 

idering the following approximation of P �, the so called scenario 

rogram, formulated upon a finite set { θm 

} m ∈M 

of i.i.d. samples 

rom �: 

 M 

: min 

x ∈ X 
J(x ) subject to x ∈ 

⋂ 

m ∈M 

X θm 
. (2) 

ur results depend on a convex constraint structure, thus we im- 

ose the following assumption: 

ssumption 1. 

1. The deterministic constraint set X is non-empty, compact and 

convex. 

2. For any sample θ ∈ �, we have that X θ = { x ∈ R 

d : u (x, θ ) ≤ 0 } ,
where u : R 

d × � → R 

q is a vector-valued convex function. 
188 
3. For any fixed multi-sample { θm 

} m ∈M 

∈ �M the convex set C M 

= 

{ ⋂ 

m ∈M 

X θm 
} ⋂ 

X = { x ∈ X : u (x, θm 

) ≤ 0 , ∀ m ∈ M} has a non-

empty interior. 

Assumption 1 guarantees that P M 

admits at least one solu- 

ion for any chosen multisample { θm 

} m ∈M 

∈ �M . Note that the 

et C M 

above is the feasibility domain of problem P M 

. It follows 

hat the optimization program P M 

can be equivalently written as 

in J(x ) subject to x ∈ C M 

. We are interested in investigating the 

obustness properties collectively for all the points of this domain 

o yet unseen uncertainty realizations. To this end, we first intro- 

uce the notion of probability of violation of a given point x ∈ C M 

.

y Definition 1 in [9] 

 (x ) = P 

{ 

θ ∈ � : x / ∈ X θ

} 

. (3) 

n other words, V (x ) in (3) quantifies the probability of occurrence 

f a sample θ ∈ � such that the corresponding constraint X θ is not 

atisfied by x ∈ C M 

. 

By Assumption 1 , the probability of violation can be equiva- 

ently written as V (x ) = P { θ ∈ � : u (x, θ ) > 0 } . We can now define

he probability of violation for the entire convex set C M 

. 

efinition 1. Let C ⊆ 2 X be the set of all non-empty, compact and 

onvex sets contained in X . For any C M 

∈ C we define the probabil- 

ty of violation of the set C M 

as a mapping V : C → [0 , 1] given by

he following relation: 

 (C M 

) = sup 

x ∈ C M 
V (x ) . 

In Definition 2 below, we adapt from [13] two concepts of cru- 

ial importance for our analysis. 

efinition 2. 

1. For any M, an algorithm is a mapping A M 

: �M → C ⊆ 2 X that

associates the multi-sample { θm 

} m ∈M 

∈ �M to a unique convex 

set C M 

∈ C. 

2. Given a multi-sample { θm 

} m ∈M 

∈ �M , a set of samples 

{ θm 

} m ∈ I k ⊆ { θm 

} m ∈M 

, where I k = { m 1 , m 2 , . . . , m k } , is called a

support subsample if A k ({ θm 

} m ∈ I k ) = A M 

({ θm 

} m ∈M 

) i.e., the set

returned by the algorithm when fed with { θm 

} m ∈ I k coincides 

with the one obtained when the entire multi-sample is used. 

3. A support subsample function is a mapping of the form B M 

: 

{ θm 

} m ∈M 

→ { m 1 , m 2 , . . . , m k } that takes as input all the samples

and returns as output only the indices of the samples that form 

a given support subsample. 

Note that the notions of support subsample and support sub- 

ample function in Definitions 2 .2, 2 .3 are respectively referred to 

s compression set and compression function in [30] . A support 

ubsample with the smallest cardinality among all the possible 

upport subsamples is known as minimal support subsample. In 

he following, we assume that B M 

always returns the indices of a 

inimal support subsample. Such a requirement is not restrictive, 

nd only rules out degenerate cases where samples lead to con- 

traint accumulation [11] . If the underlying probability distribution 

dmits a density, such a case will not occur. 

We note that in our set-up a minimal support subsample con- 

ists of those samples that are of support for the entire feasibility 

egion. The following definition formalises this notion: 

efinition 3. (Support sample for the feasibility region) A sample 

j ∈ { θm 

} m ∈M 

is said to be of support for the feasible set C M 

of

 M 

if it belongs to the minimal support subsample returned by 

 M 

({ θm 

} m ∈M 

) . 

In other words, if θ j belongs to the minimal support subsample, 

hen its removal may lead to an enlargement of the feasible region, 

.e., { ⋂ 

m ∈M 

X θm 
} \ X θ j 

⊃ C M 

. The number of support samples of the
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Fig. 1. The feasibility region C M and its connection with random convex constraints 

produced by eight i.i.d. samples { θ1 , θ2 , . . . , θ8 } . The constraint in green corre- 

sponds to the deterministic constraint X . Note that only the indices of the samples 

θ3 , θ5 , θ6 , θ7 belong to the minimal support subsample since their corresponding 

constraints (in red) form, along with the deterministic constraint X , the boundary 

of C M . (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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easible region or, equivalently, the cardinality of the minimal sup- 

ort subsample is denoted as F M 

. 

The constraints that correspond to indices from the minimal 

upport subsample can be alternatively viewed as an adaptation 

f the notion of the facets of a polytope (see Definition 2.1 in [31] )

o the more general case of compact and convex sets. Note that a 

ingle constraint may give rise to multiple “facets”. Fig. 1 illustrates 

he concept of the minimal support subsample by showing the fea- 

ible region formed by random convex constraints. Note that only 

he indices of the samples θ3 , θ5 , θ6 , θ7 belong to the minimal sup- 

ort subsample, since if we feed only these samples as input into 

he algorithm A M 

the feasible set C M 

is returned. 

Another important notion used in our work is the notion of an 

xtreme point. An extreme point can be viewed as an extension of 

he vertex of a polytope for arbitrary compact and convex sets and 

s defined as a point which is not in the interior of any line seg-

ent lying entirely in the set. This property is formally presented 

n the following definition. 

efinition 4. (Extreme points) [38] . An extreme point of a convex 

et C is a point x ∈ C for which the following property holds: If x

an be written as a convex combination of the form x = λx 1 + (1 −
) x 2 with x 1 , x 2 ∈ C and λ ∈ [0 , 1] , then x 1 = x or x 2 = x . 

Note that the number of extreme points of a convex set de- 

ends on the geometry of the set under study and can also be in-

nite, e.g., in the case of a d-dimensional sphere. 

Our work focuses on compact and convex sets defined over a 

nite-dimensional space, where the following theorem can be ap- 

lied. 

heorem 1. (Minkowski Caratheodory Theorem) [38] . Let C be a 

ompact convex subset of R 

d of dimension d. Then any point in C

s a convex combination of at most d + 1 extreme points. 

We equip the set of extreme points of the convex set C M 

with 

ndices and denote this set of indices E(C M 

) , while bdry (C M 

) refers

o the boundary of C M 

. It is important to emphasize that the de-

endence of the convex set C M 

on the multi-sample { θm 

} m ∈M 

im- 

lies that | B M 

| (and | E(C M 

) | ) are random variables that depend on

 θm 

} m ∈M 

∈ �M . 

Next we define the set 

 θ = { C ∈ C : u (x j , θ ) ≤ 0 , ∀ j ∈ E(C) } 
= { C ∈ C : C ⊆ X θ } , (4) 
2

189 
f all the non-empty, compact and convex sets where elements C

atisfy the constraint associated with the sample θ ∈ �. Note that 

f all the extreme points of the set satisfy the inequality u (·, θ ) ≤ 0 ,

hen every point x ∈ C of the set satisfies it as well. To see this,

ote that x can always be expressed as a convex combination of 

he set’s extreme points. 

Our aim is to provide probabilistic guarantees for a non-empty, 

onvex and compact set C M 

constructed by the intersection of M

andom realizations of the uncertain convex constraint X θ = { x ∈ 

 

d : u (x, θ ) ≤ 0 } , where u : R 

d × � → R 

q is a convex function with

espect to the decision variable x . 

The following lemma shows how the probability of violation of 

 convex set is related to the probability of violation of its extreme 

oints. 

emma 1. Consider a fixed multi-sample { θm 

} m ∈M 

∈ �M and let 

(C M 

) be the set of extreme points of C M 

. Then, 

 (C M 

) ≤ P 

{ ⋃ 

j∈ E(C M ) 

{ 

θ ∈ � : u (x j , θ ) > 0 

} } 

. (5) 

roof. For a fixed multi-sample { θm 

} m ∈M 

∈ �M consider an arbi- 

rary point x ∈ C M 

. Then, the following inequalities are satisfied 

 (x ) = P 

{ 

θ ∈ � : x / ∈ X θ

} 

= P 

{ 

θ ∈ � : u (x, θ ) > 0 

} 

(i ) = P 

{ 

θ ∈ � : u ( 
∑ 

j∈ I d+1 

λ j x j , θ ) > 0 

} 

(ii ) ≤ P 

{ 

θ ∈ � : 
∑ 

j∈ I d+1 

λ j u (x j , θ ) > 0 

} 

≤ P 

{ 

θ ∈ � : 
∑ 

j∈ I d+1 

λ j max 
j∈ I d+1 

u (x j , θ ) > 0 

} 

= P 

{ 

θ ∈ � : max 
j∈ I d+1 

u (x j , θ ) > 0 

} 

= P 

{ ⋃ 

j∈ I d+1 

{ 

θ ∈ � : u (x j , θ ) > 0 

} } 

(iii ) ≤ P 

{ ⋃ 

j∈ E(C M ) 

{ 

θ ∈ � : u (x j , θ ) > 0 

} } 

, (6) 

quality (i) is derived from Theorem 1 , where the set under study 

s the convex set C M 

. In our case, the Minkowski-Caratheodory 

heorem states that any arbitrary point of the set x ∈ C M 

can 

e represented as a convex combination of at most d + 1 ex- 

reme points of C M 

, which means that there exists a subset of 

xtreme points { x j } j∈ I d+1 
⊆ { x j } j∈ E(C M ) 

such that x = 

∑ 

j∈ I d+1 
λ j x j , 

here 
∑ 

j∈ I d+1 
λ j = 1 and λ j ≥ 0 , ∀ j ∈ I d+1 . Equality (ii) stems 

rom the fact that u is a convex function of x for any given θ ∈ �.

he last inequality follows from the fact that I d+1 is a set of indices

orresponding to extreme points and as such is a subset of E(C M 

) . 

ince (6) holds for all x ∈ C M 

, it can equivalently be written as 

 (C M 

) = sup 

x ∈ C M 
V (x ) ≤ P 

{ ⋃ 

j∈ E(C M ) 

{ 

θ ∈ � : u (x j , θ ) > 0 

} } 

, 

hich concludes the proof. �

Lemma 1 shows that the probability of constraint violation of 

 M 

is bounded by the probability that at least one of the extreme 

oints violates the constraint and is key towards providing proba- 

ilistic feasibility guarantees for the feasible region, a result estab- 

ished in the following theorem. 

heorem 2. Consider Assumption 1 and any A M 

, B M 

as in Definition 

 . Fix β ∈ (0 , 1) and define the violation level function ε : 
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2 A polytope � ∈ R d can be expressed by its H-representation, i.e., the in- 

tersection of a finite number of halfspaces, and also as the convex hull of its 

vertex set v (�) = { x 1 , . . . , x Q } i.e, � = con v (v (�)) = { ∑ Q 
j=1 

x j λ j : 
∑ Q 

j=1 
λ j = 1 , λ j ≥

0 , j = 1 , . . . , Q} , where v (·) and con v (·) denote the set of vertices of the poly- 

tope and the convex hull, respectively. This representation is generally known as 

V -representation. 
 0 , . . . , M} → [0 , 1] such that 

(M) = 1 and 

M−1 ∑ 

k =0 

(
M 

k 

)
(1 − ε(k )) M−k = β. (7) 

e have that 

 

M 

{ 

{ θm 

} m ∈M 

∈ �M : V (C M 

) > ε(k ∗) 
} 

≤ β, 

here k ∗ = F M 

is the number of support samples according to 

efinition 3 . 

roof. By Lemma 1, for any multi-sample { θm 

} m ∈M 

∈ �M and for 

ny cardinality (not necessarily minimal) of the support subsample 

 ∈ { 1 , . . . , M} , the following inequalities are satisfied: 

 

M 

{ 

{ θm 

} m ∈M 

∈ �M : V (C M 

) > ε(k ) 
} 

≤ P 

M 

{ 

{ θm 

} m ∈M 

∈ �M : 

P 

{ ⋃ 

j∈ E(C M ) 

{ 

θ ∈ � : u (x j , θ ) > 0 

} 

> ε(k ) 
} } 

= P 

M 

{ 

{ θm 

} m ∈M 

∈ �M : 

P 

{ 

θ ∈ � : ∃ j ∈ E(C M 

) , u (x j , θ ) > 0 

} 

> ε(k ) 
} 

= P 

M 

{ 

{ θm 

} m ∈M 

∈ �M : 

P 

{ 

θ ∈ � : C M 

�⊆ X θ

} 

> ε(k ) 
} 

, (8) 

here the last equality is due to (4) . Define now an algorithm 

 M 

as in Definition 2 .1, that returns the convex set confined by 

he feasibility region of C M 

. By construction, A M 

satisfies Assump- 

ion 1 of [13] , since for any multi-sample { θm 

} m ∈M 

it holds that

 M 

({ θm 

} m ∈M 

) ∈ C θm 
, for all m ∈ M . The satisfaction of Assumption

 paves the way for the use of Theorem 1 of [13] . In particular, for

 ≥ k ∗ = F M 

, Theorem 1 of [13] implies that the right-hand side of

8) can be upper bounded by β . 

As such, we have that 

 

M 

{ 

{ θm 

} m ∈M 

∈ �M : P 

{ 

θ ∈ � : C M 

�⊆ X θ

} 

> ε(k ∗) 
} 

= 

 

M 

{ 

{ θm 

} m ∈M 

∈ �M : P 

{ 

θ ∈ � : C M 

/ ∈ C θ
} 

> ε(k ∗) 
} 

≤ β. (9) 

rom (8) and (9) we obtain that: 

 

M 

{ 

{ θm 

} m ∈M 

∈ �M : V (C M 

) > ε(k ∗) 
} 

≤ β, (10) 

hus concluding the proof. �

The result of Theorem 2 implies that with confidence at least 

 − β , the probability that there exists at least one feasible solution 

f C M 

that violates the constraints for a new realization θ ∈ �, is 

t most equal to ε(k ∗) . Note that our guarantees trivially hold for

ny subregion of the feasible set. However, the support subsample 

annot be easily computed in the general case. Restricting our at- 

ention to programs subject to uncertain affine constraints provides 

he means to quantify the support subsample. 

.2. The polytopic case 

Assuming the presence of affine constraints only, we replace 

ssumption 1 with the following: 
190 
ssumption 2. Consider Assumption 1 and further assume that 

is polytopic 2 and u (x, θ ) = a T x − b ≤ 0 , where a ∈ R 

d , b ∈ R and

= (a T b) ∈ R 

d+1 . 

We denote polytopic feasibility sets with � and �M 

, rather 

han C and C M 

, respectively. Under Assumption 2 , the cardinality 

f the minimal support subsample returned by B M 

coincides by 

efinition with the number of random facets (see Definition 2.1 in 

31] ) of the polytope. Then, Theorem 2 gives rise to the following 

orollary. 

orollary 1. Consider Assumption 2 and any A M 

, B M 

as in Definition 

 . Fix β ∈ (0 , 1) and define the violation level ε : { 0 , . . . , M} → [0 , 1]

s a function such that 

(M) = 1 and 

M−1 ∑ 

k =0 

(
M 

k 

)
(1 − ε(k )) M−k = β. (11) 

e have that 

 

M 

{ 

{ θm 

} m ∈M 

∈ �M : V (�M 

) > ε(k ∗) 
} 

≤ β, 

here k ∗ = F M 

is the number of facets of �M 

. 

Note that, even though in the proof of our theorem we also 

se the vertices of the polytope, only the number of facets is 

eeded to provide probabilistic guarantees for the entire feasibil- 

ty region. This feature is appealing from a computational point 

f view as, in most practical cases, the constructed polytope has 

 significantly smaller number of facets than extreme points. To 

llustrate this, consider a finite horizon multi-agent control prob- 

em with N agents, where each agent’s decision is subject to upper 

nd lower bounds at each time instance t ∈ { 1 , . . . , n } . Hence, for

 multi-sample { θm 

} M 

m =1 
∈ �M , the feasibility domain of the prob- 

em is a hyperrectangle whose number of facets F = 2 Nn grows 

inearly with respect to the number of decision variables, while the 

umber of vertices is given by V = 2 Nn , which grows at an expo-

ential rate with respect to Nn . Such constraints arise in several 

pplications including the electric vehicle scheduling problem of 

ection 4 . Note that, as the dimension of the decision vector in- 

reases, evaluating the minimal support subsample becomes com- 

utationally challenging. However, several efficient algorithms have 

een proposed for detecting redundant constraints out of the ini- 

ial set of affine constraints. The currently fastest algorithm for 

edundancy detection is Clarkson’s algorithm [14] . Reducing the 

omputational complexity of Clarkson’s algorithm is still an active 

esearch area in computational geometry and combinatorics. One 

ecent noteworthy attempt can be found in [21] . 

emark 1. Corollary 1 allows retrieving the support samples of 

he feasibility region by enumerating its facets. Calculating these 

s straightforward for a wide class of problems like those that have 

he structure of the example in Section 4.2 (see also [16,25,29,33] ). 

he relevance of this result can be seen by considering, for exam- 

le, the case where an iterative algorithm is obtained to return an 

ptimizer/feasible solution of the underlying problem. The quan- 

ification of the support samples using the methodology suggested 

n [13] can be challenging due to the numerical sensitivity of the 

atter and the fact that it would require calling the iterative (typi- 

ally with asymptotic convergence guarantees) algorithm multiple 

imes. This difference becomes more pronounced if the objective 
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unction of the underlying problem is non-convex, thus possibly 

xhibiting multiple local optima. 

In case we wish to provide guarantees only for a specific subset 

f the feasible region, the following remark clarifies how this can 

e achieved by leveraging our results. 

emark 2. Let A M 

be an algorithm that returns only a subset of 

he feasible region. Following the same steps with the proof of 

heorem 2 , we can provide probabilistic feasibility guarantees for 

he subset of interest with B M 

returning the support samples that 

orrespond to this subset and not to the entire feasibility region. 

his might be useful in cases where we have prior knowledge that 

 certain subregion of the feasible domain is of importance, e.g., 

 neighbourhood around the optimizer and we wish to investigate 

he probabilistic feasibility of this region only. In case the cardi- 

ality of the support subsample for the region is less than that of 

he entire feasible domain, this leads to less conservative feasibility 

ertificates. 

. Optimization programs with uncertainty in the cost 

.1. Optimization setting 

In this section we show that for a specific class of problems fre- 

uently arising in practical applications, the probabilistic feasibil- 

ty guarantees for the optimizers of the problem can be substan- 

ially improved by leveraging the notion of the so called support 

ank [37] . Assuming an uncertain cost function of a specific form 

nd deterministic local constraints, we consider the following pro- 

ram 

 : min 

x ∈ X 
J(x ) , (12) 

here J(x ) = f (x ) + max 
θ∈ �

g(x, θ ) and f : X → R , g : X × � → R is

he deterministic and the uncertain part of the cost function, re- 

pectively. In addition, the cost under study satisfies the following 

ssumption 

ssumption 3. 

1. f is jointly convex with respect to all agents’ decision vectors, 

and the set X is non-empty, compact and convex. 

2. g takes the aggregative form 

g(x, θ ) = 

∑ 

i ∈N 
g i (x i , x −i , θ ) and 

g i (x i , x −i , θ ) = x T i (A (θ ) σ (x ) + b(θ )) , 

where σ : X → R 

n is a mapping (x i ) i ∈N → 

∑ 

i ∈N 
x i and A : � →

R 

n ×n , b : � → R 

n are uncertain mappings with A (θ ) being a

symmetric positive semi-definite matrix for all θ ∈ �. 

Under Assumption 3 the function J is convex, as the pointwise 

aximum of an arbitrary number of convex functions is itself a 

onvex function [7] . From Assumption 3 .2 the uncertain counter- 

art of the cost function under study takes the form 

(x, θ ) = σ (x ) T (A (θ ) σ (x ) + b(θ )) . 

he proposed structure captures a wide class of engineering prob- 

ems, including the electric vehicle charging problem detailed in 

ection 4 . Since g is convex, using an epigraphic reformulation we 

ecast P to the equivalent semi-infinite program 

 

′ 
: min 

x ∈ X,γ ∈ R 
f (x ) + γ

subject to h (x, γ , θ ) ≤ 0 , ∀ θ ∈ �, (13) 

here h (x, γ , θ ) = g(x, θ ) − γ . In addition, if (x ∗, γ ∗) is the opti-

al solution of problem P 
′ 
, then x ∗ is the optimal solution of the
191 
riginal problem P . Due to the presence of uncertainty and the 

ossibly infinite cardinality of �, problem P 
′ 

is very difficult to 

olve, without imposing any further assumptions on the geome- 

ry of the sample set � and/or the underlying probability distri- 

ution P . To overcome this issue, we adopt again a scenario-based 

cheme [8] . The corresponding scenario program of the uncertain 

emi-infinite program P 
′ 

is thus given by 

 

′ 
SC : min 

x ∈ X,γ ∈ R 
f (x ) + γ

subject to h (x, γ , θm 

) ≤ 0 , ∀ m ∈ M , (14) 

here { θm 

} m ∈M 

∈ �M is an i.i.d. multi-sample of cardinality M. For 

he scenario program under study, we introduce the following as- 

umption: 

ssumption 4. 

1. For any multi-sample { θm 

} m ∈M 

, the scenario program P 
′ 
SC 

ad- 

mits a feasible solution. 

2. The optimal solution (x ∗, γ ∗) of the scenario program P 
′ 
SC is 

unique. 

In case multiple optimal points exist, one can use a convex tie- 

reak rule to select a unique solution. The following concept, at 

he core of the scenario approach, is important for the derivation 

f the results in the next subsection, where agent-independent ro- 

ustness certificates are provided for the optimal solution. Note 

hat this is similar to Definition 3 , but it refers now to the opti-

al solution and not to the feasibility region. 

efinition 5. (Support constraint [10] ) Fix any i.i.d. multisample 

 θm 

} m ∈M 

∈ �M and let x ∗
0 

= x ∗
0 
({ θm 

} m ∈M 

) be the unique optimal

olution of the corresponding scenario program of P , when all the 

samples are taken into account. Let x ∗−s = x ∗−s ({ θm 

} m ∈M 

\ θs ) be

he optimal solution obtained after the removal of sample θs . If 

 

∗
0 

� = x ∗−s we say that the constraint that corresponds to sample θs 

s a support constraint. 

.2. Agent independent probabilistic feasibility guarantees for a 

nique solution 

In many practical applications there are cases where a random 

onstraint may leave a linear subspace unconstrained for any pos- 

ible sample θ ∈ �. This observation motivated the concept of the 

upport rank as introduced in [37] , which allows us to provide 

ighter probabilistic guarantees for the problem under study. Let 

 ∈ Y ⊆ R 

d and consider the following semi-infinite optimization 

rogram 

min 

y ∈ Y 
c T y 

ubject to l(y, θ ) ≤ 0 , ∀ θ ∈ �. (15) 

otice that the objective function is linear without loss of general- 

ty and in the opposite case an epigraphic reformulation could be 

ntroduced. Denoting the collection of all the linear subspaces of 

 

d as L , we consider all the linear subspaces L ∈ L that, under the

resence of the random constraint (15) , remain unconstrained for 

ny uncertainty realization θ ∈ � and any point y ∈ Y , i.e., the set 

 = 

⋂ 

θ∈ �

⋂ 

y ∈ Y 
{ L ∈ L : L ⊂ F (y, θ ) } , 

here F (y, θ ) = { ξ ∈ R 

d : l(y + ξ , θ ) = l(y, θ ) } . 
efinition 6. (Support rank [37] ) 

The support rank ρ ∈ { 0 , . . . , d} of a random constraint equals 

o the dimension of the problem d minus the dimension of 

he maximal unconstrained linear subspace L max , i.e, ρ = d −
im (L max ) . By maximal unconstrained subspace we mean the 

nique maximal element L max ∈ U for which L ⊆ L max , for all L ∈ U .
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From the support rank definition (see Lemma 3.8 in [37] ) we 

ave that Helly’s dimension can be upper bounded by the support 

ank instead of the dimension d of the problem, which is a more 

onservative upper bound [10] . Keeping this relation in mind, our 

ain goal is to obtain a bound for the support rank of the random

onstraint of problem P 
′ 
, thus improving the robustness certificates 

f its optimal solution. The following proposition aims at finding 

n upper bound for the support rank ρ of the random constraint 

13) , that is independent from the number of agents involved in 

he optimization program. 

roposition 1. Under Assumptions 3 and 4 , the support rank ρ of the 

andom constraint (13) in P 
′ 
, has an agent independent upper bound, 

nd in particular, ρ ≤ n + 1 . 

roof. The dimension of the problem under study is d = nN + 1 ,

ue to the presence of the epigraphic variable. Let L be the col- 

ection of all linear subspaces in R 

nN+1 . We aim at finding the di-

ension of the subspace that remains unconstrained for a scenario 

rogram subject to the random constraint h (x, γ , θ ) ≤ 0 for any 

ncertain realisation θ ∈ � and any decision vector (x, γ ) ∈ X × R . 

e first define the collection of linear subspaces that are contained 

n all the sets F (x, γ , θ ) : 

 = 

⋂ 

θ∈ �

⋂ 

(x,γ ) ∈ R nN+1 

{ L ∈ L : L ⊂ F (x, γ , θ ) } , where 

F (x, γ , θ ) = { (ξ , ξ ′ ) ∈ R 

nN+1 : 

h (x + ξ , γ + ξ ′ , θ ) = h (x, γ , θ ) } 
n our case, h (x + ξ , γ + ξ ′ , θ ) = h (x, γ , θ ) yields: 

(x + ξ ) T (A (θ ) σ (x + ξ ) + b(θ )) − (γ + ξ ′ ) 
= σ (x ) T (A (θ ) σ (x ) + b(θ )) − γ , 

⇐⇒ σ T (x ) A (θ ) σ (ξ ) + σ T (ξ ) A (θ ) σ (x ) 

+ σ T (ξ ) A (θ ) σ (ξ ) + σ T (ξ ) b(θ ) − ξ ′ = 0 , 

⇐⇒ σ T (ξ ) A 

T (θ ) σ (x ) + σ T (ξ )(A (θ ) σ (x ) + b(θ )) 

+ σ T (ξ ) A (θ ) σ (ξ ) − ξ ′ = 0 , 

here the first equivalence stems from the fact that σ (x + ξ ) is 

inear with respect to its arguments, and the second one after 

ome algebraic rearrangement. 

Note that each of the terms above is scalar, which means that 

t is equal to its transpose for all x ∈ X and θ ∈ �, while by

ssumption 3 , A 

T (θ ) = A (θ ) for any θ ∈ �. As such, 

T (ξ )(2 A (θ ) σ (x ) + b(θ )) + σ T (ξ ) A (θ ) σ (ξ ) − ξ ′ = 0 . (16) 

sing the equalities σ T (ξ )(2 A (θ ) σ (x ) + b(θ )) = ( 1 1 ×N �

2 A (θ ) σ (x ) + b(θ )) T ) ξ and σ T (ξ ) A (θ ) σ (ξ ) = ξ T ( 1 N×N � A (θ )) ξ ,

here � 1 ×N denotes a row vector with all elements being equal to 

ne and � denotes the Kronecker product, (16) can be written in 

he following form: 

 1 1 ×N � (2 σ T (x ) A (θ ) + b T (θ ))) ξ

+ ξ T ( 1 N×N � A (θ )) ξ − ξ ′ = 0 , (17) 

et ˜ C : X × � → R 

nN , ˜ A : � → R 

nN×nN , where ˜ C (x, θ ) = 1 1 ×N �

2 σ T (x ) A (θ ) + b T (θ )) and 

˜ A (θ ) = 1 N×N � A (θ ) , respectively. Then,

q. (17) can be written as: 

˜ C (x, θ ) ξ + ξ T ˜ A (θ ) ξ − ξ ′ = 0 , 

⇐⇒ 

(
˜ C (x, θ ) −1 

)(ξ
ξ ′ 

)

+ 

(
ξ ξ ′ )( ˜ A (θ ) 0 nN×1 

0 1 ×nN 0 

)(
ξ
ξ ′ 

)
= 0 , 
192 
⇐⇒ V (x, θ ) w + w 

T P (θ ) w = 0 , 

here, V (x, θ ) = 

(
˜ C (x, θ ) −1 

)
, P (θ ) = 

(
˜ A (θ ) 0 nN×1 

0 1 ×nN 0 

)
and 

 = 

(
ξ
ξ ′ 

)
. We need to find an unconstrained linear subspace that 

s a subset of F (x, γ , θ ) . We define 

 (x, γ , θ ) = { w ∈ R 

nN+1 : 

(
P (θ ) 

V (x, θ ) 

)
w = 0 } . 

e can easily see that L (x, γ , θ ) ⊂ F (x, γ , θ ) . As such, the random

onstraint h (x, γ , θ ) ≤ 0 cannot constrain any of the dimensions 

f L (x, γ , θ ) (also denoted as L for simplicity). Let Q(x, γ , θ ) =
P (θ ) 

V (x, θ ) 

)
. Then L (x, γ , θ ) = nullspace (Q(x, γ , θ )) and from 

ullity-rank theorem [3] we have that dim (L (x, γ , θ )) = nN + 

 − rank (Q(x, γ , θ )) . Since rank (P (θ )) = n and rank (V (x, θ )) = 1 ,

his means that rank (Q(x, γ , θ )) = n + 1 , which implies that 

im (L (x, γ , θ )) = nN + 1 − (n + 1) . Notice that the unconstrained

ubspace that we chose may not be the maximal one. This 

eans that the support dimension is ρ = nN + 1 − dim (L max ) 

nN + 1 − dim (L ) = n + 1 , thus concluding the proof. �

An immediate consequence of Proposition 1 when combined 

ith Theorem 4.1 of [37] is the following theorem. 

heorem 3. Let (x ∗, γ ∗) denote the optimal solution of the scenario 

rogram P 
′ 
SC 

. Under Assumptions 3 and 4 we have that 

 

M {{ θm 

} m ∈M 

∈ �M : P { θ ∈ � : h (x ∗, γ ∗, θ ) > 0 } > ε} ≤ β, (18) 

here β = 

n ∑ 

j=0 

(
M 

j 

)
ε j (1 − ε) M− j . (19) 

The bound obtained from Theorem 3 constitutes a major im- 

rovement for this class of problems, since, irrespective of the 

umber of agents N, the same number of samples M is required 

o provide identical robustness certificates given a local decision 

ector of size n . The proof of this theorem, is a direct application

f the scenario approach theory (see Theorem 2.4 in [10] , and The- 

rem 4.1 in [37] , where the number of support constraints is re- 

laced by the obtained bound for the support rank, namely, n + 1 ). 

ote that in the absence of Proposition 1 , a direct application of 

he scenario approach theory [10] to the problem under consider- 

tion would still result in (18) , however, (19) would be replaced 

y 

= 

nN ∑ 

j=0 

(
M 

j 

)
ε j (1 − ε) M− j , (20) 

here the dependence of the guarantees on the number of agents 

is apparent. 

Corollary 2 establishes a link between Theorem 3 and the ini- 

ial program under study P by providing probabilistic performance 

uarantees for the optimal solution. Specifically, it quantifies, in an 

 priori fashion, the probability that the cost that corresponds to 

he optimal value x ∗ of P ′ 
SC 

will deteriorate, when a new sample θ ∈ 

is encountered. To formalise this, with a slight abuse of notation 

et J(x ) = J(x, { θm 

} m ∈M 

) be the cost function of the corresponding

cenario program of program P and J + (x ) = J(x, { θm 

} m ∈M 

∪ { θ} ) the

ost defined over M + 1 scenarios by taking into account the new 

ample θ . 

orollary 2. Under Assumptions 3 and 4 we have that 

 

M { { θm 

} m ∈M 

∈ �M : P { θ ∈ � : J + (x ∗) > J(x ∗) } > ε} ≤ β, (21) 
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Fig. 2. Empirical probability of violation of the feasibility region (red line) 

versus the theoretical violation level for a different number of samples M = 

{ 50 0 0 , 60 0 0 , . . . , 10 0 0 0 } . To calculate the probability of violation a total of M test = 

40 0 0 0 samples is used. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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here β = 

n ∑ 

j=0 

(
M 

j 

)
ε j (1 − ε) M− j (22) 

roof. Let (x ∗, γ ∗) be the optimal solution of program P 
′ 
, which

mplies that γ ∗ = max 
m ∈M 

g(x ∗, θm 

) . As such, 

 { θ ∈ � : h (x ∗, γ ∗, θ ) > 0 } = P { θ ∈ � : g(x ∗, θ ) > γ ∗} = 

 { θ ∈ � : g(x ∗, θ ) > max 
m ∈M 

g(x ∗, θm 

) } = 

 { θ ∈ � : max { g(x ∗, θ ) , max 
m ∈M 

g(x ∗, θm 

) } > max 
m ∈M 

g(x ∗, θm 

) } = 

 { θ ∈ � : J + (x ∗) > J(x ∗) } , (23) 

here the second equality follows from the fact that γ ∗ = 

ax 
 ∈M 

g(x ∗, θm 

) , and the last one from the definitions of J and J + .

irect substitution of (23) in (18) of Theorem 3 concludes then the 

roof. �

. Numerical study 

.1. Probabilistic guarantees for all feasible electric vehicle charging 

chedules 

In the following set-up, a cooperative scheme is considered, 

here agents-vehicles minimize a common electricity cost, while 

heir charging schedules are subject to constraints. However, most 

f the work up to this point assumed that these constraints are 

urely deterministic [16,29,33] . We extend this framework by im- 

osing uncertainty on the constraints by considering the following 

rogram 

min 

x ∈ R nN 
J(x ) subject to 

 ∈ 

⋂ 

θ∈ �

∏ 

i ∈N 
{ x i ∈ [ x i (θ ) , x i (θ )] : 

n ∑ 

t=1 

x (t) 
i 

≥ E i (θ ) } . (24) 

he two main requirements for the operation of the system under 

tudy, namely, the lower and upper bounds imposed on the power 

ate of each vehicle and the total energy level to be achieved at the 

nd of charging, can be modelled as constraints of affine form. The 

ariables x i = (x (t) 
i 

) n 
t=1 

denote the charging schedule for all time 

nstances t ∈ { 1 , . . . , n } . 
The corresponding scenario program of (24) is given by 

min 

x ∈ R nN 
J(x ) subject to 

 ∈ 

⋂ 

m ∈M 

∏ 

i ∈N 
{ x i ∈ [ x i (θm 

) , x i (θm 

)] : 

n ∑ 

t=1 

x (t) 
i 

≥ E i (θm 

) } . (25) 

he cost function J is allowed to have any arbitrary form. In our 

et-up we assume that the upper and lower bounds of the charg- 

ng rate, ( x i (θu )) i ∈N , ( x i (θl )) i ∈N ∈ R 

nN are affected by the uncertain

arameters θu , θl ∈ R 

nN , respectively, with uncertainty representing 

olatile grid power restrictions. Each of the parameters’ elements is 

xtracted according to the same probability distribution N (0 , 0 . 5) , 

here N (μ, σ ) is a Gaussian distribution with mean μ and stan- 

ard deviation σ . The distribution is truncated by a prespecified 

uantity to avoid infeasibility issues. We further assume that the 

ncertainty is additive, i.e., x (θu ) = x nom + θu and x (θl ) = x nom + θl , 

here each element of x nom is drawn from a uniform probability 

istribution with support [10,20] kW and x nom is set to 2 kW. Fi- 

ally, the energy capacity of the battery can be affected by a vari- 

ty of factors such as battery aging and lithium plating for Li-ion 

atteries. These phenomena can have an important effect on the 

mount of energy required by each vehicle to fully charge, thus 

mposing uncertainty on the final energy level to be achieved by 
193 
ach of them by the end of the charging cycle. In our set-up, the 

ncertainty in the total energy E = (E i ) i ∈N (in kWh) of each vehi-

le at the end of charging is yet again assumed to be additive, i.e., 

 = E nom + θe , where the elements of θe ∈ R 

N are extracted accord- 

ng to the probability N (0 , 1) and E nom 

i 
∈ R is the nominal final en-

rgy demand of each agent i ∈ N . The uncertainty vector is given 

y θ = [ θu , θl , θe ] ∈ R 

N(2 n +1) . 

Considering N = 5 vehicles and n = 12 time slots we construct 

he feasibility region of the corresponding scenario program (25) . 

sing M test = 40 0 0 0 test samples we empirically compute the 

robability that a new yet unseen constraint will be violated by 

t least one element of the feasible region and compare it with 

he theoretical violation level ε(k ) from Theorem 2 . The results 

re shown in Fig. 2 , where the red line corresponds to the em- 

irical probability and the blue line corresponds to the theoretical 

ound. Note that an upper bound for the theoretical violation level 

(k ) can be obtained by counting the number of the facets k = F M 

f the feasible set or by leveraging the geometry of our numerical 

xample to provide an upper bound for F M 

, that is F M 

≤ 2 nN + N.

his bound can be easily derived noticing that the feasible region 

s in fact a cartesian product of N rectangles intersected by a half- 

pace that corresponds to the energy constraint. As such the worst 

ase number of facets for the entire polytope in our example is 

(2 n + 1) . 

In general, for samples that give rise to more than one affine 

onstraints, the number of facets constitutes only an upper bound 

or the cardinality of the minimal support subsample. This bound 

s tight only in the case when there is a one to one correspon- 

ence between a sample realization and a scalar-valued constraint. 

his implies that the guarantees for the feasible subset of the prob- 

em under study can be significantly tighter. The reason behind the 

se of the looser bound k = 2 nN + N in our example lies in the fact

hat its quantification is straightforward and the use of a support 

ubsample function is thus not required. In other cases, however, 

here an upper bound for k is absent, the methodologies for the 

etection of redundant affine constraints provided by [21] and ref- 

rences therein can be used as minimal support subsample func- 

ions. 

Fig. 3 illustrates the violation level ε(k ) with respect to the 

umber of agents N for a fixed confidence level 1 − β , a fixed 

ulti-sample of size M = 10 0 0 0 and k = 2 Nn + N. It is clear that

or the same number of samples the probabilistic guarantees pro- 

ided by Theorem 2 for all feasible solutions become more conser- 

ative as the number of vehicles in the fleet increases. This means 
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Fig. 3. The violation level ε with respect to the number of agents N for β = 10 −6 

and a multi-sample of size M = 10 , 0 0 0 . Note how the violation level for a fixed 

number of samples is agent dependent, i.e., the guarantees become more conserva- 

tive as the number of agents increases. 
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Fig. 4. Mean and worst-case empirical probability of violation of the optimal solu- 

tion with respect to the number of agents versus the theoretical violation level ε = 

0 . 0885 . The number of samples used is M = 500 and β = 10 −6 . By drawing a differ- 

ent multi-sample for each choice of the number of agents N = { 10 , 20 , 30 , 40 , 50 } , 
we solve the corresponding scenario program for a fixed number of time slots 

n = 12 . We then repeat this process 20 times (note that the multi-sample used for 

each repetition is also different) and compute the empirical probability of violation 

of the obtained optimal solutions, using M test = 10 0 , 0 0 0 test samples. 
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hat more samples are required to provide the same probabilistic 

uarantees as the dimension grows. 

.2. Agent independent robustness certificates for the optimal electric 

ehicle charging profile 

In this set-up the cost to be minimized is influenced by the 

lectricity price, which in turn is considered to be a random 

ariable affected by uncertainty. Uncertainty here refers to price 

olatility. All electric vehicles cooperate with each other choosing 

heir charging schedules so as to minimize the total uncertain elec- 

ricity cost, while satisfying their own deterministic constraints. 

o this end, we consider the following uncertain electric vehicle 

harging problem 

 EV : min 

x ∈ R nN 
f (x ) + max 

θ∈ �
g(x, θ ) , 

subject to x i ∈ [ x i , x i ] , 

n ∑ 

t=1 

x (t) 
i 

≥ E i for all i ∈ N , (26) 

here f (x ) = 

∑ 

i ∈N 
f i (x i , x −i ) = σ (x ) T p 0 (σ (x )) is the deterministic

art of the electricity cost that depends on a nominal electric- 

ty price p 0 (σ (x )) = A 0 σ (x ) + b 0 that is, in turn, a function of the

ggregate consumption of the vehicles. g(x, θ ) = 

∑ 

i ∈N 
g i (x i , x −i , θ ) =

(x ) T p(σ (x ) , θ ) constitutes the uncertain part of the electricity 

ost, where the price p(σ (x ) , θ ) = A (θ ) σ (x ) + b(θ ) is additionally

ffected by the uncertain parameter θ extracted from the support 

et � according to a probability distribution P , where � and P 

re considered unknown. The elements of A 0 ∈ R 

n ×n and b 0 ∈ R 

n 

re deterministic with A 0 being a symmetric positive semi-definite 

atrix, while the uncertain mappings A : � → R 

n ×n and b : � → 

 

n are defined as in Section 3 . The vectors x i , x i ∈ R 

n constitute 

he lower and upper bound of the charging rate of vehicle i ∈ N ,

espectively, while E i ∈ R is the final energy to be achieved by each

ehicle i ∈ N by the end of the charging cycle. 

Following the same lines as in Section 3 , we apply an epi- 

raphic reformulation and use samples for � to obtain the follow- 

ng scenario program 

P sc 
EV : min 

(x,γ ) ∈ R nN+1 
f (x ) + γ , (27) 

ubject to x i ∈ [ x i , x i ] , 

n ∑ 

t=1 

x (t) 
i 

≥ E i , for all i ∈ N , 

g(x, θm 

) ≤ γ , for all m ∈ M . 

n our set-up A (θ ) ∈ R 

n ×n is assumed to be a diagonal matrix with

on-negative diagonal elements for any uncertain realization θ ∈ 
194 
. The diagonal elements of A (θ ) and the elements of b(θ ) ∈ R 

n 

re extracted according to uniform distributions. For each agent 

 ∈ N the upper bound x i takes a random value in the set [6,15]

W, the lower bound x i is set to 2 kW and the final energy to be

chieved by the end of the charging cycle is appropriately chosen 

o be feasible, considering the number of timesteps n and the up- 

er bound of the power rate of each agent. A 0 ∈ R 

n ×n is assumed

o be a diagonal matrix, whose diagonal entries are all set to 0.01 

nd b 0 is derived by rescaling a winter weekday demand profile in 

he UK. 

Note that our results can be used alongside any optimization 

lgorithm irrespective of its nature, i.e., centralised, decentralised 

r distributed; here we solved the problem in a centralised fashion. 

he number of samples we use for each problem is M = 500 . By

xing β = 10 −6 and using the bound 

= 

2 

M 

( ln 

1 

β
+ n ln 2) , (28) 

hich is a sufficient condition (see [8, (p.42)] ) for satisfaction of 

19) , we obtain the theoretical violation level ε = 0 . 0885 . Note that

he dimension we use to provide probabilistic guarantees for the 

ptimal solution is set, in accordance to Theorem 3 to n + 1 in- 

tead of nN + 1 , which circumvents the computational issues re- 

ated to the rapid surge in dimension due to the multiplication of 

he number of agents with the number of time slots. By drawing 

 different multi-sample for each choice of the number of agents 

 ∈ { 10 , 20 , 30 , 40 , 50 } we solve the corresponding scenario pro-

ram for a fixed number of time slots n = 12 . We then repeat this

rocess 20 times (note that the multi-sample used for each repeti- 

ion is also different) and compute the empirical probability of vio- 

ation of the obtained optimal solutions, using M test = 10 0 0 0 0 test

amples each time. The mean and worst-case empirical probability 

f violation is depicted in Fig. 4 in comparison with the theoret- 

cal violation level ε. The empirical values are always below the 

heoretical level of violation, which is constant with the number 

f agents due to the agent independent nature of our Theorem 3. 

n addition, the trend in Fig. 4 shows, as expected by Theorem 3, 

hat the number of agents does not affect the empirical probability 

f violation. This result highlights the fact that, for fixed number 

f time periods n , the number of samples M required to provide 

dentical probabilistic guarantees, as the size of the fleet of elec- 

ric vehicles increases, remains constant. This is illustrated in Fig. 5 , 

here we show the number of samples required (for ε = 0 . 0885 , 
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Fig. 5. The number of samples required with respect to the number of agents N = 

{ 10 , . . . , 50 } using the results of Theorem 3 versus the one that would have been 

obtained if (19) is used instead. We consider a charging cycle of duration n = 12 . 

The red line corresponds to Theorem 3, while the blue line corresponds to (20). (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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= 10 −6 and n = 12 ) using the results of Theorem 3 versus the

umber of samples needed to provide the same robustness certifi- 

ates using the classic results in scenario approach for a different 

umber of agents N = 10 , . . . , 50 . The red line corresponds to Theo-

em 3 and shows the agent independent nature of our guarantees, 

hile the blue line corresponds to the conservative agent depen- 

ent result of (20). 

. Concluding remarks 

We first considered a general class of optimization programs 

ith an arbitrary cost function and uncertain convex constraints 

nd provided a posteriori bounds for the probability of violation of 

ll feasible solutions. We then focused on a different class of multi- 

gent programs that involved an uncertain aggregative term and 

eterministic constraints. For such problems we provided agent in- 

ependent probabilistic guarantees for the optimal solution in an a 

riori fashion. Effort is being made towards extending our results 

o provide agent independent probabilistic guarantees in a non- 

ooperative set-up, giving rise to aggregative games. In addition, 

e aim at extending our first contribution by formalising addi- 

ional tools to provide, in an a posteriori fashion, tighter robustness 

ertificates that depend only on a subset of the feasible region cir- 

umscribing the game solutions. 
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