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a b s t r a c t

We consider a multi-agent setting with agents exchanging information over a possibly time-varying
network, aiming at minimising a separable objective function subject to constraints. To achieve this
objective we propose a novel subgradient averaging algorithm that allows for non-differentiable
objective functions and different constraint sets per agent. Allowing different constraints per agent
simultaneously with a time-varying communication network constitutes a distinctive feature of our
approach, extending existing results on distributed subgradient methods. To highlight the necessity of
dealing with a different constraint set within a distributed optimisation context, we analyse a problem
instance where an existing algorithm does not exhibit a convergent behaviour if adapted to account for
different constraint sets. For our proposed iterative scheme we show asymptotic convergence of the
iterates to a minimum of the underlying optimisation problem for step sizes of the form η

k+1 , η > 0.
We also analyse this scheme under a step size choice of η

√
k+1

, η > 0, and establish a convergence
rate of O( ln k

√
k
) in objective value. To demonstrate the efficacy of the proposed method, we investigate

a robust regression problem and an ℓ2 regression problem with regularisation.
© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Distributed optimisation deals with multiple agents inter-
cting over a network and has found numerous applications
n different domains, such as wireless sensor networks (Bain-
ana, Mateos, & Giannakis, 2014; Mateos & Giannakis, 2012),
obotics (Martinez, Bullo, Cortes, & Frazzoli, 2007), and power
ystems (Bolognani, Carli, Cavraro, & Zampieri, 2015), due to
ts ability to parallelise computation and prevent agents from
haring information considered as private. Typically, distributed
lgorithms are based on an iterative process in which agents
aintain some estimate about the decision vector in an op-

imisation context, exchange this information with neighbour-
ng agents according to an underlying communication protocol/
etwork, and update their estimate on the basis of the received
nformation.

Despite the intense research activity in this area, only a few
lgorithms can simultaneously deal with time-varying networks,

✩ The material in this paper was presented at the 58th IEEE Conference
on Decision and Control, December 11–13, 2019, Nice, France. This paper was
recommended for publication in revised form by Associate Editor Julien M.
Hendrickx under the direction of Editor Christos G. Cassandras.
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non-differentiable objective functions and account for the pres-
ence of constraints (Liang, Wang, & Yin, 2019; Margellos, Fal-
sone, Garatti, & Prandini, 2018; Nedić & Olshevsky, 2015; Xi
& Khan, 2017; Zhu & Martinez, 2012), features that are often
treated separately in the literature. Several of the commonly
employed methods are based on a projected subgradient or a
proximal step and their analysis consists of selecting the step
size underlying these algorithms, establishing a convergence rate
analysis, and quantifying practical convergence for (near-)real
time applications.

In this paper, we study a class of optimisation problems that
involves a separable objective function, while the feasible set can
be decomposed as an intersection of different compact convex
sets. A centralised version of this class of problems has been
studied under a stochastic setting in Bianchi (2016) and Patrascu
and Necoara (2018). Distributed algorithms for this class have
been proposed in Johansson, Keviczky, Johansson, and Johansson
(2008), Lee and Nedić (2013), Lin, Ren, and Song (2016), Mai
and Abed (2019), Margellos et al. (2018), Nedic and Ozdaglar
(2009), Nedic, Ozdaglar, and Parrilo (2010) and Zhu and Martinez
(2012). References Johansson et al. (2008), Nedic and Ozdaglar
(2009) and Nedic et al. (2010) rely on Bertsekas and Tsitsiklis
(1989) and Tsitsiklis, Bertsekas, and Athans (1986) to propose
a distributed strategy based on projected sub-gradient methods.
These results consist of an averaging step followed by a local
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ub-gradient projection update. In Margellos et al. (2018) a dis-
ributed scheme based on a proximal update is proposed, thus
xtending Johansson et al. (2008) and Nedic et al. (2010) to the
ase where different local constraint sets and an arbitrarily time-
arying network are considered. The authors in Zhu and Martinez
2012) provide asymptotic convergence for a primal–dual algo-
ithm that allows coupling between agents’ local estimates. We
iscuss additional related results in Section 4, after the proposed
lgorithm is presented and some notation introduced.
We motivate our approach by constructing an example show-

ng that extending available algorithms to the case of different
onstraint sets might not exhibit a convergent behaviour for all
roblem instances. Hence, a direct adaptation of existing schemes
s not always possible when dealing with different constraint
ets. Notice also that distributed algorithms developed for the
nconstrained case cannot be trivially adapted to our setting, as
ifting the constraints in the objective (e.g., via characteristic func-
ions) would violate boundedness of the subgradient, a typical
equirement for such algorithms (Duchi, Agarwal, & Wainwright,
012; Margellos et al., 2018; Nedić & Olshevsky, 2015; Nedic
t al., 2010).
The main contribution of this paper is the introduction and

he characterisation of the convergence rate for a new subgra-
ient averaging algorithm. The proposed scheme allows us to
ccount for time-varying networks, non-differentiable objective
unctions and different constraint sets per agent as in Margellos
t al. (2018), while achieving faster practical convergence as
t is based on subgradient averaging as in Duchi et al. (2012),
ohansson et al. (2008) and Mai and Abed (2019). Note that al-
owing simultaneously for different constraint sets per agent and
ime-varying communication network by means of a subgradient
veraging scheme is a distinct feature of the algorithm in this pa-
er. Preliminary results related to this paper appeared in Romao,
argellos, Notarstefano, and Papachristodoulou (2019), where
everal proofs have been omitted. Moreover, the construction
f Section 2.2 that motivates the analysis of algorithms with
ifferent constraint sets is novel, and offers insight on the limita-
ions of existing algorithms. We also provide detailed numerical
xamples, not included in the conference version.
The paper is organised as follows. In Section 2 we present

he problem statement, the network communication structure,
nd the main assumptions adopted in this paper, followed by
numerical construction that motivates the algorithm of this
aper. In Section 3 we present the proposed scheme and the main
onvergence results, namely, asymptotic convergence in iterates
nd a convergence rate as far as the optimal value is concerned.
ection 4 provides detailed discussion and comparison of our
cheme with other results in the literature. In Section 5 we study
he robust linear regression problem and ℓ2 regression with reg-
larisation to demonstrate the main algorithmic features of our
cheme and to compare our strategy against existing methods.
inally, some concluding remarks and future research directions
re provided in Section 6. To ease the reader all proofs have been
eferred to the Appendix).

otation: We denote by R the set of real numbers and N the set
f natural numbers (excluding zero). The symbol Rn stands for
he Cartesian product R × · · · × R with n terms. A sequence of
lements in Rn is denoted by (x(k))k∈N. For any set X ⊂ Rn, we

denote its interior, relative interior and convex hull by int(X),
ri(X), and conv(X), respectively. We also denote by f (X) as the
image of the set X over a function f . The subdifferential of f at a
point x ∈ domf is denoted by ∂ f (x). For any point x ∈ Rn, ∥x∥2
stands for the Euclidean norm of x and ∥x∥1 for the ℓ1 norm of
x ∈ Rn, which are reduced to |x| if x is scalar.
2

2. Problem statement and a motivating example

2.1. Problem set-up and network communication

Consider the optimisation problem

minimise
x

f (x) =
m∑
i=1

fi(x)

subject to x ∈ ∩m
i=1Xi,

(1)

where x ∈ Rn is the vector of decision variables, and fi : Rn
→ R

and Xi ⊂ Rn constitute the local objective function and constraint
set, respectively, for agent i, i = 1, . . . ,m. We suppose that
each agent i possesses as private information the pair (fi, Xi) and
maintains a local estimate xi of the common decision vector x.

The goal is for all agents to agree on the local variables, that
is, xi = x⋆, for all i = 1, . . . ,m, where x⋆ is an optimiser of (1),
i.e., a feasible point such that f (x⋆) ≤ f (x) for all x ∈ ∩m

i=1Xi. We
impose the following assumption.

Assumption 1. We assume that:

(i) For all i = 1, . . . ,m, the function fi is convex.
(ii) The set Xi ⊂ Rn is compact and convex for all i = 1, . . . ,m,

and ∩m
i=1Xi has a non-empty interior.

(iii) The subgradient of the function f (x) is bounded on ∪m
i=1Xi,

that is, L = max ξ∈∂ f (x),
x∈∪mi=1Xj

∥ξ∥2 <∞.

Assumption 1 imposes standard restriction for constrained
on-smooth optimisation. Item (ii) implies informally that ∪m

i=1Xi
as volume in Rn, i.e., that the affine hull of ∪i=1Xi has dimension
. Moreover, the compactness assumption of item (ii) guaran-
ees that the optimal set of problem (1) is non-empty. Item (iii)
s an assumption that is needed to prove convergence of sub-
radient methods applied to problem (1). Under item (iii), the
ub-gradient of the function f can be evaluated at points that be-
ong to ∪m

i=1Xi. We provide in Appendix A.2 a technical condition
n the domain of the functions fi that is sufficient to guarantee
hat Assumption 1, item (iii), holds. An important consequence of
ssumption 1 is given in the following lemma.

emma 1. Under Assumption 1, we have that:

(i) The set conv(∪m
i=1Xi) is compact.

(ii) The function f is Lipschitz continuous over ∩m
i=1Xi, i.e., the

following inequality hods

|f (x)− f (y)| ≤ L∥x− y∥2, ∀ x, y ∈ ∩m
i=1 Xi,

where L is the constant defined in Assumption 1.

Typical choices of functions that satisfy Assumption 1 are
iecewise-linear functions, quadratic convex functions and the
ogistic regression function.

In this paper, we aim to solve problem (1) through a network
f agents that use only the available local information, namely,
he pair (fi, Xi) and the current estimate for the optimal solution,
xi(k), i = 1, . . . ,m, maintained by agent i at a given instance k.
We will show how xi(k), i = 1, . . . ,m, can be constructed and
updated in Section 3, with k playing the role of iteration index.
To this end, we now characterise the underlying communication
network. Let G(k) = (N , E(k)) be an undirected graph, where
N = {1, . . . ,m} is the number of agents and E(k) ⊂ N ×N is the
set of edges at iteration k, that is, only if node (j, i) ∈ E(k) then
node j sends information to node i at iteration k. We associate
the time-varying matrix A(k) to the edge set E(k), with [A(k)]ij > 0
only if (j, i) ∈ E(k) at time k. As the graph is undirected, the matrix

A(k) can be chosen to be symmetric. We also define the graph
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∞ = (N , E∞), in which (j, i) ∈ E∞ if agent j communicates with
agent i infinitely often. We impose the following assumption on
the matrix A(k).

Assumption 2. We assume that:

(i) The graph (N , E∞) is connected. Moreover, there exists a
uniform upper bound on the communication time for all
(j, i) ∈ E∞.

(ii) There exists η ∈ (0, 1) such that for all k ∈ N and for all
i, j = 1, . . . ,m, [A(k)]ii ≥ η, and if [A(k)]ij > 0 then we have
that [A(k)]ij ≥ η.

(iii) Matrix A(k) is doubly stochastic.

These are standard requirements in the distributed optimi-
sation literature. We refer the reader to Duchi et al. (2012),
Margellos et al. (2018), Nedić and Ozdaglar (2009) and Nedic et al.
(2010) for more details.

2.2. Dealing with different constraint sets

In this section, we highlight the necessity of developing a new
algorithmic scheme to deal with the presence of a different con-
straint sets per agent. To this end, consider the iterative scheme1

zi(k+ 1) =
m∑
j=1

[A]ijzj(k)+ gi(k) (2a)

xi(k+ 1) = argmin
ξ∈Xi

zi(k+ 1)T ξ +
1

c(k)
∥ξ∥22, (2b)

hich consists of a modified version of the algorithm considered
n Duchi et al. (2012), adapted to account for different constraint
ets in each agent’s local optimisation problem. In the setting of
he previous section, notice that matrix A in (2a) corresponds to a
ime-invariant network G(k) = (N , E), for all k ∈ N. Assumption 2
is satisfied if the graph (N , E) is connected and matrix A is
doubly-stochastic.

Observe that (2a) constitutes a subgradient update step, with
neighbouring local variables zj(k) being ‘‘mixed’’ according to the
matrix A and added to gi(k) ∈ ∂ fi(xi(k)), i.e., a subgradient of
fi evaluated at xi(k), i = 1, . . . ,m. Step (2b) is an optimisation
programme with the objective function being the sum (weighted
via c(k)) of

zi(k+ 1)T ξ : linear ‘‘proxy’’ of fi,

and a regularisation term ∥ξ∥22. To comply with Duchi et al.
(2012), we set c(k) = 1

√
k+1

. Recall that the algorithm in Duchi
t al. (2012) involves the same constraint set in the update rule
f (2b), that is Xi = X for all i = 1, . . . ,m, and possesses a
uaranteed convergence rate of O( ln k

√
k
) for the running averages

f the iterates xi(k); here, we introduce a different set Xi per agent
nd show that this (natural) modification may lead to erroneous
esults.

Consider a two-agent instance of (1), i.e., m = 2 with x ∈ R2,
i = xTQx+ qTi x+ ri, for i = 1, 2 and

=

[
1.2 0.4
0.4 1.8

]
, q1 =

[
8
−4

]
, q2 =

[
2.93
−11.46

]
,

1 = 20, r2 = 25. (3)

he local constraint sets are given by X1 = [−1, 1] × [−1, 1] and
2 = [0.5, 2.5] × [0.5, 2.5]. The feasible set X1 ∩ X2 is the box

1 It should be noted that zi, i = 1, . . . ,m, in (2a) should not be confused with
hat of Step 2 in Algorithm 1 presented in the sequel; we use the same symbol
o match the notation in Duchi et al. (2012) and ease the reader.
3

Fig. 1. Geometric representation of problem instance encoded by (3). The red
ellipsoids (dashed lines) correspond to the level curves of f1 , the blue ellipsoids
(double-dashed lines) represent the function f2 , while the black (solid lines)
ellipsoids correspond to the ones of f = f1+f2 . The shaded red box illustrates the
constraint set X1 , while the shaded blue box illustrates X2 . Vectors x̂⋆

1 = [−1, 1]
T

and x̂⋆
2 = [0.5, 2.5]

T are the optimal solutions of f1(x) and f2(x) under the
constraints X1 and X2 , respectively. The global optimal solution of f = f1+f2 with
matrices given by (3) subject to x ∈ X1 ∩ X2 is denoted by x⋆ . This construction
shows that x̂⋆

1 and x̂⋆
2 constitute fixed-points of (2) thus preventing the iteration

from reaching x⋆ if initialised at those points.

[0.5, 1] × [0.5, 1]. Fig. 1 depicts the level curves of the quadratic
functions f1(x) (dashed-red lines), f2 (double-dashed lines), and
f = f1 + f2 (solid-black lines). The red and blue boxes represent
the sets X1 and X2 respectively, with the feasible set, X1∩X2, being
also indicated in the figure in black.

By inspection the optimal solution of f1 under the constraint
x ∈ X1 is x̂⋆

1 = [−1, 1]T . Similarly, the optimal solution for f2
under x ∈ X2 is x̂⋆

2 = [0.5, 2.5]T . We then have the following
proposition.

Proposition 1. Let (zi(k))k∈N, (xi(k))k∈N, i = 1, 2, be the sequences
generated by algorithm (2) when applied to problem (3) with initial
conditions xi(0) = x̂⋆

i , i = 1, 2, and with A = 1
211

T and c(k) =
1
√
k+1

. We have that

x1(k) = x̂⋆
1, x2(k) = x̂⋆

2, ∀k ∈ N.

Proposition 1 shows that x̂⋆
1 and x̂⋆

2 constitute fixed points
of (2), hence the iteration cannot reach x⋆ if initialised from these
points. This highlights the necessity of devising a new algorithm
to deal with the presence of a different constraint set per agent.

3. Distributed methodology

3.1. Proposed algorithm

The main steps of the proposed scheme are summarised in
Algorithm 1. We initialise each agents’ local variable with an
arbitrary xi(0) ∈ Xi, i = 1, . . . ,m; such points are not required
to belong to ∩m

i=1Xi.
At iteration k, agent i receives xj from the neighbouring agents

and averages them through A(k), which captures the communica-
tion network, to obtain zi(k). Recall that we denote the element
of the j-th row and i-th column of matrix A(k) by [A(k)]ij. Agent
i then calculates a subgradient, gi, of its own objective function
evaluated at zi(k) and broadcasts this information back to its
neighbours. In the sequel, agent i averages the received gj(zj(k))
in order to compose a proxy for a subgradient of f (x), namely,
di(k). Finally, agents minimise a linear proxy di(k)T ξ of f (ξ ) plus
a regularisation term weighted by 1

c(k) . An alternative interpre-
tation of this last computation is that agents update their local
estimates by performing a subgradient step with step size c(k)
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nd projecting zi(k) − c(k)di(k) onto their local set. Indeed, this
ocal update can be rewritten as

i(k+ 1) = PXi [zi(k)− c(k)di(k)]

here PXi [·] denotes projection onto the set Xi.

Algorithm 1: Proposed distributed algorithm
Require: : xi(0), i = 1, . . . ,m

For i = 1, . . . ,m, repeat until convergence

1: Compute zi(k) =
∑m

j=1[A(k)]
i
jxj(k),

2: Pick gi(zi(k)) ∈ ∂ fi(zi(k)),

3: Compute di(k) =
∑m

j=1[A(k)]
i
jgj(zj(k)),

4: Compute xi(k+ 1) = argminξ∈Xi di(k)
T ξ + 1

2c(k)∥zi(k)− ξ∥22,

5: Set k← k+ 1

end

3.2. Algorithm analysis

3.2.1. Convergence in iterates
In this subsection, we impose the following assumption on the

tep size c(k).

ssumption 3. Let (c(k))k∈N be the sequence adopted in Algo-
rithm 1. We require that:

(i) c(k) is non-negative and non-increasing;
(ii)

∑
∞

k=1 c(k) = ∞ and
∑
∞

k=1 c(k)
2 <∞.

A sequence satisfying Assumption 3 is c(k) = η

k+1 , for η > 0.

heorem 1. Let (xi(k))k∈N be the sequences generated by Algorithm
, for all i = 1, . . . ,m. Under Assumptions 1–3, we have that for
ome minimiser x⋆ of (1),

lim
→∞

∥xi(k)− x⋆
∥2 = 0, ∀ i = 1, . . . ,m.

The proof of Theorem 1, as well as of Theorem 2 presented in
he sequel, is based on some auxiliary technical results presented
n Appendix A.4. Theorem 1 extends the result in Margellos
t al. (2018) by allowing an agent to communicate subgradient
nformation to neighbouring agents, a feature that, as illustrated
n Section 5, can speed up practical convergence.

.2.2. Convergence in objective value and convergence rate
Throughout this section, we impose the following assumption

n the step size c(k).

ssumption 4. The sequence (c(k))k∈N used in Algorithm 1 is
(k) = η

√
k+1

, for some η > 0.

Our convergence rate results build on the following related
equence generated by Algorithm 1,

ˆi(k) =
1

S(k)

k∑
r=1

c(r)xi(r), (4)

where S(k) =
∑k

r=1 c(r), and (xi(k))k∈N, for all i = 1, . . . ,m, are
the sequences generated by Algorithm 1, with initial condition
x̂i(0) = xi(0). Note that (4) is a convex combination of past
iterates.

Theorem 2. Consider the running average defined in (4). Under
Assumptions 1, 2, and 4, we have that:
4

(i) For all i, j = 1, . . . ,m, the sequence (∥x̂i(k) − x̂j(k)∥)k∈N
converges to zero at a rate O( ln k

√
k
).

(ii) All accumulation points of the sequence (x̂i(k))k∈N are feasible.
(iii) The sequence (

⏐⏐∑m
i=1 fi(x̂i(k))− f (x⋆)

⏐⏐)k∈N converges to zero at
a rate O( ln k

√
k
).

Note that Theorem 2 asserts convergence of the function value
along the running average x̂i(k), i.e., all limit point of (x̂i(k))k∈N
re optimal, however, the iterates might exhibit an oscillatory
ehaviour. For the exact expression of B1 and B2, we refer the
eader to Appendix A.6. The absolute value in Theorem 2 is due to
he fact that x̂i(k) may not be necessarily feasible; however, item
ii) in Theorem 2 implies that all accumulation points of (x̂i(k))k∈N,
= 1, . . . ,m, are feasible. Item (i) states the rate at which

onsensus is achieved for the sequences (x̂i(k))k∈N, i = 1, . . . ,m.
imilar rates can be obtained with more general choices for the
tep size, e.g., c(k) = 1

ka , for a ∈ [0.5, 1).
It should be noted that the result of Theorem 2 further extends

the work presented in Margellos et al. (2018) not only by allowing
agents to communicate their (sub-) gradients, but by also unveil-
ing how to (non trivially) adapt the proof line in that paper to
come up with convergence results that recover traditional rates
for distributed subgradient methods. This is the first convergence
rate result under the scenario considered in this paper.

4. Comparison with related algorithms

In this section we provide a detailed comparison of the pro-
posed algorithm with other results in the literature. To this end,
note that in Johansson et al. (2008) a similar distributed sub-
gradient scheme is mentioned, but no analysis of such a scheme is
presented. References Lee and Nedić (2013) and Lin et al. (2016)
characterise the convergence rate of a sub-gradient algorithm
under different constraint sets per agent that does not possess
subgradient averaging. References Margellos et al. (2018) and Zhu
and Martinez (2012) show asymptotic convergence of distributed
algorithms with different constraint sets and time-varying com-
munication network. Hence, by combining (sub)-gradient averag-
ing and providing an analysis that yields convergence rates under
time-varying communication networks and different constraint
sets per agent, the results in this paper are distinct from all the
above literature.

Closely related algorithms to the one presented here are Mai
and Abed (2019) and Wang et al. (2019). Paper Mai and Abed
(2019) provides convergence rates assuming a regularity condi-
tion on the local sets (weaker than compactness) and requiring
the network to be row-stochastic; however, it does not analyse
the case where the communication network is time-varying. This
requires different analysis arguments, thus complementing the
results in Mai and Abed (2019), extending them to allow for
time-varying networks. Meanwhile, paper Wang et al. (2019) pro-
poses a subgradient-free algorithm that converges under differ-
ent constraint sets and undirected time-varying network, which,
however, does not involve any subgradient averaging when spe-
cialised to use subgradients. Moreover, the example of Section 2.2
highlights the need for developing a different analysis when
agents possess different constraints sets.

Although only marginally related to the results of this paper,
it is worth mentioning distributed algorithms that deal with
similar optimisation problems (Qu & Li, 2018; Scutari & Sun,
2019; Shi et al., 2015). Paper Scutari and Sun (2019) proposes an
algorithm whose convergence is valid for non-convex objectives
and directed communication network, while Qu and Li (2018) and
Shi et al. (2015) use a constant step size to establish linear conver-
gence rates for strongly convex functions. Moreover, distributed
algorithms based on proximal methods with constant step sizes
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able 1
ummary of distributed schemes for smooth and non-smooth optimisation.

Smooth + Constant step-size Non-smooth + Diminishing step-size

Common sets Different sets Common sets Different sets

Convex Strongly Convex Strongly Convex Strongly Convex Strongly

Convex Convex Convex Convex

No (sub)grad.
avg.

Jakovetic,
Moura, and
Xavier (2012),
Nedic and
Ozdaglar (2009),
Yuan, Ling, and
Yin (2016)

Yuan et al.
(2016)

Lei, Chen, and
Fang (2016),
Xie, You, Tempo,
Song, and Wu
(2018)

– Nedić and
Olshevsky
(2015), Scutari
and Sun (2019)

Liu, Qiu, and Xie
(2017), Tsianos,
Lawlor, and
Rabbat (2012)

Lee and Nedić
(2013), Lin et al.
(2016),
Margellos et al.
(2018), Wang,
Zhao, Hong, and
Zamani (2019),
Zhu and
Martinez (2012)

–

(Sub)grad.
avg.

Qu and Li
(2018), Scutari
and Sun (2019),
Shi, Ling, Wu,
and Yin (2015),
Zanella,
Varagnolo,
Cenedese,
Pillonetto, and
Schenato (2016)

Qu and Li
(2018), Scutari
and Sun (2019),
Shi et al. (2015)

– – Duchi et al.
(2012), Liang
et al. (2019),
Scutari and Sun
(2019), Xi and
Khan (2017)

– our work, Mai
and Abed (2019)

–

∥

u

x

have been proposed in Chen and Ozdaglar (2012). In this setting,
the objective function is assumed to be differentiable to obtain
convergence to the optimal solution of problem (1), and the size
of the allowable step-size is upper bounded by a quantity related
to the Lipschitz constant of the objective function. Unlike these
results, we allow for non-differentiable objective functions.

To better position this paper within the recent literature, we
ummarise the main distributed algorithms that are amenable
o smooth and non-smooth constrained optimisation in Table 1.
e highlight both scenarios of common and different local con-

traint sets, which are indicated in the table by common sets
nd different sets, respectively. In this brief summary, we re-
trict our attention to algorithms that use constant step size
or smooth optimisation, and to those that use diminishing step
izes for the non-smooth case. We also present a categorisation
f these schemes between those that have results for general
onvex functions and strongly convex functions. In row entitled
‘No (sub)grad. avg.’’, we include distributed algorithms based on
rojected (sub)gradient, proximal minimisation, and primal–dual
pdate that do not leverage on averaging first-order information
rom neighbouring agents. In contrast, row ‘‘(Sub)grad. avg.’’ in-
ludes algorithms that exploit (sub) gradient averaging. Among
he few papers that are suitable for different local sets, this
s the first result to establish a convergence rate that matches
hat of the common local sets case, and simultaneously allows
gents to use first-order information of their neighbours un-
er time-varying communication networks, thus speeding up
ractical convergence.

. Numerical examples

.1. Problem instance of Section 2.2 — revisited

We revisit the two-agent problem in (3), for which the itera-
tive scheme in (2) is not guaranteed to converge, and apply this
time our algorithm. Note that the optimal solution of (3) is given
by

x⋆
= P[0.5,1]2

[
−

1
8
Q−1(q1 + q2)

]
=

[
0.5

1

]
here P[0.5,1]2 [·] represents the projection onto the feasible set
f problem (3). Pictorially x⋆ is shown in Fig. 1. To illustrate the
5

Fig. 2. Evolution of
√∑2

i=1 ∥xi(k)− x⋆∥
2
2 for (3), where (xi(k))k∈N, i = 1, 2, are

the iterates generated by Algorithm 1.

convergence properties of Algorithm 1 we monitor the evolution

of
√∑2

i=1 ∥xi(k)− x⋆∥
2
2, where (xi(k))k∈N, i = 1, 2, are the iterates

generated by Algorithm 1. We use c(k) = 1
√
k+1

similarly to Duchi
et al. (2012), A = 1

211
T and xi(0) = x̂⋆

i , where x̂⋆
i , i = 1, 2,

are defined in Section 2.2. Observe that our initial condition is
the same as in Proposition 1. In contrast, as shown in Fig. 2,
the iterates generated by Algorithm 1 converge to the optimal
solution of (3).

5.2. Example 2: robust linear regression

We consider the problem of estimating an unknown (but
deterministic) vector x ∈ Rn from m noisy measurements yi by
means of the linear model

yi = bTi x+ vi, i = 1, . . . ,m,

with bi ∈ Rn, and vi are independent random variables drawn
from a Laplacian distribution, that is, for each i the density of vi
is given by hvi (z) =

1
2a exp

−|z|/a, for all z ∈ R.
A common strategy is to impose a norm constraint of the form

x∥2 ≤ c , for some c > 0, to reflect some prior knowledge on the
nknown vector x, and solve the second order conic programme

ˆ ∈ argmin
∥x∥2≤c

∥y− Bx∥1. (5)

Typically, (5) is referred to as robust regression in the literature,
as the ℓ -norm penalises relatively less outliers than other convex
1
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Fig. 3. Evolution of |
∑30

i=1 fi(xi(k))−f ⋆ |
f ⋆ for Algorithm 1 (solid lines) and the one

n Duchi et al. (2012) (dashed lines) when applied to the robust regression
roblem given by (5). The different colours correspond to the different network
onnectivities.

etrics (e.g., quadratic penalties). In our set-up, we consider the
ase where data are collected locally and agents are not willing
o share their measurements with a central processing unit.

Observe that (5) has the format of (1) by setting Xi = X =
x ∈ Rn

: ∥x∥2 ≤ 5} and fi(x) = |yi − bTi x|, i = 1, . . . ,m.
oreover, the constraint sets Xi and the objective functions fi,
= 1, . . . ,m, trivially satisfy Assumption 1. Hence, we can apply
he proposed scheme to obtain a solution to (5). We consider
= 30 and n = 4 and generate y independently from a standard
aussian distribution, and matrix B from a uniform distribution
ith support [0, 1].
We solve (5) in a distributed manner, and compare Algorithm

with the one proposed in Duchi et al. (2012) under four differ-
nt network connectivity structures: (i) complete network graph
which corresponds to the centralised version of the problem);
ii) line network graph; (iii) sparse network graph with sparsity
egree d = 0.3; (iv) sparse network graph with sparsity degree
= 0.8. We say that a network with m agents has a sparsity

egree d ∈ (0, 1) if the number of connections among the
etwork nodes is given by dm2, where m2 indicates the number
f connections of a complete graph.
We assess the performance of Algorithm 1 for each of the

forementioned networks in Fig. 3. Solid lines correspond to
lgorithm 1, whereas dashed lines correspond to the algorithm
roposed in Duchi et al. (2012). Different colours correspond to
he different network connectivities. For each case, we monitor
he evolution of |

∑30
i=1 fi(xi(k))−f ⋆|

f ⋆ , where f ⋆ is the optimal value
f (5). The proposed scheme exhibits similar and often favourable
erformance with the one in Duchi et al. (2012), in particular
or cases where the underlying graph is not sparse. It should
e noted, however, that Algorithm 1 possesses more general
onvergence properties, i.e., the proposed scheme is guaranteed
o converge under non-identical local sets.

Note that due to the fact that Algorithm 1 requires two rounds
f communication per iteration, the results presented in Fig. 3
hould be rescaled by a factor of two if we use communication
ounds instead of the iteration index.

.3. Example 3: ℓ2 linear regression with regularisation

In this example, we consider a variation of the regression
roblem where we assume vi, i = 1, . . . ,m, to be independent
nd Gaussian, i.e., the density function is given by hvi (z) =
1
√
2π

e−
z2
2 , for all z ∈ R, for all i = 1, . . . ,m, and we assume that

is sparse. A common relaxation of this problem is to choose the
aximum likelihood estimator x̂ such that

x̂ = argmin ∥y− Bx∥22 + λ∥x∥1, (6)

x∈X

6

Fig. 4. Evolution of the average distance to the optimal solution given by√∑300
i=1 ∥xi(k)−x

⋆∥22
300 for Algorithm 1 (solid-red line) and that of Margellos et al.

(2018) (dashed-blue line).

where X can be interpreted as a set including prior beliefs,
e.g., ∥x∥2 ≤ c or x ≤ x ≤ x̄ for some vectors x, x̄ ∈ Rn. The
stimator x̂ obtained by solving (6) depends on the value of the
arameter λ. In fact, the larger the value of λ, the worse the
erformance is in terms of the error and the sparser the obtained
olution is.
In this example, we aim to verify the performance of Algo-

ithm 1 under step size choices c(k) ∝ 1
k+1 and a time-varying

communication network. Similar to the previous example, the
vector y is generated according to a standard normal distribution
and matrix B from a uniform distribution on the interval [0, 1].

e assume m > n and consider the case where agents possess
private, local information, encoded by Xi = [xi, x̄i] i = 1, . . . ,m,
uch that X = ∩m

i=1Xi = [x, x̄].
The algorithm presented in Duchi et al. (2012) does not nec-

essarily converge in the set-up of problem (6), as we have dif-
ferent constraint sets per agent. We thus compare our algorithm
against the one proposed in Margellos et al. (2018), which con-
verges under similar conditions but does not leverage on subgra-
dient averaging. This allows us to assess the impact of averaging
subgradients on practical convergence.

We now investigate the behaviour of the proposed algorithm
in the presence of time-varying communication networks. To this
end, we set m = 300 and n = 10, and generate four network
onfigurations with different sparsity patterns, alternating cycli-
ally among these. We also set c(k) = 0.2

k+1 for both Algorithm 1
and the one in Margellos et al. (2018). Fig. 4 shows the evolution
for the average distance to the optimal solution for Algorithm 1
(solid-red line) and the one in Margellos et al. (2018) (dashed-
blue line). We observe that Algorithm 1 consistently outperforms
the one proposed in Margellos et al. (2018); this is mainly due to
the sub-gradient averaging step of Algorithm 1.

6. Conclusion

In this paper we proposed a subgradient averaging algori-
thm for multi-agent optimisation problems involving non-
differentiable objective functions and different constraint sets per
agent. For this set-up we showed by means of a geometric con-
struction that available schemes involving subgradient averaging
cannot be used. For the proposed scheme we showed conver-
gence of the algorithm iterates to some minimiser of a centralised
problem counterpart. Moreover, we have also established a con-
vergence rate under a particular choice for the underlying step
size. The performance of our approach was illustrated by means
of several numerical examples, quantifying also the improvement
in terms of practical convergence with respect to other algorithms

that are not based on (sub)gradient exchange.
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Future work will concentrate towards replacing the diminish-
ing step size employed by our approach with a constant one,
showing convergence rates to a neighbourhood of the set of
optimal solutions. A more detailed study on the communication
requirements, and an investigation on how we could reduce
the two rounds of communication required by the proposed
algorithm are also topics of current work.
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Appendix

A.1. Proof of Lemma 1

We start by proving item (i). Consider the continuous mapping
: Rm
×
∏m

i=1 R
n
→ Rn, defined as φ(γ , x1, . . . , xm) =

∑m
i=1 γixi,

here γ = (γ1, . . . , γm) belongs to the simplex in Rm, denoted
y Γ . Consider K = φ(Γ ,

∏m
i=1 Xi), and note that K is compact,

s it is the image of the compact set Γ ×
∏m

i=1 Xi under the
continuous map φ. Moreover, note that by definition we have
K ⊆ conv(∪m

i=1Xi), as any element in K is a convex combination
of elements in ∪m

i=1Xi. To conclude the argument, we need to
show that conv(∪m

i=1Xi) ⊆ K . To this end, it suffices to show
that K is a convex set, due to the fact that the convex hull is
the smallest convex set containing a given set. Let z, w ∈ K ,
i.e., z =

∑m
i=1 γizi and w =

∑m
i=1 βiwi, with zi, wi ∈ Xi, and

γ = (γ1, . . . , γm), β = (β1, . . . , βm) ∈ Γ . Fix an α ∈ (0, 1),
and note that αz + (1 − α)w =

∑m
i=1(αγi + (1 − α)βi)xi, where

xi = cizi + (1− ci)wi ∈ Ai, with ci =
αγi

αγi+(1−α)βi
.

Since xi ∈ Ai due to convexity of Ai and αγ + (1−α)β ∈ Γ , we
conclude that αz+ (1−α)w ∈ K for any α ∈ (0, 1), thus showing
that K is a convex set. This implies then that K = conv(∪m

i=1Xi) as
we have established that K ⊆ conv(∪m

i=1Xi) and conv(∪m
i=1Xi) ⊆ K .

Since K was shown to be compact, we have that conv(∪m
i=1Xi) is

also compact. This concludes the proof of item (i). An alternative
proof can be found at Bertsekas (2009, Prop. 1.2.2). The proof
of item (ii) follows from Proposition 5.4.2, p. 186, in Bertsekas
(2009), and is omitted for brevity. This concludes the proof of the
lemma.

A.2. Sufficient condition for Assumption 1 , item (iii).

The goal of this subsection is to provide a sufficient condition
for Assumption 1, item (iii). The subsequent arguments can be
found in standard optimisation books, such as Rockafellar (1972,
Theorem 24.7); however we present here a more direct proof.

Assumption 5. Let Xi, i = 1, . . . ,m, be the level sets of prob-
lem (1) and domf the domain of f . We suppose that:

(i) The distance between the set ∪m
i=1Xi and the complement of

the interior of the domain of f (which is closed and convex)
is strictly greater than zero, i.e.,

dist( ∪m
i=1 Xi,

(
int(domf )

)c)
= inf

x∈∪mi=1Xi,

y∈
(
int(domf )

)c
∥x− y∥22 > 0.

(ii) X ⊂ ∩m int(domf ) for each i = 1, . . . ,m.
i i=1 i

7

As a consequence of Assumption 5, and since domf = ∩m
i=1

domfi, ri(domf ) = ∩m
i=1ri(domfi) and ri(domfi) ⊂ domfi we have

that the subdifferential ∂ f (x) is non empty for each x ∈ ∩m
i=1Xi,

as by item (ii) of Assumption 5 every feasible solution of (1)
belongs to the interior of the domain of f . Furthermore, ∂ f (x) is
compact by Bertsekas (2009, Proposition 5.4.1) since the affine
hull of domf has dimension n due to Assumption 1, item (ii).

We use this fact to show that ∪x∈conv(∪Xi)∂ f (x) is a bounded set,
that is, ∥g∥2 ≤ L, where g ∈ ∂ f (x) for any x ∈ ∪m

i=1Xi. This result
is formally stated in the next lemma.

Lemma 2. Under Assumptions 1, items (i) and (ii), and 5, we have
that the set ∪x∈conv(∪Xi)∂ f (x) is non-empty and bounded.

Proof. The proof of the lemma relies on Assumption 5, item (ii),
that is, Xi ⊂ ∩

m
j=1ri(domfj), for all i = 1, . . . ,m. This implies

that conv(∪m
i=1Xi) ⊂ ∩m

j=1ri(domfj), as ∩m
j=1ri(domfj) is convex and

contains ∪m
i=1Xi. Suppose, by contradiction, that ∪x∈conv(∪Xi)∂ f (x) is

unbounded. Then there exists a sequence (xk)k∈N ⊂ conv(∪m
i=1Xi)

such that (gk)k∈N, with gk ∈ ∂ f (xk), satisfies ∥gk∥2 < ∥gk+1∥2,
∀ k ∈ N.

Notice that xk ∈ ∩m
i=1int(domfi) by Assumption 5, item (ii). By

item (i) of Assumption 5, we can construct a sequence (βk)k∈N
such that xk + βkdk ∈ ∩m

i=1domfi. with dk = gk/∥gk∥2. Let β =
infk∈N βk and notice that β > 0 (i.e., it is bounded away from
zero) due to Assumption 5, item (i). By the definition of gk we
have that
f (xk + βdk)− f (xk)

β
≥ ∥gk∥2, ∀ k ∈ N. (7)

As inequality (7) is valid for all k ∈ N, we take the limit superior
on both sides to obtain

lim sup
k→∞

∥gk∥2 ≤ lim sup
k→∞

f (xi + γ dk)− f (xk)
γ

<∞, (8)

where the right-hand side of (8) is finite as the sequences (xk)k∈N
and (dk)k∈N are bounded (notice that dk is a normalised subgra-
dient), and since f is continuous on its domain (f is convex).
This establishes a contradiction, as we assumed (gk)k∈N were
unbounded, thus concluding the proof of item (ii).

A.3. Proof of Proposition 1

The proof is based on an induction argument.

Base case
We show that zi(1)T (ξ−x̂⋆

j ) ≥ 0, for all ξ ∈ Xj, for all i, j = 1, 2,
and also that xi(1) = x̂⋆, for all i = 1, 2. Consider the inequalities

∇f1(x̂⋆
1)

T (ξ − x̂⋆
i ) ≥ 0,

∇f2(x̂⋆
2)

T (ξ − x̂⋆
i ) ≥ 0, ∀ξ ∈ Xi, i = 1, 2. (9)

Fix i = 1. The first inequality in (9) holds due to optimality
of x̂⋆

1 (Bertsekas, 2009). To show the second inequality observe
that ∇f2(x̂⋆

2) = [13.68,−3.94]T , and that ξ − x̂⋆
1 = [a1, a2]

T with
a1 ≥ 0 and a2 ≤ 0, for all ξ ∈ X1.

Since ∇f1(x̂⋆
1) = [12,−4]T , using a symmetric argument we

show that

∇f2(x̂⋆
2)

T (ξ − x̂⋆
2) ≥ 0,

∇f1(x̂⋆
1)

T (ξ − x̂⋆
2) ≥ 0, ∀ξ ∈ X2. (10)

By (2a), and under our choice for A,

zi(1) =
1
2

(
∇f1(x̂⋆

1)+∇f2(x̂
⋆
2)
)
+∇fi(x̂⋆

i ), (11)

or i = 1, 2, hence inequalities (9) and (10) imply that zi(1)T (ξ −
x̂⋆) ≥ 0, ∀ξ ∈ X , for all i, j = 1, 2.
j j
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We will now prove that xi(1) = x̂⋆
i , for i = 1, 2. Fix i = 1.

Since z1(1)T ξ + 2
c(k)∥ξ∥

2
2 is strictly convex, there is a unique point

atisfying

z1(1)+ 2x1(1)
)T

(ξ − x1(1)) ≥ 0, ∀ξ ∈ X1, (12)

here (z1(1) + 2x1(1)) is the gradient of the objective function
in (2b) evaluated at x1(1), with c(1) = 1. Therefore, it suffices to
how that

z1(1)+ 2x̂⋆
1

)T
(ξ − x̂⋆

1) ≥ 0, ∀ξ ∈ X1. (13)

y substituting (3) into (11), we observe that z1(1) + 2x̂⋆
1 =

22.8414,−5.9708]T , and due to the structure of ξ − x̂⋆
1, (13)

olds, thus proving that x1(1) = x̂⋆
1. A symmetric argument yields

hat x2(1) = x⋆
2.

nduction hypothesis
Assume that zi(k)T (ξ − x̂⋆

j ) ≥ 0 for all ξ ∈ Xj, for i, j = 1, 2,
and that xi(k) = x⋆

i for i = 1, 2. We aim to show that the
forementioned relations remain true for the step k+ 1.

roof for iteration k+ 1
Fix i = 1. Following a similar reasoning with the base case,

bserve that x1(k+ 1) = x⋆
1 if[

z1(k+ 1)+
2

c(k)
x̂⋆
1

]T
(ξ − x̂⋆

1) ≥ 0, ∀ξ ∈ X1. (14)

As the sequence (zi(k))k∈N is generated by (2a), we propagate the
dynamical system in (2a) by k+ 1 steps to obtain

zi(k+ 1) =
1
2

(
∇f1(x̂⋆

1)+∇f2(x̂
⋆
2)
)
(k+ 1)+∇f1(x̂⋆

1),

where we have used the fact that A = 1
m11T and c(k) = 1

√
k+1

. A
ufficient condition for Eq. (14) to hold is that

1
2

(
∇f1(x̂⋆

1)+∇f2(x̂
⋆
2)
)
(k+ 1)

+ 2x̂⋆
1

√
k+ 1

]T

(ξ − x̂⋆
1) ≥ 0, ∀ξ ∈ X1, (15)

since ∇f1(x̂⋆
1)

T (ξ − x̂⋆
1) ≥ 0 by optimality of x̂⋆

1. Recall that (ξ −
x̂⋆
1) = [a1, a2] with a1 ≥ 0 and a2 ≤ 0 for all ξ ∈ X1. To prove (15)
we will show that the left-most vector in the same equation can
be written as [b1, b2] for some b1 ≥ 0 and b2 ≤ 0. To achieve this,
notice that k+1 ≥

√
2
√
k+ 1, for all k ≥ 1, and let ei denote the

unit vector with 1 in the i-th position, i = 1, 2. We then have that

eT1

[
1
2

(
∇f1(x̂⋆

1)+∇f2(x̂
⋆
2)
)]

(k+ 1)

≥ eT1

[√
2
2

(
∇f1(x̂⋆

1)+∇f2(x̂
⋆
2)
)]√

k+ 1, (16)

nd

eT2 x̂
⋆
1

√
k+ 1 ≤

√
2eT2 x̂

⋆
1(k+ 1), (17)

ince the first component of the averaged gradient and the second
omponent of x̂⋆

1 are both positive. Therefore, for all k ∈ N,

b1 ≥ 16.1604
√
k+ 1 > 0, b2 ≤ −2.5566(k+ 1) < 0. (18)

nequalities (16), (17) and (18), together with the structure of
− x̂∗1, imply that (15) holds, so we can conclude that x1(k+1) =
ˆ⋆1. A symmetric argument shows that x2(k+ 1) = x̂⋆

2.
To complete the proof it remains to show that zi(k + 1)T (ξ −

ˆ⋆) ≥ 0 for all ξ ∈ X , for all i, j = 1, 2, where z (k + 1) =
j j i

8

1
2

(
z1(k)+ z2(k)

)
+∇fi(xi(k)), due to (2a) and our choice for A. By

ur induction hypothesis, zi(k)(ξ−x̂⋆
j ) ≥ 0, for all i, j = 1, 2, hence

t suffices to show that ∇fi(xi(k))T (ξ− x̂⋆
j ) ≥ 0, ∀ξ ∈ Xj, ∀i = 1, 2.

ince xi(k) = x̂⋆
i for i = 1, 2, due to our induction hypothesis, the

laim follows from (9) and (10), thus concluding the proof.

.4. Auxiliary Lemmas for the proofs of Theorems 1 and 2

Let

(k) =
1
m

m∑
i=1

xi(k), (19)

be the average of the agents’ estimates at time k. Since this
quantity might not necessarily belong to the feasible set ∩m

i=1Xi,
e define

¯(k) =
ρ

ϵ(k)+ ρ
v(k)+

ϵ(k)
ϵ(k)+ ρ

x̄, (20)

where x̄ is a point in the interior of the feasible set (which is non-
empty by Assumption 1, item (ii)), ρ > 0 is such that the 2-norm
ball of centre x̄ and radius ρ is contained in ∩m

i=1Xi, and ϵ(k) =∑m
i=1 dist(v(k), Xi). As shown in Nedic et al. (2010), v̄(k) ∈ ∩m

i=1Xi,
or all k ∈ N. We also define ei(k+1) = xi(k+1)− zi(k), and note
hat the zi-update in Algorithm 1 can be written as

i(k+ 1) =
m∑
j=1

[A(k)]ijxj(k)+ ei(k+ 1). (21)

emma 3. The following relations hold.

(i) Let (xi(k))k∈N, i = 1, . . . ,m, be the sequences generated by
Algorithm 1, and (v(k))k∈N and (v̄(k))k∈N defined by (19) and
(20), respectively. Under Assumption 1, we have that for all
k ≥ 0,
m∑
i=1

∥xi(k+ 1)− v̄(k)∥2 ≤ µ

m∑
i=1

∥xi(k)− v(k)∥2,

where µ = 2
ρ
mD+ 1, and D is the diameter of the set ∪m

i=1Xi
(which is well-defined by Lemma 1, item (i)).

(ii) Let (xi(k))k∈N, i = 1, . . . ,m, and (v(k))k∈N be as in item (i).
Under Assumption 2, we have that for all i = 1, . . . ,m, for all
k ≥ 0,

∥xi(k+ 1)− v(k+ 1)∥2 ≤ λqk
m∑
j=1

∥xj(0)∥2

+ ∥ei(k+ 1)∥2 +
k−1∑
r=0

λqk−r−1
m∑
j=1

∥ej(r + 1)∥2

+
1
m

m∑
j=1

∥ej(k+ 1)∥2,

where λ = 2(1 + η−(m−1)T )/(1 − η(m−1)T ) ∈ R+ and q =
(1− η(m−1)T )

1
(m−1)T ∈ (0, 1).

(iii) Given a non-increasing and non-negative sequence (c(k))k∈N,
and a scalar L̄ > 0, we have that

2L̄
N∑

k=0

c(k)
m∑
i=1

∥xi(k+ 1)− v̄(k+ 1)∥2

< β1

N∑
k=0

m∑
i=1

∥ei(k+ 1)∥22 + β2

N∑
k=0

c(k)2 + β3,

where β ∈ (0, 1), and β and β are positive constants.
1 2 3
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roof. The proof of item (i) is presented in Margellos et al. (2018,
emma 1). For item (ii), see Margellos et al. (2018, Lemma 2).
inally, the proof of item (iii) follows the line of Margellos et al.
2018, Lemma 3).

Observe that the values of λ and q in Lemma 3, item (ii),
epend on the parameter T that characterises the uniform bound
n Assumption 2, item (i); and on η, the lower bound for the
lements of A(k), Assumption 2, item (ii). The following lemma is
nstrumental for the proof of Theorem 2. In particular, Lemma 4,
tem (ii), constitutes a non-trivial extension of the result in
argellos et al. (2018), allowing some sequences to be iteration-
arying.

emma 4. Let (xi(k))k∈N, (zi(k))k∈N and (di(k))k∈N, i = 1, . . . ,m,
e the sequences generated by Algorithm 1, and x⋆ by any optimal
olution of (1). Under Assumptions 1 and 2, we have that:

(i) For all k ∈ N,

2c(k)
m∑
i=1

di(k)T (xi(k+ 1)− x⋆)+
m∑
i=1

∥ei(k+ 1)∥22

+

m∑
i=1

∥xi(k+ 1)− x⋆
∥
2
2 ≤

m∑
i=1

∥xi(k)− x⋆
∥
2
2. (22)

(ii) For any β1 ∈ (0, 1), there exist sequences (α1(k))k∈N and
(α2(k))k∈N such that, for all k ∈ N, α1(k) ∈ (0, 1), α2(k) ∈
(0, 1), 1− β1 − α1(k)− α2(k) ≥ 0 and

2
N∑

k=0

c(k)
m∑
i=1

(fi(v̄(k+ 1))− fi(x⋆))

+

N∑
k=0

(1− α1(k)− α2(k)− β1)
m∑
i=1

∥ei(k+ 1)∥22

+

N∑
k=0

m∑
i=1

∥xi(k+ 1)− x⋆
∥
2
2 ≤

N∑
k=0

m∑
i=1

∥xi(k)− x⋆
∥
2
2

+

N∑
k=0

(
mL2

α1(k)+ α2(k)
α1(k)α2(k)

+ β2

)
c(k)2 + β3. (23)

roof. Item (i): Fix any i ∈ {1, . . . ,m} and consider the sequence
xi(k))k∈N. By optimality of xi(k + 1) (see Algorithm 1), for any
∈ Xi,

i(k)T xi(k+ 1)−
1

c(k)
(zi(k)− xi(k+ 1))T xi(k+ 1)

≤ di(k)T ξ −
1

c(k)
(zi(k)− xi(k+ 1))T ξ, (24)

where di(k)− 1
c(k) (zi(k)− xi(k+ 1)) constitutes the gradient of the

objective function in the xi−update of Algorithm 1, evaluated at
xi(k+1). Fix any optimal solution of (1), x⋆

∈ ∩
m
i=1Xi, and consider

the following identity

−
1

c(k)
(zi(k)− xi(k+ 1))T (xi(k+ 1)− x⋆)

=
1

2c(k)
∥xi(k+ 1)− zi(k)∥22 +

1
2c(k)

∥xi(k+ 1)− x⋆
∥
2
2

−
1

2c(k)
∥zi(k)− x⋆

∥
2
2. (25)

ombining (24) and (25) with ξ = x⋆, we obtain

i(k)T xi(k+ 1)+
1
∥xi(k+ 1)− zi(k)∥22
2c(k)

9

+
1

2c(k)
∥xi(k+ 1)− x⋆

∥
2
2

≤ di(k)T x⋆
+

1
2c(k)

∥zi(k)− x⋆
∥
2
2

≤ di(k)T x⋆
+

1
2c(k)

m∑
j=1

[A(k)]ij∥xj(k)− x⋆
∥
2
2, (26)

here the last inequality follows from double stochasticity of A(k)
nd convexity of ∥ · ∥2.
We now multiply both sides of (26) by 2c(k) and sum the

esult for all i = 1, . . . ,m, to obtain

c(k)
m∑
i=1

di(k)T xi(k+ 1)+
m∑
i=1

∥xi(k+ 1)− zi(k)∥22

+

m∑
i=1

∥xi(k+ 1)− x⋆
∥
2
2 ≤ 2c(k)

m∑
i=1

di(k)T x⋆

+

m∑
i=1

∥xi(k)− x⋆
∥
2
2, (27)

here
∑m

i=1
∑m

j=1[A(k)]
i
j∥xj(k)− x⋆

∥
2
2 =

∑m
i=1 ∥xi(k)− x⋆

∥
2
2 by ex-

hanging the order of summation, and due to double stochasticity
f A(k). The result follows from (27) by recalling that e(k + 1) =
i(k+ 1)− zi(k) and moving the first term on the right-hand side
f (27) to the left one. This concludes the proof of item (i).
Item (ii): Consider the first term on the left-hand side of (22),

nd rewrite it as

c(k)
m∑
i=1

di(k)T (xi(k+ 1)− x⋆) =

2c(k)
m∑
i=1

di(k)T (xi(k+ 1)− v̄(k+ 1))

+2c(k)
m∑
i=1

di(k)T (v̄(k+ 1)− x⋆) (28)

y adding and subtracting v̄(k + 1). We next consider the terms
n the right hand-side of (28) separately. First, observe that

c(k)
m∑
i=1

di(k)T (xi(k+ 1)− v̄(k+ 1))

≥− 2c(k)L
m∑
i=1

∥xi(k+ 1)− v̄(k+ 1)∥2, (29)

y the Cauchy-Schwartz inequality, where L = maxξ∈∪mi=1Xj
gj(ξ )∥2, which is well-defined due to Lemma 1. Using the defini-
ion of di(k) – see Algorithm 1 – in the second term on the right-
and side of (28), we then have that (via double stochasticity of
)

c(k)
m∑
i=1

di(k)T (v̄(k+ 1)− x⋆)

= 2c(k)
m∑
i=1

gi(zi(k))T (v̄(k+ 1)− x⋆). (30)

oreover, by adding and subtracting xi(k + 1) and zi(k) for all
= 1, . . . ,m, into the right-hand side of (30) we obtain

c(k)
m∑
i=1

gi(zi(k))T (v̄(k+ 1)− x⋆)

=2c(k)
m∑

gi(zi(k))T (v̄(k+ 1)− xi(k+ 1))

i=1
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+2c(k)
m∑
i=1

gi(zi(k))T (xi(k+ 1)− zi(k))

+2c(k)
m∑
i=1

gi(zi(k))T (zi(k)− x⋆). (31)

Consider now the right-hand side of (31). The left-most term can
be lower-bounded as

2c(k)
m∑
i=1

gi(zi(k))T (v̄(k+ 1)− xi(k+ 1))

≥ −2c(k)L
m∑
i=1

∥(v̄(k+ 1))− xi(k+ 1)∥2, (32)

by the Cauchy-Schwartz inequality. As for the middle term, we
have that

2c(k)
m∑
i=1

gi(zi(k))T (xi(k+ 1)− zi(k))

≥ −2c(k)L
m∑
i=1

∥ei(k+ 1)∥2

≥ −α1(k)
m∑
i=1

∥ei(k+ 1)∥22 −m
L2

α1(k)
c(k)2 (33)

where the first inequality follows from the Cauchy-Schwartz in-
equality and the definition ei(k) in (21). For the second inequality,
we employed the relation 2xy ≤ x2 + y2 with x = L

√
α1(k)

c(k) and
=
√

α1(k)∥ei(k+ 1)∥2 for some α1(k) ∈ (0, 1), k ∈ N.
Similarly, the right-most term of (31) can be manipulated to

yield

2c(k)
m∑
i=1

gi(zi(k))T (zi(k)− x⋆)

≥ 2c(k)
m∑
i=1

(
fi(zi(k))− fi(x⋆)

)
= 2c(k)

m∑
i=1

(
fi(zi(k))− fi(v̄(k+ 1))

)
+ 2c(k)

m∑
i=1

(
fi(v̄(k+ 1))− fi(x⋆)

)
(34)

here the inequality follows from the definition of the subgra-
ient for a convex function, and the equality by adding and
ubtracting fi(v̄(k + 1)). The first term on the right-hand side
f (34) can be lower bounded as

c(k)
m∑
i=1

(
fi(zi(k))− fi(v̄(k+ 1))

)
≥ −2c(k)L

m∑
i=1

∥zi(k)− v̄(k+ 1)∥2

≥ −2c(k)L

(
m∑
i=1

(∥ei(k+ 1)∥2 + ∥xi(k+ 1)− v̄(k+ 1)∥2)

)

≥ −α2(k)
m∑
i=1

∥ei(k+ 1)∥22 −m
L2

α2(k)
c(k)2

− 2c(k)L
m∑
i=1

∥xi(k+ 1)− v̄(k+ 1)∥2 (35)

here the first inequality follows from the relation x ≥ −|x|,
or all x ∈ R, and from item (iii) of Lemma 1, and the second
10
inequality by adding and subtracting xi(k+1), for all i = 1, . . . ,m,
and then using triangle inequality. The last inequality follows
from 2xy ≤ x2+y2 with x = L

√
α2(k)

c(k) and y =
√

α2(k)∥ei(k+1)∥2
or some α2(k) ∈ (0, 1), k ∈ N. Substituting (35) into (34)

c(k)
m∑
i=1

gi(zi(k))T (zi(k)− x⋆)

≥ −α2(k)
m∑
i=1

∥ei(k+ 1)∥22 −m
L2

α2(k)
c(k)2

− 2c(k)L
m∑
i=1

∥xi(k+ 1)− v̄(k+ 1)∥2 (36)

+ 2c(k)
m∑
i=1

(
fi(v̄(k+ 1))− fi(x⋆)

)
. (37)

ubstituting (28), (29), (32), (33), (37) into (22)

c(k)
m∑
i=1

(fi(v̄(k+ 1))− fi(x⋆))+
m∑
i=1

∥xi(k+ 1)− x⋆
∥
2
2

+

(
1− α1(k)− α2(k)

) m∑
i=1

∥ei(k+ 1)∥22

≤

m∑
i=1

∥xi(k)− x⋆
∥
2
2 +mL2

(α1(k)+ α2(k)
α1(k)α2(k)

)
c(k)2

+ 6c(k)L
m∑
i=1

∥xi(k+ 1)− v̄(k+ 1)∥2. (38)

umming (38) from k = 0 to k = N , and using Lemma 4, item (iii),
ith L̄ = 3L, the desired inequality (23) follows. This concludes
he proof of item (ii).

Note that for any β1 ∈ (0, 1), the sequences (α1(k))k∈N and
(α2(k))k∈N can be chosen to guarantee that 1−α1(k)−α2(k)−β1 ≥

for all k ∈ N. For instance, one particular choice is α1(k) =
2(k) = α with 1− β1 − 2α > 0. Three immediate consequences
f Lemma 4 are presented in the following proposition.

roposition 2. Consider Assumptions 1–3. The following statements
old

(i) We have that
∑
∞

k=0
∑m

i=1 ∥ei(k)∥
2
2 <∞;

(ii) For all i = 1, . . . ,m, we have that limk→∞ ∥ei(k)∥2 = 0;
(iii) For all i = 1, . . . ,m, limk→∞ ∥xi(k)− v(k)∥2 = 0.

Proof. Item (i): Consider Lemma 4, item (ii). Note that
∑N

k=0
∑m

i=1
xi(k + 1) − x⋆

∥2 and
∑N

k=0
∑m

i=1 ∥xi(k) − x⋆
∥2 form a telescopic

series, so they can be replaced by
∑m

i=1 ∥xi(N + 1) − x⋆
∥2 and∑m

i=1 ∥xi(0) − x⋆
∥2, respectively. Let β1 ∈ (0, 1), choose α1(k) =

2(k) = α so that 1 − 2α − β1 > 0. Observe that
∑m

i=1(fi(v̄(k +
))− fi(x⋆)) ≥ 0 for all k ∈ N, due to optimality of x⋆, so this term
an be dropped from (23). Besides, we can also drop the term

m
i=1 ∥xi(N + 1)− x⋆

∥
2
2 ≥ 0 since it is non-negative and appears

n the left-hand side of (23). This yields

(1− 2α − β1)
N∑

k=0

m∑
i=1

∥ei(k+ 1)∥22 ≤
m∑
i=1

∥xi(0)− x⋆
∥
2
2

+

(
mL2

2
α
+ β2

)
N∑

c(k)2 + β3.
k=0
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etting N → ∞, we conclude that
∑
∞

k=0
∑m

i=1 ∥ei(k)∥
2
2 is finite

since the sequence (c(k))k∈N is square-summable under Assump-
tion 3 and the feasible set is compact. This concludes the proof of
item (i).

Item (ii): Follows directly from item (i).
Item (iii): This proof follows directly from the arguments pre-

sented in Margellos et al. (2018, Proposition 3), and is omitted for
brevity.

A.5. Proof of Theorem 1

We are now in a position to prove Theorem 1. To this end, we
use the inequality (38) and leverage on Lemma 3.4 in Bertsekas
and Tsitsiklis (1996) to establish convergence of the sequences
(∥xi(k) − x⋆

∥2)k∈N, i = 1, . . . ,m, to zero for some minimiser x⋆

of (1). We first present Lemma 3.4 in Bertsekas and Tsitsiklis
(1996).

Lemma 5 (Bertsekas & Tsitsiklis, 1996). Consider non-negative
scalar sequences (ℓ(k))k∈N, (u(k))k∈N and (ζ (k))k∈N that satisfy the
recursion ℓ(k + 1) ≤ ℓ(k) − u(k) + ζ (k). If

∑
∞

k=0 ζ (k) < ∞,
then the sequence (ℓ(k))k∈N converges and the sequence (u(k))k∈N
s summable.

Consider inequality (38), and choose α1(k), α2(k) and β1 as
n the proof of Proposition 2 item (i). We now drop the term
nvolving (1−2α)

∑m
i=1 ∥ei(k+1)∥22 as it appears on the left-hand

ide of the inequality and is non-negative so that we obtain
m∑
i=1

∥xi(k+ 1)− x⋆
∥
2
2 ≤

m∑
i=1

∥xi(k)− x⋆
∥
2
2

− 2c(k)
m∑
i=1

(fi(v̄(k+ 1))− fi(x⋆))+
2mL2

α
c(k)2

+ 6c(k)L
m∑
i=1

∥xi(k+ 1)− v̄(k+ 1)∥2. (39)

ith reference to Lemma 5 and considering inequality (39), we
et ℓ(k) =

∑m
i=1 ∥xi(k)− x⋆

∥
2
2, and

(k) =
2mL2

α
c(k)2 + 6c(k)L

m∑
i=1

∥xi(k+ 1)− v̄(k+ 1)∥2,

u(k) = 2c(k)
(
f (v̄(k+ 1))− f (x⋆)

)
. (40)

By Lemma 3, item (iii), with L̄ = 3L, and by Proposition 2, item
(i), it follows that 6L

∑
∞

k=1 c(k)
∑m

i=1 ∥xi(k + 1) − v̄(k + 1)∥ <

∞, hence,
∑
∞

k=1 ζ (k) < ∞, as c(k) is square-summable due to
Assumption 3, which implies that the assumptions of Lemma 5
hold.

Therefore, we have that the sequence (
∑m

i=1 ∥xi(k) − x⋆
∥
2
2)k∈N

converges, which implies that (
∑

i ∥xi(k) − x⋆
∥2)k∈N also con-

verges. To see this, note that, by continuity of the square-root
function, (

∑m
i=1 ∥xi(k)−x⋆

∥
2
2)k∈N being a convergent sequence im-

plies that (∥X(k)−x⋆
⊗1T
∥F )k∈N also converges, where, for a fixed

k ∈ N, X(k) is a n×m matrix whose i-th column is given by xi(k),
and ⊗ represents the Kronecker product. Moreover, note that the
set of n×m matrices can be equipped with the norm

∑m
i=1 ∥xi∥2,

where xi, i = 1, . . . ,m, is the i-th column of a generic element
X ∈ Rn×m. Since all norms in finite-dimensional spaces are
equivalent, we conclude that the sequence (

∑m
i=1 ∥xi(k)−x⋆

∥2)k∈N
also converges. An alternative but more tedious justification of
this argument can be found in Margellos et al. (2018).

By Lemma 5, we also have that
∑
∞

k=1 c(k)
(
f (v̄(k+1))−f (x⋆)

)
<

∞.The latter implies that lim infk→∞(f (v̄(k + 1)) − f (x⋆)) = 0.
Therefore, there exists a subsequence of (f (v̄(k + 1)) − f (x⋆))
k∈N

11
that converges to zero. Since the function f (x) is continuous (by
convexity) there exists some minimiser x⋆ such that a subse-
quence of (∥v̄(k) − x⋆

∥2)k∈N converges to zero. Moreover, we
obtain

∑m
i=1 ∥xi(k)− x⋆

∥2 ≤
∑m

i=1 ∥v̄(k)− x⋆
∥2 +µ

∑m
i=1 ∥xi(k)−

v(k)∥2. by adding and subtracting v̄(k), then applying triangle
inequality and invoking Lemma 3, item (i).

Note that (∥v̄(k) − x⋆
∥2)k∈N converges to zero across a sub-

sequence and (
∑m

i=1 ∥xi(k) − v(k)∥2)k∈N converges to zero (due
to Proposition 2, item (iii)) hence we can find a subsequence of
(
∑m

i=1 ∥xi(k)− x⋆
∥2)k∈N that converges to zero. However, we have

shown by means of Lemma 5 that the sequence (
∑m

i=1 ∥xi(k) −
x⋆
∥2)k∈N converges; as a result it should converge to zero since

every Cauchy sequence has a unique limit point. To conclude
the proof, note that, for all k ∈ N and for all j = 1, . . . ,m,
∥xj(k) − x⋆

∥2 ≤
∑m

i=1 ∥xi(k) − x⋆
∥2, so we conclude that the

sequences (∥xj(k)− x⋆
∥2)k∈N, j = 1, . . . ,m, converge to zero. This

concludes the proof.

A.6. Proof of Theorem 2

Consider Assumption 4. We drop the constant η for simplicity
of exposition, but general choices η

√
k+1

, η > 0, are also applicable.
Let (v̂(k))k∈N be the running average sequence associated with
v̄(k))k∈N (definition is analogous to (x̂i(k))k∈N in (4)). Note that
ince ∩m

i=1Xi is assumed to be convex, we have that v̂(k) is feasible
for all k ∈ N (see also the discussion below (20)). We have that⏐⏐⏐⏐⏐

m∑
i=1

fi(x̂i(k+ 1))− f (x⋆)

⏐⏐⏐⏐⏐ ≤ f (v̂(k+ 1))− f (x⋆)

+ L
m∑
i=1

∥x̂i(k+ 1)− v̂(k+ 1)∥2, (41)

hich follows from triangle inequality and Lemma 1, item (iii).
ote that the first term on the right-hand side of (41) does
ot involve an absolute value due to feasibility of the sequence
v̂(k))k∈N, which in turn implies that f (v̂(k+ 1)) ≥ f (x⋆).

To facilitate subsequent statements, we change the notation in
emma 4, item (ii), by replacing k by r , and N by k. The inequality
ith this modified notation is repeated here for clarity. Indeed,
e have that for all k ∈ N
k∑

r=0

c(r)
m∑
i=1

(fi(v̄(r + 1))− fi(x⋆))

+

k∑
r=0

(1− α1(r)− α2(r)− β1)
m∑
i=1

∥ei(r + 1)∥22

+

k∑
r=0

m∑
i=1

∥xi(r + 1)− x⋆
∥
2
2 ≤

k∑
r=0

m∑
i=1

∥xi(r)− x⋆
∥
2
2

+

k∑
r=0

(
mL2

α1(r)+ α2(r)
α1(r)α2(r)

+ β2

)
c(r)2 + β3, (42)

here (α1(r))r∈N and (α2(r))r∈N are sequences such that 1−β1−

1(r)− α2(r) ≥ 0 for all r ∈ N.
The proofs of items (i), (ii) and (iii) of Theorem 2 are inter-

wined and will be composed into two parts: we first assume
hat there exist constants d1, d2, d3, d4 > 0 such that (43) and
44) below are satisfied, and on this basis prove the claims of the
heorem; we then return to (43) and (44), and prove the existence
f such constants. To this end, consider

(v̂(k+ 1))− f (x⋆) ≤ d1
1

+ d2

∑k
r=0 c(r)

2

(43)

S(k+ 1) S(k+ 1)
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m∑
i=1

∥x̂i(k+ 1)− v̂(k+ 1)∥2 ≤
d3

S(k+ 1)
+ d4

∑k
r=0 c(r)

2

S(k+ 1)
. (44)

Note that S(k+ 1) can be lower-bounded as

S(k+ 1) =
k+1∑
r=1

1
√
r + 1

≥

∫ k+3

2

1
√
x
dx

= 2(
√
k+ 3−

√
2) ≥ ν

√
k+ 3 ≥ ν

√
k+ 1, (45)

ith ν = 2 −
√
2, and where we employed monotonicity of

√
x+3−

√
2

√
x+1

for x ≥ 1. Moreover, we have that

k∑
r=0

c(r)2 =
k∑

r=0

1
r + 1

=

k+1∑
r=1

1
r

≤

∫ k+1

1

1
x
dx+ 1 ≤ ln(k+ 1)+ 1. (46)

he result of Theorem 2, item (iii), follows then from (41) by
ubstituting (43)–(46), and setting B1 =

∑4
i=1

di
ν
and B2 =

d2
ν
+

d4
ν
.

ince (44) is valid for all i = 1, . . . ,m, we have that (via a direct
pplication of triangle inequality) ∥x̂i(k)− x̂j(k)∥2 ≤

∑m
i=1 ∥x̂i(k)−

v̂(k)∥ +
∑m

i=1 ∥x̂j(k) − v̂(k)∥, which due to (45) and (46) then
mplies that the sequence (∥x̂i(k) − x̂j(k)∥2)k∈N converges to zero
at a rate O( ln k

√
k
). This concludes the proof of item (i).

Moreover, these relations also imply that the set of accumu-
ation points of the sequence (v̂(k))k∈N coincides to that of the
equences (x̂i(k))k∈N, i = 1, . . . ,m. Hence, we conclude that all
ccumulation points of (x̂i(k))k∈N are feasible due to the fact that
ll accumulation points of (v̂(k))k∈N are in ∩m

i=1Xi and the latter is
a closed set, thus concluding the proof of item (ii). This concludes
the proof of Theorem 2.

Derivation of (43)

We first construct an upper-bound for the term on the left-
hand side of (43). In fact, observe that

f (v̂(k+ 1))− f (x⋆) = f

(
1

S(k+ 1)

k+1∑
r=1

c(r)v̄(r)

)
− f (x⋆)

≤

k+1∑
r=1

c(r)
S(k+ 1)

f (v̄(r))− f (x⋆)

=

k∑
r=0

c(r + 1)
S(k+ 1)

m∑
i=1

(fi(v̄(r + 1))− fi(x⋆))

≤

k∑
r=0

c(r)
S(k+ 1)

m∑
i=1

(fi(v̄(r + 1))− fi(x⋆)), (47)

here the first equality follows by definition of v̂(k+ 1), the first
inequality by convexity of f , the second equality by using the fact
that f =

∑m
i=1 fi and changing the summation index, and the

second inequality by using the fact that c(r + 1) = 1
√
r+1
≤

1
√
r =

(r) for all r ∈ N.
In light of (42), for any β1 ∈ (0, 1), a valid choice for the

equences (α1(k))k∈N and (α2(k))k∈N is α1(k) = α2(k) = α(k),
here α(k) = a

(
1 − 1

√
k+1

)
; to ensure that 1 − β1 − α1(k) −

2(k) ≥ 0 as required by Lemma 4, item (ii), it suffices to set
= (1− β1)/2. Under these choices we have that

− β1 − 2α(k) =
1− β1
√
k+ 1

= (1− β1)c(k). (48)

Consider now (42) with the above choices for α1(k) and α2(k).
Note that the series

∑k ∑m
∥x (r + 1)− x⋆

∥ and
∑k ∑m
r=0 i=1 i 2 r=0 i=1

12
∥xi(r)−x⋆
∥2 are telescopic, thus all intermediate terms cancel. We

now drop the terms involving ∥ei(r+1)∥22 and ∥xi(k+1)−x⋆
∥2 as

they are non-negative, and then divide the resulting expression
by 2S(k+1) = 2

∑k+1
r=1

1
√
r+1

to obtain the following upper bound
on the right-hand side of (47)

k∑
r=0

c(r)
S(k+ 1)

m∑
i=1

(fi(v̄(r + 1))− fi(x⋆))

≤

∑m
i=1 ∥xi(0)− x⋆

∥
2
2

2S(k+ 1)
+

β3

2S(k+ 1)

+
β2

2

k∑
r=0

c(r)2

S(k+ 1)
+mL2

1
S(k+ 1)

k∑
r=0

c(r)2

α(r)
. (49)

y the right-hand side of (49), we obtain (43) with d1 =
4mD2

+β3
2 ,

d2 =
β2
2 +

4mL2
a . where, by Assumption 1,

∑m
i=1 ∥xi(0) − x⋆

∥
2
2 ≤

4mD2, with D defined as in Lemma 3, item (i). Moreover, we used
the fact that c(r)2

α(r) =
1
a

√
r+1

√
r+1−1

1
r+1 ≤

4
a c(r)

2, due to monotonicity

f
√
x+1

√
x+1−1

.

erivation of (44)

Similarly to the derivation of (43), we apply the definition of
both x̂i(k), i = 1, . . . ,m, and v̂(k) to upper-bound the left-hand
side of (44) as

L
m∑
i=1

∥x̂i(k+ 1)− v̂(k+ 1)∥2

= L
m∑
i=1

 1
S(k+ 1)

k+1∑
r=1

c(r)
(
xi(r)− v̄(r)

)
2

≤
Lµ

S(k+ 1)

k+1∑
r=1

c(r)
m∑
i=1

∥xi(r)− v(r)∥2, (50)

here the inequality follows from convexity of the norm. We will
ow construct an upper-bound on the right-hand side of (50). To
his end, note that

Lµ
S(k+ 1)

k+1∑
r=1

c(r)
m∑
i=1

∥xi(r)− v(r)∥2

=
Lµc(1)
S(k+ 1)

m∑
i=1

∥xi(1)− v(1)∥2

+
Lµ

S(k+ 1)

k+1∑
r=2

c(r)
m∑
i=1

∥xi(r)− v(r)∥2. (51)

e now invoke Lemma 3, item (ii) – with r in the place of k, and t
n the place of r – for the last term on the right-hand side of (51)
o that
k+1∑
r=2

c(r)
m∑
i=1

∥xi(r)− v(r)∥2

=

k∑
r=1

c(r + 1)
m∑
i=1

∥xi(r + 1)− v(r + 1)∥2

≤ 2
k∑

r=0

c(r)
m∑
i=1

∥ei(r + 1)∥2 +mλ

m∑
i=1

∥xi(0)∥2
k∑

r=0

c(r)qr

+ mλ

k∑
r=1

c(r + 1)
r−1∑
t=0

qr−t−1
m∑
i=1

∥ei(t + 1)∥2 (52)
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here we added the term corresponding to r = 0 and used the
fact that c(r + 1) ≤ c(r) for all r ∈ N, in first two terms on the
right-hand side of (52). We analyse each term on the right-hand
side of (52) separately. First, observe that

2
k∑

r=0

c(r)
m∑
i=1

∥ei(r + 1)∥2 ≤
k∑

r=0

c(r)2 +
m∑
i=1

∥ei(r + 1)∥22, (53)

using the identity 2xy ≤ x2 + y2. The intermediate term on the
right-hand side of (52) can be manipulated to yield

mλ

m∑
i=1

∥xi(0)∥2
k∑

r=0

c(r)qr ≤
m2λD
1− q

, (54)

ince c(r) ≤ 1 for all r ∈ N ∪ {0}, ∥xi(0)∥2 ≤ D (Lemma 1) for all
= 1, . . . ,m, and using the closed-form expression for the sum of
eometric series as q ∈ (0, 1). We deal with the last term in (52)
n several steps. We start by expanding the terms to obtain

k∑
r=1

c(r + 1)
r−1∑
t=0

qr−t−1
m∑
i=1

∥ei(t + 1)∥2

= c(2)
m∑
i=1

∥ei(1)∥2 + c(3)

(
q

m∑
i=1

∥ei(1)∥2
m∑
i=1

∥ei(2)∥2

)

+ . . .+ c(k+ 1)

(
k∑

t=1

qk−t
m∑
i=1

∥ei(t)∥2

)
. (55)

We now collect the terms containing the error vector ei(r), r =
1, . . . , k, to obtain

mλ

k∑
r=1

c(r + 1)
r−1∑
t=0

qr−t−1
m∑
i=1

∥ei(t + 1)∥2

= mλ

m∑
i=1

∥ei(1)∥2
(
c(2)+ qc(3)+ · · ·

+ qk−1c(k+ 1)
)
+ · · · +

m∑
i=1

∥ei(k)∥2c(k+ 1)

≤
mλ

1− q

k∑
r=1

c(r + 1)
m∑
i=1

∥ei(r)∥2

≤
mλ

1− q

k∑
r=1

c(r)
m∑
i=1

∥ei(r)∥2 ≤
mλ

2(1− q)

k∑
r=0

c(r)2

+
mλ

2(1− q)

k∑
r=0

m∑
i=1

∥ei(r + 1)∥22 (56)

here in the first inequality we used the fact that q ≤ 1
1−q and

≤
1

1−q for any q ∈ (0, 1), while in the second inequality we
sed the fact that c(r+1) ≤ c(r). To obtain the last inequality we
pplied the relation 2xy ≤ x2 + y2 with x = c(r) and y = ∥ei(r +
)∥2, and then added the non-negative terms involving c(0)2 and
m
i=1 ∥ei(k + 1)∥22. Substituting (51)–(54) and (56) into (50) we

ave that
m∑
i=1

∥x̂i(k+ 1)− v̂(k+ 1)∥2

≤ Lµ
(
1+

mλ
) ∑k

r=0 c(r)
2

2(1− q) S(k+ 1)
13
+

(
mλ+ 2c(1)

)
LµmD
S(k+ 1)

+
Lµ

S(k+ 1)

(
1+

mλ

2(1− q)

) k∑
r=0

m∑
i=1

∥ei(r + 1)∥22. (57)

o obtain the result, we need to manipulate the last term on
he right-hand side of (57). To this end, we invoke (42) with the
ame β1 as in (48), but with (α1(k))k∈N and (α2(k))k∈N such that

α1(k) = α2(k) = α, for all k ∈ N, following the same rationale as
n Proposition 2 to obtain
k

r=0

m∑
i=1

∥ei(r + 1)∥22 ≤
∑m

i=1 ∥x(0)− x⋆
∥
2
2 + β3

1− β1 − 2α

+
1

1− β1 − 2α

(
mL2

2
α
+ β2

) k∑
r=0

c(r)2

≤
4mD2

+ β3

1− β1 − 2α

+
1

1− β1 − 2α

(
mL2

2
α
+ β2

) k∑
r=0

c(r)2. (58)

ubstituting (58) into (57) we obtain (44) with constants

3 = Lµ

[(
1+

mλ

2(1− q)

)
4mD2

+ β3

1− β1 − 2α
+mD

(
mλ+ 2c(1)

)]
,

d4 = Lµ

(
1+

mλ

2(1− q)

)(
1+

1
1− β1 − 2α

(
mL2

2
α
+ β2

))
,

hus concluding the proof of Theorem 2.
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