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On the Exact Feasibility of Convex Scenario
Programs With Discarded Constraints
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Abstract—We revisit the so-called sampling and discard-
ing approach used to quantify the probability of constraint
violation of a solution to convex scenario programs when
some of the original samples are allowed to be discarded.
Motivated by two scenario programs that possess analytic
solutions and the fact that the existing bound for sce-
nario programs with discarded constraints is not tight, we
analyze a removal scheme that consists of a cascade of
optimization problems, where, at each step, we remove a
superset of the active constraints. By relying on results
from compression learning theory, we show that such a
removal scheme leads to less conservative bounds for the
probability of constraint violation than the existing ones.
We also show that the proposed bound is tight by charac-
terizing a class of optimization problems which achieves
the given upper bound. The performance improvement of
the proposed methodology is illustrated by an example that
involves a resource sharing linear program.

Index Terms—Chance-constrained optimization, prob-
abilistic methods, randomized algorithms, scenario ap-
proach.

I. INTRODUCTION

UNCERTAIN optimization programs capture a wide class
of engineering applications. Tractability of this class of

optimization problems is an active area of research [1]–[8]. In
the last decades, several approaches have been developed to
cope with uncertainty in an optimization context. Among those,
robust optimization [9]–[12] has been successfully applied to
several control problems [13]–[18]. It consists of making certain
assumptions, often arbitrary, on the geometry of the uncertainty
set (ellipsoidal, polytopic, etc.) and then optimizing over the
worst-case performance within this set. Another approach is
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chance-constrained optimization [19]–[21] that relies on impos-
ing constraints that only need to be satisfied with given proba-
bility. However, optimization problems with chance-constraints
are hard to solve in general, without imposing any assumption on
the underlying distribution of the uncertainty (e.g., Gaussian).

An alternative to robust and chance-constrained optimization
involves data-driven algorithms. Within this context, this article
lies in the realm of the scenario approach theory [8], [22]–[29]: a
randomized technique which involves generating a finite number
of scenarios and enforcing a different constraint for each of
them. Under convexity, the optimal solution to such a scenario
program is shown to be feasible (with certain probability) to the
associated chance-constrained program. One of the fundamental
developments in the scenario approach literature is to provide a
distribution-free bound on the probability of constraint violation
that holds for all convex problems [24]. Moreover, this bound
is tight in the sense that it is achieved by the so-called class
of fully supported optimization problems; however, it might be
conservative for more general problem classes.

To alleviate this conservatism and trade feasibility to perfor-
mance, the so-called sampling and discarding [25] (see also [28])
was introduced; a similar result known as scenario approach
with constraint removal was also developed in [26]. These allow
removing some of the extracted scenarios and enforcing the
constraints only on the remaining ones, thus improving the
performance in terms of optimality of the resulting solution.
As opposed to the original bound in [24], however, the bound
on the probability of constraint violation in [25] and [26] is not
tight.

Similar to the motivation of [25], our main goal is to improve
performance and decrease the conservatism of the solution ob-
tained by means of the scenario approach theory. We capitalize
on the fact that the bound of the sampling and discarding scheme
is not tight, to provide a less conservative and tight bound on the
probability of constraint violation for convex scenario programs
with discarded constraints. To this end, we develop a novel
analysis approach to study a removal procedure that consists
of solving a cascade of scenario programs and removing, at
each stage, scenarios in an integer multiple of the dimension of
the decision variables. Our theoretical findings bear important
consequences in the application of the scenario theory to control
problems [23], [30]–[40], as we may be able to achieve better
performance while guaranteeing the same level of constraint
violation and confidence. The proposed bound on the probability
of constraint violation is similar in terms of complexity to the
one of [25] and [26]; it is also distribution-free and holds, under
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a nondegeneracy assumption (to be formally defined in the
sequel), for all convex problems. We also show that the resulting
bound is tight and characterize the class of scenario programs
for which this is the case. As such, our results extend the ones
of [25] and [26] and cannot be further improved. To summarize,
our main contributions are as follows:

1) proposing and analyzing a removal scheme that possesses
tighter guarantees than [25] and [26] on the probability of
constraint violation for scenario programs with discarded
constraints (Theorems 3 and 4);

2) proving tightness of the resulting bound by characterizing
the class of scenario programs which satisfies our bound
with equality (Theorem 5);

3) computing analytically the solution of two scenario pro-
grams where the bound is tight (Section III); and

4) relaxing an assumption present in [25] that requires the
removed scenarios to be violated by the final solution;

5) developing a novel proof line.
Our analysis departs from the one of [25] and is based on
probably approximately correct (PAC) learning concepts
that use the notion of compression [27], [41], [42].

It is important to highlight that our analysis holds for a par-
ticular discarding scheme, which requires removing scenarios
in batches, preventing us to remove them one by one. Extension
to this direction is outside the scope of the current article.
Moreover, all our results are a priori; possibly less conservative
but a posteriori results are available [7], [8], [29]. However,
follow a different conceptual and analysis line from the one
adopted in this article.

The article is organized as follows. Section II reviews some
background results on the scenario approach with discarded
constraints and certain learning theoretic concepts. Section III
motivates the main results of the article by means of two scenario
programs that possess analytic solutions. Section IV introduces
the proposed scenario discarding scheme and states the main
results of the article. Proofs are provided in Section V. Section VI
characterizes the class of optimization programs for which the
proposed result is tight and Section VII illustrates the theoretical
results by means of a numerical example. Finally, Section VIII
concludes the article and provides some directions for future
work.

II. SCENARIO OPTIMIZATION WITH DISCARDED SCENARIOS

A. Sampling and Discarding

Let Δ be the space where an uncertainty vector takes values
from and denote by (Δ,F ,P ) the associated probability space,
where F is a σ-algebra and P : F → [0, 1] is a probability
measure onΔ (see [43] for more details). Fix anym ∈ N and let
S = {δ1, δ2, . . . , δm} be independent and identically distributed
(i.i.d.) samples from P . Note that (δ1, . . . , δm) ∈ Δm; a natural
probability space associated with Δm is (Δm,⊗m

i=1F ,Pm),
where ⊗m

i=1F is the smallest σ-algebra containing the cone sets∏m
i=1 F . Our analysis is based on a data-driven interpretation,

where P is considered to be fixed but possibly unknown, and
the only information about uncertainty is a collection of i.i.d.
scenarios S.

We consider convex optimization programs affected by un-
certainty δ and represent uncertainty by means of scenarios.
This gives rise to the so-called convex scenario programs, where
constraints are enforced only on the scenarios inS [22], [24], and
[26]. We are particularly interested in the case where some of the
scenarios are removed, in view of improving the performance of
the obtained solution. This is known as sampling and discarding
in the terminology of [25] (also known as scenario approach with
constraint removal in [26]).

To this end, for any set R ⊂ S, with |R| = r < m, consider
the following problem:

minimizex∈X c�x

subject to g(x, δ) ≤ 0, for all δ ∈ S \R (1)

where x ∈ Rd, X is a closed and convex set of Rd, and function
g : Rd ×Δ → R is convex in x for all δ ∈ Δ. The subset
R contains scenarios that have been removed by means of a
procedure that uses S as input; hence, strictly speaking, R
depends on the scenario S, but this dependency is omitted
for simplicity. If R = ∅, then one recovers the standard sce-
nario approach [23], [24]. Moreover, the objective function is
taken to be affine without loss of generality; in case of an
arbitrary convex objective function, an epigraphic reformula-
tion would render the problem in the form of (1). Note that
only convex scenario programs will be considered, as in [25]
and [26].

Assumption 1 (Feasibility, Uniqueness): For any S ⊂
Δm, R ⊂ S, the optimal solution of (1) exists and is unique.

In case of multiple solutions, a convex tie-break rule could
be selected to single-out a particular one, thus relaxing the
uniqueness requirement of Assumption 1.

Denote by x�(S) the (unique under Assumption 1) minimizer
of (1). Note that we introduce S as argument since the optimal
solution of (1) is a random variable that depends on all extracted
scenarios, i.e., it is a random variable that takes values on
the space Δm. The following result from [25] characterizes
the probability that x�(S) violates the constraints for a new
realization of δ that exceeds a given level ε ∈ (0, 1).

Theorem 1 (Theorem 2.1, [25] or Theorem 4.1, [26]): Con-
sider Assumption 1 and fix ε ∈ (0, 1). Letm > d+ r and denote
by x�(S) the optimal solution of (1). If with Pm-probability
one all removed scenarios are violated by the resulting solution
x�(S), i.e., g(x�(S), δ) > 0 for all δ ∈ R, with Pm-probability
one, then

Pm

{
(δ1, . . . , δm) ∈ Δm : P {δ ∈ Δ : g(x�(S), δ)>0}>ε

}

≤
(
r + d− 1

r

) r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (2)

Theorem 1 represents an important generalization of the sce-
nario approach theory, as it allows the decision maker to trade
feasibility to performance. Indeed, observe that the feasible set
of (1) is enlarged when R is nonempty (i.e., when scenarios are
discarded), thus leading to a cost improvement with respect to
the case where R is the empty set. This fact and the bound of
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Theorem 1 enable the decision maker to improve cost, while
controlling the probability of constraint violation.

It should be also noted that Theorem 1 does not allow for
an arbitrary discarding scheme; it rather requires that, with
Pm-probability one, all discarded scenarios are violated by the
resulting solution x�(S). This is instrumental in the proof of
Theorem 1, as shown in [25].

Besides, if r = 0, the bound in Theorem 1 is known to hold
with equality for a class of scenario programs called fully
supported programs (see Section II or [24] and [25] for more
details). When scenarios are discarded, i.e., when r 	= 0, it is
elusive how to construct a removable scheme that allows for a
tight bound. It is shown in [25, Sec. 4.2] that

sup
P,R

Pm

{
(δ1, . . . , δm) ∈ Δm :

P {δ ∈ Δ : g(x�(S), δ) > 0} > ε

}

≥
r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i (3)

where P represents the class of optimization problems in the
form of (1) that are parameterized by the set X , the objective
function’s cost vector c, the constraint function g, and (implicitly
through the samples) the probability measure P . The set R
represents the collection of scenario removal schemes that return
a solution x�(S) that violates all the discarded scenarios. If
the supremum is achieved, then (3) implies that there exists a
problem inP and a removal scheme inR such that the right-hand
side of (3) constitutes a lower bound for Pm{(δ1, . . . , δm) ∈
Δm : P{δ ∈ Δ : g(x�(S), δ) > 0} > ε}. In particular, in the
proof of (3) (see [25, Sec. 5.2]), it is shown that this lower bound
is admitted if the underlying problem is fully supported (see
Definition 3 in the sequel) and the removal scheme, among the
minimizers that violate all discarded scenarios, returns the one
with the highest probability of constraint violation. However, the
latter is not implementable, as it would require knowledge of the
underlying probability distribution P which might be unknown.
Even if this was known, computing the probability of constraint
violation would require the computation of a multidimensional
integral which is in general difficulty. As such, the result in (3)
is an existential statement; in fact, it is not shown whether the
lower bound is achievable in the sense that (3) would hold with
equality.

This is in contrast with our main result in Theorem 1 that
shows that the right-hand side in (3) is, in fact, an upper bound for
the confidence with which the probability of constraint violation
exceeds ε. Moreover, our discarding mechanism is constructive
and distribution-free, in the sense that it does not require the
knowledge of P for the computation of the resulting solution that
enjoys these properties. We also show that such upper bound is
tight (see Theorem 5). To achieve this, in Section IV, we intro-
duce an alternative discarding strategy composed of a cascade
of optimization problems that, roughly speaking, removes a set
of cardinality d containing the active constraints of each stage.
As a byproduct of our analysis, we also relax the assumption of

Theorem 1 that requires all the removed scenarios to be violated
by the final solution.

B. Learning Theoretic Concepts

The following definition is crucial for the results in this article.
Definition 1 (Compression set): Fixm ∈ N and considerS ⊂

Δ with |S| = m. Let ζ < m, and C ⊂ S with cardinality |C| =
ζ. Consider a mapping A : Δm → 2Δ. If with Pm-probability
one

δ ∈ A(C), for all δ ∈ S,

then C is called a compression set of cardinality ζ for A.
In other words, a compression set C is a subset of the samples

S such that A(C), i.e., the set generated using only ζ of the
samples contains all samples in S, even the ones that were not
included in C. In statistical learning theory, this property is
known as consistency of A(C) with respect to the samples [27],
[41]. The main focus within a PAC learning framework (see [41]
and references therein) is to quantify the probability that A(C)
differs from Δ. Since A(C) depends on the scenarios in S (as
C is a selection among all scenarios), this probability is itself a
random variable defined on the product probability space Δm.

To address this question, we will use tools from PAC learn-
ability related to compression learning. To this end, we adapt the
main concepts and result of [27] to the notation of our article.

Theorem 2 (Theorem 3, [27]): Fix ε ∈ (0, 1) and ζ < m. If
with Pm-probability one there exists a unique compression set
C of cardinality ζ, then

Pm

{
(δ1, . . . , δm) ∈ Δm : P {δ ∈ Δ : δ /∈ A(C)} > ε

}

=

ζ−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (4)

For a fixed ε ∈ (0, 1), observe that the right-hand side of (4)
goes to zero as m tends to infinity. This is a desirable property,
as it indicates that Δ can be asymptotically approximated by
A(C). Moreover, for a fixed m ∈ N, the result of Theorem 2
provides a nonasymptotic result, quantifying the measure of the
set Δ \ A(C). A mapping with these properties is called PAC
within the learning literature. Theorem 2 states that if a mapping
possesses a unique compression set, then it is at least (1− ε)-
accurate as an approximation ofΔ (approximately correct), with
confidence (probably) equal to 1−∑ζ−1

i=0

(
m
i

)
εi(1− ε)m−i.

III. MOTIVATING EXAMPLE: TWO SCENARIO PROGRAMS

WITH ANALYTIC SOLUTIONS

A. 1-D Example

Suppose that m i.i.d. samples, S = {δ1, . . . , δm}, are drawn
from a uniform distribution on the interval [0, 1]. Consider the
following scenario program that is in the form of (1):

minimizex∈[0,1] x

subject to x ≥ δ, δ ∈ S \R. (5)
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Under the choice of a uniform distribution, the optimal so-
lution of (5) is unique with Pm-probability one. Let r < m
be the number of discarded scenarios and consider a (natural)
removal scheme that discards scenarios one by one by means
of a cascade of scenario programs where, at each stage, the
scenario corresponding to the active constraint is removed from
the set S. For instance, the first discarded scenario, which can be
explicitly computed as δ(1) = argmaxδ∈Sδ, corresponds to the
active constraint of (5) when all scenarios in S are enforced.
We then solve (5) with all but the scenario removed in the
previous stage being enforced, thus resulting in the scenario
δ(2) = argmaxδ∈S\δ(1)δ to be discarded. We proceed similarly
until r scenarios are removed.

Let x�
k(S) be the optimal solution at the (k + 1)th stage of

the removal procedure described in the previous paragraph. Note
that x�

k(S) = δ(k+1), k = 0, . . . , r, where δ(k+1) represents the
(k + 1)th largest sample of S. Our goal is to compute the proba-
bility of constraint violation associated with the optimal solution
of (5) when the scenarios that belong to S \ {δ(1), . . . , δ(r)}
are enforced. Since P is a uniform probability measure on
[0, 1], it is clear that, for each k ∈ {0, . . . , r}, such a probability
is given by V (x�

k(S)) = P{δ ∈ Δ : x�
k(S) < δ} = 1− x�

k(S).
Observe that

Pm{(δ1, . . . , δm) ∈ Δm : V (x�
k(S)) > ε}

= Pm{(δ1, . . . , δm) ∈ Δm : δ(k+1) < 1− ε}

=

k∑
i=0

(
m

i

)
εi(1− ε)m−i. (6)

The first equality in (6) follows from the fact that x�
k(S) =

δ(k+1) and the second by partitioning the space Δm into k + 1
disjoint sets where each of these sets contains elements S
for which exactly i, i = 0, . . . , k, samples from the removed
samples lie within the interval [1− ε, 1], i.e., exceeding 1− ε,
and then applying the total law of probability. An alternative
explanation using order statistics can be found in [44]. Hence, the
distribution of the probability of constraint violation associated
with the final solution of the considered removal strategy is given
by V (x�

r(S)), which is obtained from (6) by substituting k = r.

B. 2-D Example

Suppose that m i.i.d. samples are drawn from a uniform dis-
tribution on the interval [0, 1] and consider the scenario program
that returns the minimum width interval containing the samples
given by

minimizex,y∈[0,1], y≥x y − x

subject to δ ∈ [x, y], δ ∈ S \R. (7)

For any collection of the samples S = {δ1, . . . , δm}, with Pm-
probability one, the scenario program (7) has a unique solu-
tion and, at the optimal solution, there are exactly two active
constraints, namely, those associated with the smallest and the
largest sample of S \R. Let r = 2� < m, for some integer �,
be an even integer and consider (similar to that in the 1-D
example) a removal scheme that discards the active constraints

of (7) at each stage. Denote by x�
k(S), k = 0, . . . , �, the 2-D

vector containing the optimal solution of the (k + 1)th stage.
One of the components of x�

k(S) is the (k + 1)th largest sample
of S, which we denote by δ(k+1), and the other is the (k + 1)th
smallest sample of S, which we denote by δ(m−k).

We are interested in the probability of constraint violation at
the (k + 1)th stage, which is given by

V (x�
k(S)) = P

{
δ ∈ Δ : δ /∈

[
δ(m−k), δ

(k+1)
]}

= P
{
δ ∈ Δ : δ < δ(m−k)

}
+ P

{
δ ∈ Δ : δ > δ(k+1)

}
= 1−

(
δ(k+1) − δ(m−k)

)
= 1− L(k+1)(S) (8)

where L(k+1)(S) = (δ(k+1) − δ(m−k)) represents the length of
the interval after the removal of 2 k samples. Equation (8)
consists in the probability that a new sample is drawn from P and
it falls outside the interval [δ(m−k), δ

(k+1)]. Letting ε ∈ [0, 1], we
have that

Pm{(δ1, . . . , δm) ∈ Δm : V (x�
k(S)) > ε}

= Pm{(δ1, . . . , δm) ∈ Δm : L(k+1)(S) < 1− ε}. (9)

For each k ∈ {0, . . . , �}, let

Ak = {(δ1, . . . , δm) ∈ Δm : δ(m−k) ≤ ε}
Bk = {(δ1, . . . , δm) ∈ Δm : V (x�

k(S)) > ε} (10)

where Ak contains the samples S whose (k + 1)th smallest
element lies in the interval [0, ε] and Bk contains the samples
that lead to V (x�

k(S)) > ε. Using this notation, we can write (9)
as

Pm{(δ1, . . . , δm) ∈ Δm : V (x�
k(S)) > ε} = Pm{Bk}

= Pm{Ac
k ∩Bk}+ Pm{Ak ∩Bk} (11)

where Ac stands for the set complement of A. Let us analyze
each of the terms in the right-hand side of (11) separately. We
start with the first term. Note that

Pm{Ac
k ∩Bk} = Pm{Ac

k}Pm{Bk|Ac
k} = Pm{Ac

k}
= Pm{(δ1, . . . , δm) ∈ Δm : δ(k+1) ≤ 1− ε}

=

k∑
i=0

(
m

i

)
εi(1− ε)m−i (12)

where the second equality follows from the fact that P{Bk|Ac
k}

is equal to one due to Ac
k ⊂ Bk, i.e., the length of

[δ(m−k), δ
(k+1)] is less than 1− εwhenever the (k + 1)th small-

est sample in S is larger than ε; and the third equality is
due to the fact that Pm{(δ1, . . . , δm) ∈ Δm : δ(m−k) > ε} =

Pm{(δ1, . . . , δm) ∈ Δm : δ(k+1) ≤ 1− ε}, which can be ob-
tained by simple algebraic manipulations. Finally, the last equal-
ity holds due to (6).

To compute the second term in the right-hand side of (11), it
is convenient to define the partition of Δm as

Ej
k = {(δ1, . . . , δm) ∈ Δm : there are exactly j samples
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Fig. 1. Realization of a sample S = {δ1, . . . , δ10} that belongs to the
set A1 ∩B1 ∩E1

1 defined in (10) and (13).

greater than 1− ε+ δ(m−k)

}
(13)

where j = 0, . . . ,m− k. Note that there can be no more than
m− k samples greater than δ(m−k), as this would contradict the
fact that δ(m−k) is the (k + 1)th smallest sample of S; hence,

we have that Δm = ∪m−k
j=0 Ej

k. For instance, Fig. 1 depicts a
realization that belongs to A1 ∩B1 ∩ E1

1 when m = 10 and
exactly two discarded samples. The partition given in (13) allows
us to write

Pm{Ak ∩Bk} =

m−k∑
j=0

Pm{Ak ∩Bk ∩ Ej
k}

=

k∑
j=0

Pm{Ak ∩Bk ∩ Ej
k}

+

m−k∑
j=k+1

Pm{Ak ∩Bk ∩ Ej
k}

=

k∑
j=0

Pm{Ak ∩Bk ∩ Ej
k} (14)

where the last equality follows from the fact that Ak ∩Bk ∩
Ej

k = ∅ for all j > k since having more than k samples greater
than1− ε+ δ(m−k) with δ(m−k) ≤ ε implies thatL(k+1) ≥ 1−
ε; so such a realization does not belong to Bk.

We claim that

Pm{Ak ∩Bk ∩ Ej
k}

=

(
m

j + k + 1

)
εj+k+1(1− ε)m−j−k−1. (15)

Consider first the case where k = j = 1. We can compute
P{A1 ∩B1 ∩ E1

1} as

Pm{A1 ∩B1 ∩ E1
1} =

∫ ε

0

Pm{B1 ∩ E1
1 |δ(m−1) = ξ}dξ

=

∫ ε

0

m (m− 1)(m− 2)ξ(ε− ξ)︸ ︷︷ ︸
T1

(1− ε)m−3︸ ︷︷ ︸
T2

dξ

where the factorm refers to the number of choices for ξ, the term
T1 is due to the fact that there must be exactly one sample less
than ξ and exactly one sample greater than 1− ε+ ξ, and there
are (m− 1)(m− 2) possible such samples once ξ is chosen,
and the term T2 is due to the fact that the remaining samples
(m− 3 in this case) are within the interval [ξ, 1− ε+ ξ].

To show (15) in general, one may proceed inductively; alter-
natively, we can use the fact that the uniform distribution assigns
the same probability to subsets of [0, 1] that have the same length.
Hence, Pm{Ak ∩Bk ∩ Ej

k} is the probability that j + k + 1
samples are outside the interval [δ(m−k), 1− ε+ δ(m−k)] and
the remaining m− j − k − 1 ones to its complement. This
immediately yields (15).

Combining (11), (12), (14), and (15), we have that

Pm{(δ1, . . . , δm) ∈ Δm : V (x�
k(S)) > ε} = Pm{B}

=

k∑
i=0

(
m

i

)
εi(1− ε)m−i

+

k∑
j=0

(
m

j + k + 1

)
εj+k+1(1− ε)m−j−k−1

=

k∑
i=0

(
m

i

)
εi(1− ε)m−i +

2k+1∑
i=k+1

(
m

i

)
εi(1− ε)m−i

=

2k+1∑
i=0

(
m

i

)
εi(1− ε)m−i. (16)

Set k = � and recall from the discussion following (7) that r =
2�; so we have proved that

Pm{(δ1, . . . , δm) ∈ Δm : V (x�
� (S)) > ε}

=

r+1∑
i=0

(
m

i

)
εi(1− ε)m−i. (17)

These two examples show that the associated probability of
constraint violation for the case where scenarios are discarded
can be computed analytically and that the obtained probability is
better than the one of Theorem 1. Motivated by this fact, we will
show a tighter bound on the probability of constraint violation
for such scenario programs which is valid for an arbitrary d, as
long as the number of discarded scenarios is an integer multiple
of d. The only difference in a d-dimensional example would be
that the upper limit in the summation would be r + d− 1 (see
Theorem 5), which is consistent with (6) and (17) and is tighter
than the bound of Theorem 1. This is due to the fact that these
scenario programs satisfy Assumption 4 (to be defined in the
sequel), which is a sufficient condition to obtain such a tight
bound.

IV. PROPOSED DISCARDING SCHEME AND MAIN RESULTS

In this section, we formalize a removal scheme that results
in a better bound on the probability of constraint violation of a
scenario program with discarded constraints. For a given set
of scenarios S = {δ1, . . . , δm}, we solve a cascade of �+ 1
optimization programs denoted by Pk, k ∈ {0, . . . , �}, where
(�+ 1)d < m. For each k ∈ {1, . . . , �}, let

Pk : minimizex∈X⊂Rd c�x

subject to g(x, δ) ≤ 0, for all δ ∈ S \
k−1⋃
j=0

Rj(S)
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Fig. 2. Block diagram of the proposed scheme. Given S = {δ1, . . . , δm}, with (�+ 1)d < m, we solve a cascade of �+ 1 optimization programs

denoted by Pk, k ∈ {0, . . . , �} and remove Rk(S) scenarios with |Rk(S)| = d at each stage. In total, r = �d scenarios (the ones in
⋃�−1

j=0
Rj(S))

are discarded. The set of discarded scenarios depends on the initial set S; thus, we introduce it as an argument of Rk. If each problem is fully
supported, then Rk(S) corresponds to the (unique) support set associated with the minimizer x�

k(S) of that program—see (18); otherwise, Rk(S)
contains the support scenarios as well as additional scenarios selected according to a lexicographic order, as in (21). The final solution is denoted
by x�(S) = x�

� (S).

where Rk(S), with |Rk(S)| = d, represents the set of removed
scenarios at stage k, and

⋃k−1
j=0 Rj(S) the ones that have been

removed up to stage k. For k = 0, we solve problem P0 by
enforcing all the scenarios in S. Note that the number of sce-
narios that have been removed up to stage � is given by �d (the
samples in the set

⋃�−1
j=0 Rj(S)) and that, by construction, the

collection of removed scenarios is disjoint. The choice of each
set of discarded scenarios depends on the initial set S; thus,
we introduce it as an argument in Rk. A schematic illustration
of the proposed scheme is provided in Fig. 2. Our choice for
Rk(S), k ∈ {0, . . . , �− 1}, will be detailed in the following
two subsections.

Definition 2 (Support set; see Definition 2 in [24]): Fix any
k ∈ {0, . . . , �} and considerPk. An element ofS \⋃k−1

j=0 Rj(S)
is a support scenario of Pk, if its removal changes the minimizer
x�
k(S). The support set of x�

k(S), denoted by supp(x�
k(S)), is

the collection of support scenarios of S \ ∪k−1
j=0Rj(S).

Definition 3 (Fully supported programs; see Definition 3
in [24]): Fix any k ∈ {0, . . . , �} and consider Pk. We say that
Pk is fully supported if, for any S with |S| = m and m > d,
|supp(x�

k(S))| = d with Pm-probability one.
Definition 4 (Nondegenerate programs; see Assumption 2

in [8]): Fix any k ∈ {0, . . . , �} and consider Pk. We say that
Pk is nondegenerate if, with Pm-probability one, solving the
problem by enforcing the constraints only on the support set,
supp(x�

k(S)), results in x�
k(S), i.e., the solution obtained when

all samples in S \⋃k−1
j=0 Rj(S) are employed.

Note that if a problem is fully supported, then it is also
nondegenerate; however, the opposite implication does not hold.
Moreover, in a convex optimization context, nondegeneracy is a
relatively mild assumption and implies that scenarios give rise
to constraints at general positions that do not have accumulation
points. On the contrary, requiring a problem to be fully supported
is stronger; however, it exhibits interesting theoretical properties
as, with Pm-probability one, the number of support scenarios is
exactly equal to d [24], [27].

In the sequel, we split our analysis into fully supported and
nondegenerate scenario programs. This facilitates our analysis
as our proof construction is laid out better if we analyze the
proposed removal scheme assuming that the scenario programs

are fully supported. In Section IV-B, we lift this assumption and
show how to extend the developed analysis to the more general
case of nondegenerate scenario programs, which are typically
encountered in the scenario approach literature.

A. Fully Supported Case

In this section, we assume that, with Pm-probability one, the
cardinality of the support set of problem Pk, k = 0, . . . , �, is
equal to d. We formalize this in the following assumption.

Assumption 2 (Fully supportedness): For all k ∈ {0, . . . , �},
Pk is fully supported with Pm-probability one.

Under Assumption 2, we let

Rk(S) = supp(x�
k(S)), k ∈ {0, . . . , �− 1} (18)

i.e., we remove the support set of the corresponding optimal
solution of Pk. Note that the cardinality of Rk(S) is equal to
d and this choice for the removed scenarios guarantees that
the objective function decreases at each stage, thus improving
performance. Moreover, for k = �, we denote by R�(S) the
support set of x�

� (S). Note that R�(S) does not contain any
removed scenarios.

Under Assumption 2, we obtain a tighter bound than that of
Theorem 1, as shown in the following theorem.

Theorem 3: Consider Assumptions 1 and 2. Fix ε ∈ (0, 1), set
r = �d, and letm > r + d. Consider also the scenario discarding
scheme as encoded by (18) and illustrated in Fig. 2, and let the
minimizer of the �th program be x�(S) = x�

� (S). We then have
that

Pm

{
(δ1, . . . , δm) ∈ Δm : P {δ ∈ Δ : g(x�(S), δ) > 0} > ε

}

≤
r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (19)

The proof of Theorem 3 is deferred to Section V-A. It is
important to note that inequality (19) does not involve the
combinatorial factor

(
r+d−1

r

)
as in Theorem 1. For a fixed

number of scenarios, probability of constraint violation, and
confidence level, one is able to satisfy (19) with a larger number
of removed scenarios compared to (2). To see this, in Table I,
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TABLE I
RATIO BETWEEN THE NUMBER OF REMOVED SAMPLES ALLOWED BY

THEOREM 3 AND THEOREM 1 FOR A FIXED ε = 0.05, β = 10−6,
m = 40 000, AND DIFFERENT VALUES OF d

Fig. 3. Pictorial example that illustrates the scheme proposed in
Fig. 2 for fully supported problems. In this case, we have that d = 2,
m = 6, r = 4, and � = 2, and all the problems Pk, k ∈ {0, 1, 2}, satisfy
Assumption 2. The objective function is given by c�x = x2 (indicated
by the downwards pointing arrow). The constraint sets are denoted
by the different color patterns: the green constraints are the samples
in supp(x�

0(S)), the blue ones in supp(x�
1(S)), and the black ones in

supp(x�
2(S)). Note that the dashed-blue constraint is removed by the

scheme of Fig. 2, but it is not violated by x�
2(S).

we show the ratio between the number of removed scenarios
obtained from Theorem 3 and that from Theorem 1 (taken
from [25]) for different values of d, as the violation level is fixed
to ε = 0.05 and the number of samples to m = 40 000. Each
entry of Table I is obtained by equating the right-hand side of the
inequalities in both theorems to β = 10−6 and using bisection
to find the allowable number of removed scenarios r. The fact
that we allow more constraints to be removed using the result of
Theorem 3 (note that this number increases with d) creates the
potential of achieving a better cost, as the resulting problem is
less constrained. The latter is, however, problem-dependent as
both our removal scheme as well as the procedure adopted in [25]
are not optimal. Numerical evidence in Section VII quantifies
the potential cost improvement with our approach on a resource
sharing example.

To illustrate how the proposed scheme works, we consider
the pictorial example of Fig. 3. Note that d = 2 and m = 6,
and we remove r = 4, thus requiring � = 2 steps of the removal
scheme of Fig. 2. All the problems Pk, k ∈ {0, 1, 2}, are fully
supported, thus satisfying Assumption 2. The objective function
is given by c�x = x2 and is indicated by the downwards pointing
arrow. The corresponding solution for the intermediate problems
is illustrated by x�

k(S), for k ∈ {0, 1, 2}, and the support set of
each stage by different color patterns. For instance, the green
constraints are the support set, namely, supp(x�

0(S)), of problem
P0. The shaded color under each constraint corresponds to the
region of the plane that violates that given constraint, e.g.,
we note that x�

1(S) violates both constraints that belong to
supp(x�

0(S)) and satisfies all the remaining ones. The result of

Theorem 3 provides guarantees for the probability of violation
of x�

2(S). Note that the dashed-blue constraint is removed at
stage 1, but it is not violated by the final solution of our scheme.

B. Nondegenerate Case

In this subsection, we assume that problem Pk, k ∈
{0, . . . , �}, is nondegenerate.

Assumption 3 (Nondegeneracy): For all k ∈ {0, . . . , �}, Pk

is nondegenerate with Pm-probability one.
In case of a non-fully supported problem (supp(x�

k(S)) < d,
for some k ∈ {0, . . . , �}), we adopt a procedure called reg-
ularization, in the same spirit as in [26]. This is based on
introducing a lexicographic order as a tie-break rule to select
which additional scenarios to append to supp(x�

k(S)), thus
constructing a set of cardinality d. Note that, unless we impose
such an order, there is no unique choice as all scenarios that
are not included in supp(x�

k(S)) are not of support; hence, their
presence leaves the optimal solution unaltered. To this end, we
put a unique linear order on the elements of S, i.e., assigning
them a distinct numerical label. For each k ∈ {0, . . . , �}, let
νk(S) = d− |supp(x�

k(S))| and define recursively

Zk(S) =

{
νk(S) scenarios with the smallest labels in

S \
⎛
⎝k−1⋃

j=0

{
supp(x�

j (S)) ∪ Zj(S)
} ∪ supp(x�

k(S))

⎞
⎠
⎫⎬
⎭
(20)

with Z0(S) containing the ν0(S) smallest elements of S \
supp(x�

0(S)) according to the linear order. Note that the set
appearing in the definition of Zk(S) in (20) corresponds to
scenarios available at stage k that are not of support.

For each k ∈ {0, . . . , �− 1}, we can now define the sets of
discarded samples as

Rk(S) = supp(x�
k(S)) ∪ Zk(S). (21)

Note that, by construction, |Rk(S)| = d, while if, for any k ∈
{0, . . . , �}, Pk is fully supported, then Rk(S) = supp(x�

k(S)),
i.e., it coincides with the support set of x�

k(S). Similar to that in
the fully supported case, we denote by R�(S) the superset of the
support set of x�

� (S) obtained by appending, if necessary, ν�(S)
scenarios from the remaining ones.

Remark 1: Consider two arbitrary scenario sets C ⊂ C ′ and
denote by x�

k(C) and x�
k(C

′) the minimizers of Pk with C
and C ′, respectively, replacing S. Moreover, define Zk(C) and
Zk(C

′) as in (20) with C and C ′, respectively, in place of S. We
then have that Fk(x

�
k(C)) < Fk(x

�
k(C

′)) if either c�x�
k(C) <

c�x�
k(C

′) or c�x�
k(C) = c�x�

k(C
′) and, at the first element, that

Zk(C) and Zk(C
′) differ; the corresponding label of Zk(C) is

strictly lower with respect to the imposed lexicographic order
than the one of Zk(C

′). Regularization is thus a way to select
among subsets of scenarios that would otherwise yield the same
objective value. We will use this procedure in Section V-B to
prove Theorem 4. It is shown in [26] that Pk with its objective
function replaced byFk(x) = (c�x, Zk(S)) is a fully supported
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program, and the constructed set Rk(S) in (21) forms its unique
support set with cardinality d.

We are now in a position to state the main result related to
nondegenerate problems.

Theorem 4: Consider Assumptions 1 and 3. Fix ε ∈ (0, 1), set
r = �d, and letm > r + d. Consider also the scenario discarding
scheme as encoded by (21) and illustrated in Fig. 2, and let the
minimizer of the �th program be x�(S) = x�

� (S). We then have
that

Pm

{
(δ1, . . . , δm) ∈ Δm : P {δ ∈ Δ : g(x�(S), δ) > 0} > ε

}

≤
r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (22)

Theorem 4 holds for nondegenerate scenario programs, thus
being more general than Theorem 3, which is only valid for fully
supported problems. This generalization comes at the expense
of a (possible) decrease in performance, as we append additional
scenarios to compose the support set of the regularized problem
that may not improve the objective value associated with x�(S).
However, similar to Theorem 3, we may still improve the cost
with respect to other removal strategies, as we are allowed to
remove more constraints compared to [25]. It is also important
to note that (22) holds for any linear order imposed in the original
samples S and that the resulting optimal objective value of the
scheme depends on such ordering. In this article, we only provide
feasibility guarantees and not optimality. Note that this is also
the case for the results in [25] and [26]. The only available results
for the optimal cost are given in [25] when the removal scheme is
the optimal one, which is, however, of combinatorial complexity.
As a final remark, observe that Theorem 3 constitutes the main
development toward obtaining Theorem 4, as should be apparent
in Section V.

Remark 2: It should be noted that the assumption in [25] and
[26] appearing in the statement of Theorem 1, which requires
all discarded scenarios to be violated by the final solution with
Pm-probability one, has some nondegeneracy implications for
all intermediate problems. To see this, note that if we allow
for degenerate problems, then situations where all scenarios are
identical are admissible and may happen with nonzero proba-
bility (allowing for atomic masses). Clearly, in such cases, there
is no scenario that can be discarded while being violated by the
resulting solution that remains unaltered. Therefore, we tighten
the bound in Theorem 4, without strengthening the assumptions
in [25] and [26].

To clarify how the scheme presented in Fig. 2 works when ap-
plied to nondegenerate problems, consider the example depicted
in Fig. 4. Similar to before, we have d = 2 and m = 7 and want
to remove four constraints, i.e., r = 4. As opposed to Fig. 3,
however, note that the constraints are enumerated according to
an arbitrary order, which is used to compose the sets Zk(S),
k ∈ {0, 1, 2}, as described by (20). Moreover, problems P0 and
P1 are not fully supported, as the number of support scenarios is
equal to 1 in each of these cases. Our scheme first removes the
scenario that supports the solution x�

0(S) and the one labeled
as 1 since it is the scenario with the smallest order among the

Fig. 4. Illustration of the scheme in Fig. 2 applied to nondegener-
ate, but not fully supported, problems. The intermediate solutions are
denoted by x�

k(S), k = 0, 1, 2. The different color patterns depict the
removed scenarios at each stage. The green constraints are the ones
removed at stage 0, and the blue ones are those removed at stage 1.
Similar to before, the objective function is given by c�x = x2 and this
is indicated by the downwards arrow. Observe that the optimal solution,
and consequently the final solution returned by our scheme, depends
on the linear order imposed to the original scenarios.

remaining ones. These scenarios are depicted as green in Fig. 4.
Then, we solve problem P1 with the resulting scenarios, obtain-
ing x�

1(S) as an intermediate solution and scenarios labeled as
2 and 3 to be removed. The former constraint is removed as it
is in the support set of x�

1(S) and the latter as it is the sample
with the smallest index from the remaining ones. Finally, the
solution provided by the scheme, and whose guarantees are given
in Theorem 4, is denoted by x�

2(S).

V. PROOF OF THE MAIN RESULTS

A. Fully Supported Case

Throughout this subsection, we consider Assumption 2. Let
m > (�+ 1)d and consider any setC ⊂ S, with |C| = (�+ 1)d.
We consider the proposed scheme of Fig. 2, fed by C rather than
S. All quantities introduced in Section IV depending onS would
now depend on C instead. For a given set of indices I ⊂ C, we
define

z�(I) = argminx∈X c�x

subject to g(x, δ) ≤ 0, for all δ ∈ I. (23)

Recall that x�
k(C) denotes the minimizer of Pk which, in turn,

is based on the samples in C \ ∪k−1
j=0Rj(C), i.e., the ones that

have not been removed up to stage k of the proposed scheme.
It, thus, holds that x�

k(C) = z�(C \ ∪k−1
j=0Rj(C))—note that the

argument of z� in this case depends on k, k ∈ {0, . . . , �}. Recall
also that, under Assumption 2, we haveRk(C) = supp(x�

k(C)).
Since we will be invoking the framework introduced in Sec-

tion II-B, let

A1(C) = {δ ∈ Δ : g(x�
� (C), δ) ≤ 0} ,

A2(C) =

�⋂
k=0

{
δ ∈ Δ : c�z�(J ∪ {δ}) ≤ c�x�

k(C),
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for all J ⊂ C \ ∪k−1
j=0Rj(C), with |J | = d− 1

}
,

A3(C) =

�−1⋃
k=0

Rk(C)

and define the mapping A : Δm → 2Δ, with ζ = (�+ 1)d, as

A(C) = (A1(C) ∩ A2(C)) ∪ A3(C). (24)

The main motivation to define the mapping in (24) is the fact
that its probability of violation will be shown to upper bound that
of {δ ∈ Δ : g(x�

� (C), δ) ≤ 0}, which is ultimately the quantity
we are interested in (as shown in Section V-A, step 3).

Note that A(C) comprises the following three sets.
1) The set A1(C) contains all realizations of δ for which the

final decision of our proposed scheme x�
� (C) = x�(C)

remains feasible. This is the set whose probability of
occurrence we are ultimately interested to bound.

2) The set A2(C), which is composed of the intersection
of �+ 1 sets indexed by k ∈ {0, . . . , �}, contains the
realizations of δ such that, for all subsets of cardinality
d− 1 from the remaining samples at stage k, the cost
c�z�(J ∪ {δ}) is lower than or equal to c�x�

k(C). The
former cost corresponds to appending δ to any set J of
d− 1 scenarios from C \ ∪k−1

j=0Rj(C), while the latter
corresponds to the cost of the minimizer x�

k(C) of Pk.
Informally, this inequality is of similar nature with that of
A1(C); however, rather than considering constraint satis-
faction, it only involves some cost dominance condition
for each of the interim and the final optimal solutions.
The motivation to use this representation rather than
constraint satisfaction conditions stems from the fact that
in Section IV-B, we will be appending a lexicographic
order to the cost so that we break the tie among multiple
compression sets. Besides, these sets carry information
about the path taken by the proposed scheme, which
is to be understood, in this context, as the sequence
(xk(C))�k=0.

3) The set A3(C) includes all scenarios that are removed
by the discarding scheme. Implicit in the definition of
mapping (24) is the fact that, for any compression set C,
all samples that are not removed in the intermediate stages
must be contained in the set A1(C) ∩ A2(C). This fact
will be crucial in the following arguments.

The following proposition establishes a basic property of any
compression associated with the mapping (24) and is instrumen-
tal for the proof of our main theorem.

Proposition 1: Consider Assumptions 1 and 2. Set r = �d
and let m > (�+ 1)d. We have that C ⊂ S is a compression set
for A(C) in (24) if and only if, with Pm-probability one, for all
k ∈ {0, . . . , �}

x�
k(C) = x�

k(S). (25)

Proof: We first show necessity. Suppose that C is a compres-
sion set, but, for the sake of contradiction, we have that there
exists k ∈ {0, . . . , �} and δ̄ ∈ S \ C such that

x�
k(C) 	= x�

k(C ∪ {δ̄}). (26)

Let k̄ be the minimum index such that (26) holds, while we have
that x�

j (C) = x�
j (C ∪ {δ̄}), for all j < k̄.

By Assumption 2, with Pm-probability one, the last state-
ment implies that supp(x�

j (C)) = supp(x�
j (C ∪ {δ̄})), for all

j < k̄, as the support set of each optimal solution is unique.
Hence, Rj(C) = Rj(C ∪ {δ̄}) for all j < k̄, and Rj(C) =
supp(x�

j (C)) for fully supported problems (similarly for
Rj(C ∪ {δ̄})). By (23), we then have

x�
k̄(C) = z�(C \ ∪k̄−1

j=0Rj(C)), (27)

x�
k̄(C ∪ {δ̄}) = z�((C \ ∪k̄−1

j=0Rj(C)) ∪ {δ̄}). (28)

Since the right-hand side of (28) involves one more scenario with
respect to the right-hand side of (27), the feasible set of (28) is
a subset of the one of (27). Moreover, by the fact that x�

k̄
(C ∪

{δ̄}) 	= x�
k̄
(C) and Assumption 1, we get

c�x�
k̄(C) < c�x�

k̄(C ∪ {δ̄}). (29)

Note that δ̄ belongs to the support set of x�
k̄
(C ∪ {δ̄}), as its

removal results in a different optimal solution with lower cost in
(29). In other words, there exists J̄ ⊂ C \ ∪k̄−1

j=0Rj(C) (in fact,
J̄ = supp(x�

k̄
(C ∪ {δ̄})) \ {δ̄}) of cardinality d− 1 such that

by (28), we have that

c�x�
k̄(C) < c�x�

k̄(C ∪ {δ̄}) = c�z�(J̄ ∪ {δ̄}). (30)

At the same time,C is assumed to be a compression set. Since
δ̄ /∈ C, then δ̄ /∈ ∪�−1

k=0Rk(C) = A3(C), as ∪�−1
k=0Rk(C) ⊂ C.

As a result, δ̄ will give rise to a constraint in P�; hence, δ̄ ∈
A2(C), which, in turn, implies that for all J ⊂ C \ ∪�−1

j=0Rj(C)
with |J | = d− 1, and for all k ≤ �

c�z�(J ∪ {δ̄}) ≤ c�x�(C) ≤ c�x�
k(C) (31)

where the first inequality follows from the fact that c�x�(C) is
the optimal value for P�, and x�(C) = x�

� (C) by construction
satisfies all constraints with scenarios in J ∪ {δ̄}. The second
inequality follows from the fact that k ≤ �, and the cost deterio-
rates as k increases. Setting k = k̄ and J = J̄ in (31) establishes
a contradiction with (30), thus showing that x�

k(C) = x�
k(C ∪

{δ}), for any δ ∈ S \ C and any k ∈ {0, . . . , �}. Inductively,
adding one by one each element in S \ C, we can show that
x�
k(C) = x�

k(S), for any k ∈ {0, . . . , �}, thus concluding the
necessity part of the proof.

We now show sufficiency. Let C ⊂ S be such that x�
k(C) =

x�
k(S) for all k ∈ {0, . . . , �}. We aim to show that C is a com-

pression for S, i.e., with Pm-probability one, δ ∈ A(C) for all
δ ∈ S. Recalling the definition of the mapping A(C) from (24),
we note that, under this scenario, the sets A1(C) and A3(C)
are trivially equal to A1(S) and A3(S), respectively. Moreover,
since C ⊂ S and x�

k(C) = x�
k(S) for all k ∈ {0, . . . , �}, which

implies thatRk(C) = Rk(S) by Assumption 1, we have thatS \
∪k−1
j=0Rj(S) = S \ ∪k−1

j=0Rj(C) ⊃ C \ ∪k−1
j=0Rj(C). The latter

implies then that the inequalities in A2(S) constitute a superset
of those in A2(C); hence, that problem is more constrained,
and, as a result, A2(S) ⊂ A2(C). By construction, we have that
δ ∈ A(S) for all δ ∈ S. This, in turn, implies that if a sample is
not removed, then it will have to be included inA2(S), and due to
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the established inclusion also in A2(C). Since A1(S) = A1(C)
andA3(S) = A3(C), we then have that δ ∈ A(C) for all δ ∈ S,
showing that C is a compression set. This concludes the proof
of the proposition. �

Proof of Theorem 3: A natural compression candidate is

C =

�⋃
k=0

supp(x�
k(S)) (32)

as it consists of the support sets of the intermediate problems.
Existence: We prove that C in (32) is a compression set. By

the sufficiency part of Proposition 1, it suffices to show that, with
Pm-probability one, the set C in (32) satisfies x�

k(C) = x�
k(S),

for all k ∈ {0, . . . , �}. We will show this by means of induction.
For the base case k = 0, note that

c�x�
0(S) = c�z�(S) = c�z�(supp(x�

0(S)))

= c�x�
0(C) (33)

where the first equality is due to (23), the second equality is due
to the fact that supp(x�

0(S)) is the support set ofx�
0(S), while the

last equality is due to Assumption 2, the definition of support set
and the fact that supp(x�

0(S)) ⊂ C. By (33), and Assumption 1,
we conclude that x�

0(C) = x�
0(S).

To complete the induction argument, we assume thatx�
j (C) =

x�
j (S) for all j ∈ {0, . . . , k̄}, for some k̄ < �. We will show that

x�
k̄+1

(C) = x�
k̄+1

(S). To this end, by Assumption 2, x�
j (C) =

x�
j (S) for all j ≤ k̄ implies that supp(x�

j (C)) = supp(x�
j (S)),

for all j ≤ k̄, as the support set of each optimal solution is
unique. Moreover, Rj(C) = Rj(S) for all j < k̄, as Rj(C) =
supp(x�

j (C)) for fully supported problems. Similar to the base
case, we have that

c�x�
k̄+1(C) = c�z�(C \ ∪k̄

j=0Rj(S))

≤ c�z�(S \ ∪k̄
j=0Rj(S)) = c�x�

k̄+1(S) (34)

where the first and last equalities are due to (23), and the inequal-
ity is due to the fact that C \ ∪k̄

j=0Rj(S) ⊆ S \ ∪k̄
j=0Rj(S).

Moreover

c�x�
k̄+1(S) = c�z�(S \ ∪k̄

j=0Rj(S))

=c�z�(supp(x�
k̄+1(S)))≤c�z�(C \ ∪k̄

j=0Rj(S))

= c�x�
k̄+1(C) (35)

where the first and last equalities are due to (23), the second one
is due to the fact that supp(x�

k̄+1
(S)) ⊂ S \ ∪k̄

j=0Rj(S), and the
inequality holds since Rj(C) = Rj(S) and supp(x�

k̄+1
(S)) ⊂

C \ ∪k̄
j=0Rj(S). By (34) and (35), we then have thatx�

k̄+1
(C) =

x�
k̄+1

(S), thus concluding the induction proof. In other words,
we have shown that

x�
k(C) = x�

k(S), for all k ∈ {0, . . . , �}. (36)

Equation (36), together with the sufficiency part of Proposition 1,
shows that the candidate C in (32) is a compression set.

Uniqueness:: To show that C in (32) is the unique compres-
sion set, assume, for the sake of contradiction, that there exists

another compression C ′ ⊂ S for the mapping defined in (24),
C ′ 	= C, with |C ′| = (�+ 1)d. Since C ′ ⊂ S is a compression,
Proposition 1 (necessity part) implies that x�

k(C
′) = x�

k(S), for
all k ∈ {0, . . . , �}, as C ′ is a compression. Besides, by the
existence part (Step 1 above), we have shown that for C given
in (32), we have that x�

k(C) = x�
k(S) for all k ∈ {0, . . . , �}.

We, thus, have that for all k ∈ {0, . . . , �}, x�
k(C) = x�

k(C
′).

This, in turn, implies that supp(x�
k(C)) = supp(x�

k(C
′)) for all

k ∈ {0, . . . , �}, which, by Assumption 2, leads to C = C ′ (to
see this, note that∪�

k=0supp(x�
k(S)) ⊂ C ′ and |C ′| = (�+ 1)d),

thus establishing a contradiction.
Linking Theorem 2 with the probability of constraint viola-

tion: Recall that

A(C) = (A1(C) ∩ A2(C)) ∪ A3(C) (37)

where the individual sets are as in (24). Recall also thatA3(S) is
a discrete set that contains the removed samples throughout the
execution of the scheme of Fig. 2. Fix any S with m scenarios,
set r = �d, and letm > (�+ 1)d. Fix also ε ∈ (0, 1). LetC ⊂ S
with |C| = (�+ 1)d be the unique compression defined in (32).
We have that

P{A(C)} = P{(A1(C) ∩ A2(C)) ∪ A3(C)}
= P{A1(C) ∩ A2(C)},
≤ P{A1(C)} = P{δ ∈ Δ : g(x�(C), δ) ≤ 0},
= P{δ ∈ Δ : g(x�(S), δ) ≤ 0} (38)

where the first equality is due to the fact that P{A3(C)} = 0
since A3(C) is a discrete set and we have imposed the nonde-
generacy condition of Assumption 3 which prevents scenarios
to have accumulation points with nonzero probability, while the
inequality is due to the fact thatA1(C) ∩ A2(C) ⊆ A1(C). The
second last equality is by definition of A1(C), and the last one
follows from the fact that x�(C) = x�(S) [see (36)].

We then have that if P{δ ∈ Δ : g(x�(S), δ) > 0} > ε, then
P{δ ∈ Δ : δ /∈ A(C)} > ε. As a result, {(δ1, . . . , δm) ∈ Δm :
P{δ ∈ Δ : g(x�(S), δ) > 0} > ε} ⊆ {(δ1, . . . , δm) ∈ Δm :
P{δ ∈ Δ : δ /∈ A(C)} > ε}. The last statement implies then
that

Pm{(δ1, . . . , δm) ∈ Δm : P{δ ∈ Δ : g(x�(S), δ) > 0} > ε}
≤ Pm{(δ1, . . . , δm) ∈ Δm : P{δ /∈ A(C)} > ε}. (39)

Therefore, since set C in (32) is the unique compression of
A(C), by Theorem 2, we have that

Pm{(δ1, . . . , δm) ∈ Δm : P{δ ∈ Δ : δ /∈ A(C)} > ε}

≤
r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (40)

By (39) and (40), we then have that Pm{(δ1, . . . , δm) ∈ Δm :

P{δ ∈ Δ : g(x�(S), δ) > 0} > ε} ≤∑r+d−1
i=0

(
m
i

)
εi(1−

ε)m−i, thus concluding the proof of Theorem 3. �
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B. Nondegenerate Case

Throughout this subsection, we consider Assumption 3. Let
m > (�+ 1)d, and consider any setC ⊂ S with |C| = (�+ 1)d.
We modify the mapping A(C) in (24) by replacing the second
set in its definition with

A2(C) =

�⋂
k=0

{δ ∈ Δ : Fk(z
�(J ∪ {δ})) ≤ Fk(x

�
k(C)),

for all J ⊂ C \ ∪k−1
j=0Rj(C), with |J | = d− 1

}
(41)

where Fk(·) is the augmented objective function defined in
Remark 1, related to Pk defined by means of the regularization
procedure of Section IV. The above inequality is to be under-
stood in a lexicographic sense as detailed in Remark 1. A natural
candidate compression set in this case is

C =

�⋃
k=0

(supp(x�
k(S)) ∪ Zk(S)) (42)

which is composed of the removed samples of the scheme, and
the support set of the last stage together with the corresponding
constraints in Z�(S). In fact, we now append Zk(S) in the
definition of C to ensure that |C| = (�+ 1)d, as |supp(x�

k(S))|
could be lower than d as the intermediate problems might not
be fully supported. Similar to the fully supported case, our goal
is to show that the compression set defined in (42) is the unique
compression set of size (�+ 1)d for the mapping in (24), with
A2(C) in (41) in place of A2(C) in (24). By (21), recall that
Rk(C) = supp(x�

k(C)) ∪ Zk(C), k ∈ {0, . . . , �− 1}.
Proposition 2: Suppose Assumptions 1 and 3 hold. Let C

be the set in (42), and consider the scheme of Fig. 2 with
the removed scenarios given by (21). We have that, with Pm-
probability one, the following items hold.

1) x�
k(C) = x�

k(S) and Zk(C) = Zk(S) for all k ∈
{0, . . . , �}.

2) Let C ′ be any other compression of size (�+ 1)d. Sup-
pose Rj(C) = Rj(C

′) for all j ∈ {0, . . . , k̄ − 1}, where
k̄ is the smallest index such that x�

k̄
(C ′) 	= x�

k̄
(C). Then

x�
k̄
(C ′) 	= x�

k̄
(C ′ ∪ {δ}) for some δ ∈ supp(x�

k̄
(C)) \

supp(x�
k̄
(C ′)). Moreover, such a δ is, in fact, in the set

C \ C ′.
Proof: Item 1): We use induction. Fix k = 0 and note that

x�
0(C) = z�(C) = z�(supp(x�

0(S))) = x�
0(S) (43)

where the first equality follows from the definition in (23); for
the second one, we use the definition of the support set, and the
third one follows from the definition of x�

0(S) and the definition
of the support set. Moreover, we have that

Z0(C) = {ν0(S) scenarios with the smallest labels in

C \ {supp(x�
0(S))}}

= {ν0(S) scenarios with the smallest labels in

S \ {supp(x�
0(S))}} = Z0(S) (44)

where the first equality is due to the definition of C in (42)
and the fact that Z0(S) ⊂ C, while the last one is due to the

definition of Z0(S) in (20). Assume now that x�
k(C) = x�

k(S)
and Z�

k(C) = Z�
k(S) for all k ∈ {0, . . . , k̄}, and consider the

case k̄ + 1. Indeed, we have that

x�
k̄+1(C) = z�(C \ ∪k̄

j=0Rj(C)) = z�(supp(x�
k̄+1(S)))

= z�(S \ ∪k̄
j=0Rj(S)) = x�

k̄+1(S) (45)

where these relations follow as in (43) for the case k = 0. We
also have that

Z�
k̄+1(C) =

{
νk̄+1(S) scenarios with the smallest labels in

C \
⎛
⎝ k̄⋃

j=0

Rj(S) ∪ supp(x�
k̄+1(S))

⎞
⎠
⎫⎬
⎭ = Z�

k̄+1(S) (46)

since Z�
k̄+1

(S) ⊂ C \⋃k̄
j=0{Rj(S) ∪ supp(x�

k̄+1
(S))} due to

the particular choice of C in (42), thus proving that for C
in (42), we have x�

k(C) = x�
k(S) and Zk(C) = Zk(S), for all

k ∈ {0, . . . , �}. This concludes the proof of item 1).
Item 2): We prove the contrapositive. Assume that, for all δ ∈

supp(x�
k̄
(C)) \ supp(x�

k̄
(C ′)), we have that x�

k̄
(C ′) = x�

k̄
(C ′ ∪

{δ}). We will show that x�
k̄
(C) = x�

k̄
(C ′). We then have that

c�x�
k̄(C

′) = c�x�
k̄(C

′ ∪ {δ}) = c�x�
k̄(C

′ ∪ supp(x�
k̄(C)))

= c�x�
k̄(C) (47)

where the second equality holds due to [26, Lemma 2.12] since
C ′ ∪ {δ} ⊂ C ′ ∪ supp(x�

k̄
(C)). The last equality follows from

the definition of the support set and the nondegeneracy condition
of Assumption 3. By Assumption 1, we then conclude that
x�
k̄
(C) = x�

k̄
(C ′).

We now show that such a δ must belong to C \ C ′. In fact,
choose δ̄ ∈ supp(x�

k̄
(C)) \ supp(x�

k̄
(C ′)) and assume, for the

sake of contradiction, that δ̄ ∈ C ′. This implies that δ̄ ∈ Rj(C
′)

for some j ≥ k̄. In this case, we have that

c�x�
k̄(C

′ ∪ {δ̄}) = c�z�

⎛
⎝
⎛
⎝C ′ \

k̄−1⋃
j=0

Rj(C)

⎞
⎠ ∪ {δ̄}

⎞
⎠

= c�z�
(
supp(x�

k̄(C
′))
)

= c�x�
k̄(C

′) (48)

where the first relation holds due to (23) and the fact that
Rj(C

′) = Rj(C) for all j < k̄, the second one is due to the fact

that supp(x�
k̄
(C ′)) ⊂ C ′ \⋃k̄−1

j=0 Rj(C) ∪ {δ̄} and δ̄ ∈ Rj(C
′)

for j ≥ k̄. The third equality follows from the definition of the
support set and the nondegeneracy condition of Assumption 3.
However, note that (48) contradicts our choice of δ̄, which re-
quires that x�

k̄
(C ′) 	= x�

k̄
(C ′ ∪ {δ̄}). This concludes the proof.�

Proof of Theorem 4 Existence: The existence part follows
mutatis mutandis from the one of Theorem 3. In fact, A1(C) =
A1(S) and A3(C) = A3(S) by Proposition 2, item 1), and
A2(S) ⊂ A2(C) as C ⊂ S (see the discussion at the end of
Proposition 1). Uniqueness: Let C ′ be another compression
of size (�+ 1)d and assume, for the sake of contradiction,
that C 	= C ′. We can distinguish two possible cases. Case I:
there exists a k̄ ∈ {0, . . . , �} such that x�

k̄
(C ′) 	= x�

k̄
(C); or case
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II: x�
k(C

′) = x�
k(C) for all k ∈ {0, . . . , �}, but there exists a

k̃ ∈ {0, . . . , �} such that Zk̃(C
′) 	= Zk̃(C). In the sequel, we

argue separately that neither of these cases can happen.
Case I: Let k̄ be the smallest index such thatx�

k̄
(C ′) 	= x�

k̄
(C),

and let k̃ ≤ k̄ be the smallest index such that Zk̃(C
′) 	= Zk̃(C).

Consider first the case where k̃ < k̄. Under these definitions,
note that Rj(C

′) = Rj(C) for all j < k̃. Moreover, we have
that

Zk̃(C
′) =

⎧⎨
⎩νk̃(C) scenarios with the smallest labels in

C ′ \
k̃−1⋃
j=0

Rj(C
′)

⎫⎬
⎭

=

⎧⎨
⎩νk̃(C) scenarios with the smallest labels in

C ′ \
k̃−1⋃
j=0

Rj(S)

⎫⎬
⎭ (49)

where the first equality is by the definition in (20) and the fact
that νk̃(C

′) = νk̃(C) since k̃ < k̄; the second equality follows
since Rj(C

′) = Rj(C) = Rj(S), and the last equality follows
from Proposition 2, item 1), for all j ≤ k̃ − 1 and due to the
uniqueness requirement of Assumption 1. Note that Zk̃(C

′) 	=
Zk̃(S) and C ′ ⊂ S imply that, for all δ ∈ Zk̃(C

′) \ Zk̃(S)

yδ > max
ξ∈Zk̃(S)

yξ = ymax (50)

where yδ ∈ N corresponds to the label associated with δ.
We will use the relation (50) to show that any element in

C \ C ′ has a label greater than ymax. In fact, note that

C ′ \ C ⊂
{
∪�
j=k̃+1

Rj(C
′)
}
∪ {Zk̃(C

′) \ Zk̃(C)
}
. (51)

Hence, it suffices to show that any element in either sets in the
right-hand side of (51) is greater than ymax. To this end, fix any
δ ∈ ∪�

j=k̃+1
Rj(C

′) and note that

yδ > max
ξ∈Zk̃(C

′)\Zk̃(C)
yξ > ymax (52)

where the first inequality is due to the fact that since such a
δ has not been removed up to stage k̃, then its label will be
greater than the ones in Zk̃(C

′), and, as a result, the ones in
Zk̃(C

′) \ Zk̃(C). The second inequality follows from (50) and
the fact that Zk̃(C

′) \ Zk̃(C) ⊂ Zk̃(S). Therefore, for any δ ∈
C ′ \ C, we have that yδ > ymax.

From now on, let δ be the scenario associated with ymax. Pick
J̄ = {supp(x�

k̃
(C))} ∪ {Zk̃(C) \ {δ}}, which has cardinality

d− 1 and is a subset of C \ ∪k̃−1
j=0Rj(C), and fix δ̄ ∈ C ′ \ C.

Note that under this choice of δ̄

Fk̃(z
�(J̄ ∪ {δ̄})) > Fk̃(x

�
k̃
(C)) (53)

since yδ̄ > ymax (by our previous discussion) and the inequal-
ity is interpreted lexicographically. However, this contradicts

the fact that C is a compression set (see Definition 1) as
δ̄ ∈ C ′ \ C ⊂ S; hence, δ̄ /∈ A3(C

′) has not been removed, but
δ̄ /∈ A2(C) due to (53).

Consider now the case k̃ = k̄. Note that, in this case, we
have that Rj(C

′) = Rj(C) for all j ≤ k̄ − 1. Based on the
result of Proposition 2, item 3), applied to C ′ (note that the
assumptions of Proposition 2, item 3), are satisfied with our
choice ofC ′), we observe that there exists a δ̄ ∈ {supp(x�

k(C)) \
supp(x�

k(C
′))} ∩ {C \ C ′} such that x�

k̄
(C ′) 	= x�

k̄
(C ′ ∪ {δ̄}).

Repeating the arguments following (27) and (28) in the ne-
cessity proof of Proposition 1 with C ′ in the place of C
in that proposition, we reach a contradiction that C ′ is a
compression set.

Case II: We can reach a contradiction if case II holds in a
similar fashion to that in case I. In fact, letting k̃ be the smallest
index such that Zk̃(C

′) 	= Zk̃(C), the proof proceeds in an
identical manner with case I.

Hence, we conclude that in any case, C = C ′, thus proving
uniqueness of the compression set in (42).

Linking Theorem 2 with the probability of violation: Note
that for the nondegenerate case, the mapping has the same
structure as the one in (24), with the set A2(C) in (24) being
substituted with the one in (41). The arguments then follow
mutatis mutandis the ones in the last part of the fully supported
case. This concludes the proof of Theorem 4.

VI. TIGHTNESS OF THE BOUND OF THEOREM 3

A. Class of Programs for Which the Bound is Tight

We provide a sufficient condition on the problems Pk so
that the solution returned by the scheme of Fig. 2 achieves
the upper bound given by the right-hand side of (22) when all
the intermediate problemsPk, k = 0, . . . , �, are fully supported.
The result of this section implies that the bound of Theorem 3 is
tight, i.e., there exists a class of convex scenario programs where
it holds with equality.

To this end, we replace the mappingA in (24) with Ā : Δm →
2Δ defined

Ā(C) = {δ ∈ Δ : g(x�
� (C), δ) ≤ 0}∪{

�−1⋃
k=0

supp(x�
k(C))

}
. (54)

Note that Ā(C) coincides with the one in (37) but without the set
A2(C) in its definition. We impose the following assumption.

Assumption 4: Fix anyS = {δ1, . . . , δm} ∈ Δm and letC ⊂
S. For anyk ∈ {0, . . . , �} and δ ∈ S such that δ ∈ supp(x�

k(C)),
we have that

g(z�(J), δ) > 0

for all J ⊂ C \ (∪k−1
j=0supp(x�

j (C)) ∪ {δ}) with |J | = d.
Assumption 4 imposes a restriction on the class of fully

supported problems. For instance, the pictorial example of Fig. 3
does not satisfy Assumption 4, even though all the intermediate
problems Pk are fully supported, as the dashed-blue removed
constraint is not violated by the resulting solution. Indeed,
Assumption 4 requires that, with Pm-probability one, whenever
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a sample belongs to the support scenarios of any intermediate
problem, then the scenario associated with it is violated by all
the solutions that could have been obtained using any subset
of cardinality d from the remaining samples. Note that As-
sumption 4 is similar to the requirement of Theorem 1 [25],
[26]; however, in Theorem 5, we exploit it in conjunction with
the discarding scheme of Fig. 2 to show that the result of
Theorem 3 is tight. This serves as a constructive argument for
the existential result of [25]. In this article, we do not offer any
means to check the validity of Assumption 4; however, observe
that the scenario programs studied in Section III satisfy such an
assumption.

Theorem 5: Consider Assumptions 1, 2, and 4. Fix ε ∈ (0, 1),
set r = �d, and let m > r + d. Consider also the scenario dis-
carding scheme as encoded by (18) and illustrated in Fig. 2, and
let the minimizer of the �th program be x�(S) = x�

� (S). We then
have that

Pm

{
(δ1, . . . , δm) ∈ Δm : P {δ ∈ Δ : g(x�(S), δ) > 0} > ε

}

=

r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (55)

Proof: Existence: We first show that the set C given in (32)
is a compression for the mapping in (54). Recall that, under
Assumption 2, we have that Rk(S) = supp(x�

k(S)) for all k ∈
{0, . . . , �}. Applying a similar induction argument to that in
the existence part of Theorem 3, we have that x�

k(C) = x�
k(S)

for all k ∈ {0, . . . , �}. Hence, by the definition of the mapping
Ā(C) in (54), we obtain that Ā(C) = Ā(S), thus showing that
C in (32) is a compression.

Uniqueness: Let C ′ be another compression of size (�+ 1)d.
We will show that x�

k(C
′) = x�

k(S) for all k ∈ {0, . . . , �},
which, by the existence part, yields that x�

k(C) = x�(C ′) for
all k ∈ {0, . . . , �}. By Assumptions 1 and 2, this would then
imply that C = C ′.

To show that x�
k(C

′) = x�
k(S) for all k ∈ {0, . . . ,m}, it suf-

fices to show that, for all δ ∈ S \ C ′, we have that

x�
k(C

′) = x�
k(C

′ ∪ {δ}), for all k ∈ {0, . . . , �}. (56)

In fact, if (56) holds for all δ ∈ S \ C ′ by induction, it follows
then that x�

k(C
′) = x�

k(S) for all k ∈ {0, . . . , �}.
To show (56), assume, for the sake of contradiction, that

there exist a δ̄ ∈ S \ C ′ and a k ∈ {0, . . . , �} such that x�
k(C) 	=

x�
k(C

′ ∪ {δ̄}). Let k̄ be the smallest index such that this occurs
and note that

x�
k̄(C

′) = z�(C ′ \ ∪k̄−1
j=0supp(x�

j (C
′))), (57)

x�
k̄(C

′ ∪ {δ̄}) = z�((C ′ \ ∪k̄−1
j=0supp(x�

j (C
′)) ∪ {δ̄}) (58)

which implies that δ̄ ∈ supp(x�
k̄
(C ′ ∪ {δ̄})), as removal of δ̄ will

change x�
k̄
(C ′ ∪ {δ̄}) to x�

k̄
(C ′). By Assumption 4 and since

supp(x�
j (C

′)) = supp(x�
j (C

′ ∪ {δ̄})) for all j = 0, . . . , k̄ − 1,

we have that for all J ⊂ C ′ \ (∪k̄−1
j=0supp(x�

j (C
′)) ∪ {δ̄}) with

cardinality d

g(z(J), δ̄) > 0. (59)

Hence, since J̄ = supp(x�
� (C

′)) is a subset of cardinality d of
C ′ \ (∪k̄−1

j=0supp(x�
j (C

′)) ∪ {δ̄}), as these constraints have not
been removed from C ′, we obtain that

g(z(J̄), δ̄) = g(x�
� (C

′), δ̄) > 0 (60)

where the equality follows from (23). However,C ′ is assumed to
be a compression set for Ā, which implies that δ ∈ Ā(C ′), i.e.,
g(x�

� (C
′), δ̄) ≤ 0. This is in contradiction with (60), implying

thatx�
k(C

′) = x�
k(C

′ ∪ {δ}), for anyk ∈ {0, . . . , �}, for any δ ∈
S \ C ′. Using induction, adding one by one δ ∈ S \ C ′, we can
then show thatx�

k(C
′) = x�

k(S) = x�
k(C) for allk ∈ {0, . . . , �},

thus showing that C in (32) is the unique compression set for
the mapping defined in (54).

By Theorem 2, we then have that

Pm{(δ1, . . . , δm) ∈ Δm : P{δ : δ /∈ Ā(C)} > ε}
= Pm{(δ1, . . . , δm) ∈ Δm : P{δ : g(x�

� (C), δ) > 0} > ε}
= Pm{(δ1, . . . , δm) ∈ Δm : P{δ : g(x�

� (S), δ) > 0} > ε}

=
r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i (61)

where the first equality follows since the union of support
scenarios is a discrete set and will be of measure zero. To obtain
the second equality, we have used the fact that x�

� (C) = x�
� (S)

for the compression set defined in (32). This concludes the proof
of Theorem 5. �

VII. NUMERICAL EXAMPLE

In this section, we consider a resource allocation problem
to illustrate our theoretical result. Suppose that a manufacturer
produces a good in d different locations and that this good
can be produced from n different resources. The quantity of
resource p, p = 1, . . . , n, that is needed to produce a unitary
amount of the given good at facility j, j = 1, . . . , d, is a random
variable parametrized by δ ∈ R and is denoted by apj(δ). We
assume that the amount of resources p available to all facilities
is deterministic. The objective is to maximize the production,
given by

∑d
j=1 x

j , where xj is the jth component of x ∈ Rd,
while keeping the risk of running out of resources under control.

Under the scenario theory, we do not have access to the
distribution that generates apj(δ), p = 1, . . . , n, j = 1, . . . , d;
however, we encode it by means of data (apj(δi))

m
i=1 for all

p = 1, . . . , n and for all j = 1, . . . , d and solve the following
fully supported convex scenario problem

minimize{xj≥0}dj=1
c�x

subject to A(δi)x ≤ b, for all i = 1, . . . ,m (62)

where, for each i ∈ {1, . . . ,m}, A(δi) ∈ Rn×d is a matrix
whose (p, j)th entry is given by apj(δi), b ∈ Rn is a vector
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Fig. 5. Feasibility sets of the intermediate problems Pk, k = 0, 2, 5, 7,
10, for the scheme proposed in Fig. 2 when applied to (62). The optimal
solution of each problem is denoted by x�

k(S), k = 0, 2, 5, 7, 10.

whose pth component is the amount of resource p available to
all facilities, and c = [−1 . . . −1]� ∈ Rd.

A. 2-D Case

Set d = 2 and consider 2000 scenarios from the unknown
distribution1 for δ. We study the behavior of the scheme in Fig. 2
when we discard r = 20 of these scenarios. In this case, note
that according to the description given in Section IV, we have
to solve a cascade of 11 optimization problems (i.e., � = 10 in
the scheme of Fig. 2).

Fig. 5 illustrates the feasible set for stages k = 0, 2, 5, 7,
and 10 of the scheme of Fig. 2 and depicts the corresponding
optimal solution for each Pk as x�

k(S). Note that the feasible set
associated with each problemPk grows as we remove scenarios.
To complement this analysis, we also show in Fig. 6 a com-
parison between our method and the greedy scenario removal
strategy as described in [25], which removes scenarios one by
one according to one that yields the best improvement in the cost.
With the blue dots, we show the cost obtained by the proposed
procedure, where we are allowed to remove scenarios in batches
of d = 2, while the solid one shows the performance obtained
by the greedy removal strategy, where scenarios are removed
one by one. In red, we show the corresponding behavior of
the probability of constraint violation. This is calculated from
the bounds of Theorem 3 and Theorem 1, respectively, with
β = 10−6.

B. 10-D Case

Consider now (62) with d = 10 and the same 2000 scenar-
ios. We compare the cost improvement of the proposed bound
(Theorem 4) with the one of Theorem 1 [25]. To this end, for
a given ε ∈ [0.01, 0.08], we compute the maximum number
of scenarios that can be removed using each of these bounds.
Note that due to the fact that we remove scenarios of d, we

1For our simulations, fix i ∈ {1, . . . ,m} and set A(δi) = 0.04B(δi), where
B(δi) ∈ Rn×d, with entries obtained from a Laplacian distribution with mean
equal to 1 and variance equal to 3. Our numerical results were obtained by setting
the “seed” equal to 30 in MATLAB.

Fig. 6. Cost and probability of constraint violation for the solution
returned by the scheme of Fig. 2 and a greedy removal strategy for
the problem in (62) when d = 2, n = 2, and m = 2000. With the blue
dots, we show the cost obtained by the proposed procedure, where we
are allowed to remove scenarios in batches of d = 2, while the solid one
shows the performance obtained by the greedy removal strategy where
scenarios are removed one by one. In red, we show the behavior of the
probability of constraint violation.

Fig. 7. Relative cost improvement 100× f�(ε)−f̄�(ε)

f̄�(ε)
, as a function of

ε, where f�(ε) corresponds to the cost associated with Theorem 4 and
f̄�(ε) to the one of Theorem 1 [25]. The numerical results correspond to
(62) with d = 10.

compute the number of scenarios that need to be removed by
means of numerical inversion from the bound of Theorem 4
(using m = 2000, β = 10−6, and the given ε) and round it down
to the closest multiple of d = 10. For instance, for ε = 0.03,
the maximum number of scenarios that can be removed using
the bound in (4) is r = 18, but we only remove 10. Fig. 7
shows then the relative cost difference 100× f�(ε)−f̄�(ε)

f̄�(ε)
as a

function of ε, where f�(ε) is the optimal value of problem (62)
when scenarios are removed according to Theorem 4 and f̄�(ε)
corresponds to the bound in [25]. For ε > 0.03, our scheme
leads to better optimal costs (i.e., the relative cost difference is
negative), achieving approximately 4% of improvement when
ε = 0.08. This is due to the fact that more scenarios can be
removed, while guaranteeing the same level of violation. Note
also that there is no improvement when ε ≤ 0.03. This can be
explained by two reasons. 1) Due to the limitation on the number
of removed scenarios, the proposed bound returns a value for r
that is less than 10; hence, no scenarios are removed (this is
the case for ε ∈ [0.01, 0.02]). (2) The scenarios discarded by
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the greedy strategy lead to a better cost improvement (which
happens for the case where ε = 0.03).

Even though improving the computational requirements of
the discarding procedure is not the main focus of our work, as a
byproduct of the proposed removal scheme, the computational
requirements of the proposed approach are lower with respect
to the greedy removal strategy in [25] (see also [26]). To put
this in perspective, to remove 100 scenarios in the previous
example when d = 10, the greedy strategy requires the solution
of 1101 optimization problems of the form (62), whereas the
proposed scheme only needs to solve 11 of these problems. The
computational savings are more pronounced as the dimension
of the problem grows. However, the performance improvement
of the proposed discarding scheme with respect to the greedy
removal strategy described in [25] and [26] is problem dependent
in general.

VIII. CONCLUSION

In this article, we proposed a scenario discarding scheme that
consists of a cascade of optimization problems, where, at each
stage, we remove a superset of the support constraints. By relying
on results from compression learning theory, we provide a less
conservative bound on the probability of constraint violation of
the obtained solution. Besides, we show that the proposed bound
is tight and characterize a class of problems for which this is the
case.

The current work concentrates toward extending our scenario
discarding scheme so that we no longer remove scenarios in
batches but one by one. Preliminary results in this direction can
be found in [45]. We also aim at exploiting the dual variables
associated with each constraint in order to create a tie-break rule
to choose the scenarios to be removed at each stage.
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