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On the Sensitivity of Linear Resource Sharing
Problems to the Arrival of New Agents

Alessandro Falsone , Member, IEEE, Kostas Margellos , Member, IEEE, Jacopo Zizzo ,
Maria Prandini , Fellow, IEEE, and Simone Garatti , Member, IEEE

Abstract—We consider a multi-agent optimal resource
sharing problem that is represented by a linear program.
The amount of resource to be shared is fixed, and agents
belong to a population that is characterized probabilisti-
cally so as to allow heterogeneity among the agents. In
this article, we provide a characterization of the probability
that the arrival of a new agent affects the resource share
of other agents, which means that accommodating the new
agent request at the detriment of the other agents allocation
provides some payoff. This probability represents a sen-
sitivity index for the optimal solution of a linear program-
ming resource sharing problem when a new agent shows
up, and it is of fundamental importance for a correct and
profitable operation of the multi-agent system. Our devel-
opments build on the equivalence between the resource
sharing problem and certain dual reformulations that can
be interpreted as scenario programs with the number of
scenarios corresponding to the number of agents in the
primal problem. The recent “wait-and-judge” scenario ap-
proach is then used to obtain the sought sensitivity index.
Our theoretical findings are demonstrated through a numer-
ical example on optimal cargo aircraft loading.

Index Terms—Duality theory, linear programming, multi-
agent systems, scenario approach, uncertain systems.

I. INTRODUCTION

SYSTEMS with multiple agents interacting with each other
while sharing common resources are encountered in sev-

eral applications ranging from power networks [12], [13], [33],
demand-side management [11], [23], and social networks [15],
[20], [31], to consensus and flocking [29], [30], as well as
robotic and sensor networks [24], [32]. Determining the optimal
resource share has attracted the interest of the control systems
community, with most of the research activities focusing toward
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distributed optimization schemes based on iterative algorithms
for determining social welfare maximizing strategies (see [1]
and references therein, and [3], [16], [18], [22], [26]–[28],
and [34] for recent contributions). Complementary to the prob-
lem of distributed computation, albeit equally important, there
is the problem of quantifying the capacity of the system in
terms of the number of agents that are needed so as to obtain
a solution that remains unaltered upon the arrival of a new
agent. With the exception of [23] where such a considera-
tion was made in the context of demand-side management,
to the best of our knowledge, this issue has not been rigor-
ously investigated. In this article, we aim at addressing this
problem, thus offering theoretical support for the developments
in [23].

We consider multi-agent resource sharing problems that can
be represented by linear programs subject to budget equal-
ity/inequality constraints, which express the usage of given
resources by agents, and local upper limit constraints, expressing
the agents’ limits in contributing to the solution. Each agent is
characterized by a tuple of parameters encoding the agent con-
tribution to the cost and to the budget type constraints, as well as
the upper limit to its decision vector. Each agent is independently
drawn from a fixed, but unknown multivariate probability distri-
bution modeling the underlying unknown mechanism through
which agents show up. A multiextraction from this distribution
instantiates a finite population of heterogeneous agents initially
participating in the resource sharing problem.

When a new agent corresponding to a new tuple of parameters
is added to the pool of agents and the solution is recomputed,
it may either happen that the solution changes, in which case
the newly arrived agent must contribute to determining it, or the
resource sharing solution remains unchanged and the new agent
adds to the part of agents that are unemployed. Therefore, the
probability that the optimal resource share remains unaltered
upon the arrival of a new agent serves as a sensitivity index for
the optimal solution of the initial pool of agents.

The goal of this article is to provide a characterization of
this sensitivity index, i.e., the probability that the arrival of
a new agent leaves the optimal resource share unaltered. The
main difficulty is that the underlying probability distribution is
unknown and to establish our results we build on the equivalence
between the resource sharing linear program under consideration
and a dual reformulation of the problem. The resulting dual
problem exhibits a structure that resembles that of a scenario
program, i.e., a program where each constraint corresponds
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to a different realization of the parameter tuple that models
agents’ heterogeneity [4], [5], [8]. Since the number of decision
variables in this problem grows with the number of scenarios,
which makes the standard scenario theory inapplicable, a further
transformation is introduced to recast the dual problem as a
scenario program with constraint relaxation, [10], [19], and by
relying on recent “wait-and-judge” developments of the scenario
approach, [6], [9], [19], we obtain a tight quantification of the
probability of constraint violation for the dual optimal solution
by means of confidence intervals that instantiate a posteriori
based on the number of active agents in the initial solution. We
then show using tools from linear programming (duality and
basic solution concepts) that constraint violation in the dual
problem is equivalent to a change of solution in the primal
resource sharing problem upon the arrival of a new agent, thus
eventually obtaining the sought quantification of the sensitivity
index.

Preliminary results toward this direction have been reported
in [17]. Here, we extend these developments considerably by
allowing also inequality (as opposed to only equality) budget
constraints, and most importantly, local upper limit constraints
to be present in the resource sharing problem. The introduction
of such constraints broadens the class of problems that can be
captured by our framework, however, it also imposes certain
challenges as it results in the number of decision variables in
the dual programming formulations to increase with the number
of scenarios (which corresponds to agents in our context). To
address this, we deviate from the a priori analysis of [17], and
follow a more involved, but at the same time more informative,
a posteriori route. We also show that, in the absence of upper
limit constraints, we obtain the results of [17] as a special case,
and in this case, the conclusion of our main theorem can be made
a priori and identical to the one of [17].

Our characterization can be profitably exploited in the design
and operation of a multi-agent system. Indeed, the probability
of that the arrival of new agent alters the optimal resource share,
can be used to evaluate whether polling new agents in an attempt
to improve the current solution is worth pursuing. As a matter
of fact, given that in real applications polling new agents can be
time consuming and demanding, the aforementioned quantifica-
tion of the sensitivity index allows one to assess in probabilistic
terms the effort that is needed to find a rewarding agent and
decide whether it is affordable or not. Also, it provides a clear
indication on the number of agents that should be examined
when opting for polling new ones. The efficacy of our results
is illustrated on a cargo aircraft loading case study. In this
context, shipping requests of various goods are interpreted as
“agents” that need to be prioritized to obtain the more rewarding
aircraft loading while satisfying the aircraft volume and weight
limitations.

The rest of this article is structured as follows. Section II
states the resource sharing program under study. In Section III,
we introduce the proposed characterization of the sensitivity of
the solution to the arrival of a new agent and state our main
result, whose proof is given in Section V after the derivation of
instrumental results on linear programming theory and duality
theory in Section IV. Our developments are demonstrated on a

cargo aircraft loading problem in Section VI. Finally, Section VII
concludes this article.

II. PROBLEM STATEMENT: MULTI-AGENT RESOURCE

SHARING PROBLEM AND SENSITIVITY TO THE ARRIVAL OF A

NEW AGENT

We consider a problem with m ∈ N+ agents sharing p re-
sources as follows. Each agent i, i = 1, . . . ,m, is associated with
a vector of decision variables xi ∈ Rni

, with possibly ni �= nj

for i �= j. For instance, xi can be the production level of certain
goods that need to be produced from some given amounts of
shared raw materials. Each decision is subject to a nonnegativity
constraint xi ≥ 0 (inequality is meant component wise) and also
to an upper limit constraint xi ≤ di, where inequality is again
meant component-wise and di ∈ Rni

is a vector of upper limits
imposed to the value that can be taken by the components of xi.
Moreover, each decisionxi comes with a cost that varies linearly
with the value taken byxi according to (ci)�xi, where ci ∈ Rni

.
Implementing the decisions requires utilizing some resources.
Specifically, there are p resources to be shared among agents,
their total amount is indicated by the vector b ∈ Rp

+ and the
consumption of the resources corresponding to xi is given by
Aixi, where Ai ∈ Rp×ni

.
The total consumption of resources by all agents must not

exceed the total availability of resources b, which corresponds to
the overall budget-type constraint

∑m
i=1 A

ixi ≤ b (inequality is
meant component wise). We also admit that some resources can
be required to be entirely consumed by the agents, in which case
the corresponding inequalities have to be turned into equalities.
In order to have a unified representation of both inequality
and equality budget-type constraints, we resort to the standard
observation that condition u ≤ w is equivalent to s+ u = w
with s ≥ 0. Thus, assuming that there are n0, 0 ≤ n0 ≤ p,
inequality budget-type constraints, we introduce a vector of
slack variables x0 ∈ Rn0

, whose elements are nonnegative and
not upper limited, and write the overall budget type constraint
as A0x0 +

∑m
i=1 A

ixi = b, where

A0 =

[
In0×n0

0(p−n0)×n0

]
.

This way, the first n0 constraints correspond to inequality
budget-type constraints, while the remaining p− n0 to the
equality ones.

The resource allocation program Pm below instantiates the
agents’ decision variables so as to minimize the global cost while
satisfying the constraints.

Pm : min
x0∈Rn0

,

{xi∈Rni}mi=1

m∑
i=1

(ci)�xi (1)

subject to: xi ≥ 0, i = 0, 1, . . . ,m

A0x0 +
m∑
i=1

Aixi = b

xi ≤ di, i = 1, . . . ,m.
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Letting � =
∑m

i=0 n
i be the total number of decision variables

in Pm, we define x = [(x0)� (x1)� . . . (xm)�]� ∈ R� as the
vector stacking all the agents’ decision vectors on top of each
other. The optimal solution to Pm, assuming it exists, is denoted
by x�.

Remark 1: Note that Pm in (1) is not a linear program in
standard form, [2], due to the presence of upper limit constraints.
It could be brought to standard form via the introduction of
additional slack variables, [2, Sec. 1.1]. However, we prefer
to show the upper limit constraints explicitly as this offers
additional insights on our results. �

In Pm each agent i, i = 1, . . . ,m, is fully characterized by
the tuple δi = (ni, ci, di, Ai). Here, we assume that δi, i =
1, . . . ,m, is an i.i.d. (independent and identically distributed)
sample of a random quantity δ = (n, c, d, A) taking value in
a generic probability space (Δ,D,P ). It should be noted that
P corresponds to the joint probability distribution of the ele-
ments of (n, c, d, A); in the particular case where all agents
have decision vectors of the same length, then the marginal
probability ofnwill be concentrated to that value. Given the i.i.d.
assumption, the distribution of the collection {δi}mi=1 is given
by the product probability measure Pm. Under this setting, Pm

becomes a random linear program, with the number of agents
corresponding to the number of realizations of the uncertain
tuple (n, c, d, A) that have instantiated Pm.

Suppose now that a new agent characterized by δ̄ =
(n̄, c̄, d̄, Ā) joins the resource sharing problem, and let x̄ ∈ Rn̄

denote its corresponding decision vector. The resulting linear
program for the (m+ 1)-agent problem is denoted as Pm

+ and
is given by

Pm
+ : min

x0∈Rn0

{xi∈Rni}mi=1,x̄∈Rn̄

m∑
i=1

(ci)�xi + c̄�x̄ (2)

subject to: xi ≥ 0, i = 0, 1, . . . ,m, x̄ ≥ 0

A0x0 +

m∑
i=1

Aixi + Āx̄ = b

xi ≤ di, i = 1, . . . ,m, x̄ ≤ d̄.

Let x+ = [x� x̄�]� ∈ R�+n̄ be the vector containing all the
decision variables of Pm

+ . The optimal solutions of Pm
+ is

denoted byx�
+. As is clear, two components corresponding to the

m previous agents decision vectors and to the new agent decision
vector, can be isolated from x�

+, namely x�
+ = [(x�)� (x̄�)�]�,

where in general x� need not coincide with x�, i.e., the solution
to Pm with only m agents in place. To be precise, two situations
may arise. We can either have that: x̄� = 0, in which case
it must be that x�

+ = [(x�)� 0�] with no improvement in the
cost, because, otherwise, with x�

+ = [(x�)� 0�] �= [(x�)� 0�],
x� would be a superoptimal solution to Pm in (1), or x̄� �= 0
and x�

+ �= [(x�)� 0�], in which case the optimal value of Pm
+

improves over that of Pm because in any case [(x�)� 0�] is
feasible for Pm

+ .
For a resource sharing problem withm agents, our objective is

to quantify how likely it is that the arrival of a new agent improves

the optimal solution achieved by the initial m agents alone.
More formally, given that the new agent is characterized by a
stochastic tuple δ̄ = (n̄, c̄, d̄, Ā), we are interested in quantifying
the probability (with respect to the variability of δ̄) with which
x�
+ �= (x�, 0), i.e.,

P{δ̄ = (n̄, c̄, d̄, Ā) ∈ Δ : x�
+ �= (x�, 0)}

which serves as a sensitivity index as detailed in the intro-
duction. The main difficulty with the computation of P{δ̄ =
(n̄, c̄, d̄, Ā) ∈ Δ : x�

+ �= (x�, 0)} lies in the fact that P is not
known (P models the unknown mechanism through which
agents show up). Thus, a direct computation of P{δ̄ : x�

+ �=
(x�, 0)} is impossible and we must proceed along a different
route as detailed in Section III.

III. MAIN RESULT: SENSITIVITY INDEX ESTIMATION

To start with, note that the sensitivity index P{δ̄ : x�
+ �=

(x�, 0)} itself can be considered as a random variable defined
over the product probability space (Δm,Dm,Pm) because of
the dependence ofx� andx�

+ on the random sample {δi}mi=1 (this
dependence is not shown explicitly to ease notation). Theorem
1, which is our main contribution, shows that there always
exists a high correlation between P{δ̄ : x�

+ �= (x�, 0)} and an
observable quantity s�, which is the number of agents actively
participating to the solution to Pm in (1). Hence, the sensitivity
index can be tightly estimated from s� with high confidence with
respect to the seen {δi}mi=1.

Before formally stating the theorem, we need to clarify some
notation. In general, a superscript to a vector dictates that it
is associated with the corresponding agent (e.g., xi is the ith
agent decision vector), while we use a subscript to denote a
particular element in the vector (xi is the ith element of x). For
each i = 1, . . . ,m, we denote by J i ⊂ {1, . . . , �} the indices
corresponding to the variables in x belonging to the agent i
and for a given subset I ⊆ {1, . . . , �} of indices, vI denotes the
subvector of v corresponding to the indices in I . Thus,xJ i = xi.
Finally, vr:s is a shorthand for v{r,...,s}.

The derivation of Theorem 1 requires the following two
technical assumptions.

Assumption 1 (Feasibility and uniqueness): For any m ∈
N+, the linear programPm in (1) is feasible and admits a unique
minimizer almost surely with respect to Pm. �

Assumption 2 (Nondegeneracy): For any m ∈ N+:
1) for all i = 1, . . . ,m, di > 0;
2) at any feasible point for Pm in (1), no more than �

constraints are active almost surely;
3) for any vector λ ∈ Rp,

P{δ = (n, c, d, A) ∈ Δ : ∃j ∈ {1, . . . , n}
such that [c� + λ�A]j = 0} = 0 (3)

where [ · ]j denotes the jth element of its argument. �
Both Assumptions 1 and 2 are standard in linear program-

ming, [2], and are relatively mild. Assumption 1 guarantees
that x� and x�

+ are almost surely well defined. Given that
the solution is constrained to stay in a box (nonnegativity and
upper limit constraints), feasibility requires that the polyhedron
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defined by the budget-type constraint is almost surely nonvoid
and intersecting the box. This is achieved when P properly
limits the variability of the half-spaces/hyperplanes defining the
polyhedron. Uniqueness instead requires that the cost level sets
are almost surely not aligned to some edge of the feasibility set.
For example, this is achieved if the probability of ci conditional
toAi has density. Note that the uniqueness part of the assumption
could be relaxed, by assuming that in case of multiple minimizers
a specific one is singled out by means of a linear tie-break
rule. All the subsequent derivations can be carried over with
no conceptual twists, but they would become cumbersome. For
this reason, we prefer to stick to the present formulation of
Assumption 1. Assumption 2 imposes certain nondegeneracy
conditions. In particular, part 1 excludes the case of degenerate
agents with some components of xi being forced to be equal to
zero. Condition 2 implies that Pm in (1) is nondegenerate in the
sense of [2, Definition 2.10] and it is verified if the probability
that the hyperplane defining the budget-type constraint set passes
over a given point is zero. Condition 3 is needed in the proof of
Theorem 1 later when a result from [19] is invoked. This con-
dition requires that for any given λ ∈ Rp, the probability that λ

belongs to the boundary of the affine constraints c� + λ�A ≤ 0
is zero. In other words, these affine constraints, parameterized
by the elements c and A of δ, do not accumulate over the same
point at their boundaries with the exception of zero probability
cases only. Both conditions 2 and 3 are typically verified if
δ = (n, c, d, A) is generically distributed with no concentrated
mass in the marginal distributions of c, d, and A.

Fix now any β ∈ (0, 1) and for k = 0, 1, . . . ,m− 1, consider
the following polynomial equations in the variable t (see [19, Th.
4]):(

m

k

)
tm−k − β

2m

m−1∑
i=k

(
i

k

)
ti−k − β

6m

4m∑
i=m+1

(
i

k

)
ti−k = 0

(4)

and for k = m, consider the polynomial equation

1− β

6m

4m∑
i=m+1

(
i

m

)
ti−m = 0. (5)

As shown in [19], for any k = 0, 1, . . . ,m− 1, (4) has
exactly two solutions denoted as t(k), t(k) ∈ [0,+∞), with
t(k) ≤ t(k), while (5) has only one solution denoted by t(m) ∈
[0,+∞); we also define t(m) = 0. Define then the functions
ε(·), ε(·) : {0, 1, . . . ,m} → [0, 1] as

ε(k) = max{0, 1− t(k)} (6)

ε(k) = max{0, 1− t(k)} (7)

where k = 0, 1, . . . ,m. We are now in a position to state the
main result of this article.

Theorem 1: Consider Assumptions 1 and 2. Fix β ∈ (0, 1),
and consider ε(·) and ε(·) as defined in (6) and (7), respectively.
Denote then by s� the number of agents whose decision vector
has at least one nonzero element, i.e.,

s� =
∣∣∣ {i ∈ {1, . . . ,m} : ∃j ∈ J i such that x�

j �= 0
} ∣∣∣ (8)

where | · | denotes the cardinality of its argument. We then have
that

Pm
{{δi}mi=1 ∈ Δm : P{δ̄ ∈ Δ :

x�
+ �= (x�, 0)} ∈ [ε(s�), ε(s�)]

} ≥ 1− β. (9)

Proof: The proof of Theorem 1 is deferred to Section V, after
that some preliminary results based on linear programming and
duality theory are derived in Section IV. �

In words, Theorem 1 says that irrespective of P—i.e., ir-
respective of the agents distribution—the probability that the
solution with the initial m agents changes upon the arrival of a
new agent lies within the interval [ε(s�), ε(s�)] with confidence
at least 1− β. The quantity s� the interval depends on is itself
a random variable, since it depends on the random sample
{δi}mi=1, but, differently from P{δ̄ ∈ Δ : x�

+ �= (x�, 0)}, it is
an observable one since s� is a posteriori known from a direct
inspection of x�. The essential message conveyed by Theorem
1 is that the observable [ε(s�), ε(s�)] always provides a correct
quantification (with confidence 1− β) of the sought but un-
known quantity P{δ̄ ∈ Δ : x�

+ �= (x�, 0)}. This quantification
is often significant and tight, because, as shown in [7] and [19],
ε(k) and ε(k) rapidly get close to each other as m increases,
while their value is barely affected by β (provably, the depen-
dence is logarithmic; see [7]) so that very small values like
β = 10−6 or β = 10−8 can be enforced to obtain that P{δ̄ ∈ Δ :
x�
+ �= (x�, 0)} ∈ [ε(s�), ε(s�)] with practical certainty. Fig. 1

depicts ε(k) and ε(k) for β = 10−4, 10−6, and 10−8 and m =
250, 500, and 1000. As it appears, the margin between ε(k) and
ε(k) only moderately increases as β decreases.

To compute ε(k) and ε(k), a bisection numerical algorithm
can be used; see [19, Appendix A].

Remark 2: It is perhaps worth comparing Theorem 1 with the
result of [17]. In [17], a version of problem (1) where no local
upper limit constraints and no inequality budget-type constraint
are present is considered and in that setup it is proven that

Pm
{{δi}mi=1 ∈ Δm : P{δ̄ ∈ Δ : x�

+ �= (x�, 0)} ≤ ε
} ≥ 1− β

(10)

where ε is a threshold that can be computed from m and β and
that is provably slightly smaller than ε(p) (p is the number of
budget-type constraints). The existence of the lower bound ε(s�)
in (9) as well as the fact that there are problems where s� takes
values greater than p (see the numerical example in Section VI)
disproves that a result like (10) can be derived in the more general
setup of this article. We will instead show later, in Remark 4 after
the proof of Theorem 1, how (10) can be obtained in the more
limited setup of [17] from the theory of this article, thus showing
that the results of [17] are indeed specific cases of those of the
present contribution. �

IV. PRELIMINARY RESULTS

A. Preliminary Results Based on Linear Programming

Consider the random program Pm in (1) and let A =
[A0 A1 · · · Am] ∈ Rp×� and c = [01×n0 (c1)� . . . (cm)�]� ∈
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Fig. 1. ε(k) and ε(k) for β = 10−4, 10−6, 10−8. (a) m = 250. (b) m = 500. (c) m = 1000.

R�. Also, for the sake of having a compact notation, formally de-
fine d = [(d0)� (d1)� . . . (dm)�]� ∈ R�

∗, where d0 is a vector
of n0 extended real variables all taking value +∞ (R∗ is the set
of extended real numbers). We are interested in the case where
� ≥ m > p, i.e., Pm has more decision variables and agents
than budget-type coupling constraints, as it is typically the case
in resource sharing problems.

We start by recalling some basic facts about the geometry of
linear programs. The constraints of Pm in (1) define a feasi-
bility domain Q = {x : Ax = b, x ≥ 0, xn0+1:� ≤ dn0+1:�} ⊆
R�, which under Assumption 1, is almost surely a nonempty
polytope. The solution x� to Pm, which almost surely exists
and is unique, must occur at a vertex of Q by the definition of a
polytope vertex, see, e.g., [2, Definition 2.7]. Moreover, by [2,
Th. 2.3], any vertex of Q is a so-called basic feasible solution,
and vice versa, according to the following definition.

Definition 1: For any m ∈ N+, x̂ ∈ R� is said to be a basic
solution associated with Pm in (1) if Ax̂ = b and out of the
constraints of Pm that are active at x̂ there are � of them that are
linearly independent. x̂ is a basic feasible solution of Pm if in
addition x̂ is feasible for Pm. �

Basic solutions are at the core of linear programming; how-
ever, most results refer to linear programs in standard form,
where upper limit constraints are not present. Next, we provide
a characterization of basic feasible solutions in the present setup,
which will be used then to obtain a characterization of x� that
is essential for our proof of Theorem 1.

1) Characterization of Basic Solutions: Proposition 1 ex-
tends [2, Th. 2.4] while accounting for the presence of upper limit
constraints. Interestingly, the pursuit of such a characterization
was posed as an exercise in [2, Exercise 2.3], but no solution is
reported.

Proposition 1: If A is full row-rank, a vector x̂ ∈ R� is a
basic solution if and only if Ax̂ = b, and there exists a set
B = {j1, . . . , jp} ⊂ {1, . . . , �} of indices with |B| = p (i.e., its
cardinality equals the number of rows of A) such that

1) the columns Aj , j ∈ B, of A, are linearly independent;
2) if j /∈ B, then either x̂j = 0 or x̂j = dj , where x̂j , dj

denote the jth element of x̂ and d, respectively.
Proof: (⇐=) : Consider a vector x̂ satisfying Ax̂ = b, and

conditions (1) and (2) in the statement of the proposition. Since
Ax̂ = b is one of the conditions in the definition of basic solution,
it remains to show that � linearly independent constraints of
Pm in (1) are active at x̂. To this end, let B = {j1, . . . , jp} ⊂

{1, . . . , �} with |B| = p, be the set of indices such that the
columnsAj , j ∈ B, are linearly independent. For j /∈ B, x̂j = 0
or x̂j = dj , i.e., for the indices not in B either the nonnegativity
constraint or the upper limit constraint is active. Consider now
the following system of � linear equations in the � elements of a
vector x, namely∑

j∈B
Ajxj = b−

∑
j/∈B

Aj x̂j and xj = x̂j , for j /∈ B. (11)

Since the columns Aj , j ∈ B, of A, are linearly independent
by the condition (1) and the row rank of A is p = |B|, the
aforementioned system of equations admits a unique solution,
which must be x̂ since x̂ surely satisfies (11). By [2, Th. 2.2], this
is equivalent to the fact that the � equations in (11) are linearly
independent, which in turn means that there exist � constraints
active at x̂ that are linearly independent. This shows that x̂ is a
basic solution associated withPm, and concludes the sufficiency
part of the proof.
(=⇒) :Let x̂be a basic solution associated withPm in (1). We

then have thatAx̂ = b and that � linearly independent constraints
of Pm are active at x̂. Let Bk = {j1, . . . , jk} ⊂ {1, . . . , �} be
the set of indices such that x̂j �= 0 and x̂j �= dj , j ∈ Bk. Notice
that k ≤ p; otherwise, if k > p, then p+ (�− k) < � constraints
(the p budget-type equality constraints and �− k among nonneg-
ativity and upper limit constraints) would be active at x̂, which
violates the fact that x̂ is assumed to be a basic solution.

Consider now the following system of � linear equations in
the � elements of a vector x, which is similar to (11) with Bk in
place of B although∑

j∈Bk

Ajxj = b−
∑
j/∈Bk

Aj x̂j and xj = x̂j , for j /∈ Bk. (12)

The fact that x̂ is a basic solution is equivalent to having �
equations among those in (12) that are linearly independent.
As a result, and since the �− k equations xj = x̂j are plainly
linearly independent, there should exist at least k equations
from

∑
j∈Bk

Ajxj = b−∑
j/∈Bk

Aj x̂j that are also linearly
independent. This in turn implies that the columns Aj , j ∈ Bk,
of A, are linearly independent.

Since the row rank of A is equal to p and p ≥ k, we can
always amend p− k additional independent columns of A to
Aj , j ∈ Bk. Define the resulting set of indices by B, and notice
that |B| = p; this shows the condition (1) in the statement of the
proposition. Notice also that for all j /∈ Bk, x̂j = 0 or x̂j = dj .
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Since Bk ⊆ B, this is also the case for all j /∈ B. This shows
the condition (2) in the proposition statement and concludes the
necessity part of the proof. �

The following lemma shows that A is almost surely full row
rank in the present setup.

Lemma 1: Consider Assumptions 1 and 2 (part 2). Then, the
matrix A is almost surely full row rank.

Proof: Under Assumption 1, the optimal solution x� corre-
sponds almost surely to a basic feasible solution, that is, there
are � active constraints at x� that are linearly independent. On
the other hand, by Assumption 2, part 2, the number of active
constraints atx� is exactly �, and therefore, the active constraints
must be all linearly independent. The budget constraintsAx = b
are clearly active at x�, hence, this implies that the rows of A
are linearly independent, i.e., A is full row rank. �

In Proposition 1, it is not excluded that x̂j = 0 or x̂j = dj
for some j ∈ B. The following lemma shows that this is not
possible almost surely in the present setup.

Lemma 2: Under the nondegeneracy Assumption 2 (part 2), it
holds almost surely that for any basic (feasible) solution x̂j �= 0
and x̂j �= dj for all j ∈ B, where B are the indices satisfying
the property (1) in Proposition 1.

Proof: In the opposite case, there would be at least one index
j̃ ∈ B such that x̂j̃ = 0 or x̂j̃ = dj̃ with nonzero probabil-
ity, which would imply that there are 1 + p+ (�− p) = �+ 1
constraints active at x̂ (these are: either the nonnegativity or
the upper limit constraint corresponding to j̃ (depending on if
x̂j̃ = 0 or x̂j̃ = dj̃); the p budget-type constraints; and �− p
nonnegativity and upper limit constraints corresponding to in-
dices j /∈ B—see (2) in Proposition 1). This establishes a con-
tradiction, since under the nondegeneracy condition of part 2 at
most � constraints are active at x̂ with probability one. �

By Proposition 1, Lemma 1, and Lemma 2, almost surely
with respect to Pm, any basic (feasible) solution x̂ of Pm in
(1) determines a partition of itself into three subvectors x̂B ,
x̂N , and x̂N . Vector x̂B is a stacked vector containing the x̂j

with j ∈ B, while x̂N and x̂N contain the elements with the
remaining indices, which are in turn partitioned in the sets N
and N , respectively, such that x̂j = 0 for j ∈ N , and x̂j = dj ,
for j ∈ N . The elements of x̂B are referred to as basic variables,
while the elements of x̂N and x̂N are collectively referred to as
nonbasic variables. It should be noted that basic and nonbasic
variables refer to variables and not agents: for the same agent,
some variables could be basic, while some other ones nonbasic.
Also for the slack decision vector x̂0, some variables may
be basic, while some other nonbasic. However, in this case,
nonbasic variables must correspond to indices in N , since for
j = 1, . . . , n0, it cannot be x̂j = dj (x0 is only required to be no
smaller than 0, andd0 has been artificially defined as an extended
vector with all elements equal to +∞).

2) Optimality Conditions: Corresponding to the partition
of a basic (feasible) solution x̂ into basic and nonbasic vari-
ables, denote byAB = [Aj1 · · · Ajp ] the matrix obtained by the
columns of A corresponding to the indices in B, and by AN and
AN the matrices obtained by considering the columns of A with
indices corresponding to the ones of the elements comprising

x̂N , and x̂N , respectively. Similarly, let cB , cN , and cN be the
associated partition of c.

We then have the following proposition, which constitutes an
extension of [2, Th. 3.1] to the case where upper limit constraints
are present.

Proposition 2: Consider Assumptions 1 and 2 (parts 1 and
2). For any m ∈ N+, and almost surely with respect to Pm, a
basic feasible solution x̂ is the optimal solution x� of Pm in (1)
if and only if

c�N − c�BA
−1
B AN ≥ 0 (13)

c�
N
− c�BA

−1
B AN ≤ 0 (14)

B,N, and N being the partition into basic and nonbasic vari-
ables determined by x̂.

Proof: Under Assumptions 1 and 2, x� and Q, as well as
the partition B,N and N for any basic solution, are well de-
fined almost surely with respect to Pm, so all the subsequent
developments hold Pm-almost surely as well. For any given
basic feasible solution (vertex) x̂ of Q, consider a feasible point
x ∈ Q, and let z = x− x̂. Moreover, let xB , xN , and xN and
zB , zN , and zN denote the partitions of x and z into subvectors
corresponding to the indices of basic and nonbasic variables of
x̂.

Since x and x̂ are both feasible solutions, Ax̂ = b = Ax, and
as a result Az = A(x− x̂) = 0. This is in turn equivalent to
ABzB +ANzN +ANzN = 0, or in other words, recalling that
AB must be nonsingular by Proposition 1

zB = −A−1
B (ANzN +ANzN ). (15)

Consider now the cost function increment c�z when moving
from x̂ to x. We then have that

c�z = c�BzB + c�NzN + c�
N
zN

= (c�N − c�BA
−1
B AN )(xN − x̂N )

+ (c�
N
− c�BA

−1
B AN )(xN − x̂N ) (16)

where the second equality follows upon substituting (15), and
by the definition of z.

(⇐=) : Notice that (xN − x̂N ) ≥ 0 and (xN − x̂N ) ≤ 0 for
any x ∈ Q, since all elements of x̂N are equal to zero, while
all elements of x̂N are equal to the upper limit constraint.
Therefore, if (13) and (14) are satisfied, it follows from (16) that
c�z = c�(x− x̂) ≥ 0, i.e., the cost deteriorates (c�x ≥ c�x̂) if
we move from x̂ tox. Since this holds for anyx ∈ Q, this implies
that x̂ is equal to x�, the unique (under Assumption 1) optimal
solution of Pm.

(=⇒) : Assume now that x̂ is the unique (under Assump-
tion 1) optimal solution x� of Pm. This in turn implies that
c�z = c�(x− x̂) ≥ 0 for any x ∈ Q. For the sake of contradic-
tion assume that either (13) or (14) does not hold, i.e., either
[c�N − c�BA

−1
B AN ]j̃ < 0 or [c�

N
− c�BA

−1
B AN ]j̃ > 0 for some

j̃ ∈ N or j̃ ∈ N , respectively ([ · ]j̃ denotes the j̃th element of
the argument).

Suppose that [c�N − c�BA
−1
B AN ]j̃ < 0.
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Notice that from the feasibility of x̂, we have that ABx̂B +
AN x̂N +AN x̂N = b, which in turn, recalling that AB is non-
singular, gives x̂B = A−1

B b−A−1
B AN x̂N −A−1

B AN x̂N . We
next define a new vector x̃ with the associated partitioning x̃N ,
x̃N , and x̃B (notice that B,N,N is still the indices partitioning
associated to x̂).

For all j ∈ N,N take x̃j = x̂j if j �= j̃, while let x̃j̃ = μ,
where μ ∈ (0, dj̃) is an arbitrary parameter that can be always
selected in view of part 1 of Assumption 2 and also because we
defined d0 as an extended vector whose elements are all +∞. In
other words, x̃N is identical to x̂N , while x̃N is identical to x̂N

except for the j̃th element, which is taken equal toμ. Eventually,
define

x̃B = A−1
B b−A−1

B AN x̃N −A−1
B AN x̃N . (17)

As is clear, equation (17) is equivalent to Ax̃ = ABx̃B +
AN x̃N +AN x̃N = b, i.e., x̃ satisfies the budget constraint.
Moreover, from the very definition of x̃N and x̃N , we have that
(remember that x̂N = 0)

x̃B = A−1
B b−A−1

B AN x̂N −A−1
B AN x̂N

−A−1
B AN · [0 · · ·μ · · · 0]�

= x̂B −A−1
B AN · [0 · · ·μ · · · 0]�.

By Lemma 2, x̂j ∈ (0, dj) for all j ∈ B. Therefore, since
x̃B is continuous in μ, for μ > 0 small enough we can ensure
that x̃j ∈ (0, dj) for all j ∈ B, while x̃j ∈ [0, dj ] for all j ∈
N,N by the very definition of x̃ (and clearly x̃j ∈ [0,+∞)
when j ∈ {1, . . . , n0}). This means that, besides the budget-type
constraint, x̃ also satisfies the nonnegativity and the upper limit
constraints of Pm, that is, x̃ is feasible for Pm in (1). Recalling
(16), and from the definition of x̃, we have that

c�(x̃− x̂) = (c�N − c�BA
−1
B AN )(x̃N − x̂N )

+ (c�
N
− c�BA

−1
B AN )(x̃N − x̂N )

= [c�N − c�BA
−1
B AN ]j̃μ.

Given that μ > 0, assuming [c�N − c�BA
−1
B AN ]j̃ < 0 would

give c�(x̃− x̂) < 0, which contradicts the optimality of x̂.
As for the case [c�

N
− c�BA

−1
B AN ]j̃ > 0, a contradiction can

be established following a symmetric argument by defining x̃j̃ =
dj̃ − μ in place of x̃j̃ = μ.

This concludes the necessity part of the proof. �
It should be noted that the left-hand sides of (13) and (14) are

referred to as reduced cost vectors in the linear programming
literature [2]. Note also that in the absence of the nondegeneracy
conditions of Assumption 2, (13) and (14) are only sufficient for
a basic feasible solution to be optimal.

B. Preliminary Results Based on Duality Analysis

Consider the dual program associated with Pm in (1)

Dm : max
λ∈Rp,

{νi∈Rni}mi=1

− λ�b−
m∑
i=1

(νi)�di (18)

subject to: λ�A0 ≥ 0

− (ci)� − λ�Ai ≤ (νi)�, ∀i = 1, . . . ,m

νi ≥ 0, ∀i = 1, . . . ,m

where λ and νi, i = 1, . . . ,m, denote the dual variables as-
sociated with the budget-type constraint and the upper limit
constraints, respectively. Note that the slack variables in x0 are
subject to nonnegativity constraints only, and therefore, there
are no dual variables ν0 associated to x0.

We also consider in the following an alternative dual program
corresponding to Pm, which is directly in the format consid-
ered in [19], on which some of our probabilistic developments
are based. This corresponds to dualizing only the budget-type
constraint, thus maintaining the optimization with respect to xi

subject to the nonnegativity and the upper limit constraints in
the definition of the constraints of the resulting dual program

D̃m : max
λ∈Rp,

{hi∈R}mi=1

− λ�b−
m∑
i=1

hi (19)

subject to: λ�A0 ≥ 0

max
0≤xi≤di

(−(ci)� − λ�Ai)xi ≤ hi

∀i = 1, . . . ,m.

We show next that Dm and D̃m are strictly related.
Lemma 3: If (λ�, {νi,�}mi=1) is an optimal dual solution

for Dm in (18), then (λ�, {hi,�}mi=1) with hi,� = (νi,�)�di,
i = 1, . . . ,m is an optimal dual solution for D̃m in (19).

Proof: Consider D̃m, and notice that the maximization with
respect to 0 ≤ xi ≤ di in the constraints can be performed
analytically, since the maximum is always attained at an ex-
treme point. In formulas, for each i = 1, . . . ,m, the constraint
max0≤xi≤di(−(ci)� − λ�Ai)xi ≤ hi in D̃m is equivalent to

max{0,−(ci)� − λ�Ai}di ≤ hi (20)

where the max in (20) is to be understood component-wise.
Introduce an additional decision vector νi such that (νi)� =
max{0,−(ci)� − λ�Ai} for all i = 1, . . . ,m. Given that di >
0 for all i = 1, . . . ,m, the problem D̃m becomes then equivalent
to

max
λ∈Rp,

{hi∈R,νi∈Rni}mi=1

− λ�b−
m∑
i=1

hi (21)

subject to: λ�A0 ≥ 0

− (ci)� − λ�Ai ≤ (νi)�, ∀i = 1, . . . ,m

νi ≥ 0, ∀i = 1, . . . ,m

(νi)�di ≤ hi, ∀i = 1, . . . ,m

where the second and third set of constraints follow from the
definition of νi, i = 1, . . . ,m, while the first and the fourth
follow from (19) and (20).

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 15,2023 at 17:47:58 UTC from IEEE Xplore.  Restrictions apply. 



FALSONE et al.: ON THE SENSITIVITY OF LINEAR RESOURCE SHARING PROBLEMS TO THE ARRIVAL OF NEW AGENTS 279

Notice now that (21) admits an additional interpretation. It
could be thought of as the epigraphic reformulation of Dm, re-
placing the second term in its objective function with−∑m

i=1 h
i,

together with the additional epigraphic constraints (νi)�di ≤
hi.

Overall, we have that D̃m ≡ (21) ≡ Dm. Equivalence is in
the sense that (λ�, {hi,�, νi,�}mi=1) being an optimal solution pair
for (21), is equivalent to (λ�, {νi,�}mi=1) being optimal for Dm,
and (λ�, {hi,�}mi=1) being optimal for D̃m. Notice that at the
optimal solution (hi,�, νi,�), the third set of constraints in (21)
will hold with equality. Hence, we have that hi,� = (νi,�)�di,
i = 1, . . . ,m, thus concluding the proof. �

Consider now the primal programPm in (1). Besides the non-
negativity constraints x ≥ 0, the budget-type constraint and the
upper limit constraints can be compactly written as Ax = b and
x ∈ [0, d] provided that for the firstn0 elements xj ≤ dj = +∞
is interpreted as xj < +∞. Similarly, for the dual program
Dm in (18), if we define ν = [0�n0 (ν1)� . . . (νm)�]�, the con-
straints are cumulatively given by ν ≥ 0 and −c� − λ�A ≤ ν�

and ν ≥ 0 (remember that also cj = 0 for j = 1, . . . , n0). Let
(x�, (λ�, ν�)) denote an optimal primal-dual solution pair for
Pm andDm, where ν� = [0n0 (ν�,1)� . . . (ν�,m)�]�. Note that
such a pair exists almost surely due to the feasibility part of
Assumption 1. Given that Pm and Dm are linear, strong dual-
ity holds and we have the following complementary slackness
conditions [14] that are necessarily satisfied by (x�, (λ�, ν�)):

[x� − d]jν
�
j = 0, j = 1, . . . , n (22)

[−c� − (λ�)�A− (ν�)�]jx
�
j = 0, j = 1, . . . , n (23)

where we recall that [ · ]j denotes the jth element of its argument.
Note that for j = 1, . . . , n0, (22) is valid as long as the con-

vention∞ · 0 = 0 is adopted (recall that d0 is an extended vector
with elements all equal to +∞, while ν�,0 = 0 by definition).
All the other conditions are instead the standard complementary
slackness conditions for Pm and Dm. In (23), the role of dual
vector is played by x�; this is so because the dual of Dm is the
primal Pm itself thanks to linearity and decision variables being
continuous.

Let B, N , N be the partitioning associated to the decom-
position of x� into basic and nonbasic variables x�

B , x�
N , and

x�
N

, which is unique under the uniqueness part of Assumption 1
and the nondegeneracy condition of Assumption 2 (part 2)—see
Proposition 1. With the same subscripts, we denote the decom-
position according to B, N , N of other vectors/matrices like
A and c and the optimal dual variables ν�. We then have the
following proposition.

Proposition 3: Consider Assumptions 1 and 2 (parts 1 and
2). Then, almost surely with respect to Pm, λ� is uniquely
determined by

λ� = −(c�BA
−1
B )�. (24)

Proof: Under Assumption 1, x� as well as its decomposition
into basic and nonbasic variables are well-defined and unique
almost surely with respect to Pm. Thus, all subsequent devel-
opments will hold Pm-almost surely as well. Recall that due to
Lemma 2, x�

j �= 0 and x�
j �= dj for all j ∈ B. As a result, we

have that

⎧⎨
⎩

0 < x�
j < dj for all j ∈ B

x�
j = 0 for all j ∈ N

x�
j = dj for all j ∈ N.

(25)

By the complementary slackness conditions (22) and (23) and
the first subcase in (25), it follows that ν�B = 0. Moreover, since
x�
B �= 0 and ν�B = 0, it follows from (23) that

−c�B − (λ�)�AB = 0. (26)

Since, x� is a vertex, and hence, an extended feasible solution
of Pm in (1), the columns of AB are linearly independent—see
Proposition 1—and AB is invertible. Therefore, λ� is uniquely
determined by (26) resulting in (24). This concludes the proof.�

Under Assumption 1 and the nondegeneracy conditions of
Assumption 2 (parts 1 and 2), the converse of the complemen-
tary slackness conditions (22) and (23) are also valid. This is
summarized in the following lemma.

Lemma 4: Consider Assumptions 1 and 2 (parts 1 and 2),
and let x� and λ�, ν� be the unique primal-dual solution pair
associated with Pm in (1) and Dm in (18). For any j = 1, . . . , �,
the following equivalencies hold:

1) x�
j ∈ (0, dj) ⇐⇒ [−c� − (λ�)�A]j = 0;

2) x�
j = dj ⇐⇒ ν�j > 0.

Proof: Part 1: The fact that x�
j ∈ (0, dj) implies [−c� −

(λ�)�A]j = 0 follows from the derivation of (26). To show
the converse, since x�

j ∈ (0, dj) is equivalent to j ∈ B where
B, N , N is the indices partitioning associated to x�, we will
consider for the sake of contradiction that there exists j̃ ∈ N
and [−c� − (λ�)�A]j̃ = 0. The case where j̃ ∈ N also leads to

a contradiction using symmetric arguments. The fact that j̃ ∈ N
allows us to consider the vector x̃ constructed in the proof of
Proposition 2: given a basic feasible solution x̂, x̃ constitutes
a replica of x̂ with the j̃th element perturbed by μ ∈ (0, dj̃).
Recall that for μ small enough, x̃ is feasible for Pm in (1), as
shown in Proposition 2 (where parts 1 and 2 of Assumption 2
are used). Take now x̂ = x�, and consider the cost increment
c�x̂− c�x̃ as we move from x� to x̃. Since by construction x�

and x̃ differ only in the j̃th element, we obtain that

c�(x̃− x�) = [−c� − (λ�)�A]j̃μ = 0 (27)

where the last equality follows since we assumed [−c� −
(λ�)�A]j̃ = 0. The last statement implies that x̃ is an optimal so-
lution forPm, but, since x̃ �= x�, this contradicts the uniqueness
of the optimal solution to Pm (see Assumption 1).

Part 2: If ν�j > 0, then the complementary slackness condition
in (22) implies that x�

j = dj . Conversely, if x�
j = dj assume

for the sake of contradiction that ν�j = 0. By (23), we would
then have that [−c� − (λ�)�A]j = 0, which by point (1) in the
present lemma is equivalent to x�

j ∈ (0, dj). However, this es-
tablishes a contradiction with the fact thatx�

j = dj , thus showing
that ν�j > 0. �
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V. PROOF OF THEOREM 1

We are now in a position to prove Theorem 1. To this end,
first notice the following equivalences:

{i ∈ {1, . . . ,m} : ∃j ∈ J i such that x�
j �= 0}

(i)
= {i ∈ 1, . . . ,m : ∃j ∈ J i such that x�

j = dj}
∪ {i ∈ 1, . . . ,m : ∃j ∈ J i such that x�

j ∈ (0, dj)}
(ii)
= {i ∈ 1, . . . ,m : ∃j ∈ J i such that ν�j > 0}

∪ {i ∈ 1, . . . ,m : ∃j ∈ J i

such that [−(ci)� − (λ�)�Ai]j = 0}
(iii)
= {i ∈ 1, . . . ,m : hi,� > 0}

∪ {i ∈ 1, . . . ,m : λ� lies on the boundary of Ri} (28)

where Ri is the polytopic constraint set defined as Ri = {λ :
max{0,−(ci)� − λ�Ai}di ≤ 0}. The equality in (i) is trivial,
while (ii) follows from Lemma 4. To show (iii) notice first
that the first sets of indices in (ii) and (iii) coincide, since
hi,� = (νi,�)�di, for all i = 1, . . . ,m, due to Lemma 3 and
di > 0 by Assumption 2. Excluding the i’s for which hi,� > 0,
which have already been accounted for, the remaining i’s are
such that max{0,−(ci)� − λ�Ai}di ≤ 0 (i.e., λ� ∈ Ri); see
D̃m in (19) and recall that the constraints in D̃m and those in (20)
are equivalent. If [−(ci)� − (λ�)�Ai]j = 0 for some j ∈ J i as
in the second set of indices in (ii), then λ� belongs at least to one
edge of Ri, i.e., it lies on the boundary. Notice that while the set
of indices in the union in (i) and (ii) may overlap, this is not the
case for (iii), where the two sets are disjoint.

Recall that s�, as defined in (8), denotes the number of agents
whose optimal decision vector as returned by Pm in (1) has at
least one nonzero element. By (28), we have that s� can also be
alternatively defined as

s� =
∣∣∣{i ∈ 1, . . . ,m : hi,� > 0}

∣∣∣
+
∣∣∣{i ∈ 1, . . . ,m : λ� lies on the boundary of Ri}

∣∣∣.
(29)

The dual D̃m in (19) admits an additional interpretation. Ele-
ments hi, i = 1, . . . ,m, could be thought of as constraint relax-
ation variables for the constraintsmax{0,−(ci)� − λ�Ai}di ≤
0 (recall again that the constraints of D̃m and those in (20)
are equivalent). These relaxation variables are penalized in the
objective function of D̃m. It follows from (29) that agents that
have at least one nonzero element in their decision vector are
those for which the corresponding constraint max{0,−(ci)� −
λ�Ai}di ≤ 0 is either violated by λ�—i.e., hi,� > 0—or is such
that λ� lies on its boundary.

Scenario optimization problems with constraint relaxation,
a class of programs within which D̃m fits, have been studied
in [19, Sec. 5.2], where bounds on the probability that the
resulting optimal solution violates a newly extracted constraint

are provided. Specifically, adapting [19, Th. 4 and Footnote 4]
to the notation of D̃m in (19), we have the following result. Fix
β ∈ (0, 1), and consider ε(·) and ε(·) as defined in (6) and (7),
respectively. Let s� be as in (29). Under Assumptions 1 and 2
(note that part 3 of Assumption 2 is required for this result), we
have that

Pm
{{δi}mi=1 ∈ Δm : P

{
δ̄ = (n̄, c̄, d̄, Ā) ∈ Δ :

max{0,−c̄� − (λ�)�Ā}d̄ > 0
} ∈ [ε(s�), ε(s�)]

}
≥ 1− β (30)

i.e., with confidence at least 1− β, the probability that λ� (the
optimal dual solution for the λ-variables of D̃m, which depends
on {δi}mi=1) violates the constraint max{0,−c̄� − λ�Ā}d̄ > 0
when it comes to a new realization δ̄ = (n̄, c̄, d̄, Ā), lies within
[ε(s�), ε(s�)].

Fix now any {δi}mi=1 and consider Pm
+ in (2), which has

an additional agent parameterized by δ̄ = (n̄, c̄, d̄, Ā). Take
(x�, 0), which is clearly feasible for Pm

+ and notice that this
is a basic feasible solution for Pm

+ since it is a vertex of the
polytopic feasibility domain of Pm

+ . Since variables in (x�, 0)
corresponding to the new agent are zero, the new agent will not
contribute to the basic components of (x�, 0), and clearly not to
the ones that are active at the upper limit constraints. Therefore,
the decomposition of [c� c̄�]� and [A Ā] corresponding to the
basic and nonbasic variables of (x�, 0) will be

[c� c̄�]
�
B = cB , [A Ā]B = AB

[c� c̄�]
�
N = cN , [A Ā]N = AN

[c� c̄�]
�
N = [c�N c̄�]�, [A Ā]N = [AN Ā] (31)

where AB , AN , AN and cB , cN , cN constitute the partition of
A and c corresponding to basic and nonbasic variables of x�,
the optimal solution to Pm in (1).

We have the following equivalences that hold almost surely:

P{δ̄ ∈ Δ : max{0,−c̄� − (λ�)�Ā}d̄ ≤ 0}
= P{δ̄ ∈ Δ : −c̄� − (λ�)�Ā ≤ 0}
Prop. 3
= P{δ̄ ∈ Δ : c̄� − c�BA

−1
B Ā ≥ 0}

Prop. 2
= P{δ̄ ∈ Δ : x�

+ = (x�, 0)}. (32)

The first equality applies becausemax{0,−c̄� − (λ�)�Ā} ≥
0 while d̄ > 0. The second equality follows by direct substi-
tution of the (almost surely unique) expression for λ� into
(24), while the last one derives from Proposition 2 applied
to (x�, 0), which says that (x�, 0) is optimal if and only
if [c� c̄�]N − [c� c̄�]B [A Ā]−1

B [A Ā]N ≥ 0 and [c� c̄�]N −
[c� c̄�]B [A Ā]−1

B [A Ā]N ≤ 0. Given the expressions in (31)
and since AB , AN , AN and cB , cN , cN satisfy (13) and (14)
being the partitioning associated to the optimal solution x�

to Pm, the conditions for the optimality of (x�, 0) reduce to
c̄� − c�BA

−1
B Ā ≥ 0 ((x�, 0) implies that the new agent only

contributes to the nonbasic variables that are active at the non-
negativity constraints).
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By (32), we then have almost surely that

P{δ̄ ∈ Δ : x�
+ �= (x�, 0)}

= P{δ̄ ∈ Δ : max{0,−c̄� − (λ�)�Ā}d̄ > 0} (33)

i.e., the probability that the optimal solution to Dm in (18)
violates a new constraint associated to δ̄ is almost surely equal
to the probability that the arrival of the new agent δ̄ alters the
solution with the initial m agents only. Using (33) in (30), the
inequality (9) of Theorem 1 follows.

This concludes the proof. �
Remark 3: Theorem 1 can be extended so as to encompass

situations where local upper limit constraints for some variables
and for some agents are not present. This case can be accounted
for without altering the setup of this article by letting di be a vec-
tor of the extended real variable and setting to +∞ the elements
corresponding to variables for which there is no upper limit.
However, since x is anyway a vector of a standard Euclidean
space, constraints of the type xj ≤ +∞ must be interpreted as
xj < +∞. Note also that any basic feasible solution x̂must take
value in an Euclidean space too so that if dj = +∞ for some j,
then it can either be j ∈ B or j ∈ N , since j ∈ N would give
x̂j = dj = +∞, which is not possible. In this extended setup,
the statement of Theorem 1 remains unchanged and also the
proof can be carried over without modifications provided that the
convention∞ · 0 = 0 is adopted. This way, whenever dj = +∞
for some j, ν�j is forced to be 0, i.e., [−(c)� − (λ�)�A]j ≤ 0.
This is coherent with Lemma 3, since ν�j > 0 would imply
x�
j = dj = +∞, which is not possible. �
Remark 4: In [17], a version of problem (1) where no

local upper limit constraints are present was considered. This
problem can be addressed by resorting to the extended setup
explained in Remark 3 previously, that is, by letting all elements
of d be equal to +∞. In this specific situation, it is possible to
establish the a priori bound s� ≤ p (recall that p denotes the
number of budget-type constraints) irrespective of the sample
{δi}mi=1. As a matter of fact, dj = +∞ for all j implies that
ν�j = 0 for all j so that (28) yields s� = |{i ∈ 1, . . . ,m : ∃j ∈
J i such that [−(ci)� − (λ�)�Ai]j = 0}| = |{i ∈ 1, . . . ,m :
∃j ∈ J i such that x�

j ∈ (0, dj)}| (| · | denotes cardinality). It
follows then from (25) and Proposition 1 that s� ≤ |B| = p.
The result of [17, Th. 1] (see also (10)) can be then obtained by
noticing that, under the condition s� ≤ p, the characterization
of P{δ̄ = (n̄, c̄, d̄, Ā) ∈ Δ : max{0,−c̄� − (λ�)�Ā}d̄ > 0}
provided in [5, Th. 2.4] can be used in place of (30). �

VI. ILLUSTRATIVE EXAMPLE: APPLICATION TO OPTIMAL

CARGO AIRCRAFT LOADING

The main purpose of this example section is to illustrate the
results of this article; therefore, we opted for a simple, yet
not simplistic, problem with an application appeal that favors
interpretability as much as possible.

We consider a cargo aircraft loading problem inspired by [21],
where a company wants to load a cargo airplane as much as
possible so as to obtain the maximum profit from carrying goods
among a batch of m requests. The decision variables xi for this

problem, which are all scalars, are the quantities in kilograms
of various items to be carried. To each xi, there is associated
a coefficient pi that specifies how much the freight company
is paid for carrying a unitary quantity of the specified ware.
Typically, more urgent shipments may be paid more in order
to arrive on time. Each xi has a lower bound set to 0 (xi = 0
means that the item i is not shipped) and an upper bound di set
by the estimated demand (by the customers of the transportation
company) in order to avoid shipping excessive quantities of a
merch that would remain unsold. Finally, the employed cargo
aircraft has maximum weight and volume capacities, say W and
V , which set limits on the amounts and types of goods that can be
shipped. Altogether, this leads to the following linear problem:

max
{xi∈R}mi=1

m∑
i=1

pixi (34)

subject to:
m∑
i=1

xi ≤ W,
m∑
i=1

1

ρi
xi ≤ V

0 ≤ xi ≤ di

where ρi is the density of the ith good and pi, ρi, and di are
assumed to be independently observed from a probability dis-
tribution that represents the entire variety of goods that can be
shipped. Problem (34) can be indeed rewritten as Pm in (1) by
introducing the additional slack variable x0 ∈ R2 and by setting
A0 = I , Ai = [1 1

ρi ]
�, i = 1, . . . ,m, ci = −pi, i = 1, . . . ,m,

and b = [W V ]�.
After an air freight company has received an initial batch of re-

quests from customers and has planned the optimal arrangement
of these initial items on an aircraft, it may be that the obtained
solution is not completely satisfactory. The company may want
to decide then whether it is convenient to wait for some late
items from other customers and to replan the aircraft loading,
by discarding parts of the current goods, and e.g., shipping them
on another plane departing later. Waiting for the new items to
arrive and reloading the aircraft takes additional time that can
likely cause a delay and requires extra work that may result in
additional cost, but at the same time, it may be worth waiting
for late items that are more profitable than the existing ones
(e.g., more urgent goods may arrive, leading to higher profit).
The theory developed in this article allows one to evaluate the
probability of improving the solution with the arrival of a new
item, and therefore, it provides a tool to support the company’s
decision whether to open for new requests or stay with the
original arrangement. In particular, if this probability is assessed
to be high, the company will be eager to wait for new items. In
the opposite case, the company will opt instead for not waiting
for further requests.

The arrival of a new item corresponds to solving

max
{xi∈R}mi=1,x̄∈R

m∑
i=1

pixi + p̄x̄ (35)

subject to:
m∑
i=1

xi + x̄ ≤ W,
m∑
i=1

1

ρi
xi +

1

ρ̄
x̄ ≤ V
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Fig. 2. Cases with m ∈ {100, 200} agents, uniform distribution over [dmin, dmax]. Solid line shows the theoretical upper and lower bounds
ε(k), ε(k) on the probability that the solution changes upon the arrival of a new agent. Each cloud corresponds to a different choice dmin and dmax

as indicated in the legend, and involves m points. Each point within a cloud shows the empirical probability P̂{x�
+,(t)

�= (x�
(t)

, 0)}, for t = 1, . . . ,m,
corresponding to a different batch of m items. (a) m = 100. (b) m = 200.

0 ≤ xi ≤ di, 0 ≤ x̄ ≤ d̄

and Theorem 1 in the present context implies that [ε(s�), ε(s�)],
where ε and ε are computed as in (6) and (7) and s� is the number
of nonzero components in the optimal solution to (34), is a valid
assessment of the probability that (35) improves over (34) with
confidence 1− β.

To test numerically the validity of Theorem 1, the problem
(34) was repeatedly solved 100 times with different batches of
m items, and each time the optimal solutionx�

(t), t = 1, . . . , 100,
and s�(t), t = 1, . . . , 100, were computed. For each x�

(t), M =

50 ·m new items p̄, ρ̄, d̄ were then considered and the problem
(35) was solved M times so as to empirically compute the
probability that the solution x�

+,(t) to (35) improves over x�
(t).

That is

P̂{x�
+,(t) �= (x�

(t), 0)} =
no. of cases s.t. x�

+,(t) �= (x�
(t), 0)

M
.

The pairs (s�(t), P̂{x�
+,(t) �= (x�

(t), 0)}) were then plotted in
a bidimensional graph along with the curves ε(k) and ε(k) so
as to allow for a visual inspection that P̂{x�

+,(t) �= (x�
(t), 0)} is

indeed within [ε(s�(t)), ε(s
�
(t))] as predicted by Theorem 1.

The simulations were carried out by setting the problem
parameters as follows.

1) pi and p̄were independently extracted from a uniform dis-
tribution over [pmin, pmax], where pmin = 20 $/kg and
pmax = 60 $/kg.

2) ρi and ρ̄ were independently extracted from a uniform
distribution over [ρmin, ρmax], where ρmin = 900 kg/m3

(approximately the density of polyurethane plastic) and
ρmax = 7000 kg/m3 (close to that of iron).

3) di and d̄ were independently extracted from a uniform
distribution over [dmin, dmax]. Various choices for dmin

and dmax were considered as discussed in the sequel.
4) W and V were set to the weight and volume capacity of

a Boeing 737 MAX 8 aircraft1.

5) the number m of initial agents was set to 100 in a first
number of simulations and to 200 in a second batch.

6) β was set to 10−7 so as to enforce a quite high confidence,
which amounts to practical certainty.

Fig. 2(a) depicts the results obtained form = 100 and various
values of dmin and dmax as reported in the figure legend. As dmin

and dmax change, different clouds of points are obtained corre-
sponding to various goods distribution. Yet, as expected, in all
cases P̂{x�

+,(t) �= (x�
(t), 0)} is in between ε(s�) and ε(s�) (given

that β = 10−7, P̂{x�
+,(t) �= (x�

(t), 0)} /∈ [ε(s�(t)), ε(s
�
(t))] should

happen on average once every 10 billions cases). This confirms
the validity on any decision taken by the air freight company
based on ε(s�) and ε(s�) (for example, one sensible decision
could be: wait for new requests if ε(s�) is above 0.6, do not wait
if ε(s�) is below 0.3). As it appears, for high values of dmin and
dmax, indicatively represented by the mean 1

2 (dmax + dmin),

P̂{x�
+,(t) �= (x�

(t), 0)}, and correspondingly s�(t), concentrates

around small values, while as 1
2 (dmax + dmin) is decreased,

P̂{x�
+,(t) �= (x�

(t), 0)} and s�(t) tend to shift toward higher values.
This behavior admits the following justification: large values of
1
2 (dmax + dmin) correspond to situations where it is likely that
customers want to ship large quantities of their merchandise and
the cargo company can fill the airplane with shipments from few
customers best paying for the service resulting in a small s�(t);

vice versa, when 1
2 (dmax + dmin) is low, the air cargo company

has to rely on a broader variety of goods to exploit the full
capacity of the aircraft, resulting in s�(t) close to m. In particular,
for the lowest values of dmin and dmax in the simulation, it is
likely that m = 100 customers either do not or barely saturate
the aircraft capacity so that the probability to change the solution
becomes either 1 or extremely close to it. This corresponds to
the cloud of points in Fig. 2(a) that is concentrated toward the
upper curve ε(k).

1[Online]. Available at: http://www.boeing.com/resources/boeingdotcom/
commercial/airports/ acaps/737MAX_RevA.pdf
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Fig. 3. Case m = 200, Gaussian distribution truncated over positive
values with mean μ and variance σ2. Solid line shows the theoretical
upper and lower bounds ε(k), ε(k) on the probability that the solution
changes upon the arrival of a new agent. Each cloud corresponds to
a different choice of μ as indicated in the legend, while σ2 = 3096 in
all cases, and involves 200 points. Each point within a cloud shows
the empirical probability P̂{x�

+,(t)
�= (x�

(t)
, 0)}, for t = 1, . . . , 200, cor-

responding to a different batch of m items.

Similar comments apply for the results depicted in Fig. 2(b),
wherem = 200 and the same values for dmin and dmax as before
were considered. Increasing m makes ε(k) and ε(k) getting
closer each other, meaning that the assessment of P̂{x�

+,(t) �=
(x�

(t), 0)} provided by Theorem 1 becomes tighter and tighter as
the number of agents increases. Coherently, the clouds of points
have smaller vertical dispersion in these simulations.

Fig. 3 depicts the simulation results for m = 200, where,
however, di and d̄ are now extracted from a Gaussian truncated
over positive values, with mean μ taking various values cor-
responding to the centers of the intervals [dmin, dmax] consid-
ered in the previous two simulation experiments and variance
σ2 = 3096 (the variance has been chosen so that the 90% of the
probabilistic mass of the Gaussian is contained in the interval
[dmin, dmax]). Again, the assessment of P̂{x�

+,(t) �= (x�
(t), 0)}

given by [ε(s�(t)), ε(s
�
(t))] turns out to be valid in all the experi-

ments, showing heuristically the distribution-free nature of the
result. All comments provided for the previous figures apply in
this case as well.

VII. CONCLUSION

In this article, we considered a class of multi-agent optimal re-
source sharing problem that can be encoded by linear programs.
The amount of resource to be shared is fixed, while agents are
subject to local constraints, with each of them contributing to
the objective function and the budget-type shared resource con-
straint by a distinct (linear) term. All agents’ contributions to cost
and budget-type constraint, as well as agents’ local constraints,
depend on some random parameters, modeling heterogeneity
among agents.

In this context, we studied the probability that the arrival of
a new agent changes the solution with the original agents, and
consequently, the share of resources. This can be interpreted
as a sensitivity index, which is of paramount importance for a
correct management of the multi-agent system. Although the
probability that the arrival of a new agent changes the solution

cannot be directly computed, the main thrust of this article was
to provide a confidence interval and show that this probability
can always be accurately estimated by counting the number of
agents that are actually contributing to the solution of the original
problem. This result was achieved by introducing certain dual
formulations of the resource sharing linear program, which
exhibit a scenario program structure. Recent results from the
theory of scenario optimization were then used to a posteriori
bound the probability of constraint violation for the dual optimal
solution, which eventually was shown to be equivalent to the
probability that the solution changes upon the arrival of a new
agent. The efficacy of our results was demonstrated on a cargo
aircraft loading problem.

This article concentrates toward two directions: from a theo-
retical point of view, we aim at extending the class of resource
sharing programs by allowing for more general local constraints,
while from an application point of view, we aim at employing
our analysis to other applications that exhibit this structure,
involving robotic surveying problems as well as economic dis-
patch problems (as, e.g., in [25]), including their demand-side
counterpart (e.g., see [23]).
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