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Abstract— In this work we propose a Model Predictive
Control (MPC) formulation that splits constraints in two
different types. Motivated by safety considerations, the first
type of constraint enforces a control-invariant set, while the
second type could represent a less restrictive constraint on
the system state. This distinction enables closed-loop sub-
optimality results for nonlinear MPC with heterogeneous
state constraints (distinct constraints across open loop
predicted states), and no terminal elements. Removing the
non-invariant constraint recovers the partially constrained
case. Beyond its theoretical interest, heterogeneous con-
strained MPC shows how constraint choices shape the
system’s closed loop. In the partially constrained case,
adjusting the constraint horizon (how many predicted-
state constraints are enforced) trades estimation accuracy
for computational cost. Our analysis yields first, a sub-
optimality upper-bound accounting for distinct constraint
sets, their horizons and decay rates, that is tighter for
short horizons than prior work. Second, to our knowledge,
we give the first lower bound (beyond open-loop cost)
on closed-loop sub-optimality. Together these bounds pro-
vide a powerful analysis framework, allowing designers to
evaluate the effect of horizons in MPC sub-optimality. We
demonstrate our results via simulations on nonlinear and
linear safety-critical systems.

Index Terms— Model Predictive Control, Optimal Control,
Constrained Control, Nonlinear Control.

I. INTRODUCTION

MODEL Predictive Control (MPC) [1], [2] is an
optimization-based method that approximates the

infinite-horizon constrained problem by a finite horizon one
[3], raising the question of how similar these two solution
are. This assessment is done via the MPC’s closed-loop
suboptimality analysis [4].

An early contribution on closed-loop optimality analysis is
[5], which derived bounds on closed-loop suboptimality for
linear discrete-time systems by assuming finite-horizon opti-
mal value functions availability. Earlier results are extended

Submission for review: dd/mm/yyyy. AAdN, AP and KM acknowl-
edge funding support by MathWorks. AP was supported in part by
UK’s Engineering and Physical Sciences Research Council projects
EP/X017982/1 and EP/Y014073/1. For the purpose of Open Access,
the authors have applied a CC BY public copyright licence to any Author
Accepted Manuscript (AAM) version arising from this submission.

Allan Andre do Nascimento, Antonis Papachistodoulou and Kostas
Margellos are with the Department of Engineering Science, University
of Oxford, Parks Road, Oxford OX1 3PJ, UK (email: {allan.adn, antonis,
kostas.margellos }@eng.ox.ac.uk).

Han Wang is with the Department of Information Technology and
Electrical Engineering, ETH Zurich, ETL, Physikstrasse 3, 8092 Zürich,
Switzerland (email: hanwang@control.ee.ethz.ch).

in [6] to nonlinear systems, where open-loop value functions
are used to evaluate closed-loop suboptimality, yielding a
sufficient stability condition explicit in the prediction horizon.
Previous works focused on the prediction horizon as the tuning
dial for sub-optimality estimation. Sub-optimality was ana-
lyzed in [7], for open-loop costs upper-bounded by a chosen
running cost within the horizon, assuming uniform constraints
and access to optimal state–input pairs. Flexibility on when
to start bounding the open-loop cost adds another angle to
the suboptimality estimation. Subsequent literature, including
[4], [8], [9], move from uniform to dynamic ratios between
the open-loop value function and running cost, enabling
tighter suboptimality bounds by capturing changes in open
and closed-loop costs with greater precision. Extending the
knowledge of MPC parameters’ effect on sub-optimality, [8]
studies the effect of using a control horizon larger than one in
closed loop, relevant to networked MPC, with communication
delays and data losses [10]–[12]. Sub-optimality was also
studied for economic MPC (e.g., [13], [14]).

Recent developments in safety-critical control have sparked
a growing interest in enforcing set invariance [15], particularly
through the Control Barrier Function (CBF) framework [16]–
[18]. This form of constraint enforcement is especially well-
suited to receding horizon techniques, which are themselves
advantageous in safety-critical problems due to their predictive
capabilities [19], [20]. Consequently, MPC-like controllers that
integrate CBF constraints have gained traction, with efforts
spanning centralized [21], [22], distributed [23], probabilistic
[24], learning [25], and real-time [26] MPC frameworks to
name a few.

In the wake of this trend and considering CBF as an
invariant constraint along the MPC horizon, our earlier work
[27] introduced, to the best of our knowledge, the first sub-
optimality estimation for “partially constrained” MPC. Relax-
ing the need to enforce constraints across the full prediction
horizon yields results similar to [6], [7], it produced a compa-
rable explicit sub-optimality bound. However, our focus on the
role of the constraint horizon and its effect on sub-optimality
and stability offers a new perspective on the topic. In this
work we enhance the sub-optimality estimation landscape
by providing a generalized MPC formulation for discrete-
time nonlinear systems where multiple state constraints are
applied over the horizon. Our contributions are threefold. First,
our formulation contributes conceptually to MPC frameworks
without terminal penalty and constraints such as [4], [28]–
[30], analyzing the case of different types of constraint hori-



2 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

zons. If the second horizon in the problem is considered
to be unconstrained, the formulation reduces to a partially
constrained one. Second, differently from [6]–[9], [31], we
derive closed-loop cost upper-bound depending explicitly on
the prediction and constraint horizons. To do so, a difference
of value functions distinguishing between different constraint
sets is proposed, yielding both implicit and explicit bounds
by leveraging constraint and convergence rates. If compared
to [27], which adopts a similar setting, our method leads to
tighter bounds with a broader validity region. This is also a
tool intuitively connecting the effect of extra constraints on
performance and stability. Third, to our knowledge, compared
to cited works, we provide the first lower-bound on the
closed-loop cost that can be tighter (condition dependent)
than the finite horizon open-loop cost. This novel lower-bound
computation method also issues a “certificate” when it cannot
find a tighter bound, validating the “naive open loop cost” as
reasonable. For lower bounds emulating an infinite open loop
cost via long prediction horizons, we offer a computationally
cheaper alternative.

This paper is structured as follows: Section II presents the
problem formulation, Section III presents and derives related
results on Relaxed Dynamic Programming (RDP) which are
the building blocks for the next sections. Sections IV and
V present results on closed-loop optimality upper and lower
bounds respectively. Section VI displays two distinct numeri-
cal simulation cases. The first applies results for a six-degrees-
of-freedom nonlinear system, while the second applies it to a
linear safety-critical setting. Section VII concludes this work.

II. PROBLEM FORMULATION

Consider compact sets with non-empty interior D ⊂ Rn,
U ⊂ Rm and the discrete-time dynamical system

xk+1 = f(xk, uk), (1)

where xk ∈ D, uk ∈ U and f(0, 0) = 0. We consider an
MPC problem at time k with state xk, where state constraints
over the horizon N are split in two: the first N − Ñ predicted
states are constrained by the control-invariant set X1, and the
last Ñ predicted states are constrained by a (not necessarily
invariant) set X2, with X1 ⊂ X2 ⊆ D.

Remark 1: The relation X1 ⊂ X2 follows from assuming
X1 is invariant while X2 need not be. X2 = D covers
the “unconstrained” (from the state perspective) tail of the
horizon, encompassing [27]. Under these conditions, allowing
the case where X2 ⊆ X1, would imply invariance of X2, which
contradicts our assumptions.

The heterogeneously constrained MPC (HC-MPC) problem
is formulated as

V Ñ
N (xk) := min

uh(n|xk)

N−1∑
n=0

l(xh(n|xk), uh(n|xk)) (2a)

subject to :

xh(n+ 1|xk) = f(xh(n|xk), uh(n|xk)), n = 0, . . . , N − 1,
(2b)

xh(0|xk) = xk, (2c)
uh(n|xk) ∈ U , n = 0, . . . , N − 1, (2d)

xh(n+ 1|xk) ∈ X1, n = 0, . . . , N − Ñ , (2e)

xh(n+ 1|xk) ∈ X2, n = N − Ñ + 1, . . . , N − 1. (2f)

We introduce an auxiliary formulation, the uniformly con-
strained MPC (UC-MPC), which will be used for analysis
purposes and bound derivations at later Sections. UC-MPC
is not used to compute the control input, whereas the online
control is always obtained by solving Problem (2).

VN (xk) := min
ud(n|xk)

N−1∑
n=0

l(xd(n|xk), ud(n|xk)) (3a)

subject to :

xd(n+ 1|xk) = f(xd(n|xk), ud(n|xk)), n = 0, . . . , N − 1,
(3b)

xd(0|xk) = xk, (3c)
ud(n|xk) ∈ U , n = 0, . . . , N − 1, (3d)
xd(n+ 1|xk) ∈ X2, n = 0, . . . , N − 1. (3e)

We will consider Problems (2) and (3) with N ≥ 2, 2 ≤ Ñ ≤
N and N ≥ 1 respectively. Note that (3) cannot be derived
from (2), as it requires Ñ = N +1 in (2), which is invalid by
assumption for (2), as Ñ ≤ N . Thus, Ñ does not appear in the
notation of (3). We assume xk ∈ X1, but we do not require any
predicted state of (3) to belong to X1. Unless stated otherwise,
we adopt the following assumptions in this work:

Assumption 1 (Positive definiteness of cost): The cost
l(x, u) is assumed to be continuous and positive definite for
all x ∈ D and for all u ∈ U , jointly with respect to both
arguments, meaning that l(·, ·) > 0 for all x, u ̸= 0 and
l(·, ·) = 0 for x = 0, and u = 0.

Assumption 2 (Viability [4]): For any xk ∈ X1, k = N ∪
{0}, we assume problems (2) with N ≥ 2, 2 ≤ Ñ ≤ N and
(3) with N ≥ 1 are feasible and their minima can be attained.

Viability is standard for MPC sub-optimality analysis [4],
[6], [32]. Assumption 2 is slightly stronger as we require
X1 to be invariant. Assumption 2 implies that feasibility can
be guaranteed along the closed-loop evolution of the system.
When it comes to X2, viability is weaker than requiring its
invariance1 [4]. We highlight that xk is the measured state
describing the actual System (1), while xh(n|xk) in (2) and
xd(n|xk) in (3) are open loop predicted states n steps ahead of
the measured state xk. Let [u∗h(0|xk), . . . , u∗h(N−1|xk)] be the
open-loop optimal control sequence, generating the open-loop
optimal trajectory [x∗h(1|xk), . . . , x∗h(N |xk)] for problem (2).
For future analysis, we introduce their respective counterparts
[u∗d(0|xk), . . . , u∗d(N − 1|xk)] and [x∗d(1|xk), . . . , x∗d(N |xk)]
obtained from (3). Let

µÑ
N (xk) := u∗h(0|xk), (4)

be the closed-loop controller, defined to be µÑ
N (xk) and always

obtained by the solution of (2). This controller is applied to
system (1), producing the closed-loop system dynamics

xk+1 = f(xk, µ
Ñ
N (xk)). (5)

1Instead of invariance, we require the predicted open-loop trajectory to
remain within X2.
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Fig. 1. System (1) under MPC (2) for N = 6, N − Ñ = 2.
Input uh(2|xk) produces the last open loop state xh(3|xk) in X1.
Subsequent open loop states are subject to X2. Closed loop states are
depicted by xk and xk+1.

At the next time iteration k + 1, the optimal control problem
(2) is solved again, this time for an initial state xk+1. This
process is repeated for each new time step and state available.
Figure 1 depicts the system behaviour under controller (2).

The associated closed-loop infinite horizon cost of (2) is
defined by

JN,Ñ
∞ (x0) =

∞∑
k=0

l(xk, µ
Ñ
N (xk)). (6)

Our goal is to investigate upper and lower bounds for
JN,Ñ
∞ (x0) and explore the impact of the heterogeneous con-

straint scheme presented. Beyond the tighter upper-bound
results and theoretical novelty of the lower-bound per-se,
obtaining both bounds works as a powerful design tool.
Consider for instance two prediction and constraint horizon
pairs (N, Ñ1) and (N, Ñ2). We are also interested in providing
an answer on which pair performs best in closed loop. We start
our investigation by deriving bounds using RDP.

III. CLOSED LOOP BOUNDS BASED ON RELAXED
DYNAMIC PROGRAMMING

A. Closed loop upper-bound

We start by revisiting the following result.
Lemma 1: [6, Proposition 2.2] Consider N ≥ 2, 2 ≤ Ñ ≤

N . Let the following Relaxed Dynamic Programming (RDP)
equation

V Ñ
N (xk) ≥ V Ñ

N (xk+1) + αl(xk, µ
Ñ
N (xk)), (7)

hold for some α ∈ [0, 1] and for all xk ∈ X1. Then

αJN,Ñ
∞ (xk) ≤ V Ñ

N (xk), (8)

holds for all xk ∈ X1.
We now prove that (8), is an upper bound on (6).

Proof: Consider V Ñ
N (xk) satisfying (7). Equation (7)

produces (8) by rewriting it (see [6]):

V Ñ
N (xk)− V Ñ

N (xk+1) ≥ αl(xk, µ
Ñ
N (xk)). (9)

Summing (9) over M sequential discrete time instances:

V Ñ
N (xk) ≥ V Ñ

N (xk)− V Ñ
N (xk+1+M )

≥ α

M∑
j=0

l(xk+j , µ
Ñ
N (xk+j)) = αJN,Ñ

M (xk). (10)

By letting M → ∞ we obtain (8).
The above result holds for general costs. Nonetheless, for

positive definite costs on both variables we can obtain the
same result without the need to upper bound V Ñ

N (xk) ≥
V Ñ
N (xk) − V Ñ

N (xk+1+M ) in (10). This is demonstrated in
Lemma 2 (proof in Section A of the Appendix).

Lemma 2: Consider N ≥ 2, 2 ≤ Ñ ≤ N , and for all xk ∈
X1, (7) holds for some α ∈ [0, 1] . Furthermore, consider
Assumption 1. Then, if M → ∞, V Ñ

N (xk+1+M ) → 0.
The restriction to stabilizing MPC problems (the cost l(·, ·)
is positive definite) is essential here. Under these circum-
stances, we can also justify Lemma 2 since V Ñ

N (xk) is a
Lyapunov function, and given the negative definiteness of
−αl(xk, µÑ

N (xk)) ≥ V Ñ
N (xk+1)− V Ñ

N (xk), we can state that
when M → ∞, V Ñ

N (xk+1+M ) → 0.

B. Closed loop lower-bound
When it comes to lower bounding (6), a naive lower-bound

choice can be V 2
∞(xk), analogous to the lower bound for the

traditional problem formulation (3) V∞(xk) (as seen in e.g.
[6, Prop. 2.2], [7, Lemma 4]). However, since V 2

∞(xk) can
only be approximated by solving (2) with a very large horizon
N ≫ Ñ (as it is for (3)), its computation is often expensive. A
looser but computationally cheaper lower bound is, V Ñ

N (xk),
which holds via

JN,Ñ
∞ (xk) ≥ V 2

∞(xk) ≥ V Ñ
∞ (xk) ≥ V Ñ

N (xk), (11)

and is valid as our problem formulations do not use a terminal
cost [6]. We seek a higher lower bound on (6) than V Ñ

N (xk).
Via RDP, we derive results analogous to the upper bound (8).

Proposition 1: Consider N ≥ 2, 2 ≤ Ñ ≤ N . Let
the following relaxed dynamic programming hold for α ∈
[0, 1], ω ∈ [0, 1), and for all xk in X1

αl(xk, µ
Ñ
N (xk)) ≥

α

1− ω

[
V Ñ
N (xk)− V Ñ

N (f(xk, µ
Ñ
N (xk)))

]
.

(12a)

Then:

αJN,Ñ
∞ (xk) ≥ α

V Ñ
N (xk)

1− ω
. (12b)

Furthermore, if in addition (7) is fulfilled for all xk in X1,
then

V Ñ
N (xk) ≥ αJN,Ñ

∞ (xk) ≥
α

1− ω
V Ñ
N (xk), (12c)

holds for all xk ∈ X1.
The proof of Proposition 1 is in Appendix A. Based on

Equation (12c) a necessary condition on ω, is 1− ω ≥ α.
Sections IV and V characterize α and ω, respectively:

First via direct solution of (2) and (3) and, under extra cost
assumptions, explicitly in terms of cost properties and the
prediction and constraint horizons.
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IV. CLOSED LOOP PERFORMANCE UPPER BOUND

A. Calculation of α as a difference of value functions
Our goal here is to express α as a function of (N, Ñ), which

will happen at first implicitly, based on a difference of value
functions. This requires analysis of V Ñ

N (xk)−V Ñ
N (xk+1). We

start by defining by the optimal open-loop state–input pair of
the value functions V Ñ

N (xk) and VN (xk):

V Ñ
N (xk) =

N−Ñ∑
n=0

λh1
(n|xk) +

N−1∑
n=N−Ñ+1

λh2
(n|xk), (13a)

λh1
(n|xk) = l(x∗h(n|xk), u∗h(n|xk)), n = 0, . . . , N − Ñ ,

(13b)
λh2

(n|xk) = l(x∗h(n|xk), u∗h(n|xk)), (13c)

n = N − Ñ + 1, . . . , N − 1.

VN (xk) =

N−1∑
n=0

λd(n|xk), (14a)

λd(n|xk) = l(x∗d(n|xk), u∗d(n|xk)), n = 0, . . . , N − 1.
(14b)

The distinction between λh1
(n|xk) and λh2

(n|xk) is that
λh1

(n|xk) = l(x∗h(n|xk), u∗h(n|xk)) will use an input
u∗h(n|xk) which is able to produce x∗h(n + 1|xk) ∈ X1,
whereas λh2

(n|xk) = l(x∗h(n|xk), u∗h(n|xk)) uses a u∗h(n|xk)
enforcing x∗h(n + 1|xk) ∈ X2. As λd(n|xk) uses u∗d(n|xk)
always generating states in X2, no extra subscript is used. To
derive an expression for α, the following lemmas (proof of
Lemma 3 in Section B of the Appendix), will allow us to
bound V Ñ

N (xk) − V Ñ
N (xk+1) with a difference between the

value functions of problems (2) and (3).
Lemma 3: Assume a solution for Problem 3, with ini-

tial point x∗h(N − Ñ + 1|xk) and prediction horizon
Ñ − 1 or, VÑ−1(x

∗
h(N − Ñ + 1|xk)), exists. Then,∑N−1

n=N−Ñ+1
λh2

(n|xk) = VÑ−1(x
∗
h(N − Ñ + 1|xk)).

Lemma 4: Consider Lemma 3. For N ≥ 3, 2 ≤ Ñ ≤ N−1,
we can lower bound V Ñ

N (xk)− V Ñ
N (f(xk, µ

Ñ
N (xk))) as:

V Ñ
N (xk)− V Ñ

N (f(xk, µ
Ñ
N (xk))) ≥ λh1

(0|xk)

−
(
V Ñ
Ñ
(x∗h(N − Ñ + 1|xk))− VÑ−1(x

∗
h(N − Ñ + 1|xk))

)
.

(15)
Proof in Appendix, Section B. Using Lemmas 3, 4, and having
(7) as a goal, we study the following inequality chain:

V Ñ
N (xk)− V Ñ

N (f(xk, µ
Ñ
N (xk))) ≥ λh1

(0|xk)

−
(
V Ñ
Ñ
(x∗h(N − Ñ + 1|xk))− VÑ−1(x

∗
h(N − Ñ + 1|xk))

)
≥ αλh1

(0|xk). (16)

Note that an applicable α ≥ 0 is only possible if, for any
xk ∈ X1, we have

λh1
(0|xk)

−
(
V Ñ
Ñ
(x∗h(N − Ñ + 1|xk))− VÑ−1(x

∗
h(N − Ñ + 1|xk))

)
≥ 0. (17)

As in other papers estimating sub-optimality via RDP (e.g.:
[6], [7]), a non-applicable value α < 0 may arise. Beyond
applicability of (12a), α ≥ 0 is a stability certificate for the
system [6]. Later in the section, we will propose a constructive
manner to produce α ≥ 0. The first inequality in (16) always
holds and, in case (17) holds, given the positive definiteness of
l(·, ·), there will always exist α ∈ [0, 1] fulfilling (16). As such,
we automatically fulfill the conditions under which Lemma
1 holds. Visual explanation of the upper-bounds previously
generated is shown in Figure 2. Based on (16), we can
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Ñ

+
1|x

k )
x
h (N

−
1|x

k )

x
h (N

|x
k )

l (
x
∗ h
(0
|x
k
),
u
(0
|x
k
))

l (
x
∗ h
(1
|x
k
),
u
(1
|x
k
))

l
( x

∗ h
( N

−
Ñ
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Ñ

+
1|
x k
)

x h
( N

−
Ñ
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Fig. 2. Black: V Ñ
N (xk) is equal to the sum of running costs l(·, ·)

until the state xs = xh(N − Ñ + 1|xk), (last one in X1 - vertical
dotted line). From xs, value function’s “tail” is computed by VÑ−1(xs).
States are shown below the nodes. Blue: Double headed arrow shows
xh(1|xk) in black and red are the same state. Red: An upper-bound of
V Ñ
N (xk+1) is derived using xk+1 = xh(1|xk), built by the sum of

running costs l(·, ·) until the state xs = xh(N − Ñ +1|xk), which is
the penultimate state required to be in X1. As the starting state now is
xh(1|xk) and the constraint horizon associated with X1 is also N−Ñ ,
the state xh(1|xs) will be the last required to be in X1. The “tail” of the
value function can be computed by V Ñ

Ñ
(xs). Dashed black/red arrows

have identical costs and cancel in V Ñ
N (xk) − V Ñ

N (xk+1).

calculate α in different ways. For instance, by computing
V Ñ
Ñ
(x∗h(N − Ñ +1|xk))−VÑ−1(x

∗
h(N − Ñ +1|xk)), which

according to Lemma 3 can be calculated via the solution of
(2) online for V Ñ

N (xk) and V Ñ
Ñ
(x∗h(N − Ñ + 1|xk)), α can

be found, for xk ̸= 0, as:

α = 1−
V Ñ
Ñ
(x∗h(N − Ñ + 1|xk))− VÑ−1(x

∗
h(N − Ñ + 1|xk))

λh1(0|xk)
.

(18)

If applicable, (18) estimates the closed loop sub-optimality, but
does not give any explicit information on how N and Ñ affect
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the estimate. Thus, we go on to characterize α explicitly as a
function of these parameters. From now on, to ease notation
we use xs = x∗h(N − Ñ + 1|xk) and λ0 = λh1(0|xk).

B. Explicit calculation of α

We rewrite V Ñ
Ñ
(x∗h(N − Ñ +1|xk))− VÑ−1(x

∗
h(N − Ñ +

1|xk)) in (16) as:

V Ñ
Ñ
(x∗h(N − Ñ + 1|xk))− VÑ−1(x

∗
h(N − Ñ + 1|xk))

= V Ñ
Ñ
(x∗h(N − Ñ + 1|xk))− VÑ (x∗h(N − Ñ + 1|xk))

+ VÑ (x∗h(N − Ñ + 1|xk))− VÑ−1(x
∗
h(N − Ñ + 1|xk))

= V Ñ
Ñ
(xs)− VÑ (xs) + VÑ (xs)− VÑ−1(xs). (19)

The first difference after the equality is the cost gap between
(2) and (3) at prediction horizon Ñ , or the marginal cost of
changing the initial constraint. The second is the gap between
(3) at prediction horizons Ñ and Ñ−1, or the marginal cost of
adding one prediction step to a problem with initial prediction
horizon Ñ − 1. We begin with the first difference in (19).
Consider Assumption 2; We write V Ñ

Ñ
(xs) and VÑ (xs) as:

V Ñ
Ñ
(xs) =

Ñ−1∑
n=0

l(x∗h(n|xs), u∗h(n|xs)) (20a)

VÑ (xs) =

Ñ−1∑
n=0

l(x∗d(n|xs), u∗d(n|xs)). (20b)

There always exist δn ≥ 0, n = {0, . . . , Ñ − 1} such that:

l(x∗h(n|xs), u∗h(n|xs))− l(x∗d(n|xs), u∗d(n|xs)) ≤
δnl(x

∗
d(n|xs), u∗d(n|xs)). (21)

This inequality help us to bound the cost partially con-
strained by X1 by the cost completely constrained by X2.
Observing that, we upper-bound V Ñ

Ñ
(xs)− VÑ (xs) as:

V Ñ
Ñ
(xs)− VÑ (xs) ≤

Ñ−1∑
n=0

δnl(x
∗
d(n|xs), u∗d(n|xs)). (22)

Although the above is always valid, we limit ourselves to
starting state xs ̸= 02 as xs = 0 would produce V Ñ

Ñ
(xs) −

VÑ (xs) = 0. Now, a modified version of [4, Assumption 6.4]
is necessary.

Assumption 3 (Maximum rate of cost controllability):
Consider the optimal control problems (2) and (3). For any
xk ∈ X1, and horizons N ≥ 2, 2 ≤ Ñ ≤ N , there exist
constants C1 ≥ 1, C2 > 0, decay rates 1 > σ1 > σ2 ≥ 0
and admissible control sequences uh(n|xk), ud(n|xs) ∈ U
such that the stage costs l(·, ·) along the optimal solutions is
asymptotically controllable with rates:

l(x∗h(n|xk), u∗h(n|xk)) ≤ C1σ
n
1 λ0, (23)

n = {0, . . . , N − Ñ},

2With Assumption 2 holding from xs ̸= 0, the problem is as solvable as
(18). There, V Ñ

N (xk) and V Ñ
Ñ

(xs) were assumed to exist. By Lemma 3,

existence of V Ñ
N (xk) implies VÑ−1(xs), then VÑ (xs) is feasible as the

extra state stays in X2.

l(x∗d(n|xs), u∗d(n|xs)) ≤ C2σ
n+1
2 λN−Ñ , (24)

n = {0, . . . , Ñ − 1},
where λN−Ñ = l(x∗h(N − Ñ |xk), u∗h(N − Ñ |xk)).

Thus, at its maximum decay values, the part constrained by
X1 attains the origin more slowly than that constrained by X2
3. We now upper bound the second difference in (19) using
Assumption 3:

VÑ (xs)− VÑ−1(xs) = l(x∗d(Ñ − 1|xs), u∗d(Ñ − 1|xs))

≤ C2σ
Ñ
2 λN−Ñ .

The inequality above is obtained with (24). Via (23) λN−Ñ ≤
C1σ

N−Ñ
1 λ0, implying:

VÑ (xs)− VÑ−1(xs) ≤ C1C2σ
N−Ñ
1 σÑ

2 λ0. (25)

We now put pieces together to claim the following result.
Theorem 1: Consider Assumptions 2 and 3. Then, for N ≥

3, 2 ≤ Ñ ≤ N − 1 and for all xk ∈ X1, an explicit expression
for α serving as a bound in (8) is:

α = 1− C1C2σ
N−Ñ
1 σ2

(
δ
1− σÑ

2

1− σ2
+ σÑ−1

2

)
, (26)

where δ = max{δ0, . . . , δÑ−1}.
Proof: We start by simplifying (22), choosing δ =

max{δ0, . . . , δÑ−1}:

V Ñ
Ñ
(xs)− VÑ (xs) ≤ δ

Ñ−1∑
n=0

l(x∗d(n|xs), u∗d(n|xs))

Using (24) on the expression above we obtain:

V Ñ
Ñ
(xs)− VÑ (xs) ≤ σ2C2λN−Ñ

δ Ñ−1∑
n=0

σn
2

 ,

V Ñ
Ñ
(xs)− VÑ (xs) ≤ σ2C2

(
δ
1− σÑ

2

1− σ2

)
λN−Ñ

Using (23), we write λN−Ñ as a function of λ0.

V Ñ
Ñ
(xs)− VÑ (xs) ≤ σ2C2

(
δ
1− σÑ

2

1− σ2

)
λN−Ñ

≤ C1σ
N−Ñ
1 σ2C2

(
δ
1− σÑ

2

1− σ2

)
λ0

Including the second difference in (19), using (25), yields:

V Ñ
Ñ
(xs)− VÑ−1(xs)

= V Ñ
Ñ
(xs)− VÑ (xs) + VÑ (xs)− VÑ−1(xs)

≤ C1σ
N−Ñ
1 σ2C2

(
δ
1− σÑ

2

1− σ2

)
λ0 + C1C2σ

N−Ñ
1 σÑ

2 λ0

= C1σ
N−Ñ
1 σ2C2

(
δ
1− σÑ

2

1− σ2
+ σÑ−1

2

)
λ0

3Although a special KL0 function is used here, more geneal ones could
also be used. We emphasize that exponential cost controllability does not
imply exponential state controllability. [4, Example 6.5]
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Finally, by using (16), and the inequality above we obtain:

V Ñ
N (xk)− V Ñ

N (f(xk, µ
Ñ
N (xk)))

≥

(
1− C1σ

N−Ñ
1 σ2C2

(
δ
1− σÑ

2

1− σ2
+ σÑ−1

2

))
λ0

≥ αλ0 (27)

We can then choose:

α = 1− C1C2σ
N−Ñ
1 σ2

(
δ
1− σÑ

2

1− σ2
+ σÑ−1

2

)

Unlike (18), this bound yields a closed-form α as a function
of N , Ñ , C1, C2, σ1, σ2, δ. Estimating δ is most demanding
since it additionally needs online VÑ (xs), beyond V Ñ

Ñ
(xs)

and V Ñ
N (xk). In Section VI, we will explain a way to

estimate these parameters. If VÑ (xs) automatically produces
x∗d(1|xs) ∈ X1, there is no need to calculate V Ñ

Ñ
(xs), as

V Ñ
Ñ
(xs) = VÑ (xs), implying δ is not needed, and α in

Theorem 1 reduces to:

α = 1− C1C2σ
N−Ñ
1 σÑ

2 . (28)

Proposition 2 (proof in Appendix B) shows how Assumption
3 provides an upper-bound for JN,Ñ

∞ (xk) (8) based on decay
rates and α.

Proposition 2: Consider Assumption 3 and α ∈ (0, 1]. Then
by (23), (24) an upper-bound for JN,Ñ

∞ (xk) is:

JN,Ñ
∞ (xk) ≤ C1

[(
1− σN−Ñ+1

1

1− σ1

)
+

C2σ
N−Ñ
1 σ2

(
1− σÑ−1

2

1− σ2

)]
maxu∈U l(xk, u)

α
. (29)

Any applicable α works in (29) nonetheless, using Theorem 1
we obtain an upper-bound based on estimated parameters and
λ0 alone. This helps us in one side of our study on the effect of
two sets of N and Ñ values on the closed loop upper-bound.

1) Depenence of α on prediction and constraint horizons: As
noted, α ≥ 0 gives an applicable bound and certifies stability.
We now study how N, Ñ affect α via Theorem 1.

Proposition 3: Assume C1, C2, σ1, σ2 and δ are known.
Then, via Theorem 1, horizons respecting N ≥ 3, 2 ≤ Ñ ≤
N − 1 and

N − Ñ + 1 ≥

⌈
log (C1C2[

δ
1−σ2

+ 1])

log ( 1
σ1
)

⌉
, (30)

guarantee stability in closed loop.
The proof can be found in Appendix B. As per Proposition 3,
there exist values for N, Ñ yielding system stability (and thus
sub-optimality estimation), given its decay rate characteristics.
Next, we discuss methods for determining δ that avoid the
explicit online evaluation of V Ñ

Ñ
(xs) and VÑ (xs).

2) Discussion on δ: To avoid calculation of V Ñ
Ñ
(xs) and

VÑ (xs), δ can be approximated by: δ ≈ σ1

σ2
− 1. In this

heuristic approach the reasoning is, starting from xs, V Ñ
Ñ
(xs)’s

first term can decay as slow as σ1 (constraint active), whereas
VÑ (xs)’s first term can decay in the worst case with a σ2
factor. Despite its simplicity, this is not a bound on δ. We
thus derive a conservative yet rigorous upper-bound.

Proposition 4: Assume there exists ũh(0|xs) ∈ U such that
xs = f(xs, ũh(0|xs)), for all xk ∈ X1 such that xs ̸= 0, and
ũh(1|xs) ∈ U capable of driving the system from xh(0|xs) to
x∗d(2|xs) in one step. If V Ñ

Ñ
(xs) ̸= VÑ (xs), and there exists

ρ1, ρ2 ≥ 0 such that:

ρ1 =
maxu∈U l(xh(0|xs), u)
minu1∈U l(x∗d(0|xs), u1)

− 1 (31)

ρ2 =
maxu∈U l(xh(0|xs), u)

minu1,u2∈U l(f(x∗d(0|xs), u1), u2)
− 1 (32)

Then we can choose δ as:

δ = (ρ1 + σ2ρ2)
1− σ2

1− σÑ
2

. (33)

Proof is found in Section B of the Appendix. The input
capacity assumption is not overly restrictive, as for a small
enough sample time, a small displacement, which in turn
requires an arguably small input usage. Despite the looser
bound obtained when using expression (33) in (26), it has
the advantage of only requiring the computation of V Ñ

N (xk)

for estimating C1, C2, σ1, σ2 and obtaining xs, while V Ñ
Ñ
(xs)

and VÑ (xs) are no longer needed in the calculation of δ.
Then α becomes computationally simpler compared to (18)
and (26). This derivation provides an explicit bound for α
based on N , Ñ while giving the designer the option to avoid
additional value function evaluations, at the cost of increased
conservativeness.

V. CLOSED LOOP PERFORMANCE LOWER BOUND

A. Calculation of ω as a difference of vale functions

We now revisit the inequality chain (12c) in Proposition
1, as we aim to estimate ω also as a function of (N, Ñ).
This time, we do so by derivation of an upper bound for
V Ñ
N (xk) − V Ñ

N (f(xk, µ
Ñ
N (xk))), and construction of an in-

equality chain using (12a). We again transform V Ñ
N (xk) −

V Ñ
N (f(xk, µ

Ñ
N (xk))) in a difference of value functions, in

which the following Lemmas, (proof in Section C of the
Appendix) will be useful.

Lemma 5: Assume a solution for V Ñ
Ñ
(x∗h(N − Ñ |xk+1))

exists. Then, λh1(N−Ñ |xk+1)+
∑N−1

n=N−Ñ+1
λh2

(n|xk+1) =

V Ñ
Ñ
(x∗h(N − Ñ |xk+1)).

Lemma 6: Consider Lemma 5. For N ≥ 3, 2 ≤ Ñ ≤ N−1,
we can upper-bound V Ñ

N (xk)− V Ñ
N (f(xk, µ

Ñ
N (xk))) as:

V Ñ
N (xk)− V Ñ

N (f(xk, µ
Ñ
N (xk))) ≤ λh1(0|xk)

−
(
V Ñ
Ñ
(x∗h(N − Ñ |xk+1))− VÑ−1(x

∗
h(N − Ñ |xk+1))

)
.

(34)
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Using Lemmas 5, 6, and having (12a) as a goal, we enforce
the inequality chain below (valid for α ≥ 0):

α

1− ω
[V Ñ

N (xk)− V Ñ
N (f(xk, µ

Ñ
N (xk)))] ≤

α

1− ω
[λh1

(0|xk)

−
(
V Ñ
Ñ
(x∗h(N − Ñ |xk+1))− VÑ−1(x

∗
h(N − Ñ |xk+1))

)]
≤ αλh1(0|xk), (35)

A meaningful value of ω can be obtained when, for any
xk+1 ∈ X1, it holds that that:

λh1(0|xk)

−
(
V Ñ
Ñ
(x∗h(N − Ñ |xk+1))− VÑ−1(x

∗
h(N − Ñ |xk+1))

)
≥ 0. (36)

We will later provide horizons to produce meaningful values
for ω respecting 0 ≤ ω ≤ 1−α. Although ω = 0 produces the
same bound in value of the naive bound V Ñ

N (xk), conceptually
it is a certification that under these circumstances, V Ñ

N (xk)
is a reasonable choice and not a “naive pick”, which per-se
is a valuable information. On the following Lemma (proof
in Section C of Appendix), we comment on the existence of
ω > 0 generating a tighter bound than V Ñ

N (xk).
Lemma 7: Consider (36) and α ∈ [0, 1] in Lemma 1.

There exists ω ∈ [0, 1) such that for all α ∈ [0, 1], (35) is
satisfied. Furthermore, if x∗h(N − 1|xk+1) ̸= 0, then a strictly
positive ω ∈ (0, 1) satisfying (35) exists, impliying a tighter
(higher) lower-bound than V Ñ

N (xk) is attainable. In both cases,
Proposition 1 is satisfied.

Note that ω is defined independently of α. Nonetheless, ω
serving as a lower bound depends on α ≥ 0 (e.g.: fulfillment of
(17) guaranteeing the existence of α ∈ [0, 1]). On top of that,
if (36) holds, there exist ω ∈ [0, 1) such that Lemma 7 holds
for all α ∈ [0, 1]. If the inequality chain in (12c) is invoked, ω
must additionally satisfy the necessary compatibility condition
1 − ω ≥ α. Based on Lemma 7 and (35), we can calculate
ω in many different ways. For instance, via computation of
V Ñ
Ñ
(x∗h(N − Ñ |xk+1)) − VÑ−1(x

∗
h(N − Ñ |xk+1)), obtain-

able via solution of (2) online for V Ñ
N (xk), V Ñ

N (xk+1) and
VÑ−1(x

∗
h(N − Ñ |xk+1))

4, ω can be found, for xk ̸= 0, as:

ω =
V Ñ
Ñ
(x∗h(N − Ñ |xk+1))− VÑ−1(x

∗
h(N − Ñ |xk+1))

λh1
(0|xk)

.

(37)

Similar to (18), (37) allows us to estimate the closed-loop
lower-bound cost. Nonetheless, it does not make explicit how
this estimate varies with the parameters N , Ñ . As before,
we proceed to characterize ω explicitly in terms of these
parameters. We henceforth denote xp = x∗h(N − Ñ |xk+1)
and λ+0 = λh1

(0|xk+1).

4The calculation of V Ñ
N (xk) is needed to obtain λh1

(0|xk). Via Lemma
3 VÑ−1(x

∗
h(N − Ñ + 1|xk+1)) can be obtained from V Ñ

N (xk+1), but
VÑ−1(x

∗
h(N − Ñ |xk+1)) is not available, requiring its computation.

B. Explicit Estimation of ω

Following (19), we re-write the bound with xp rather than
x∗h(N − Ñ + 1|xk):

V Ñ
Ñ
(xp)− VÑ−1(xp)

= V Ñ
Ñ
(xp)− VÑ (xp) + VÑ (xp)− VÑ−1(xp) (38)

The same considerations about marginal costs made for (19)
are also valid here. Analogously to (22), we now will use an
assumption guaranteeing a lower-bound on elements (38).

Assumption 4: Consider Assumption 2, with initial state
xp ̸= 0. The value functions V Ñ

Ñ
(xp) and VÑ (xp) can be

written as:

V Ñ
Ñ
(xp) =

Ñ−1∑
n=0

l(x∗h(n|xp), u∗h(n|xp)), (39a)

VÑ (xp) =

Ñ−1∑
n=0

l(x∗d(n|xp), u∗d(n|xp)). (39b)

We assume there exists νn ≥ 0 such that 5:

l(x∗h(n|xp), u∗h(n|xp))− l(x∗d(n|xp), u∗d(n|xp)) ≥
νnl(x

∗
d(n|xp), u∗d(n|xp)), n = {0, . . . , Ñ − 1} (40)

We can then lower-bound V Ñ
Ñ
(xp)− VÑ (xp) as:

V Ñ
Ñ
(xp)− VÑ (xp) ≥

Ñ−1∑
n=0

νnl(x
∗
d(n|xp), u∗d(n|xp))

Now we state an assumption similar to Assumption 3.
Assumption 5 (Minimum rate of cost controlability):

Consider optimal control problems (2) and (3). We assume
that, for each xk+1 ∈ X1, there exists admissible control
sequences uh(n|xk+1), ud(n|xp) ∈ U such that the system is
asymptotically controllable with respect to l(·, ·) with rates:

l(x∗h(n|xk+1), u
∗
h(n|xk+1)) ≥ C3σ

n
3 λ

+
0 , (41)

n = {0, . . . , N − Ñ},
l(x∗d(n|xp), u∗d(n|xp)) ≥ C4σ

n+1
4 λ+

N−Ñ
, (42)

n = {0, . . . , Ñ − 1},
where λ+

N−Ñ
= l(x∗h(N − Ñ |xk+1), u

∗
h(N − Ñ |xk+1)),

C3 ≥ 1, C4 > 0, σ1 ≥ σ3 > σ4 ≥ 0 and, σ1 > σ2 ≥ σ4 ≥ 0.
This means that the constrained part in X1 has a minimum
decay rate that takes longer to decay when compared to the
minimum decay rate of the constrained part in X2. Sequen-
tially applying (42) and (41) (Assumption 5) yields a lower
bound for the second difference in (38):

VÑ (xp)− VÑ−1(xp) = l(x∗d(Ñ − 1|xp), u∗d(Ñ − 1|xp))

≥ C3C4σ
N−Ñ
3 σÑ

4 λ
+
0 . (43)

Theorem 2: Consider Assumptions 2, 4 and 5. Then, for
N ≥ 3, 2 ≤ Ñ ≤ N − 1 and for all xk ∈ X1, xk ̸= 0, an

5Different from δn ≥ 0 satisfying (21), which always exists, here νn ≥
0 satisfying (40) may not exist. This is since l(x∗

d(n|xp), u∗
d(n|xp)) ≥

l(x∗
h(n|xp), u∗

h(n|xp)) may happen for a given n, underlying the need to
assume existence of νn.
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explicit expression for ω serving as a bound in (12b) can be
described by:

ω = C3C4κσ
N−Ñ
3 σ4

(
ν
1− σÑ

4

1− σ4
+ σÑ−1

4

)
, (44)

where ν = min{ν0, . . . , νÑ−1} and κ ≥ 0, s.t., λ+0 ≥ κλ0.
Proof: Consider the inequality:

V Ñ
Ñ
(xp)− VÑ (xp) ≥

Ñ−1∑
n=0

νnl(x
∗
d(n|xp), u∗d(n|xp)).

We simplify the expression above by choosing ν =
min{ν0, . . . , νÑ−1}. Then:

V Ñ
Ñ
(xp)− VÑ (xp) ≥ ν

Ñ−1∑
n=0

l(x∗d(n|xp), u∗d(n|xp)).

Using (42) the expression above becomes

V Ñ
Ñ
(xp)− VÑ (xp) ≥ σ4C4λ

+

N−Ñ

ν Ñ−1∑
n=0

σn
4

 ,

V Ñ
Ñ
(xp)− VÑ (xp) ≥ σ4C4

(
ν
1− σÑ

4

1− σ4

)
λ+
N−Ñ

By using (41), we can write λ+
N−Ñ

as a function of λ+0 , i.e.,

V Ñ
Ñ
(xp)− VÑ (xp) ≥ σ4C4

(
ν
1− σÑ

4

1− σ4

)
λ+
N−Ñ

≥ C3σ
N−Ñ
3 σ4C4

(
ν
1− σÑ

4

1− σ4

)
λ+0

We now include the contribution of the second difference in the
sum (38), with the lower bound calculated in (43), producing:

V Ñ
Ñ
(xp)− VÑ−1(xp)

≥ C3σ
N−Ñ
3 σ4C4

(
ν
1− σÑ

4

1− σ4

)
λ+0 + C3C4σ

N−Ñ
3 σÑ

4 λ
+
0

= C3σ
N−Ñ
3 σ4C4

(
ν
1− σÑ

4

1− σ4
+ σÑ−1

4

)
λ+0 .

Finally we note that

λ+0 = l(f(xk, u
∗
h(0|xk)), u∗h(0|xk+1)) ≥ l(f(xk, u

∗
h(0|xk)), 0)

=⇒ λ+0 ≥ κλ0, κ =
l(f(xk, u

∗
h(0|xk)), 0)

l(xk, u∗(0|xk))
. (45)

We can then choose:

ω = C3C4κσ
N−Ñ
3 σ4

(
ν
1− σÑ

4

1− σ4
+ σÑ−1

4

)
.

Unlike (37), the bound above provides a closed-form es-
timate for ω as a function of the prediction horizon N , the
secondary constraint horizon Ñ , and the parameters C3, C4,
σ3, σ4, and ν. The “analogous term to δ”, which is ν is the
most demanding to be estimated as expected. Unlike in (37),
it requires the additional online computation of VÑ (xp), in

addition to the already needed values V Ñ
N (xk), V Ñ

N (xk+1)
and VÑ−1(x

∗
h(N − Ñ |xk+1)). Analogous to the discussion in

the previous section, if the optimal choice automatically leads
to x∗d(N − Ñ + 1|xk+1) ∈ X1

6, then the term connected
V Ñ
Ñ
(xp) − VÑ (xp) in Theorem 2 cancels out as V Ñ

Ñ
(xp) =

VÑ (xp). Thus, a calculation for ν is not needed since ω in
Theorem 2 reduces to:

ω = C3C4κσ
N−Ñ
3 σÑ

4 . (46)

Using Theorem 2 with Assumptions 4 and 5, we obtain in
Proposition 5, a lower bound for JN,Ñ

∞ (xk) depending solely
on the estimated parameters and λ0.

Proposition 5: Consider Assumptions 4 and 5. Then by
(41) and (42), the lower-bound for JN,Ñ

∞ (xk) can be written
as:

JN,Ñ
∞ (xk) ≥ C3κ

[(
1− σN−Ñ+1

3

1− σ3

)
+

C4σ
N−Ñ
3 σ4

(
1− σÑ−1

4

1− σ4

)]
minu∈U l(xk, u)

1− ω
. (47)

From (47) and the positive definiteness of l(·, ·),
minu∈U l(xk, u) = 0 only if xk = 0. Any estimated ω
can be used on Proposition 5, nonetheless, using Theorem
2, provides a lower-bound based on estimated parameters
and λ0 alone. Having upper and lower bounds of JN,Ñ

∞ (xk),
we can address the other main goal, comparing the effect of
different Ñ on closed loop trajectories of a nonlinear system
controlled by (2). Namely, if design options Ñ1 ≤ Ñ2, could
produce:

JN,Ñ2
∞ (xk) ≥ JN,Ñ1

∞ (xk), (48)

implying Ñ2 is decidedly a worse choice. A sufficient condi-
tion producing (48) is, when applying (12c), the lower-bound
produced by Ñ2 exceeds the upper-bound of Ñ1:

V Ñ1

N (xk)

αÑ1

≤
V Ñ2

N (xk)

1− ωÑ2

.

Using Propositions 2 and 5, the above expression can be tested
as a function of decay rates, prediction and constraint horizons.

1) Dependence of ω on prediction and constraint horizons:
We study parameter–horizon choices that yield meaningful
relations for ω, using Theorem 2.

Proposition 6: Consider Proposition 3, and that
C3, C4, κ, σ3 and σ4 is known. If σ4, κ > 0, δ ≥ ν
and horizons respecting N ≥ 3, 2 ≤ Ñ ≤ N − 1 and

N − Ñ ≥

⌈
log (C3C4κ

C1C2
)

log (σ1

σ3
)

⌉
, (49)

or, if σ4 = 0 or κ = 0 (without any extra requirement) then,
0 ≤ ω ≤ 1− α will be respected.
The proof can be found in Appendix C. Propositions 3 and
6 together generate conditions in which nontrivial upper and
lower bound exist.

6Note we use the dependency on xk+1 and not xk , reason why we use
N − Ñ + 1.
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2) Discussion on ν: The simplest way to obtain a value
for ν, in an heuristic fashion, without the need to calculate
VÑ (xp) (we still need to obtain V Ñ

N (xk), V Ñ
N (xk+1) and get

V Ñ
Ñ
(xp) via Lemma 7) is to approximate it by: ν ≈ σ3

σ4
−1. The

rationale is that, starting from the same point, V Ñ
Ñ
(xp) will

have its first term decaying as fast as σ3 (active constraint),
whereas the first term of VÑ (xp) will decay with a σ4 factor.
A lower bound on ν, proposed below (proof in Section C of
the Appendix.):

Proposition 7: Let V Ñ
Ñ
(xp) ̸= VÑ (xp). Furthermore as-

sume that there exists ũd(0|xp) ∈ U such that xp =
f(xp, ũd(0|xp)), for all xk+1 ∈ X1 such that xp ̸= 0, and
ũd(1|xp) ∈ U capable of driving the system from xd(0|xp) to
x∗h(2|xp) in one step. If there exists ϕ1, ϕ2 ≥ 0 such that:

ϕ1 = 1− maxu∈U l(xd(0|xp), u)
minu1∈U l(x∗h(0|xp), u1)

(50)

ϕ2 = 1− maxu∈U l(xd(0|xp), u)
minu1,u2∈U l(f(x∗h(0|xp), u1), u2)

(51)

(52)

Then we can choose ν as:

ν =

(
ϕ1 + C4σ

2
4ϕ2
)

σ4

1− σ4

1− σÑ
4

. (53)

Considerations regarding input capacity assumption mild-
ness used for Proposition 4, are also valid here. Despite the
looser bound obtained when using (53) in (44), it has the
advantage of only requiring the computation of V Ñ

N (xk+1)

for estimating C3, C4, σ3, σ4 and obtaining xp and V Ñ
N (xk)

for calculation of λ0 while V Ñ
Ñ
(xp) and VÑ (xp) are no longer

needed for obtaining ν, simplifying ω’s computation compared
to (37) and (44). This result gives an explicit bound for ω based
on N , Ñ , allowing the designer to avoid extra value function
evaluations, at the cost of increased conservativeness.

VI. NUMERICAL SIMULATIONS

A. Nonlinear example
We study the derived bounds on a 6-DoF nonlinear quadro-

tor model. We adopt the North East Down (NED) orientation,
with the inertial frame located on earth’s surface, and Oxyz

fixed at the quadrotor centre of mass, as in Figure 3. We

M 1

M 2

M 3

M 4

oz

F1

F2 F3

F4

oyox

N E

D

Fig. 3. Reference frames for UAV [33].

model the quadrotor using a simplified nonlinear model valid
for small angle deviations [34]:

ẋ = f(x,u),

x =



x
y
z
ϕ
θ
ψ
u
v
w
p
q
r


, f(x,u) =



w(ϕψ + θ)− v(ψ − ϕθ) + u
v(1 + ϕψθ)− w(ϕ− ψθ) + uψ

w − uθ + vϕ
p+ rθ + qϕθ

q − rϕ
r + qϕ

rv − qw − gθ
pw − ru+ gϕ

qu− pv + g − ft
m

Iy − Iz
Ix

rq +
τx
Ix

Iz − Ix
Iy

pr +
τy
Iy

Ix − Iy
Iz

pq +
τz
Iz



.

In the above equation x ∈ R12 is the vector composed
of: positions x, y, z, velocities u, v, w, angular displacements
ϕ, θ, ψ and angular velocities p, q, r in/around the directions
ox, oy, oz , with respect to the inertial frame [34]. The angular
movement around the ox, oy, oz axis are often also called
roll, pitch and yaw. The input vector u = [ft, τx, τy, τz]

T , is
composed by ft = F1+F2+F3+F4, the thrust force generated
by propellers and τx, τy, τz are torques generated along the
ox, oy, oz directions. Finally, Ix, Iy, Iz are inertia matrix diag-
onal components (off-diagonal terms neglected). UAV1 has its
initial state xinit = [1, 2,−1, 01x9]

T , and UAV2 has its state
fixed to xo = [0.4, 1.5,−0.2, 01x9]

T . With respect to the NED
orientation, in which a negative Z means displacement above
ground, UAV1 starts hovering at [1, 2, 1]⊤ and is to land at the
origin while avoiding UAV2, hovering at [0.4, 1.5, 0.2]⊤. We
discretize the system with sample time h = 0.4s and solve
(2). The input constraint set is U = {u(n|xk) ∈ R4|−umax ≤
u(n|xk) ≤ umax,∀n = 0, . . . , N−1} and the state constraints
set X1 = X , defined for all n = 0, . . . , N − Ñ as in (54) and
X2 = R12.

X =



x(n+ 1|xk) ∈ R12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∥d1,2(n+ 1|xk)∥22 ≥ r2obs + ϵ,

d1,2(n+ 1|xk) =
[x(n+ 1|xk)− xo,

y(n+ 1|xk)− yo,

z(n+ 1|xk)− zo]
⊤,

z(n+ 1|xk) ≤ 0,

|ϕ(n+ 1|xk)|, |θ(n+ 1|xk)|,

|ψ(n+ 1|xk)| ≤
π

9
,

∥v1,2(n+ 1|xk)∥2 ≤ 2,

v1,2(n+ 1|xk) = [u(n+ 1|xk),
v(n+ 1|xk), w(n+ 1|xk)]⊤,
|p(n+ 1|xk)|, |q(n+ 1|xk)|,

|r(n+ 1|xk)| ≤
π

18


(54)

Under (54), we enforce for UAV1: The usual distance con-
straint ∥d1,2(n + 1|xk)∥22 ≥ r2obs + ϵ where robs = 0.5
defines the safety distance around UAV2 and ϵ > 0 (here
chosen ϵ = 0.1) is a small tolerance value, the ground
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avoidance constraint z(n + 1|xk) ≤ 0 (having z ≥ 0
implies UAV1 would crash into the ground), attitude bounds
|ϕ(n + 1|xk)|, |θ(n + 1|xk)|, |ψ(n + 1|xk)| ≤ π

9 introduced
due to the model being valid for small angles only (threshold
assumed to be 20°), velocity constraints ∥v1,2(n+1|xk)∥2 ≤ 2
limited to be at most 2m/s, and attitude rate constraint |p(n+
1|xk)|, |q(n+1|xk)|, |r(n+1|xk)| ≤ π

18 limited to be smaller
than 10° per sample. The stage cost is l(x(n|xk), u(n|xk)) =
x(n|xk)⊤Qx(n|xk) + u(n|xk)⊤Ru(n|xk). Figure 4 shows
UAV1’s trajectory obtained by solving (2) with N = 16
and N − Ñ = 3. The safety is verified by checking the
minimum distance value obtained which is of 0.59m, being
thus greater than robs. We now estimate JN,Ñ

∞ (xk) via (8) and

Fig. 4. Trajectory of UAV 1 avoiding collision with UAV 2.

(12b) while using Theorems 1 and 2 to obtain values for α
and ω respectively. We compute σ1, σ2, and δ using the open
loop value function V Ñ

N (x0). We estimate σ1 = σ1(x0) =
max(σh(1|x0), . . . , σh(N − Ñ |x0)) and σ2 = σ2(x0) =
max(σd(N − Ñ +1|x0), . . . , σd(N − 1|x0)), where σh(n|xk)
and σd(n|xk) are calculated, based on Assumption 3, as:

σh(n|xk) = f1(n, xk, λ0), n = 1, . . . , N − Ñ , (55)

σd(n|xk) = f2(n, xk, λN−Ñ ), n = N − Ñ + 1, . . . , N − 1,
(56)

f1(n, a, b) =

(
l(x∗h(n|a), u∗h(n|a))

b

) 1
n

,

f2(n, a, b) =

(
l(x∗h(n|a), u∗h(n|a))

b

) 1
n+1−(N−Ñ)

.

C1 = C2 = 1 due the estimation of σh(n|xk) and σd(n|xk).
Similarly, σ3, σ4, and ν are calculated with V Ñ

N (x1). We
estimate σ3 = σ3(x1) = min(σ+

h (1|x1), . . . , σ
+
h (N − Ñ |x1)),

and σ4 = σ4(x1) = min(σ+
d (N − Ñ + 1|x1), . . . , σ+

d (N −
1|x1)), where σ+

h (n|xk+1) and σ+
d (n|xk+1) are calculated,

based on Assumption 5, as:

σ+
h (n|xk+1) = f1(n, xk+1, λ

+
0 ), n = 1, . . . N − Ñ , (57)

σ+
d (n|xk+1) = f2(n, xk+1, λ

+

N−Ñ
), (58)

n = N − Ñ + 1, . . . , N − 1.

We also set C3 = C4 = 1 as before due to the estima-
tion of σ+

h (n|xk+1) and σ+
d (n|xk+1). For all σ’s we use

l(x∗h(n|xid), u∗h(n|xid)), id = {k, k + 1} so that we can
calculate only V Ñ

N (xid) and do not need to calculate the
unconstrained equivalent.

Calculation of δ and ν are done via the bounds discussed in
(33) and (53), and via δ ≈ σ1

σ2
−1 and ν ≈ σ3

σ4
−1 respectively.

Results are compiled in Table I for the horizon pairs N = 16,
N − Ñ = 3 and N = 27, N − Ñ = 3.

Horizons JN,Ñ
∞ (x0) δ and ν

V Ñ
N (x0)

α

V Ñ
N (x0)

1−ω

N = 16 475.09 (33) and (53) 1310.44 442.77
N − Ñ = 3 Approx. 842.89 N.A.

N = 27 475.10 (33) and (53) 835.65 442.78
N − Ñ = 3 Approx. 630.03 N.A.

TABLE I
BOUNDS BY HORIZONS AND ESTIMATION METHODS.

The lower bound results using (53) are close to the actual
closed loop cost. In both cases the approximation ν ≈ σ3

σ4
− 1

obtained was not applicable, since ω > 1− α. Upper bounds
calculated using both (33) and the approximation δ ≈ σ1

σ2
−

1 give valid, albeit looser bounds, with the latter providing
less conservative results. During certain simulation instances,
(33) yielded low α values, which despite producing a very
loose upper bound for the closed loop, still provided a valuable
information as the region in which α > 0 implies closed loop
stability on this region. We underline that the calculations use
only the state x0 and as such are still an approximation.

B. Linear system comparison
We now compare the bounds in Theorem 1 with the ones

in [27], which also obtain (8) via RDP, but α is estimated as:

α = 1− βN−Ñ+1

(β + 1)N−Ñ−1
, (59)

and β > 0 is obtained for n ∈ {Ñ + 1, . . . , N} as:

V Ñ
Ñ+1

(xk) ≤ (β + 1)V Ñ
Ñ
(xk), (60a)

V Ñ
n (xk) ≤ (β + 1)l(xk, u

∗
h(N − n|xk)). (60b)

Following the example in [27], consider the linear double
integrator x(i + 1|k) = Ax(i|k) + Bu(i|k) with x(i|k) =
[px(i|k), py(i|k), vx(i|k), vy(i|k)]T listing positions and ve-
locities, and u(i|k) = [ax(i|k), ay(i|k)]T containing the ac-
celerations, both in the x, y coordinates. We use a quadratic
cost l(x(i|k), u(i|k)) = x(i|k)TQx(i|k)+u(i|k)TRu(i|k) and
input bounds U = {u(i|k) ∈ R2, s.t. − 2 ≤ ur(i|k) ≤ 2},
where r = {1, 2} are the rows of u(i|k), and i = 0, . . . , N−1.
State constraints are: velocity bounds |vx(j + 1|k)|+ |vy(j +
1|k)| ≤ 2 and for position bounds, we re-utilize the CBF
candidate functions

h1(x(j|k)) =
5

9
px(j|k) + py(j|k) +

0.5

9
, (61a)

h2(x(j|k)) = px(j|k)− py(j|k) + 1.6, (61b)

The system is subject to velocity and positions (CBF) con-
straints h1(x(j + 1|k)) ≥ (1 − γ)h1(x(j|k)) and h2(x(j +



AUTHOR et al.: TITLE 11

1|k)) ≥ (1−γ)h2(x(j|k)), with γ = 0.8 for j = 0, . . . , N−Ñ .
The initial state is set to x0 = [−0.8, 0.6,−0.45, 0.65], and
the target state is the origin. Here we compute α in two
ways, both using δ ≈ σ1

σ2
− 1. The difference is if (55)

and (56) are estimated with x0 alone or the full trajectory
xk, k = 0, . . . , T (T samples). Using x0 only, yields a
“local” α and requires computing β from [27] using only
x0 as well, while using the full trajectory produces more
conservative results, but matches the original setting of [27].
For comparison we solve (2) repeatedly for N = 10 and
N = 20 while varying Ñ . For each Ñ and a fixed N , we
compute σ1,0 = σ1(x0), σ1,T = max(σ1(x0), . . . , σ1(xT )),
σ2,0 = σ2(x0), σ2,T = max(σ2(x0), . . . , σ2(xT )), where each
σ1(xk), σ2(xk) is again obtained via (55) and (56). We set
C1 = C2 = 1 and from now on we use α0 and αT for the
estimations using x0 only, and the full trajectory respectively.
Using δ ≈ σ1

σ2
− 1 (rather than (33)) is simpler and performed

better: (33) produced more cases with α < 0, making the
bounds inapplicable. As a benchmark, we computed β0 from
x0 and βT from the full trajectory to obtain α0 and αT

according to [27]. For N = 10, see Fig. 5a (α′s) and Fig. 5b
(closed-loop cost).

2 3 4 5 6 7 8
-3

-2

-1

0

1

2

0
 from [1]

0
 from Thm. 1

2 3 4 5 6 7 8
-40
-35
-30
-25
-20
-15
-10
-5
0

T
 from [1]

T
 from Thm. 1

(a) For N = 10, α0 and αT vs. N − Ñ .

(b) Closed-loop cost for N = 10 vs. N − Ñ . Blue/green: estimates
from [27] and (26); red: actual.

Fig. 5. α’s and closed-loop cost for N = 10 as a function of N − Ñ .

The α estimate from Theorem 1 appears to converge faster
than the one in (59), and hold over a larger region, whether
using x0 or the full trajectory. In Figure 5a, (59) yields a larger

negative α region (inapplicable bound), whereas Theorem 1
gives α ∈ (0, 1). Figure 6a shows α for N = 20, and
Figure 6b the corresponding closed-loop estimation. From

8 9 10 11 12 13 14 15 16 17 18
0.2

0.4

0.6

0.8

1

0
 from [1]

0
 from Thm. 1

8 9 10 11 12 13 14 15 16 17 18
0.2

0.4

0.6

0.8

1

T
 from [1]

T
 from Thm. 1

(a) For N = 20, α0 and αT vs. N − Ñ .

(b) Closed-loop cost for N = 20 vs. N − Ñ . Blue/green: estimates
from [27] and (26); red: actual.

Fig. 6. α’s and closed-loop cost for N = 20 as a function of N − Ñ .

Figures 6a and 6b, we see that Theorem 1 produces the closest
value to JN,Ñ

∞ (x0) when N − Ñ = 12. Increasing N − Ñ

beyond 12 raises the V Ñ
N (x0)
α0

by (< 0.01% per unit increase
in N − Ñ ) and produces σ2,0 > σ1,0 and σ2,T > σ1,T .
As N − Ñ → 20 σ2,0 and σ2,T tend to 1. Based on the
calculation of (55) and (56), it is expected that close to the
equilibrium σ1,0, σ1,T , σ2,0, σ2,T → 1, possibly implying that
we are beyond the transient point, relevant to calculate system
convergence’s speed. As such, estimation of (55) and (56)
become less reliable, but still conveys relevant information.
Finally, for high values of N and N − Ñ (e.g.: N = 20
and N − Ñ = 14), α0 obtained from (59) is around 0.3%
higher than α0 from Theorem 1, which is not seen for αT ,
where Theorem 1 always outperforms (59). This may indicate
a complex relation between these results, which ought to be
explored further.

VII. CONCLUSION

We presented an MPC formulation with two constraint
types. The first is a control-invariant set which presents higher
maximum and minimum decay rate values (slower decay) and
ensures recursive feasibility. The second is a standard state
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constraint set, which contains the first set, possibly with lower
decay-rate bounds, encompassing a partially constrained for-
mulation. Our contributions are: 1) a conceptual generalization
of closed-loop MPC estimation; 2) a tighter (for short hori-
zons) computation of closed-loop upper bounds from open-
loop value functions using decay rates and constraint horizons;
and 3) a new and less expensive closed-loop lower-bound than
the usual infinite-horizon open-loop value. We explored differ-
ent parameter estimation and bounding techniques and validate
the theory on nonlinear and linear examples, showing larger
validity regions than existing results. Future work will address
offline parameter estimation, improve closed-loop comparisons
across horizons, and deepen understanding of this bounds with
existing ones.

APPENDIX

A. Relaxed Dynamic Programming Proofs

1) Proof of Lemma 2: We reconsider the second inequality
of (10) (also valid for the first inequality of (64)) rearranged:

V Ñ
N (xk)− α

M∑
j=0

l(xk+j , µ
Ñ
N (xk+j)) ≥

V Ñ
N (xk+1+M ) ≥ 0.

We want to study its behavior when M → ∞:

V Ñ
N (xk)− lim

M→∞
α

M∑
j=0

l(xk+j , µ
Ñ
N (xk+j)) ≥

lim
M→∞

V Ñ
N (xk+1+M ) ≥ 0. (62)

The first inequality above can further be rearranged as:

V Ñ
N (xk) ≥ lim

M→∞
α

M∑
j=0

l(xk+j , µ
Ñ
N (xk+j)) ≥ 0. (63)

As V Ñ
N (xk) is finite, so must the infinite sum be. As l(·, ·) >

0 and α ∈ [0, 1] elements of the sum in itself must go to
zero, meaning l(xk+1+M , µ

Ñ
N (xk+1+M )) → 0 as M → ∞.

Running cost positive definiteness ensures, xk+1+M → 0 as
M → ∞ and thus, V Ñ

N (xk+1+M ) → 0 as M → ∞.
2) Proof of Proposition 1: By performing the same steps

from (9) to (10), we get the following bounds:

V Ñ
N (xk)− V Ñ

N (xk+1+M )

≥ α

M∑
j=0

l(xk+j , µ
Ñ
N (xk+j)) := αJN,Ñ

M (xk)

≥ α

1− ω

[
V Ñ
N (xk)− V Ñ

N (xk+1+M )
]
. (64)

As M → ∞ (64) simplifies (Lemma 2). Applying Lemma 2
on (64) produces

V Ñ
N (xk) ≥ αJN,Ñ

∞ (xk) ≥
α

1− ω
V Ñ
N (xk). (65)

for all xk ∈ X1.

B. Upper bound Proofs
1) Proof of Lemma 3: On one hand we know that∑N−1

n=N−Ñ+1
λh2(n|xk) as in (13a) satisfies:

N−1∑
n=N−Ñ+1

λh2
(n|xk) ≥ VÑ−1(x

∗
h(N − Ñ + 1|xk)), (66)

as VÑ−1(x
∗
h(N − Ñ + 1|xk)) is optimal. On the other hand:

V Ñ
N (xk) ≤ λh1

(0|xk) +
N−Ñ∑
n=1

λh1
(n|xk)

+VÑ−1(x
∗
h(N − Ñ + 1|xk)), (67)

given V Ñ
N (xk) is optimal. Using (13a) with (67) produces:

λh1
(0|xk) +

N−Ñ∑
n=1

λh1
(n|xk) +

N−1∑
n=N−Ñ+1

λh2
(n|xk) =

V Ñ
N (xk) ≤ λh1

(0|xk) +
N−Ñ∑
n=1

λh1
(n|xk)+

VÑ−1(x
∗
h(N − Ñ + 1|xk)). (68)

Canceling out the two first terms to the left of the equality
and to the right of the inequality yields:

N−1∑
n=N−Ñ+1

λh2(n|xk) ≤ VÑ−1(x
∗
h(N − Ñ + 1|xk)). (69)

Together (66) and (69) imply
∑N−1

n=N−Ñ+1
λh2(n|xk) =

VÑ−1(x
∗
h(N − Ñ + 1|xk)).

2) Proof of Lemma 4: V Ñ
N (xk+1) in (7) can be written as

V Ñ
N (xk+1) =

N−Ñ∑
n=0

λh1
(n|xk+1) +

N−1∑
n=N−Ñ+1

λh2
(n|xk+1).

(70)
Since V Ñ

N (xk+1) = V Ñ
N (f(xk, µ

Ñ
N (xk))) = V Ñ

N (x∗h(1|xk)),
we can upper-bound it by

V Ñ
N (f(xk, µ

Ñ
N (xk)))

≤
N−Ñ∑
n=1

λh1(n|xk) + V Ñ
Ñ
(x∗h(N − Ñ + 1|xk)). (71)

In (71), we have used λh1
(n|xk), n = 1, . . . , N−Ñ from (13a)

to generate the first N − Ñ terms of λh1
(n− 1|xk+1) in (70).

The remainder of the expression (70) can be constructed by
an input taking the system from the state xh(N − Ñ |xk+1) =
x∗h(N − Ñ + 1|xk) to xh(N − Ñ + 1|xk+1) ∈ X1 and any
sequence of inputs maintaining subsequent states [xh(N−Ñ+
2|xk+1), . . . xh(N − 1|xk+1)] ∈ X2

7. Due to Assumption 2,
this control sequence always exists and can be obtained by
V Ñ
Ñ
(x∗h(N − Ñ +1|xk)), which is used in the second part of

(71). Now, a lower bound for V Ñ
N (xk)−V Ñ

N (f(xk, µ
Ñ
N (xk)))

can be obtained by subtracting (71) from (13a), as follows:

V Ñ
N (xk)− V Ñ

N (f(xk, µ
Ñ
N (xk)))

7We have used the dependency on xk+1 for predicted states which were not
directly obtained using any terms containing xk as original departure state.
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≥ λh1
(0|xk) +

N−Ñ∑
n=1

λh1
(n|xk) +

N−1∑
n=N−Ñ+1

λh2
(n|xk)

−
N−Ñ∑
n=1

λh1
(n|xk)− V Ñ

Ñ
(x∗h(N − Ñ + 1|xk))

= λh1
(0|xk)

−
(
V Ñ
Ñ
(x∗h(N − Ñ + 1|xk))− VÑ−1(x

∗
h(N − Ñ + 1|xk))

)
.

(72)

Where equality holds using Lemma 3 and cancellation of the
summations from n = 1, . . . , N − Ñ .

3) Proof of Proposition 2: Analyzing (8) and having an
expression for α available, we just need to obtain an upper
bound to V Ñ

N (xk). A closed expression for it can be obtained
using (13a). We can then use (23) to bound the first summation
in (13a). The second summation is equal to VÑ−1(xs) via
Lemma 3. Based on this equality we can use (24) and (23)
sequentially in VÑ−1(xs) to bound the second summation in
(13a). This produces

V Ñ
N (xk) ≤

N−Ñ∑
n=0

C1σ
n
1 λ0 + VÑ−1(xs)

≤ C1

[(
1− σN−Ñ+1

1

1− σ1

)
+

C2σ
N−Ñ
1 σ2

(
1− σÑ−1

2

1− σ2

)]
λ0. (73)

Using (8) and λ0 ≤ maxu∈U l(xk, u) produces (29).
4) Proof of Proposition 3: Assume prior knowledge of

C1, C2, σ1, σ2 and δ, then via Theorem 1, we can use N and
Ñ to produce α ≥ 0 as follows.

α = 1− C1C2σ
N−Ñ
1 σ2

(
δ
1− σÑ

2

1− σ2
+ σÑ−1

2

)
≥ 0 (74)

⇒ C1C2σ
N−Ñ
1 σ2

(
δ
1− σÑ

2

1− σ2
+ σÑ−1

2

)
≤ 1. (75)

To guarantee (75), we upper-bound its left hand-side as

C1C2σ
N−Ñ
1 σ2

(
δ
1− σÑ

2

1− σ2
+ σÑ−1

2

)

< C1C2σ
N
1

(
δ
σ1(1− σÑ

2 )

σÑ
1 (1− σ2)

+ 1

)

= C1C2σ
N−Ñ+1
1

[
δ

1− σ2
+ 1

]
. (76)

The first strict inequality is obtained due to 1 > σ1 > σ2 ≥ 0
in Assumption 3. We then subject

C1C2σ
N−Ñ+1
1

[
δ

1− σ2
+ 1

]
≤ 1

⇒ −(N − Ñ + 1) log (
1

σ1
) ≤ − log(C1C2[

δ

1− σ2
+ 1])

⇒ N − Ñ + 1 ≥

⌈
log (C1C2[

δ
1−σ2

+ 1])

log ( 1
σ1
)

⌉
. (77)

5) Proof of Proposition 4: Consider the difference V Ñ
Ñ
(xs)−

VÑ (xs). One could recalculate it as:

V Ñ
Ñ
(xs)− VÑ (xs) = V Ñ

Ñ
(xs)−

Ñ−1∑
n=0

l(x∗d(n|xs), u∗d(n|xs))

≤ l(x∗h(0|xs), ũh(0|xs)) + l(xh(1|xs), ũh(1|xs))

+

Ñ−1∑
n=2

l(x∗d(n|xs), u∗d(n|xs))−
Ñ−1∑
n=0

l(x∗d(n|xs), u∗d(n|xs)).

(78)

The upper bound on V Ñ
Ñ
(xs) is constructed by starting from

xs = x∗h(0|xs) = x∗d(0|xs) = x∗h(N − Ñ + 1|xk) and
applying any sub optimal input ũh(0|xs) ∈ U producing a
state xh(1|xs) ∈ X1. Then we choose a sub optimal input
ũh(1|xs) that takes the system from xh(1|xs) to xh(2|xs) =
x∗d(2|xs). By choosing ũh(0|xs) and ũh(1|xs) in this way, we
construct a feasible (but generally suboptimal) input sequence,
yielding an upper bound on V Ñ

Ñ
(xs). This was an arbitrary

upperbound sequence choice so that we could cancel out terms∑Ñ−1
n=2 l(x

∗
d(n|xs), u∗d(n|xs)). We then re-write the inequality

as:

V Ñ
Ñ
(xs)− VÑ (xs) = V Ñ

Ñ
(xs)−

Ñ−1∑
n=0

l(x∗d(n|xs), u∗d(n|xs))

≤ l(xh(0|xs), ũh(0|xs))− l(x∗d(0|xs), u∗d(0|xs))
+ l(xh(1|xs), ũh(1|xs))− l(x∗d(1|xs), u∗d(1|xs)). (79)

We can further rearrange the above bound to obtain:

V Ñ
Ñ
(xs)− VÑ (xs)

≤
(
l(xh(0|xs), ũh(0|xs))
l(x∗d(0|xs), u∗d(0|xs))

− 1

)
l(x∗d(0|xs), u∗d(0|xs))

+

(
l(xh(1|xs), ũh(1|xs))
l(x∗d(1|xs), u∗d(1|xs))

− 1

)
l(x∗d(1|xs), u∗d(1|xs)).

(80)

Here, l(x∗d(0|xs), u∗d(0|xs)) ̸= 0, l(x∗d(1|xs), u∗d(1|xs)) ̸=
0. If l(x∗d(0|xs), u∗d(0|xs)) = 0, via positive definite-
ness of l(·, ·) with respect to both arguments, this im-
plies x∗d(0|xs) = x∗h(0|xs) = 0, implying V Ñ

Ñ
(xs) =

VÑ (xs) = 0, case in which it does not make
sense to calculate a bound.If l(x∗d(0|xs), u∗d(0|xs)) ̸= 0

and l(x∗d(1|xs), u∗d(1|xs)) = 0, V Ñ
Ñ
(xs) − VÑ (xs) ≤

l(xh(0|xs), ũh(0|xs)) − l(x∗d(0|xs), u∗d(0|xs)) and only the
first difference above is to be evaluated.

A particular sub optimal input ũh(0|xs) choice is to keep
the system at xs or guaranteeing xh(1|xs) = xh(0|xs). Then
ũh(1|xs) is chosen so that the system goes from xh(0|xs) to
x∗d(2|xs). This scenario is feasible by assumption. As such,
we could then simplify the above bound as:

V Ñ
Ñ
(xs)− VÑ (xs)

≤
(

maxu∈U l(xh(0|xs), u)
minu1∈U l(x∗d(0|xs), u1)

− 1

)
l(x∗d(0|xs), u∗d(0|xs))

+

(
maxu∈U l(xh(0|xs), u)

minu1,u2∈U l(f(x∗d(0|xs), u1), u2)
− 1

)
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l(x∗d(1|xs), u∗d(1|xs))

Finally, using Assumption 3, we have:

V Ñ
Ñ
(xs)− VÑ (xs) ≤ C1C2σ

N−Ñ
1 σ2 (ρ1 + σ2ρ2)λ0,

ρ1 =
maxu∈U l(xh(0|xs), u)
minu1∈U l(x∗d(0|xs), u1)

− 1 =
maxu∈U l(xs, u)

minu1∈U l(xs, u1)
− 1,

ρ2 =
maxu∈U l(xh(0|xs), u)

minu1,u2∈U l(f(x∗d(0|xs), u1), u2)
− 1

=
maxu∈U l(xs, u)

minu1,u2∈U l(f(xs, u1), u2)
− 1.

We assume ρ1, ρ2 ≥ 0. By the non-zero state assumption
and the positive definiteness of l(·, ·) in each argument, the
denominators are non-zero. We use this bound to compute α:

α = 1− C1C2σ
N−Ñ
1 σ2

(
ρ1 + σ2ρ2 + σÑ−1

2

)
⇒ δ = (ρ1 + σ2ρ2)

1− σ2

1− σÑ
2

. (81)

C. Lower-Bound Proofs

1) Proof of Lemma 5: On one hand we know that λh1
(N −

Ñ |xk+1) +
∑N−1

n=N−Ñ+1
λh2(n|xk+1) satisfies:

λh1(N − Ñ |xk+1) +

N−1∑
n=N−Ñ+1

λh2(n|xk+1)

≥ V Ñ
Ñ
(x∗h(N − Ñ |xk+1)), (82)

as V Ñ
Ñ
(x∗h(N − Ñ |xk+1)) is optimal. On the other hand, we

have:

V Ñ
N (xk+1) ≤

N−Ñ−1∑
n=0

λh1(n|xk+1) + V Ñ
Ñ
(x∗h(N − Ñ |xk+1)),

(83)

given V Ñ
N (xk+1) is optimal. Using (85) with (83) produces:

N−Ñ∑
n=0

λh1
(n|xk+1) + λh1

(N − Ñ |xk+1)

+

N−1∑
n=N−Ñ+1

λh2
(n|xk+1) = V Ñ

N (xk+1)

≤
N−Ñ−1∑

n=0

λh1
(n|xk+1) + V Ñ

Ñ
(x∗h(N − Ñ |xk+1))

Canceling out the first summation term to the left of the
equality and to the right of the inequality yields:

λh1(N − Ñ |xk+1) +

N−1∑
n=N−Ñ+1

λh2(n|xk+1)

≤ V Ñ
Ñ
(x∗h(N − Ñ |xk+1)). (84)

Putting (82) and (84) together implies λh1(N − Ñ |xk+1) +∑N−1

n=N−Ñ+1
λh2

(n|xk+1) = V Ñ
Ñ
(x∗h(N − Ñ |xk+1)).

2) Proof of Lemma 6: We now write V Ñ
N (f(xk, µ

Ñ
N (xk)))

as:

V Ñ
N (f(xk, µ

Ñ
N (xk))) =

N−Ñ−1∑
n=0

l(x∗h(n|xk+1), u
∗
h(n|xk+1))

+ l(x∗h(N − Ñ |xk+1), u
∗
h(N − Ñ |xk+1))

+

N−1∑
n=N−Ñ+1

l(x∗h(n|xk+1), u
∗
h(n|xk+1)) (85)

We can get an upper bound on V Ñ
N (xk) using the first

summation in (85) as follows:

V Ñ
N (xk) ≤ λ0 +

N−Ñ−1∑
n=0

l(x∗h(n|xk+1), u
∗
h(n|xk+1))

+ VÑ−1(x
∗
h(N − Ñ |xk+1)). (86)

The above is an upper bound as, in the summation, we use a se-
quence of feasible state input pairs from V Ñ

N (f(xk, µ
Ñ
N (xk)))

which is not necessarily optimal for V Ñ
N (xk). The use of

VÑ−1(x
∗
h(N − Ñ |xk+1)) in V Ñ

N (xk) can be justified as, from
x∗h(N − Ñ |xk+1) onwards, we need a sequence of inputs
maintaining the states in X2. To derive the expression below
we use (86) as an upper bound for V Ñ

N (xk) and the equality
(85) for V Ñ

N (f(xk, µ
Ñ
N (xk))).

V Ñ
N (xk)− V Ñ

N (f(xk, µ
Ñ
N (xk)))

≤ λ0 +

N−Ñ−1∑
n=0

λh1
(n|xk+1) + VÑ−1(x

∗
h(N − Ñ |xk+1))

−
N−Ñ−1∑

n=0

λh1
(n|xk+1)− λh1

(N − Ñ |xk+1)

−
N−1∑

n=N−Ñ+1

λh2(n|xk+1)

= λh1
(0|xk)

−
(
V Ñ
Ñ
(x∗h(N − Ñ |xk+1))− VÑ−1(x

∗
h(N − Ñ |xk+1))

)
.

(87)

Where the equality is obtained via Lemma 5 and cancellation
of the summations from n = 0, . . . , N − Ñ − 1.

3) Proof of Lemma 7: For any x ∈ X1, due to the positive
definiteness of l(·, ·), we have that

V Ñ
Ñ
(x) ≥ V Ñ−1

Ñ−1
(x) ≥ VÑ−1(x) =⇒ V Ñ

Ñ
(x)−VÑ−1(x) ≥ 0,

Thus, there exists ω ∈ [0, 1) (worst case ω = 0) satisfying:

(V Ñ
Ñ
(x)− VÑ−1(x)) ≥ ωλ0. (88)

Multiplying both sides by −1 and adding λ0 produces:

λ0 − (V Ñ
Ñ
(x)− VÑ−1(x)) ≤ (1− ω)λ0.

Since 1− ω > 0, for any non-negative α:
α

1− ω
[λ0 − (V Ñ

Ñ
(x)− VÑ−1(x))] ≤ αλ0. (89)

In particular, this will hold for all α ∈ [0, 1] uniformly. Since
this holds for any x, it will hold for x∗h(N − Ñ |xk+1). Now
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consider x∗h(N − 1|xk+1) ̸= 0. Then, due to the positive
definiteness of l(·, ·):

(V Ñ
Ñ
(x∗h(N − Ñ |xk+1)) > V Ñ−1

Ñ−1
(x∗h(N − Ñ |xk+1))

≥ VÑ−1(x
∗
h(N − Ñ |xk+1))). (90)

Following the steps from (88) with the strict inequality
V Ñ
Ñ
(x∗h(N − Ñ |xk+1)) > VÑ−1(x

∗
h(N − Ñ |xk+1)) in (90)

implies that there will be an ω ∈ (0, 1) for all α ∈ [0, 1] such
that (89) holds. Since the first inequality in (35) always holds,
under these conditions Proposition 1 holds.

4) Proof of Proposition 5: Analyzing (12b) and with ω
available, we need to obtain an upper bound to V Ñ

N (xk). We
use (41) to bound the first summation. The second one is equal
to VÑ−1(xp) via Lemma 3, producing:

V Ñ
N (xk) ≥

N−Ñ∑
n=0

C3σ
n
3 λ1 + VÑ−1(xp)

≥ C3

[(
1− σN−Ñ+1

3

1− σ3

)
+ C4σ

N−Ñ
3 σ4

(
1− σÑ−1

4

1− σ4

)]
λ+0 .

Where the second inequality is obtained by using (42) and (41)
sequentially in VÑ−1(xp). Finally, using (12b), λ+0 ≥ κλ0 and
observing that λ0 ≥ minu∈U l(xk, u) results in (47).

5) Proof of Proposition 6: The goal is to have 0 ≤ ω ≤ 1−α.
Consider α ∈ [0, 1]. If σ4 = 0 or κ = 0, ω = 0, which by
default produces 0 ≤ ω ≤ 1 − α. Now, we go to the case
where κ > 0, ω > 0. We thus want to enforce

C1C2σ
N−Ñ
1 σ2

(
δ
1− σÑ

2

1− σ2
+ σÑ−1

2

)

≥ C3C4κσ
N−Ñ
3 σ4

(
ν
1− σÑ

4

1− σ4
+ σÑ−1

4

)
(91)

Since σ2 ≥ σ4 the expression to the left of the inequality can
be lower-bounded as

C1C2σ
N−Ñ
1 σ2

(
δ
1− σÑ

2

1− σ2
+ σÑ−1

2

)

≥ C1C2σ
N−Ñ
1 σ4

(
δ
1− σÑ

2

1− σ2
+ σÑ−1

2

)
⇒

(
σ1
σ3

)N−Ñ
[
δ
1− σÑ

2

1− σ2
+ σÑ−1

2

]

≥ C3C4κ

C1C2

(
ν
1− σÑ

4

1− σ4
+ σÑ−1

4

)
(92)

Using the assumptions δ ≥ ν and again σ2 ≥ σ4, if we enforce

(
σ1
σ3

)N−Ñ

≥ C3C4κ

C1C2
⇒ N − Ñ ≥


log
(

C3C4κ
C1C2

)
log
(

σ1

σ3

)
 , (93)

we produce the desired effect in ω. The case in which δ < ν
can be analyzed in the same fashion but produces an implicit
expression on N and Ñ .

6) Proof of Proposition 7: Consider the difference V Ñ
Ñ
(xp)−

VÑ (xp). One could recalculate this difference as:

V Ñ
Ñ
(xp)− VÑ (xp) =

Ñ−1∑
n=0

l(x∗h(n|xp), u∗h(n|xp))− VÑ (xp)

≥
Ñ−1∑
n=0

l(x∗h(n|xp), u∗h(n|xp))− l(xd(0|xp), ũd(0|xp))

− l(xd(1|xp), ũd(1|xp))−
Ñ−1∑
n=2

l(x∗h(n|xp), u∗h(n|xp)).

The upper bound on VÑ (xp) is constructed by starting from
xp and applying any sub optimal input ũd(0|xp) ∈ U keeping
xd(1|xp) ∈ X2. Then we choose a sub optimal input ũd(1|xp)
that takes the system from xd(1|xp) = f(xp, ũd(0|xp))
to xd(2|xp) = x∗h(2|xp). Choosing ũd(0|xp) and ũd(1|xp)
in this way, a feasible (but suboptimal) input sequence is
constructed, yielding an upper bound on VÑ (xp). This arbi-
trary upper bound sequence was chosen to cancel out terms∑Ñ−1

n=2 l(x
∗
h(n|xp), u∗h(n|xp)). Re-writing the inequality as:

V Ñ
Ñ
(xp)− VÑ (xp) =

Ñ−1∑
n=0

l(x∗h(n|xp), u∗h(n|xp))− VÑ (xp)

≥ l(x∗h(0|xp), u∗h(0|xp))− l(xd(0|xp), ũd(0|xp))
+ l(x∗h(1|xp), u∗h(1|xp))− l(xd(1|xp), ũd(1|xp)).,

we can rearrange it to obtain the difference:

V Ñ
Ñ
(xp)− VÑ (xp)

≥
(
1− l(xd(0|xp), ũd(0|xp))

l(x∗h(0|xp), u∗h(0|xp))

)
l(x∗h(0|xp), u∗h(0|xp))

+

(
1− l(xd(1|xp), ũd(1|xp))

l(x∗h(1|xp), u∗h(1|xp))

)
l(x∗h(1|xp), u∗h(1|xp))

Following the same reasoning as in the proof of Proposition
4, a feasible input ũd(0|xp) can be chosen by keeping the
system at xp or guaranteeing xd(1|xp) = xd(0|xp). Then
ũd(1|xp) would have to make the system go from xd(0|xp) to
x∗h(2|xp), which is feasible by assumption. As such, we could
then simplify the above bound as:

V Ñ
Ñ
(xp)− VÑ (xp)

≥
(
1− maxu∈U l(xd(0|xp), u)

minu1∈U l(x∗h(0|xp), u1)

)
l(x∗h(0|xp), u∗h(0|xp))

+

(
1− maxu∈U l(xd(0|xp), u)

minu1,u2∈U l(f(x∗h(0|xp), u1), u2)

)
l(x∗h(1|xp), u∗h(1|xp))

We further use (40) to see that l(x∗h(1|xp), u∗h(1|xp)) ≥
(1 + ν)l(x∗d(1|xp), u∗d(1|xp)) ≥ l(x∗d(1|xp), u∗d(1|xp)). This
extra step is needed here since l(x∗h(1|xp), u∗h(1|xp)) does not
exist in (41), where the highest index is l(x∗h(0|xp), u∗h(0|xp)).
Finally, using Assumption 5, produces:

V Ñ
Ñ
(xp)− VÑ (xp) ≥ C3κσ

N−Ñ
3

(
ϕ1 + C4σ

2
4ϕ2
)
λ0,

ϕ1 = 1− maxu∈U l(xd(0|xp), u)
minu1∈U l(x∗h(0|xp), u1)

= 1− maxu∈U l(xp, u)

minu1∈U l(xp, u1)
,
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ϕ2 = 1− maxu∈U l(xd(0|xp), u)
minu1,u2∈U l(f(x∗h(0|xp), u1), u2)

= 1− maxu∈U l(xp, u)

minu1,u2∈U l(f(xp, u1), u2)
.

We could then use this new bound to calculate ω:

ω = C3κσ
N−Ñ
3

(
ϕ1 + C4σ

2
4ϕ2 + C4σ

Ñ
4

)
⇒ ν =

(
ϕ1 + C4σ

2
4ϕ2
)

σ4

1− σ4

1− σÑ
4

. (94)
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[4] L. Grüne and J. Pannek, Nonlinear model predictive control. Springer,
2017.

[5] J. S. Shamma and D. Xiong, “Linear nonquadratic optimal control,”
IEEE Transactions on Automatic Control, vol. 42, no. 6, pp. 875–879,
1997.
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