LOGO

IEEE TRANSACTIONS AND JOURNALS TEMPLATE 1

Model Predictive Control with Multiple Constraint
Horizons

Allan Andre do Nascimento, Student Member, IEEE, Han Wang, Antonis Papachristodoulou, Fellow,
IEEE, Kostas Margellos Senior Member, IEEE

Abstract—In this work we propose a Model Predictive
Control (MPC) formulation that splits constraints in two
different types. Motivated by safety considerations, the first
type of constraint enforces a control-invariant set, while the
second type could represent a less restrictive constraint on
the system state. This distinction enables closed-loop sub-
optimality results for nonlinear MPC with heterogeneous
state constraints (distinct constraints across open loop
predicted states), and no terminal elements. Removing the
non-invariant constraint recovers the partially constrained
case. Beyond its theoretical interest, heterogeneous con-
strained MPC shows how constraint choices shape the
system’s closed loop. In the partially constrained case,
adjusting the constraint horizon (how many predicted-
state constraints are enforced) trades estimation accuracy
for computational cost. Our analysis yields first, a sub-
optimality upper-bound accounting for distinct constraint
sets, their horizons and decay rates, that is tighter for
short horizons than prior work. Second, to our knowledge,
we give the first lower bound (beyond open-loop cost)
on closed-loop sub-optimality. Together these bounds pro-
vide a powerful analysis framework, allowing designers to
evaluate the effect of horizons in MPC sub-optimality. We
demonstrate our results via simulations on nonlinear and
linear safety-critical systems.

Index Terms— Model Predictive Control, Optimal Control,
Constrained Control, Nonlinear Control.

[. INTRODUCTION

ODEL Predictive Control (MPC) [1], [2] is an

optimization-based method that approximates the
infinite-horizon constrained problem by a finite horizon one
[3], raising the question of how similar these two solution
are. This assessment is done via the MPC’s closed-loop
suboptimality analysis [4].

An early contribution on closed-loop optimality analysis is
[5], which derived bounds on closed-loop suboptimality for
linear discrete-time systems by assuming finite-horizon opti-
mal value functions availability. Earlier results are extended
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in [6] to nonlinear systems, where open-loop value functions
are used to evaluate closed-loop suboptimality, yielding a
sufficient stability condition explicit in the prediction horizon.
Previous works focused on the prediction horizon as the tuning
dial for sub-optimality estimation. Sub-optimality was ana-
lyzed in [7], for open-loop costs upper-bounded by a chosen
running cost within the horizon, assuming uniform constraints
and access to optimal state—input pairs. Flexibility on when
to start bounding the open-loop cost adds another angle to
the suboptimality estimation. Subsequent literature, including
[4], [8], [9], move from uniform to dynamic ratios between
the open-loop value function and running cost, enabling
tighter suboptimality bounds by capturing changes in open
and closed-loop costs with greater precision. Extending the
knowledge of MPC parameters’ effect on sub-optimality, [8]
studies the effect of using a control horizon larger than one in
closed loop, relevant to networked MPC, with communication
delays and data losses [10]-[12]. Sub-optimality was also
studied for economic MPC (e.g., [13], [14]).

Recent developments in safety-critical control have sparked
a growing interest in enforcing set invariance [15], particularly
through the Control Barrier Function (CBF) framework [16]-
[18]. This form of constraint enforcement is especially well-
suited to receding horizon techniques, which are themselves
advantageous in safety-critical problems due to their predictive
capabilities [19], [20]. Consequently, MPC-like controllers that
integrate CBF constraints have gained traction, with efforts
spanning centralized [21], [22], distributed [23], probabilistic
[24], learning [25], and real-time [26] MPC frameworks to
name a few.

In the wake of this trend and considering CBF as an
invariant constraint along the MPC horizon, our earlier work
[27] introduced, to the best of our knowledge, the first sub-
optimality estimation for “partially constrained” MPC. Relax-
ing the need to enforce constraints across the full prediction
horizon yields results similar to [6], [7], it produced a compa-
rable explicit sub-optimality bound. However, our focus on the
role of the constraint horizon and its effect on sub-optimality
and stability offers a new perspective on the topic. In this
work we enhance the sub-optimality estimation landscape
by providing a generalized MPC formulation for discrete-
time nonlinear systems where multiple state constraints are
applied over the horizon. Our contributions are threefold. First,
our formulation contributes conceptually to MPC frameworks
without terminal penalty and constraints such as [4], [28]-
[30], analyzing the case of different types of constraint hori-
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zons. If the second horizon in the problem is considered
to be unconstrained, the formulation reduces to a partially
constrained one. Second, differently from [6]-[9], [31], we
derive closed-loop cost upper-bound depending explicitly on
the prediction and constraint horizons. To do so, a difference
of value functions distinguishing between different constraint
sets is proposed, yielding both implicit and explicit bounds
by leveraging constraint and convergence rates. If compared
to [27], which adopts a similar setting, our method leads to
tighter bounds with a broader validity region. This is also a
tool intuitively connecting the effect of extra constraints on
performance and stability. Third, to our knowledge, compared
to cited works, we provide the first lower-bound on the
closed-loop cost that can be tighter (condition dependent)
than the finite horizon open-loop cost. This novel lower-bound
computation method also issues a “certificate” when it cannot
find a tighter bound, validating the “naive open loop cost” as
reasonable. For lower bounds emulating an infinite open loop
cost via long prediction horizons, we offer a computationally
cheaper alternative.

This paper is structured as follows: Section II presents the
problem formulation, Section III presents and derives related
results on Relaxed Dynamic Programming (RDP) which are
the building blocks for the next sections. Sections IV and
V present results on closed-loop optimality upper and lower
bounds respectively. Section VI displays two distinct numeri-
cal simulation cases. The first applies results for a six-degrees-
of-freedom nonlinear system, while the second applies it to a
linear safety-critical setting. Section VII concludes this work.

II. PROBLEM FORMULATION

Consider compact sets with non-empty interior D C R”,
U C R™ and the discrete-time dynamical system

Tpy1 = f(@r, uk), (D

where z, € D, ux, € U and f(0,0) = 0. We consider an
MPC problem at time k with state xj, where state constraints
over the horizon N are split in two: the first [V — N predicted
states are constrained by the control-invariant set Xy, and the
last N predicted states are constrained by a (not necessarily
invariant) set Xo, with X3 C Xy C D.

Remark 1: The relation X; C A5 follows from assuming
X1 is invariant while X5 need not be. X5 = D covers
the “unconstrained” (from the state perspective) tail of the
horizon, encompassing [27]. Under these conditions, allowing
the case where X5 C X, would imply invariance of X5, which
contradicts our assumptions.

The heterogeneously constrained MPC (HC-MPC) problem
is formulated as

N-1

VA (ox) i= | min Z Uzn(nlzy) un(nlze))  (2a)

subject to : '

zp(n+1ag) = f(zn(n|zg), un(n|zg)),n=10,...,N — 1,
(2b)

zy(0]7r) = 24, (2¢)

up(n|zy) eU,n=0,...,N —1, (2d)

zp(n+1lzg) € X1,n=0,...,N— N,
zp(n+1lzy) €Xoyn=N—-N+1,...,N — 1.

(2e)
(2f)

We introduce an auxiliary formulation, the uniformly con-
strained MPC (UC-MPC), which will be used for analysis
purposes and bound derivations at later Sections. UC-MPC
is not used to compute the control input, whereas the online
control is always obtained by solving Problem (2).

N—1

Vn(ag) := udI(%I;k) HZO lzq(n|zk), uq(n|zy)) (3a)

subject to :

za(n + 1|ag) = f(za(n|zk), ug(n|zg)),n=0,...,N — 1,
(3b)

za(0lzy) = @i, (3¢)

ug(n|zy) eU,n=0,...,N — 1, (3d)

xg(n+ llag) € XAo,n=0,...,N — 1. (3e)

We will consider Problems (2) and (3) with N > 2,2 < N <
N and N > 1 respectively. Note that (3) cannot be derived
from (2), as it requires N=N+1in (2), which is invalid by
assumption for (2), as N < N. Thus, N does not appear in the
notation of (3). We assume x;, € Xj, but we do not require any
predicted state of (3) to belong to X;. Unless stated otherwise,
we adopt the following assumptions in this work:

Assumption 1 (Positive definiteness of cost): The cost
I(x,u) is assumed to be continuous and positive definite for
all z € D and for all © € U, jointly with respect to both
arguments, meaning that [(-,-) > 0 for all z,u # 0 and
I(-,-) =0 for z =0, and u = 0.

Assumption 2 (Viability [4]): For any x, € &A1,k = NU
{0}, we assume problems (2) with N > 2,2 < N < N and
(3) with N > 1 are feasible and their minima can be attained.

Viability is standard for MPC sub-optimality analysis [4],
[6], [32]. Assumption 2 is slightly stronger as we require
AX; to be invariant. Assumption 2 implies that feasibility can
be guaranteed along the closed-loop evolution of the system.
When it comes to X5, viability is weaker than requiring its
invariance! [4]. We highlight that x; is the measured state
describing the actual System (1), while x(n|zy) in (2) and
xq(n|zk) in (3) are open loop predicted states n steps ahead of

the measured state xy. Let [u} (0|xg), ..., uj (N—1|zx)] be the
open-loop optimal control sequence, generating the open-loop
optimal trajectory [z} (1|zk), ...,z (N|zy)] for problem (2).
For future analysis, we introduce their respective counterparts
[ui(0|zg), ..., us(N — 1|zg)] and [z5(1|zk), ..., z5(N|zk)]
obtained from (3). Let

p (ar) = uj (0fa), )

be the closed-loop controller, defined to be uﬁ(mk) and always
obtained by the solution of (2). This controller is applied to
system (1), producing the closed-loop system dynamics

Thi1 = [z, p (1)) 5)

Instead of invariance, we require the predicted open-loop trajectory to
remain within X5.
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Summing (9) over M sequential discrete time instances:
VN (z) = V ( k) — VN (Try1401)
M ~
> 0> Uiy 1N (weey)) = iy (@e). - (10)
§=0
By letting M — oo we obtain (8). [ ]

Fig. 1.
Input wp, (2|x) produces the last open loop state xp (3|xx) in X1.
Subsequent open loop states are subject to X2. Closed loop states are
depicted by xx and x4 1.

System (1) under MPC (2) for N = 6, N — N = 2.

At the next time iteration k 4+ 1, the optimal control problem
(2) is solved again, this time for an initial state xf4;. This
process is repeated for each new time step and state available.
Figure 1 depicts the system behaviour under controller (2).

The associated closed-loop infinite horizon cost of (2) is
defined by

N(wo) = D Uk, i (1). (©6)

Our goal is to investigate upper and lower bounds for
JN:N(z0) and explore the impact of the heterogeneous con-
straint scheme presented. Beyond the tighter upper-bound
results and theoretical novelty of the lower-bound per-se,
obtaining both bounds works as a powerful design tool.
Consider for instance two prediction and constraint horizon
pairs (N, N1) and (N, Ny). We are also interested in providing
an answer on which pair performs best in closed loop. We start
our investigation by deriving bounds using RDP.

Il. CLOSED LOOP BOUNDS BASED ON RELAXED
DYNAMIC PROGRAMMING

A. Closed loop upper-bound

We start by revisiting the following result.

Lemma 1: [6, Proposition 2.2] Consider N > 2,2 < N <
N. Let the following Relaxed Dynamic Programming (RDP)
equation

VA (21) = VR (@h41) + al(zk, piy (), @)
hold for some « € [0,1] and for all z;; € X;. Then

a TN (@) < VY (), ®)

holds for all x;, € AX].
We now prove that (8), is an upper bound on (6).
Proof: Consider V¥ (z)) satisfying (7). Equation (7)
produces (8) by rewriting it (see [6]):
VA (@r41) > od(k, p (2r))- ©9)

VA () —

The above result holds for general costs. Nonetheless, for
positive definite costs on both variables we can obtain the
same result without the need to upper bound V' (z) >
V¥ (k) — V& (xk4+14m) in (10). This is demonstrated in
Lemma 2 (proof in Section A of the Appendix).

Lemma 2: Consider N > 2,2 < N < N, and for all z €

X1, (7) holds for some a € [0,1] . Furthermore, consider
Assumption 1. Then, if M — oo, V& (zx+140) — 0.
The restriction to stabilizing MPC problems (the cost I(-,-)
is positive definite) is essential here. Under these circum-
stances, we can also justify Lemma 2 since Vi (zy) is a
Lyapunov function, and given the negative definiteness of
—al(zy, piy(zr)) = V¥ (@r41) — VA (zk), we can state that
when M — oo, VY (zry140) — 0.

B. Closed loop lower-bound

When it comes to lower bounding (6), a naive lower-bound
choice can be V2 (), analogous to the lower bound for the
traditional problem formulation (3) Vo, (zx) (as seen in e.g.
[6, Prop. 2.2], [7, Lemma 4]). However, since V2 (z;) can
only be approximated by solving (2) with a very large horizon
N > N (as it is for (3)), its computation is often expensive. A
looser but computationally cheaper lower bound is, V,f,v (zk),
which holds via

JNN (z (11)

and is valid as our problem formulations do not use a terminal
cost [6]. We seek a higher lower bound on (6) than VY ().
Via RDP, we derive results analogous to the upper bound (8).

Proposition 1: Consider N > 2,2 < N < N. Let
the following relaxed dynamic programming hold for a €
[0,1],w € [0, 1), and for all z, in A}

k) > V2 (ar) > VE () = VY (a),

od (i (1)) 2 1= [VAY (an) = VI (F (o))

(12a)
Then:
) 5
adV N (z,) > aViV_(”i’j) . (12b)

Furthermore, if in addition (7) is fulfilled for all x; in X4,
then

VY (@n) 2 0l (@) 2 7oV (@), (120
holds for all x; € X;.

The proof of Proposition 1 is in Appendix A. Based on
Equation (12c) a necessary condition on w, is 1 —w > a.

Sections IV and V characterize o and w, respectively:
First via direct solution of (2) and (3) and, under extra cost
assumptions, explicitly in terms of cost properties and the
prediction and constraint horizons.
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IV. CLOSED LOOP PERFORMANCE UPPER BOUND
A. Calculation of o as a difference of value functions

Our goal here is to express a as a function of (N, N), which
will happen at first implicitly, based on a difference of value
functions. This requires analysis of V3 (x1,) — Vi (v141). We
start by defining by the optimal open-loop state—input pair of
the value functions VY (1) and Vi (z1):

. N-N N-1
Vi (we) = > Al + > Any(nlzx), (13a)
n=0 n=N—-N+1
Ay (nlzg) = U@y (n]oe), up (nfoe)),n =0,...,N = N,
(13b)
Ang (nlzg) = U@}, (n|ze), up (nfze)), (13¢)
n=N-N+1,...,N—1.
N-1
Vn(zr) = Y Aa(n|zy), (14a)
n=0
Ad(n|zr) = l(zg(n|ze), ug(nlzk)),n=0,...,N — 1.
(14b)

The distinction between Ap, (n|zy) and Ap,(n|zk) is that
A, (nlzk) = Uz} (n|zk), u)(n|zy)) will use an input
uj (n|xg) which is able to produce zj(n + 1llzx) € A%,
whereas Ap, (n|zi) = U(x} (n|zk), u), (n|zr)) uses a uj, (n|zy)
enforcing z}(n + 1llzg) € Xa. As Ag(n|zg) uses uw)(n|zy)
always generating states in X, no extra subscript is used. To
derive an expression for «, the following lemmas (proof of
Lemma 3 in Section B of the Appendix), will allow us to
bound V¥ (z) — V¥ (zr+1) with a difference between the
value functions of problems (2) and (3).

Lemma 3: Assume a solution for Problem 3, with ini-
tial point x}(N — N + 1|zj) and prediction horizon
N — 1 or, Vg_,(xi(N — N + 1|zg)), exists. Then,
N er e (nlTk) = Vg (@h (N = N + 1ax)).

Lemma 4: Consider Lemma 3. For V > 3,2 < N < N-—1,
we can lower bound V¥ (z1) — V& (f (zk, ui (zx))) as:

VY () — V¥ (f (2, i (1)) = Ay (0fy,)

— (VIO ~ N 4 1)) — Vi (N — N + 1))

15)
Proof in Appendix, Section B. Using Lemmas 3, 4, and having
(7) as a goal, we study the following inequality chain:

VA (k) = VA (F o i ))) > Ay Ol)
— (VI @i(N = N +1lax)) = Vy_y (@ (N = N + 1))
> an, (Olzk). (16)

Note that an applicable a > 0 is only possible if, for any
T € X1, we have

Any (Olay)
— (VE @i (N = N+ 1]a) = Vg (@ (N = N+ 1]ay)) )
> 0. a7

As in other papers estimating sub-optimality via RDP (e.g.:
[6], [7]), a non-applicable value @ < 0 may arise. Beyond
applicability of (12a), o > 0 is a stability certificate for the
system [6]. Later in the section, we will propose a constructive
manner to produce o« > 0. The first inequality in (16) always
holds and, in case (17) holds, given the positive definiteness of
I(-,+), there will always exist « € [0, 1] fulfilling (16). As such,
we automatically fulfill the conditions under which Lemma
1 holds. Visual explanation of the upper-bounds previously
generated is shown in Figure 2. Based on (16), we can

B
=
/
A
(B
N
~ ~ >
< g = )
$ & = Ve (w (V- N 1)
5 g s~
N
S & < HE
S = i )
N & o : :
~ ~ ~ : :
»d- > S r:
E B 2 ig 2 e
A\ T - - = =)
= \ 0 0 \ z
Z 2 2 2 = =
2 > 2 =
= = = s 2
= z =
=
B "l
= J
N A . .
S 8 N el R
N & & : :
_______ > @------pp——— - @ e .
. oo : :
= = 1 : :
= A
= \
= 22 3 N
=z = VA (.z»,j (4\' —N+1 1':\))
E> =
=~ o
\
2
=

Fig. 2. Black: Vii¥ (xx) is equal to the sum of running costs I(, )
until the state &5 = (N — N + 1|ay), (last one in A; - vertical
dotted line). From x5, value function’s “tail” is computed by Vg _; (s).
States are shown below the nodes. Blue: Double headed arrow shows
p (1|xk) in black and red are the same state. Red: An upper-bound of
V& (xk41) is derived using &x+1 = = (1|xg), built by the sum of
running costs I(-, -) until the state s = @7, (N — N + 1|z ), which is
the penultimate state required to be in X1. As the starting state now is
zp, (1)) and the constraint horizon associated with Xy is also N — N,
the state x, (1|xs) will be the last required to be in X1. The “tail” of the
value function can be computed by Vlg’ (xs). Dashed black/red arrows

have identical costs and cancel in Vi (zx) — V§(wk+1).

calculate « in different ways. For instance, by computing
VE (@} (N = N +1]xy)) = Vg (@7, (N = N +1[zy)), which
according to Lemma 3 can be calculated via the solution of
(2) online for V3 (x)) and Vjév(:c;"L(N — N + 1|z)), o can
be found, for xj # 0, as:

a=1-—

Ve (@ (N = N+ 1aw)) = Vig_y (e, (N = N + 1))

Ay (O]

(18)

If applicable, (18) estimates the closed loop sub-optimality, but
does not give any explicit information on how /N and N affect
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the estimate. Thus, we go on to characterize o explicitly as a
function of these parameters. From now on, to ease notation
we use x5 = 25 (N — N + 1|zg) and Ao = Ap, (0]ay).

B. Explicit calculation of

We rewrite VNN(x,’:(N — N +1|z))
1|xg)) in (16) as:

- VN_I(SCZ(N — N+

VY (@h(N = N+ 1|22)) = Vig_y (@i (N = N + 1]g))

= VY (@h(N = N+ 1|zx)) = Vg (zh (N = N + 1ay))

+ Vi (@h(N = N+ 1zx)) = Vg_y (g (N = N + 1]zy))
= VN (@) = Vig(2s) + V() = Vig_y (@)- (19)

The first difference after the equality is the cost gap between
(2) and (3) at prediction horizon N, or the marginal cost of
changing the initial constraint. The second is the gap between
(3) at prediction horizons N and N —1, or the marginal cost of
adding one prediction step to a problem with initial prediction
horizon N — 1. We begin with the first difference in (19).
Consider Assumption 2; We write Vjé,v (xs) and Vig(zs) as:

N-1

V]\%V(CL‘S) = Iz} (n]zs), uy(n|xs)) (20a)
n=0
N-1

Vi(zs) = ) Uzg(n|zs), ug(nlzs)). (20b)

n=0

There always exist d,, > 0,n = {0,..., N — 1} such that:

Uy, (n]as), up (nfes)) — Wzg(nles), ug(nfzs)) <
Onl(g(nles), ug(nfzs)).

This inequality help us to bound the cost partially con-
strained by A by the cost completely constrained by Ab.

21

Observing that, we upper-bound VI\{;[ (xs) — Vig(zs) as:
: N-1
VNN(xS) —Vyl(zs) < onl(zl(n|zs), ui(n|zs)). (22)

0

3
Il

Although the above is always valid, we limit ourselves to
starting state x; # 0% as x; = 0 would produce VY (z5) —
Vi (xzs) = 0. Now, a modified version of [4, Assumption 6.4]
is necessary.

Assumption 3 (Maximum rate of cost controllability):
Consider the optimal control problems (2) and (3). For any
rr € AXj, and horizons N > 2,2 < N < N, there exist
constants C; > 1,C5 > 0, decay rates 1 > o1 > o9 > 0
and admissible control sequences up(n|zy),uq(njzs) € U
such that the stage costs [(-, ) along the optimal solutions is
asymptotically controllable with rates:

Uy (nlzy), up(nlzy)) < Crot o,
n={0,...,N — N},

(23)

2With Assumption 2 holding from x5 # 0, the problem is as solvable as
(18). There, VY (xx) and Vlév(xs) were assumed to exist. By Lemma 3,

existence of VY (x) implies Vg, (zs), then Vg (zs) is feasible as the
extra state stays in Xo.

zj(nlas), uj(n|zs)) < Caoy Ay g,
n=1{0,...,N —1},

where \y_ 5 = l(x}(N — Nlzy,),uj,(N — N|zg)).
Thus, at its maximum decay values, the part constrained by
A attains the origin more slowly than that constrained by X5
3. We now upper bound the second difference in (19) using
Assumption 3:

Vi (@s) = Vig_y(2s) = Uag(N = a), ug(N = 1]z,))
S CQO'éV)\

(24)

N-N*
The inequality above is obtained with (24). Via (23) Ay _ 5 <

Ch O’iV_N)\o, implying:

VN(LES) -

We now put pieces together to claim the following result.

Theorem 1: Consider Assumptions 2 and 3. Then, for N >
3,2 < N < N —1 and for all z;, € &), an explicit expression
for o serving as a bound in (8) is:

Vi (2s) < C1C0N " Nolng.  (25)

-N -0y 5o
a=1-C1Cq0; oa |6 + 0, , (26)
1— g9
where § = max{do,...,d5_;}
Proof: We start by simplifying (22), choosing § =
max{do,...,05_1 }:

VN(xS) _

N Uzg(nlzs), ug(nlzs))

Using (24) on the expression above we obtain:

N-1
V]\{;V(xs) — Vi (zs) <020y 5 | 6 Z oy |,
n=0
N 1-of

Using (23), we write Ay _ 5 as a function of Ag.

1—a§ -
1_0_2 N—-N

. 1= ol
SC’la{V_NUQC’Q 1) )\0

V]éfv(‘rs) — Vy(zs) <020 <5

].—0'2

Including the second difference in (19), using (25), yields:

V]éfv(x-S) —Vx_ 1(955)
:V]{”;V(Q%)_V ( Nlms
_ 1\7 -
< 0101 _NCTQCQ 92 Ao + 01020'1 O’éVAO
02
= 0101 NCTQCQ (5 + o ) )\0
— 09

3 Although a special L function is used here, more geneal ones could
also be used. We emphasize that exponential cost controllability does not
imply exponential state controllability. [4, Example 6.5]
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Finally, by using (16), and the inequality above we obtain:

VY (1) = Vi (f (2 1N (1))

i T
Z (1 — C1U{V_NO'202 (5 72 +O'év_1>> )\0
1—0’2

> alg 27
We can then choose:
~ 1— oV .
a=1-C1Cyo; No, <(5 7 + aév_1>
1— g9
| ]

Unlike (18), this bound yields a closed-form « as a function
of N, ]\7, Ch, Cs, 01, 02, 6. Estimating § is most demanding
since it additionally needs online Vy(x;), beyond VI@[ (x5)
and Vi (x;). In Section VI, we will explain a way to
estimate these parameters. If Vi (x,) automatically produces
x5(llzs) € Xi, there is no need to calculate V]\%V(xs), as
Vjév (xs) = Vg(xs), implying ¢ is not needed, and « in
Theorem 1 reduces to:

a=1-— ClcgafvaaéV. (28)
Proposition 2 (proof in Appendix B) shows how Assumption
3 provides an upper-bound for J:V (z;) (8) based on decay
rates and o.
Proposition 2: Consider Assumption 3 and « € (0, 1]. Then
by (23), (24) an upper-bound for JY:N (x},) is:

1 _O_{V—N-&-l
1701 +

NN () < O

Y 1— o1 maxycy [(Tg, u
020'1 NO‘Q 1 20_ EZ/;( ) (29)
— 02

Any applicable o works in (29) nonetheless, using Theorem 1
we obtain an upper-bound based on estimated parameters and
Ao alone. This helps us in one side of our study on the effect of
two sets of N and N values on the closed loop upper-bound.

1) Depenence of o on prediction and constraint horizons: As
noted, o > 0 gives an applicable bound and certifies stability.
We now study how N, N affect o via Theorem 1.

Proposition 3: Assume C1,C3,01,02 and § are known.
Then, via Theorem 1, horizons respecting N > 3,2 < N <
N —1 and

N-N+1>
log (5-)

) log (0102[ﬁ + 1})—‘ (30)

guarantee stability in closed loop.

The proof can be found in Appendix B. As per Proposition 3,
there exist values for N, N yielding system stability (and thus
sub-optimality estimation), given its decay rate characteristics.
Next, we discuss methods for determining d that avoid the
explicit online evaluation of Vjév (x5) and Vg (zs).

2) Discussion on §: To avoid calculation of V]é\? (zs) and
g1

Vi (xs), 0 can be approximated by: § ~ 2 — 1. In this

o9 N
heuristic approach the reasoning is, starting from x, Vléfv (x5)’s
first term can decay as slow as o (constraint active), whereas
Vi (xs)’s first term can decay in the worst case with a o9
factor. Despite its simplicity, this is not a bound on §. We
thus derive a conservative yet rigorous upper-bound.

Proposition 4: Assume there exists @y, (0|zs) € U such that
s = f(xs,Up(0|xs)), for all z; € X; such that x4 # 0, and
ap(1|zs) € U capable of driving the system from x,(0|z;) to
x5(2|zs) in one step. If V]s[(xs) # Vi (zs), and there exists
p1, p2 > 0 such that:

! min,, ey [(25(0)zs), u1)
maxqyciq l(xh( |xs)a u)
= — —1 (32)
P2 ity e 1(f (@ (0]2,),ur), u2)
Then we can choose § as:
1-— g9
d = (p1 + o2p2) N (33)

Proof is found in Section B of the A2ppendix. The input
capacity assumption is not overly restrictive, as for a small
enough sample time, a small displacement, which in turn
requires an arguably small input usage. Despite the looser
bound obtained when using expression (33) in (26), it has
the advantage of only requiring the computation of VY (zy,)
for estimating C7, Cs, 01, 02 and obtaining x5, while VA{[V (zs)
and Vg (xs) are no longer needed in the calculation of 0.
Then o becomes computationally simpler compared to (18)
and (26). This derivation provides an explicit bound for «
based on N, N while giving the designer the option to avoid
additional value function evaluations, at the cost of increased
conservativeness.

V. CLOSED LOOP PERFORMANCE LOWER BOUND

A. Calculation of w as a difference of vale functions

We now revisit the inequality chain (12¢) in Proposition
1, as we aim to estimate w also as a function of (N, N).
This time, we do so by derivation of an upper bound for
Vi (zr) — V' (f (zk, pN(xr))), and construction of an in-
equality chain using (12a). We again transform V' (zy) —
VY (f(zg, pN(zx))) in a difference of value functions, in
which the following Lemmas, (proof in Section C of the
Appendix) will be useful. )

Lemma 5: Assume a solution for Vlév(x;"l(N — N|z11))
exists. Then, Ay, (N7N|xk+1)+25:_]\17_]\7+1 Ah, (D) Thy1) =
Vi (@ (N = Nl|zgs1)).

Lemma 6: Consider Lemma 5. For N > 3,2 < N < N—1,
we can upper-bound V7 (z1) — V& (f(xr, ui(xr))) as:

VI (1) = VI (f (o, 18 (1)) < Ay (O])

~ (VRN = Blazis) = Vi a@h (Y = Nlaia))).
(34)

~—
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Using Lemmas 5, 6, and having (12a) as a goal, we enforce
the inequality chain below (valid for o > 0):

T VR @) = VY (s i @)] < 72— Dy (0fe)

- (V@3 = Flow)) = Vi @3N = Flowsa)|
< alp, (0lzg), (35)

A meaningful value of w can be obtained when, for any
Tpy1 € X1, it holds that that:

ni (Ol
(vN 2 (N = Nz41) = Vg (@5, (N = Nlgs))
0. (36)

Y

We will later provide horizons to produce meaningful values
for w respecting 0 < w < 1—q. Although w = 0 produces the
same bound in value of the naive bound VY (x), conceptually
it is a certification that under these circumstances, Vi (z})
is a reasonable choice and not a “naive pick”, which per-se
is a valuable information. On the following Lemma (proof
in Section C of Appendix), we comment on the existence of
w > 0 generating a tighter bound than VY (z).

Lemma 7: Consider (36) and o € [0,1] in Lemma 1.
There exists w € [0,1) such that for all « € [0,1], (35) is
satisfied. Furthermore, if 2} (N — 1|z441) # 0, then a strictly
positive w € (0, 1) satisfying (35) exists, impliying a tighter
(higher) lower-bound than V¥ () is attainable. In both cases,
Proposition 1 is satisfied.

Note that w is defined independently of «. Nonetheless, w
serving as a lower bound depends on v > 0 (e.g.: fulfillment of
(17) guaranteeing the existence of « € [0,1]). On top of that,
if (36) holds, there exist w € [0, 1) such that Lemma 7 holds
for all a € [0, 1]. If the inequality chain in (12c) is invoked, w
must additionally satisfy the necessary compatibility condition
1 — w > «a. Based on Lemma 7 and (35), we can calculate
w in many different ways. For instance, via computation of
Vi (@ (N = Nlzpg)) = Vig_y (25,(N = Nlzp1)), obtain-
able via solution of (2) online for V¥ (zx), V& (z41) and
Vi_y (x5 (N — N|agy1))*, w can be found, for 2, # 0, as:

_ V]év(a:;*l(N — N|x’€+1)) — Vy_y (@ (N — N|$k+1))

Any (02

(37

Similar to (18), (37) allows us to estimate the closed-loop
lower-bound cost. Nonetheless, it does not make explicit how
this estimate varies with the parameters N, N. As before,
we proceed to characterize w explicitly in terms of these
parameters. We henceforth denote x, = 2} (N — N|zpi1)
and )\3_ = /\h1 (O|xk+1).

“The calculation of Vji,\_[(ock) is needed to obtain Ap, (0|z). Via Lemma
3 Vi (@f(N — N + 1|zg41)) can be obtained from V& (zk41), but
Vi (@f (N — N|xp41)) is not available, requiring its computation.

B. Explicit Estimation of w

Following (19), we re-write the bound with x;, rather than
x5 (N = N+ 1|z):

V¥ (2,) — Vi, (zp)

= V¥ (2,) — Viglay) + Vig(zp) = Vi_y(2)  (38)

The same considerations about marginal costs made for (19)
are also valid here. Analogously to (22), we now will use an
assumption guaranteeing a lower-bound on elements (38).

Assumption 4: Consider Assumption 2, with initial state
xp 7# 0. The value functions Vjéfv (xp) and Vg (z,) can be
written as:

3 N-1
V¥ (xp) = Y Uxj(nfap), uj(nfzp),  (39a)
n=0
N—-1
Vi (xp) = lzy(nlep), uy(n|zy)). (39b)

n=0

We assume there exists v, > 0 such that °:

Wy, (nlap), up (nlzp)) — Uag(nlzp), ug(nfzp)) >

val(zg(nlzp), ug(nlzy)),n = {0,...,N—1} (40)
We can then lower-bound V{V (xp) — Vi (zp) as:
~ N-—
V]éfv(xp) Z Wzg(nlzp), ug(n|zp))

Now we state an assumption similar to Assumption 3.
Assumption 5 (Minimum rate of cost controlability):
Consider optimal control problems (2) and (3). We assume
that, for each x4, € A}, there exists admissible control
sequences up(n|zk11), ua(n|zy) € U such that the system is
asymptotically controllable with respect to [(-, -) with rates:

Wy (n]aggr), up(nlzrg)) > Csog A, (41)
n={0,...,N — N},
l(af(nlay), uy(nlep)) > Caoyd ™AL o, (42)

n=1{0,...,N —1},

where AT o = 1(2} (N — Nlagi1), uj (N — Nlzgi)),
0321,C4>0,01203>0420and,01>0220420.
This means that the constrained part in X; has a minimum
decay rate that takes longer to decay when compared to the
minimum decay rate of the constrained part in Xs. Sequen-
tially applying (42) and (41) (Assumption 5) yields a lower
bound for the second difference in (38):

Vi (@p) = Vg _y(zp) = l($2(N -
> 03040:;\[71\701\[)\3.

1|$p)7u2(N — 1zp))

(43)

Theorem 2: ~Consider Assumptions 2, 4 and 5. Then, for
N >3,2< N <N -1 and for all z; € X1,x, # 0, an

SDifferent from §,, > 0 satisfying (21), which always exists, here v, >
0 satisfying (40) may not exist. This is since I(z}(n|zp), u)(n|zp)) >
I(z} (n|zp), uj, (n]xp)) may happen for a given n, underlying the need to
assume existence of vy,.
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explicit expression for w serving as a bound in (12b) can be
described by:

] Lo
W= 0304/90§V*NU4 (V %4 + UiVl> , (44)

1—0’4

where v = min{vy,...,v5_,} and k > 0, s.t., A\J > ko.
Proof: Consider the inequality:

V]éfv (zp) —

N—
Z Uag(nlep), ug(n|zp))-

We simplify the expression above by choosing v =
min{vy,...,v5_;}. Then:

VN(zp) -

N
1_04 )\+ -
1704 N-N

as a function of \J, i.e.,
N

1- 04 >\+ -

1-— (o} N-N

1_(74]1\[))\3
1—0’4

We now include the contribution of the second difference in the
sum (38), with the lower bound calculated in (43), producing:

V(@) = Vi ()

Z CgO'éViNO'4C4 <V

V]\{]V(xp> — Vy(ap) 2 04Cy <V

. . +
By using (41), we can write /\N—N

Vjév(xp) — Vi (@p) 2 04Cy <V

2 030§7N04C4 <I/

1—ay

— 0y

1\7
Cto AR D
Finally we note that

NE = 107 (o, Ol)), 5 (Ok)) 2 1F o w7, (0124)), 0)
U e, 0l)), 0)

) )\(J)r + 03040'5))\[7]\70'5)\3

- 1 —
= CgO’éViNO'4C4 < 1

= A >kK)\, K= (45)
0 0 I(zy, w* (0]zy))
We can then choose:
. 1_ oV .
w = C3C4H0§V_Na4 (V 94 + oiv_l> .
1-— (o}
| ]

Unlike (37), the bound above provides a closed-form es-
timate for w as a function of the prediction horizon N, the
secondary constraint horizon N , and the parameters C3, CYy,
03, 04, and v. The “analogous term to ¢, which is v is the
most demanding to be estimated as expected. Unlike in (37),
it requires the additional online computation of Vi (z,), in

addition to the already needed values Vi (z1), V& (k41)
and VN_l(z;;(N — Nl|xk41)). Analogous to the discussion in
the previous section, if the optimal choice automatically leads
to zj(N — N + 1|zpy1) € &y 6, then the term connected
V]y(xp) — Vy(xp) in Theorem 2 cancels out as V (xp) =
Vi (xp). Thus, a calculation for v is not needed s1nce w in
Theorem 2 reduces to:

w = C’3C4/£0§V_Naiv. (46)

Using Theorem 2 with Assumptions 4 and 5, we obtain in
Proposition 5, a lower bound for JYV(z;) depending solely
on the estimated parameters and ).

Proposition 5: Consider Assumptions 4 and 5. Then by
(41) and (42), the lower-bound for JX:¥ () can be written

as:
NN 1 - N N+1
Joo’ (ll?k) Z Cgli ﬁ +
N— .
0409,_]\704 1—ol ! ming, ey l(zk,u). @7
1— g4 1—w

From (47) and the positive definiteness of I(-,-),
min, ey l(zg,u) = 0 only if z = 0. Any estimated w

can be used on Proposition 5, nonetheless, using Theorem
2, provides a lower-bound based on estimated parameters
and \g alone. Having upper and lower bounds of JX:V (z}),
we can address the other main goal, comparing the effect of
different N on closed loop trajectories of a nonlinear system
controlled by (2). Namely, if design options N; < Na, could
produce:

TN (30) > NN (), (48)

implying Ny is decidedly a worse choice. A sufficient condi-
tion producing (48) is, when applying (12c), the lower-bound
produced by N, exceeds the upper-bound of Ni:

VA (@) _ V™ ()
ag - 1- .
1

w ]\72
Using Propositions 2 and 5, the above expression can be tested
as a function of decay rates, prediction and constraint horizons.
1) Dependence of w on prediction and constraint horizons:
We study parameter—horizon choices that yield meaningful
relations for w, using Theorem 2.
Proposition 6: Consider  Proposition 3, and that
Cs3,C4,k,03 and o4 is known. If o4,k > 0, § > v
and horizons respecting N > 3,2 < N <N —1 and

C3Cyk
N-N> log (&)
| log(Z)
or, if 04 = 0 or kK = 0 (without any extra requirement) then,
0 <w < 1— «a will be respected.
The proof can be found in Appendix C. Propositions 3 and

6 together generate conditions in which nontrivial upper and
lower bound exist.

(49)

6NoEe we use the dependency on xj1 and not xj, reason why we use
N —-N+1.
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2) Discussion on v: The simplest way to obtain a value
for v, in an heuristic fashion, without the need to calculate
Vi (xp) (we still need to obtain V' (1), Vi (2r41) and get
V¥ () via Lemma 7) is to approximate it by: v ~ 22—1.The
rationale is that, starting from the same point, V]év (xp) will
have its first term decaying as fast as og (active constraint),
whereas the first term of Vi (xp) will decay with a oy factor.
A lower bound on v, proposed below (proof in Section C of
the Appendix.): )

Proposition 7: Let V]\{[V (xp) # Vg(xp). Furthermore as-
sume that there exists #q(0|z,) € U such that z, =
f(xp,0q(0]zp)), for all xx+1 € Ay such that =, # 0, and
Uq(1l|z,) € U capable of driving the system from x4(0|z,) to
x}(2]xp) in one step. If there exists ¢1, ¢2 > 0 such that:

maxyey [(zq(0]zp), u)

=1—-— - (50)
P (JER R
maxyey [(zq(0]2p), u)

=1-— " (51)

O e L (25, Of2y), ), )
(52)

Then we can choose v as:
Cyo? —

- (¢1 + 4049752) 1 o4 (53)

o4 1—ol

Considerations regarding input capacity assumption mild-
ness used for Proposition 4, are also valid here. Despite the
looser bound obtained when using (53) in (44), it has the
advantage of only requiring the computation of VI{[V (Thy1)
for estimating Cs3, Cy, 03,04 and obtaining x;,, and V¥ (z)
for calculation of A\ while Vléfv (xp) and Vi (x,) are no longer
needed for obtaining v, simplifying w’s computation compared
to (37) and (44). This result gives an explicit bound for w based
on N, N, allowing the designer to avoid extra value function
evaluations, at the cost of increased conservativeness.

VI. NUMERICAL SIMULATIONS
A. Nonlinear example
We study the derived bounds on a 6-DoF nonlinear quadro-
tor model. We adopt the North East Down (NED) orientation,

with the inertial frame located on earth’s surface, and O, .
fixed at the quadrotor centre of mass, as in Figure 3. We

Fig. 3. Reference frames for UAV [33].

model the quadrotor using a simplified nonlinear model valid
for small angle deviations [34]:

x = f(x,u),
[ w(oy +0) —v(¥ —¢0) +u ]
o v(1+ ¢pl) — w(d — o) + urp
T w —ubh + vo
Y p+ 10+ qpb
Z q—r¢
) r+q¢
0 rv — qw — g6
x= V] fxw) = pw—ru+gé
u
v qu—pv+g—ﬁ
w Iy_—[z Tx
P I I
q L2I, e
pr+ =
L7 ] Iy Iy
Ip — Iy +Ti
L ML |

In the above equation x € R!? is the vector composed
of: positions x,y, z, velocities u, v, w, angular displacements
¢, 0,1 and angular velocities p, g, in/around the directions
0g, 0y, 0, With Tespect to the inertial frame [34]. The angular
movement around the o, 0,,0, axis are often also called
roll, pitch and yaw. The input vector u = [f, 7, 7y, 72| 7, is
composed by f; = Fy+ Fo+ F5+Fy, the thrust force generated
by propellers and 7,,7,, T, are torques generated along the
Oy, Oy, 0, directions. Finally, I, I,,, I, are inertia matrix diag-
onal components (off-diagonal terms neglected). UAV; has its
initial state Xin;; = [1,2, —1,0149]7, and UAV, has its state
fixed to X, = [0.4, 1.5, —0.2,01,9]7. With respect to the NED
orientation, in which a negative Z means displacement above
ground, UAV starts hovering at [1,2,1]" and is to land at the
origin while avoiding UAV,, hovering at [0.4,1.5,0.2] 7. We
discretize the system with sample time 2 = 0.4s and solve
(2). The input constraint set is U = {u(n|xx) € R*| —umar <
u(n|xx) < Umaz, ¥ =0,..., N—1} and the state constraints
set Xy = X, defined for all n = 0,...,N — N as in (54) and
Xy =R!2,

ldy2(n+ 1xp)[13 > rops + €,
d172(n + 1|xx) =

[z(n + 1|xp) — o,

y(n + 1Xk) — yo,

2(n+ 1[xg) — 2o |

z(n + 1fxz) <0,

[o(n + 1x)|, [0(n + k)],
o+ 1xi)| < 5
vi,2(n+ 1fxg) 2 < 2,
vi2(n+ 1) = [u(n + 1|xg),
v(n+ 1), wn + 1jxp)] T,
Ip(n + 1[xk)]; la(n + 1[x)],
|r(n + 1x)|

x(n + 1]x;) € R'?

<

18 (54
Under (54), we enforce for UAV;: The usual distance con-
straint [|dy 2(n + 1|xx)||3 > 72, + € where 7455 = 0.5

defines the safety distance around UAV,; and € > 0 (here
chosen ¢ = 0.1) is a small tolerance value, the ground
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avoidance constraint z(n + 1|xz) < 0 (having z > 0
implies UAV; would crash into the ground), attitude bounds
|p(n + 1xg)[, [0(n + 1|xx)], [¢(n + 1xx)| < § introduced
due to the model being valid for small angles only (threshold
assumed to be 20°), velocity constraints |[v1 2(n+1[xg)|2 < 2
limited to be at most 2m /s, and attitude rate constraint |p(n+
Lxg)l, [q(n + 1|xx)], [r(n + 1]xz)| < {5 limited to be smaller
than 10° per sample. The stage cost is I(z(n|xy), u(n|zy)) =
z(n|zk) TQx(n|zk) + u(n|zy) " Ru(n|zy). Figure 4 shows
UAVy’s trajectory obtained by solving (2) with N = 16
and N — N = 3. The safety is verified by checking the
minimum distance value obtained which is of 0.59m, being
thus greater than 7. We now estimate JYV(z}) via (8) and

UAYV collision avoidance

Fig. 4.

Trajectory of UAV 1 avoiding collision with UAV 2.

(12b) while using Theorems 1 and 2 to obtain values for «
and w respectively. We compute o1, 02, and § using the open
loop value function V3 (w0). We estimate 0y = o1(z9) =
max(oh(1|x0),~...,ah(N — Nlﬂ?o)) and gg = 0'2(2130) =
max(og(N — N +1|xg),...,04(N — 1]|zg)), where o, (n|zy)
and o4(n|zy) are calculated, based on Assumption 3, as:

on(nlzr) = fi(n,zx, No), n=1,...,N = N, (55)
O'd(nlxk) = f2(naxk7)‘N_1\7) =N-N+1 N — 1,
(56)

fi(n,a,b) = (l(wZ(nla>b,u;<n|a))>; |

b@%aﬁ):(“xﬂnmkuﬂnm»>nﬂ(th.

C1 = Cy =1 due the estimation of o, (n|zx) and o4(n|zy).

Similarly, o3, 04, and v are calculated with V3 (z1). We
estimate o3 = 03(x1) = HllIl(O’h (Lz1),..., 0 (N —Nlzy)),
and o4 = 04(x1) = min(o] (N — N + 1|1’1) ol (N -
1|z1)), where o} (n|zki1) and o (n|zgy1) are calculated,
based on Assumption 5, as:

N-—N, (57

(58)

of (nfera) = fi(n, zes, AS), n=1,...
O’;(’ﬂ|$k+1) = f2(n7xk+1a /\j\_/v_]\"/)v
n=N-N+1,...,N—1.

We also set C3 = C4 = 1 as before due to the estima-
tion of o) (n|zk+1) and o (n|zgy1). For all o’s we use

I(x}, (n|wsa), uj (n|ziq)),id = {k,k 4 1} so that we can
calculate only V@ (z;4) and do not need to calculate the
unconstrained equivalent.

Calculation of § and v are done via the bounds discussed in
(33) and (53), and via § ~ —2 —land v = U— — 1 respectively.
Results are compiled in Table I for the horizon pairs N = 16,
NfN—SandN—27,N N = 3.

. N N
Horizons JOAZ,’N(QCQ) § and v w VNT(:O)
N = 16 475.09 (33) and (53) 1310.44 442.77
N-N=3 ' Approx. 842.89 N.A.
N = 27 475.10 (33) and (53) 835.65 442.78
N-N=3 ' Approx. 630.03 N.A.
TABLE |

BOUNDS BY HORIZONS AND ESTIMATION METHODS.

The lower bound results using (53) are close to the actual
closed loop cost. In both cases the approximation v ~ g—i —
obtained was not applicable, since w > 1 — a. Upper bounds
calculated using both (33) and the approximation § = Z—; —
1 give valid, albeit looser bounds, with the latter providing
less conservative results. During certain simulation instances,
(33) yielded low « values, which despite producing a very
loose upper bound for the closed loop, still provided a valuable
information as the region in which a > 0 implies closed loop
stability on this region. We underline that the calculations use
only the state zo and as such are still an approximation.

B. Linear system comparison

We now compare the bounds in Theorem 1 with the ones
n [27], which also obtain (8) via RDP, but « is estimated as:

BN71\~/+1
a=1-—"— (59)
(B+1)N-N-1
and > 0 is obtained for n € {N +1,..., N} as:
VA () < (B+ DV (a), (60a)
V¥ (2x) < (B + Dk, uh (N — nlay)). (60b)

Following the example in [27], consider the linear double
integrator (i + 1|k) = Ax(ilk) + Bu(ilk) with z(ilk) =
[p2:(i|k), py (i k), v (ilk), v, (i|k)]T listing positions and ve-
locities, and u(ilk) = [a.(i|k),ay(i|k)]? containing the ac-
celerations, both in the z,y coordinates. We use a quadratic
cost (z(ilk), u(i|k)) = x(i|k)T Qz(ilk)+u(ilk)T Ru(ilk) and
input bounds U = {u(ilk) € R?, s.t. —2 < u,.(ilk) < 2},
where r = {1, 2} are the rows of u(i|k), andi =0,..., N—1.
State constraints are: velocity bounds |vg(j + 1|k)| + vy (5 +
1]k)] < 2 and for position bounds, we re-utilize the CBF
candidate functions

n(aGIR) = 5peGIR) + pyGIK) + 5
halallh) = )~ pG18) +16

The system is subject to velocity and positions (CBF) con-
straints hy(x(j + 11k)) > (1 — y)h1(z(j]k)) and ho(x(j +

(61a)
(61b)
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1k)) > (1=7)ha(z(j|k)), withy = 0.8 for j = 0,..., N—N.
The initial state is set to zo = [—0.8,0.6,—0.45,0.65], and
the target state is the origin. Here we compute « in two
ways, both using § =~ g—; — 1. The difference is if (55)
and (56) are estimated with x( alone or the full trajectory
rg, k = 0,...,T (I samples). Using x( only, yields a
“local” « and requires computing 5 from [27] using only
xo as well, while using the full trajectory produces more
conservative results, but matches the original setting of [27].
For comparison we solve (2) repeatedly for N = 10 and
N = 20 while varying N. For each N and a fixed N, we
compute 01,9 = 01(z0), 01,7 = max(o1(xo),...,01(z7)),
02,0 = 02(0), 02,7 = max(o2(xo), . .., 02(xr)), where each
o1(xk),o2(xy) is again obtained via (55) and (56). We set
C7 = Cy = 1 and from now on we use aq and ar for the
estimations using x( only, and the full trajectory respectively.
Using § ~ g—; — 1 (rather than (33)) is simpler and performed
better: (33) produced more cases with a < 0, making the
bounds inapplicable. As a benchmark, we computed 3y from
xg and SBr from the full trajectory to obtain «g and arp
according to [27]. For N = 10, see Fig. 5a (a’s) and Fig. 5b
(closed-loop cost).

Comparison of bounds

2
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Comparison of bounds
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Fig. 5. a's and closed-loop cost for N = 10 as a function of N — N.
The « estimate from Theorem 1 appears to converge faster

than the one in (59), and hold over a larger region, whether
using xzq or the full trajectory. In Figure 5a, (59) yields a larger

negative « region (inapplicable bound), whereas Theorem 1
gives o € (0,1). Figure 6a shows a for N = 20, and
Figure 6b the corresponding closed-loop estimation. From

Comparison of bounds
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(b) Closed-loop cost for N = 20 vs. N — N. Blue/green: estimates
from [27] and (26); red: actual.

Fig. 6. a’s and closed-loop cost for N = 20 as a function of N — N.

Figures 6a and 6b, we see that Theorem 1 produces the closest
value to JY'V(29) when N — N = 12. Increasing N — N
beyond 12 raises the %j‘)) by (< 0.01% per unit increase
in N — ]\7) and produces o020 > o1 and oo > o117
As N — N — 20 02,0 and oo 7 tend to 1. Based on the
calculation of (55) and (56), it is expected that close to the
equilibrium o1 9,01,7,02,0,02 7 — 1, possibly implying that
we are beyond the transient point, relevant to calculate system
convergence’s speed. As such, estimation of (55) and (56)
become less reliable, but still conveys relevant information.
Finally, for high values of N and N — N (e.g: N = 20
and N — N = 14), aq obtained from (59) is around 0.3%
higher than g from Theorem 1, which is not seen for arp,
where Theorem 1 always outperforms (59). This may indicate
a complex relation between these results, which ought to be
explored further.

VII. CONCLUSION

We presented an MPC formulation with two constraint
types. The first is a control-invariant set which presents higher
maximum and minimum decay rate values (slower decay) and
ensures recursive feasibility. The second is a standard state
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constraint set, which contains the first set, possibly with lower
decay-rate bounds, encompassing a partially constrained for-
mulation. Our contributions are: 1) a conceptual generalization
of closed-loop MPC estimation; 2) a tighter (for short hori-
zons) computation of closed-loop upper bounds from open-
loop value functions using decay rates and constraint horizons;
and 3) a new and less expensive closed-loop lower-bound than
the usual infinite-horizon open-loop value. We explored differ-
ent parameter estimation and bounding techniques and validate
the theory on nonlinear and linear examples, showing larger
validity regions than existing results. Future work will address
offline parameter estimation, improve closed-loop comparisons
across horizons, and deepen understanding of this bounds with
existing ones.

APPENDIX
A. Relaxed Dynamic Programming Proofs

1) Proof of Lemma 2: We reconsider the second inequality
of (10) (also valid for the first inequality of (64)) rearranged:

M

VR (2) = @ W@k pin (The5)) =
=0

VA (@kq1401) > 0.

We want to study its behavior when M — oo:

M
VR (1) — Jim o z;) U&hpgs N (e ) >
J
lim VN ($k+1+M) > 0. (62)
M—o0
The first inequality above can further be rearranged as:
~ M ~
VY () > A}iglwazo U@retgs N (@) 2 0. (63)
=

As VK,\? (x) is finite, so must the infinite sum be. As [(-,-) >

0 and a € [0,1] elements of the sum in itself must go to
zero, meaning [(Ty140r, pN (Thr140)) — 0 as M — oo.
Running cost positive definiteness ensures, Tpi14a — 0 as
M — oo and thus, V¥ (2r4140) — 0 as M — oo.

2) Proof of Proposition 1: By performing the same steps
from (9) to (10), we get the following bounds:

VY (@) = Vi (@hr1em)
M ~
> 0> Uwpsg, 1N (@hey)) = a0 (@)
j=0
> @ [VN(I'k) —VN(xk 1 1\/[):| (64)
1o~ N \Tk+1+ :

As M — oo (64) simplifies (Lemma 2). Applying Lemma 2
on (64) produces

VN (zr) > ad NN () > (65)

for all x;, € A;.

B. Upper bound Proofs

1) Proof of Lemma 3: On one hand we know that
Z,I:[;I\lf,NH An, (n|zy) as in (13a) satisfies:

N-1
Y. Mna(nlen) = Vg (@i (N = N+ 1zy)),  (66)
n=N-N+1
as Vg_, (x5 (N — N +1|zy,)) is optimal. On the other hand:

VN (zx) < An, (0],) +

Z )\hl TL|CL‘]€

Vi (e (N = N + 1)), (67)

given VK,\? (k) is optimal. Using (13a) with (67) produces:

Z )\hl n|wk

N-1

>

n= N—N+1

Z )\hl n|xk

Vi_q(ah(N — N+ 1|xk) .

Ay (Ofarg ) + Any (n]2k) =

VY (x1) < A, (Olz1) +

(68)

Canceling out the two first terms to the left of the equality
and to the right of the inequality yields:
N-1

2.

n—N7N+1
Together (66) and (69) imply Zn NoNi1 e (nlzR) =
Vi (@p(N = N+ 1))

2) Proof of Lemma 4: VY (zj.4+1) in (7) can be written as

Z )\h1 n|xk+1
(70)

Since Vi¥ (wii1) = VA (f (s i (ar))) = Vi (a7 (L)),
we can upper-bound it by

vav <f<xk,u9$<xk>>>

Z

Ao (nlzy) < Vg (2 (N — N +1zp)).  (69)

N-1

>

n= N—N+1

ey Ay (|2k41)-

L (nfey) + VE (@ (N = N+ 1zy). (71

In (71), we have used Ay, (n|zg),n=1,..., N—N from (13a)
to generate the first N — N terms of A, (n — 1|z41) in (70).
The remainder of the expression (70) can be constructed by
an input taking the system from the state 2, (N — N|zj11) =
z5(N — N 4 1)zg) to 2, (N — N + 1]zpy1) € &) and any
sequence of inputs maintaining subsequent states [xp, (N —~N+
2@k41)s -2 (N — 1zk11)] € X 7. Due to Assumption 2,
this control sequence always exists and can be obtained by
VJ%[V(Q:Z(N — N +1|zy)), which is used in the second part of
(71). Now, a lower bound for V¥ (z) — V& (f (zk, uN(zr)))
can be obtained by subtracting (71) from (13a), as follows:

VY (@) — VY (f (2 1N (1))

7We have used the dependency on xj 1 for predicted states which were not
directly obtained using any terms containing xj, as original departure state.
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N—-1
> A, (0]zx) + Z My(nlee) + Y Ay (nfzx)
n= N7N+1
N-N 3 ~
= An(nlzk) = VE (@ (N = N + 1|zx))
n=1
= An, (0lzg)

~ Vi @h(V = N + 1) )
(72)

Where equality holds using Lemma 3 and cancellation of the
summations fromn=1,..., N — N.

3) Proof of Proposition 2: Analyzing (8) and having an
expression for o available, we just need to obtain an upper
bound to V' (z1). A closed expression for it can be obtained
using (13a). We can then use (23) to bound the first summation
in (13a). The second summation is equal to Vy_,(z,) via
Lemma 3. Based on this equality we can use (24) and (23)
sequentially in Vg_;(z,) to bound the second summation in
(13a). This produces

N—-N
< Y Crotag + V()

n=0

1_0{\171\7“ N
170’1
iy 1— o1
Cao N”?(ﬁ;)
— 02

Using (8) and Ao < max,ey (2, u) produces (29).

4) Proof of Proposition 3: Assume prior knowledge of
C1,C5, 01,02 and 4, then via Theorem 1, we can use [N and
N to produce a > 0 as follows.

VN .’Ek

<c

Xo. (73)

) L_oN
a=1-— 01020'1 _NO'2 <5 1 (:_2 + O'év_1> > 0 (74)
— 02

N
1—o05

= 100N Vo, (5 (75)

+U§7—1> <1.

To guarantee (75), we upper-bound its left hand-side as

N-N 1-ol 5.,
01020'1 g9 5 1 pu +O’2
— 02

1—0‘2

N
<01020'{V 5%4—1
oy (1—o02)

_ClC O'N N+1 |: d

o (76)

ol

The first strict inequality is obtained due to 1 > 07 > 02 >0
in Assumption 3. We then subject

C1Co0lN™ N“{ +1} <1
1—0’2
~ 1

_ — )< —

(N N+1)1Og(01)_ log(Cng[1 J2—i—1])
5 log (C1C[2— +1

LN N | 2[1;"2 Dy (77)

log(gﬁ)

5) Proof of Proposition 4: Consider the difference V]éfv (xs)—

Vi (xs). One could recalculate it as:
3 } N-1
Vil (@s) = Vig(as) = VE (2) = Y Uai(nles), uilnle,))
n=0
<l( 1 (0l2s), an(0fzs)) + U(zn(]as), an(1les))

,_n
2(
—

Wzg(nls), ug(n|zs)).

(78)

Z zq(nles), ug(nles)) -

n=2

3
Il
=]

The upper bound on V]\%V (x5) is constructed by starting from
zy = 25(0lzs) = x5(0lzs) = @i (N — N + 1|z;) and
applying any sub optimal input iy (0|zs) € U producing a
state zp(1]xs) € X;. Then we choose a sub optimal input
ip(1)zs) that takes the system from zp(1]xs) to xp(2|zs) =
x5(2|zs). By choosing @y, (0|zs) and @y (1]x) in this way, we
construct a feasible (but generally suboptimal) input sequence,
yielding an upper bound on Vjé\' (zs). This was an arbitrary
upperbound sequence choice so that we could cancel out terms

SV (@ (n]as), uf(n|2s)). We then re-write the inequality

as:n_2
: B N-1
Vi (26) = Vig(as) = Vi (x5) = Y Uzg(nlas), ug(n|z))
n=0

< U(@n(0]zs), un(0l2s)) — Uz g(0lxs), ug(0lzs))
+ U@ (Uzs), an(1zs)) — Uzg(1]zs), ug(1]zs)).

We can further rearrange the above bound to obtain:

(79)

Uz (0|2s), un(0]2s)) ) 0L
: <Z(x§(0|xs)»%(0xs)) 1) H(zg(0lzs), ua(Olas))

Wan(lzs), dn(1]zs) e
’ <l(x3(1|xs)’u2(1lfcs)) 1>l( a(1lzs), ua(1lzs))-

(80)

Here, 1(23(0],), u}(0]2,)) # 0, 1wy(Lle,), uj(1le,)) #
0. If I(z3(0]xs),us(0lzs)) = 0, via positive definite-
ness of I(-,-) with respect to both arguments, this im-
plies a}(0zs) = 5 (0]zs) = 0, implying V¥(z;) =
Vi(zs) = 0, case in which it does not make
sense to calculate a bound.If I(z}(0|zs), u}(0]zs)) # O
and U(zj(1]a,),ui(1a,) = 0, V() - Vy(n,) <
Wzn(0|zs), un(0|zs)) — U(x}(0]zs), u);(0]zs)) and only the
first difference above is to be evaluated.

A particular sub optimal input @, (0|zs) choice is to keep
the system at x5 or guaranteeing x(1|zs) = x5 (0|z,). Then
Up(1)zs) is chosen so that the system goes from z(0|zs) to
x}(2|xs). This scenario is feasible by assumption. As such,
we could then simplify the above bound as:

Vi (2s) = Vig (@)
maxy ey [(zh(0]zs), u)

= (mlnuleul(xd(olze) uy)
< maXyey l( ( |:C9)
minul,uzeul( ( (les)

1) U(z3(0]), w5 (0],)

)> )‘1)

_|_



IEEE TRANSACTIONS AND JOURNALS TEMPLATE

Wzg(Lzs), ug(lles))

Finally, using Assumption 3, we have:

V]év(xs) — Vi (zs) < C1Coo) Noy
~ maxyey (x4 (0]2s), u) B
p1 = —1=
ming, ey {(2}(0]xs), u1)
maxyey [(zh(0]z5), u)
miny, u,ey [(f(2 (0|x5) 1), u2)
u)

maxyey (2,

(p1 + 02p2) Ao,
max, ey (s, u)

minuleu Z(IS, ul)

_17

-1

p2 =

N minul,ugeu l(f(l‘s, u1)7 u2) B

We assume p;,p2 > 0. By the non-zero state assumption
and the positive definiteness of I(-,-) in each argument, the
denominators are non-zero. We use this bound to compute «:

a=1-— Ongo{V_Nag (p1 + 202 +O’év_1)

1—o0
=d=(p +U2p2)7§,- (81)
1—o0;

C. Lower-Bound Proofs

1) Proof of Lemma 5: On one hand we know that Ay, (N —
Nl|zpi1) + Zn N §41 Mz (nlzrt1) satisfies:

N—1
AN = Nlag) + > Ma(nlas)
n=N—-N+1
> VI (@i (N = Nlzys)), (82)
as Vg(xZ(N — N|xp11)) is optimal. On the other hand, we
have:

$k+1

(83)

given ij,v (zk+41) is optimal. Using (85) with (83) produces:

N-N
> A (nfzrgr) + An, (N = Nlagga)
n=0 ot ~
+ Y M (fzks) = VA (2k41)
n=N-—-N+1
1

N
Z Ay (]@rs1) + VE (@5 (N = Nlzis1))

Canceling out the first summation term to the left of the
equality and to the right of the inequality yields:

N-1
Ay (N = Nlzig) + > A (nlzrs)
n:N71\~/'+1
<V (@ (N = N|zgy1)). (84)

Putting (82) and (84) together implies )\;“(N N\ka) +
N—1
Zn N—N+1 )‘h2(n|xk+1) VN(xh(N N‘karl))

n (n|2esr) + VY V(@5 (N = Nl|zi41)),

2) Proof of Lemma 6: We now write ij,v(f(xk,ufg(xk)))
as:

—N—

VY (f (@r, i () Z (@h(n]epg1), up (nlzri1))
n=0
+1(z,(N = Nlzg41), uj, (N — Nl|zg1))
N-1
+ Y U (nferr), uj (o) (85)
n:N7N+1

We can get an upper bound on VJ{,V (zx) using the first
summation in (85) as follows:

N—-N-1
V(@) <xo+ Y
n=0

+ Vg1 (@h(N = Nlzgr1)).

The above is an upper bound as, in the summation, we use a se-
quence of feasible state input pairs from V' (f (zx, piy (z1)))
which is not necessarily optimal for V' (x;). The use of
Vi (@ (N — Nlzpy1)) in VY (1) can be justified as, from
x} (N — Nl|zg+1) onwards, we need a sequence of inputs
maintaining the states in X5. To derive the expression below
we use (86) as an upper bound for VN () and the equality

(85) for VI (f (zk, u¥ (z1)))-
VY (1) — VI (f (s 1N (1))

(@h (n|@rs1), up (n]zrs1))

(86)

N—-N-—
Z Ay (R]2x11) + Vig_y (@5 (N = Nlagiq))

)\hl (N - N‘xk-i-l)

N—-N-1

- Z /\h1(n|xk+1)_
n;O1
>

Ay (1] Tp41)
n:N71\~/'+1
= Any (0lzx)
N

- (VN (@7 (N = Nlzg11)) = Vy_y (2, (N = lek+1)))

87
Where the equality is obtained via Lemma 5 and cancellation
of the summations from n =0,...,N — N — 1.
3) Proof of Lemma 7: For any x € Xj, due to the positive
definiteness of [(-,-), we have that

Vi (@) 2 Vil (@) 2 Vg (2) = Vi (@)-Vig_y(2) 20,
Thus, there exists w € [0,1) (worst case w = 0) satisfying:
(VY (@) = Vy_y () = wo. (88)

Multiplying both sides by —1 and adding Ay produces:

Mo = (Vi (@) = Vig_4(2)) < (1 = w)o.
Since 1 — w > 0, for any non-negative «:

a N
- Mo — (VY (2) = Vg_1(2))] < ado. (89)

In particular, this will hold for all @ € [0, 1] uniformly. Since
(

this holds for any z, it will hold for 2} (N — N|zj1). Now
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consider z} (N — 1|zky1) # 0. Then, due to the positive 6) Proof of Proposition 7: Consider the difference V]é,\? (xp)—
definiteness of I(-,-): Vi (2p). One could recalculate this difference as:

(V@ (N = Nlai)) > VI @GN = Rlaw) ~ = :

N . ~ Nt V]\“I;[(xp) — Vi (@p) = Z Uzp (n]zp), up(nlay)) — Vi (xp)
> Vy_1 (@ (N = Nl|zg41)))- (90) =0
N—
Following the steps from (88) with the strict inequality 2t (n|z,), ut (n|z,)) — (= -
low 3 / . ' —U(za(0]zp), wa(0|zp))

Vi (@ (N = Nlzgs1)) > Vg (25(N = Nlzg41)) in (90) Z_: S ! 3
implies that there will be an w € (0, 1) for all « € [0, 1] such 1
that (89) holds. Since the first inequality in (35) always holds, a1l (1)) — Uzt (nles). wk (nle
under these conditions Proposition 1 holds. (@a(llep), dalley)) nz:; (@i (nlep), wi(nlep)

4) Proof of Proposition 5: Analyzing (12b) and with w
available, we need to obtain an upper bound to V3 (z)). We
use (41) to bound the first summation. The second one is equal
to Viy_,(xp) via Lemma 3, producing:

N-N
Z Cso5 A + Vy_q(2p)

n=0

1—aéV*N+1 N_N 1—0571
_— C. —L )N\
( 170’3 + 493 o4 17(74 0

Where the second inequality is obtained by using (42) and (41)
sequentially in Vy,_, (z,,). Finally, using (12b), \{ > kAo and
observing that A\g > min,ey [(xg, u) results in (47).

5) Proof of Proposition 6: The goal is to have 0 < w < 1—a.
Consider o € [0,1]. If 04 = 0 or kK = 0, w = 0, which by
default produces 0 < w < 1 — a. Now, we go to the case
where k > 0, w > 0. We thus want to enforce

VN xk;

> (3

-N 1-of 5,
01C20'1 oo |0 + 05
1—0’2
N—-N 1 —04]1\7 N-1
> C3Cyk04 o4 | v o, + 0, 1)

Since oo > 04 the expression to the left of the inequality can
be lower-bounded as

N-N 1-of | 5,
C1Cy07 oa |0 T + 0,
)

- 1— ol
z<ncga¥Na4<5l —to of ) =
— 02

N-N N
(Ul) [51 —o5 +a§1]
g3 1 — 09

C5Cyk 1-— Uf N—1
>
N (V o4 + oy 92)

Using the assumptions § > v and again o9 > 0y, if we enforce

we produce the desired effect in w. The case in which § < v
can be analyzed in the same fashion but produces an implicit
expression on N and N.

The upper bound on Vi (z,) is constructed by starting from
x, and applying any sub optimal input @4(0|z,) € U keeping
z4(1l|zp) € Xy. Then we choose a sub optimal input @4 (1]x,)
that takes the system from z4(1llz,) = f(zp,%a(0]z}))
to zq4(2|zp) = x}(2|xp). Choosing uq(0|x,) and @gq(1|xy)
in this way, a feasible (but suboptimal) input sequence is
constructed, yielding an upper bound on Vi (z,). This arbi-
trary upper bound sequence was chosen to cancel out terms

271:/:—21 l(z} (n|zp), uf (n]xy)). Re-writing the inequality as:
; N-1
V]\“I;[(xp) — Vg (zp) = Z Uzp (nlzp), up(nlzp)) —

n=0
> Uy, (0]p), up, (Olzp)) — H(za(Olzp), Ga(0lzp))

+ Uy, (Uap), up () — Uza(l|zp), Ga(l]2y))

Vi (2p)

we can rearrange it to obtain the difference:

+(1—

Following the same reasoning as in the proof of Proposition
4, a feasible input @4(0|z,) can be chosen by keeping the
system at x, or guaranteeing xq(l|z,) = x4(0|z,). Then
Uq(1|z,) would have to make the system go from x4(0|xz,) to
x}(2]xp), which is feasible by assumption. As such, we could
then simplify the above bound as:

V]éfv(xp) — Vg (zp)

maXy, ey l(md(()'xp)au) ) * *
> - — [(x3 (0]xy), ur (0|
_< miny, ey 1(x},(0];), u1) (@ (0lzp), uj (0lzp))
N (1 3 maxyey [(zq(0]zp), u) )

MiNy, u,eu l(f(x;;(mxp)a ul)a u2)

Uy, (Hap), up (zp))

We further use (40) to see that I(z}(1|zp), u}(1]xp)) >
(1 + Dy, ui(1z,) > Uay(Tay), ug(Llr,)). This
extra step is needed here since {(x} (1]xp), v} (1]z,)) does not
exist in (41), where the highest index is [z}, (0|zp), u} (0|zp)).
Finally, using Assumption 5, produces:

Vzg(%) — Vi (2p) = Cskog N (1 + Cuoida) Ao,
b =1 maxy ey [(zq(0]xp), w) _{_ aXuey lzp, u)
' i minu1 cu l(xpa ul) ’

miny, ey 1(25(0]2p), ur)
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maxyey L(zq(0]xp), w)
minuhuzeu l(f(LEZ(OLCCp), ul)a u2)
maxyey [(zp, w)

B minul,UQGM l(f(wpa ul)a u2) ’

We could then use this new bound to calculate w:

[1]
[2]
[3]

[4]
[5]

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

w = CsroN N (¢1 + Cuoin + C40’f)

_ (914 Caolgn) 1 - % 94)

04 1—0
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