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Locating Parking Hubs in Free-Floating Ride Share
Systems via Data-Driven Optimization

Anmar Arif , Member, IEEE, and Kostas Margellos , Member, IEEE

Abstract— This paper presents a data-driven study on locating
parking hubs in free-floating ride share systems. Recently, there
has been an increase in free-floating ride share systems, where
users are allowed to pick up and drop off shared vehicles
anywhere in the service area. However, these systems can suffer
from significant demand and supply imbalance, while certain
parking habits may disturb the desired city layout. A potential
solution is to allocate parking hubs in an optimal manner to
regulate the behaviour of the users. This paper develops a
scenario optimization model for finding the optimal locations of
parking hubs. The model determines the capacities and locations
of the parking hubs, while considering the uncertainty of parking
demand and points of interest in the area. We design an algorithm
that combines the idea of Constraint-and-Column Generation
and the Alternating Direction Method of Multipliers (ADMM)
algorithm to solve the optimization problem in a decentralized
manner, and accompany the computed solution with a proba-
bilistic performance certificate. We also compare the adopted
approach with respect to a worst case paradigm both in terms of
computational cost and in terms of conservatism of the resulting
solution. Numerical results show that the proposed method leads
to a less conservative performance compared to the worst case
method, and reduces the computational cost compared to the
classical ADMM.

Index Terms— Data-driven optimization, facility location, ride
share, integer programming, robust optimization.

NOMENCLATURE

Sets and Indices
i/j Index for grid cell.
l Index representing the type of point of

interest.
t Index for time step.
Ḡ Set of all grid cells.
G Set of grid cells with average departure

more than 1.
G(i) Set including cell i and cells adjacent

to i .
I Set of point of interest types.
I G Set of grid cells with points of interests

(POIs) and large daily departure.
Td Set of time steps per day.
Parameters
Ait Number of bikes arriving at grid cell i

and time t .
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B Total number of bikes.
C̄i/Ci Maximum/minimum capacity of

cell i .
Ch Cost of establishing a parking hub.
Cb $/bike-space cost.
Pit Number of departed bikes from grid

cell i and time t .
Di Average daily departures for cell i .
F0

i Initial number of bikes at grid
cell i .

Lil Number of POI of type l at grid
cell i .

Y Maximum number of bikes allowed
to be transferred from their preferred
location.

δi Parking demand of grid cell i .
Decision Variables
fit Parking demand of grid cell i at

time t .
rit Number of bikes moved from/to grid

cell i .
ui Capacity of the parking hub at i .
xi Binary variable equals 1 if cell i has

a parking hub.
yi j Parking demand shifted from i to j .

I. INTRODUCTION

SEVERAL cities around the world have deployed electric
bike or scooter sharing systems in the past years [1].

Scooter and bike sharing systems (BSSs) offer electric scooters
and bikes for short-term renting, providing consumers with a
fast and convenient mode of transportation for short distances.
Here we focus on bike sharing systems, but our algorithms
are applicable to other shared systems as well. These types of
systems are becoming increasingly popular as they are easy
to park and reduce traffic congestion and air pollution. Many
of the BSSs use docking stations where vehicles are locked
to computer-controlled racks and users unlock the vehicle by
entering their payment information. Users then must park the
bike or scooter to docking stations belonging to the same
system at the end of their journeys.

In recent years, a new system called dockless or free-floating
bike-sharing system (FFBS) has gained popularity. In FFBS,
users locate and unlock electric bikes using their smartphones
and drop off bikes at their desired destinations. The idea
of FFBS is to remove fixed stations and avoid their associ-
ated costs. The main advantages of FFBS are: (1) increased
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convenience for users as they can pick up and drop off bikes
from and at any location; (2) reduced system start-up and
maintenance costs since docking stations and kiosk machines
are removed; (3) issues related to full parking stations are
no longer present. However, similarly to station-based ride
sharing systems, the distribution of bikes in FFBS can be
unbalanced and the availability of bikes at desired pick up
locations cannot be guaranteed. Since consumers are allowed
to leave bikes anywhere, the bikes can become scattered all
over the service territory. FFBS have also caused inconve-
nience to pedestrians due to parking on sidewalks, roads, and
entryways. Thus, there is a need to regulate the drop-off and
parking process of FFBS. A possible approach is to introduce
parking areas/hubs/virtual stations where users can drop off
the rented bicycles, as Nice Ride Minnesota implemented for
their ride share system [2]. The company allows users to park
outside of the parking hubs, but with a certain convenience fee;
a similar approach is also implemented by Beryl Bikes [3].

Earlier research on ride share systems focuses on BSS.
In particular, research has been conducted on rebalancing [4],
demand prediction [5], and optimal locations of docking
stations [6]. The study in [7] presented various mixed inte-
ger programming models for solving the bike redistribution
problem in station-based BSSs. The authors in [8] developed a
mixed-integer linear programming (MILP) model for design-
ing a bike sharing system, which includes determining the
locations of BSS stations, number of docking stations, and
fleet size.

For FFBS, the authors in [9] presented a study on using
incentives for rebalancing bikes in dockless systems. The
paper in [10] presented a study for optimizing the distribution
and location of geofence sites (virtual geographic areas used to
restrict bike drop off). However, less activity has been noticed
on parking allocation for FFBS. The problem of optimizing
the location of parking hubs can be classified as a facility
location problem. This class of problems has been investigated
extensively in a wide variety of fields and applications, such
as public parking allocation [11] and allocating emergency
response units [12]. For locating parking hubs in FFBS,
a mixed integer linear program is designed to optimize the
locations of virtual parking hubs in [13]. The MILP model
was solved using a clustering algorithm and implemented
on a subregion in Beijing. The paper assumed that each
starting point of a journey is a potential virtual station. The
proposed method assigned virtual stations at different locations
during the day, so that users park the bikes at locations
with higher demand. In [14], the authors used the K-means
clustering algorithm to decide the location of virtual stations.
The paper clustered the starting locations of users’ trips, and
set each cluster to be a parking hub similar to [13]. However,
K-means identified some remote bikes as parking hubs, which
is expected since K-means assumes all variables have the same
importance for each cluster and the only consideration refers
to distance. In [15], the authors used a heuristic method based
on the analytic hierarchy process and the weight-restricted
data envelopment analysis to select the location of parking
spots.

The facility location problem is NP-hard and is thus dif-
ficult to solve in polynomial time [16]. Adding uncertainty
to the problem makes it even more difficult, and standard
commercial solvers cannot directly solve the problem. In this
paper, we develop a data-driven scenario optimization method
for locating parking hubs in FFBS with parking demand
being uncertain. The objective of the optimization problem
is to minimize the costs of parking hubs and parking spaces.
We model uncertainty by means of scenarios and formulate
a so called scenario program. To solve the resulting problem
in an efficient manner, we design an algorithm that combines
the Alternating Direction Method of Multipliers (ADMM) [17]
and Constraint-and-Column (CC) Generation [18] for solving
the parking hub allocation problem. Moreover, we accompany
the resulting solution with probabilistic feasibility certificates.
We refer to this algorithm hereinafter as CC-ADMM. The
presented method is tested on Mobike’s [19] large-scale
free-floating system in Beijing. The contributions of this paper
are summarized as follows:

1) We develop a mathematical model for optimizing the
locations of parking hubs with uncertain parking demand
in free-floating ride share systems.

2) We design an algorithm combining ADMM with
Constraint-and-Column Generation for solving
large-scale scenario optimization instances of such
problems.

3) We show how to accompany the solution with a certifi-
cate on the probability that it remains feasible when a
new uncertainty realization is encountered.

The rest of the paper is organized as follows: Section II
presents the data used in this study. Section III develops mod-
els for optimizing the locations of parking hubs and Section IV
presents the CC-ADMM algorithm. In Section V we discuss
the (probabilistic) robustness properties of the resulting solu-
tion. Numerical results are presented in Section VI, while
Section VII concludes this paper.

II. DATA DESCRIPTION AND ANALYSIS

The data used in this study is for a FFBS system in Beijing,
operated by Mobike [19]. Mobike is a bike sharing service
that operates in many cities around the world. Mobike’s bikes
are equipped with Global Positioning System (GPS) trackers,
theft prevention mechanisms, and a quick response (QR) code
lock. Users unlock the bikes using a mobile application and
the fee is then charged automatically depending on the trip
taken by the user. Therefore, the bikes do not require docking
stations and users can drop off the bikes at any location, which
is a convenient service compared to traditional BSSs. The
data used in this papers includes over 3 million journeys that
occurred in 2017. The reported information on each journey
includes: order ID, user ID, bike ID, bike type, start time,
and start and end locations. There are 467,340 bikes available
for the users. Fig. 1 shows 10,000 randomly selected starting
points from all the journeys in the data, across a period of two
weeks. The average distance taken by the riders is over 800 m.
Fig. 2 shows a close up image of the region with samples of
trips.
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Fig. 1. A sample for the starting locations of different journeys for Mobike’s
free-floating system in Beijing.

Fig. 2. A sample for the trips taken by the users in a close-up image of the
service area.

A. Spatial Modeling

We first analyze the data employed for the mathematical
models presented in the next section. First, we overlay a
grid over the service area under study, as shown in Fig. 3.
The grid consists of 76 × 109 cells, where each cell is
500 m × 500 m. The average daily demand for cell i , Di ,
is shown in Fig. 4. The arrival time of each journey is not
provided in the data, therefore we estimate the arrival time
by calculating the journey time between the start and end
locations. The distance between a start and end location is
calculated using the Haversine formula, and the journey time
is then estimated by assuming an average speed of 2.5 m/s.

B. Points of Interests

In addition to Mobike’s data, we collected data for points of
interest (POIs) located in Beijing. The locations of office build-
ings, metro stations, parking lots, and universities/colleges
are collected from [20] and Google Places API. In total,
5,561 POIs are collected. POIs represent potential destinations
for the users, with parking lots being convenient locations for
parking hubs. For each type of location l (e.g., office building),
we calculate the number of points of interest (Lil ) in each
cell i . For example, if there are 4 office buildings in cell 1,
then L1, “Office Building” = 4. This information is used in

Fig. 3. Gridded map for Mobike’s free-floating system with sample journeys,
consisting of 76× 109 cells, where each cell is 500 m × 500 m.

Fig. 4. Average daily departures for each cell. Colorcode represents the daily
average number of bikes departing from each grid cell.

Section III to ensure the presence of parking hubs near POIs
at locations with large demand for bikes (see (13))

C. Parking Demand Estimation

To calculate the parking demand in each location for a
specific time instance, we determine the number of bikes
present in that location. The data provides departure and arrival
locations for each trip. Once a bike arrives at a location,
the bike’s next journey should start from the same location.
However, in Mobike’s data, the starting location of a journey
may differ from the end location of the previous journey.
This indicates that Mobike rebalances the system by manually
moving some bikes. Hence, it is not possible to determine
the exact number of bikes present in a specific area from the
provided data. Therefore, we estimate the parking demands fit

at time t for i ∈ Ḡ, where Ḡ is the set of grid cells, by sim-
ulating a rebalancing problem using linear programming. The
objective of this linear program is to minimize the number of
moved bikes while ensuring that the parking demand is equal
to or greater than zero. The rebalancing problem is modeled
as follows:

min
{ fit ,rit ,r

+
it },i∈Ḡ,t∈Td

∑
i∈Ḡ

∑
t∈Td

r+it (1)

subject to: r+it ≥ rit , i ∈ Ḡ, t ∈ Td , (2)∑
i∈Ḡ

rit = 0, t ∈ Td , (3)
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Fig. 5. Two day parking demand for three different grid cells.

rit = 0, i ∈ Ḡ, t �∈ TR, (4)

fi,t+1 = fit + Ait − Pit + rit ,

i ∈ Ḡ, t ∈ Td , (5)

fi1 = F0
i , i ∈ Ḡ, (6)∑

i∈Ḡ

fit ≤ B, t ∈ Td , (7)

0.7 F0
i ≤ fi|Td | ≤ 1.3 F0

i , i ∈ Ḡ, (8)

0 ≤ r+it ≤ 10, fit ≥ 0, i ∈ Ḡ, t ∈ Td . (9)

The optimization model is solved for each day separately,
where Td denotes the number of time steps per day, while
we consider 5-minute time steps. The objective in (1) is
to minimize the number of bikes that are moved. rit takes
a positive value if a bike is moved to grid cell i and a
negative value if a bike is moved out of grid cell i , therefore,
the summation of rit overall i ∈ Ḡ should be zero (see (3)). r+it
considers only the positive values of rit , i.e., max(rit ,0), while
this is enforced by (2). Normally, the rebalancing process
occurs at specific hours in the day [4]. Constraint (4) prohibits
rebalancing outside of the specified working hours, where TR

is the set of time steps between 8 A.M. - 10 P.M. as also
considered in [4]. The parking demand or the fill level is
defined in (5). In particular, the parking demand fi,t+1 at
t + 1 is the sum of parking demand in the previous time
instance fit , arrived bikes Ait and the rebalancing term rit ,
minus the departed bikes Pit . The initial fill level of each grid
cell is defined by (6), where the value of F0

i is determined
by identifying the first journey for each bike in the data.
Constraint (7) limits the total number of bikes to the number
of bikes in the system, denoted by B . We impose that the
number of bikes in each cell at the end of the day should be
within 30% of the starting number in (8). Finally, (9) defines
the variables fit and r+it , where we assume that |r | must be
less than 10 bikes at each time step.

The model is solved using AMPL [21] with GUROBI [22].
Fig. 5 shows a sample of the parking demand fit at three
randomly selected locations (grid cells) for two days. The
values of fit are then used in Section VI to generate parking
demand scenarios, where we randomly sample different time
points from fit for each grid cell. The average parking demand
for each cell is shown in Fig. 6.

Fig. 6. Average parking demand for each cell. Colorcode represents the
number of parked bikes.

Fig. 7. Starting points of trips that occurred in a single day between
10:00 AM and 11:00 AM.

III. PARKING HUB OPTIMIZATION

One of the main concerns for micromobility service
providers is where bikes or scooters are parked when they are
not in use, as well as avoiding randomly parked scooters and
street clutter. Fig. 7 shows the starting points of journeys that
occurred in a single day between 10:00 AM and 11:00 AM,
where we notice the random distribution of bikes and disor-
ganized parking. A solution is to designate specific parking
hubs (painted parking areas) for the bikes, and consumers are
either not allowed to end a journey outside of a parking hub or
penalized for parking outside the designated areas [3]. In order
to evaluate whether the bikes are properly parked, the service
provider can request photos of the parked bikes from the users
through their mobile application, in addition to monitoring
GPS data. In this paper, we develop methods for selecting
the location of parking hubs and the number of parking spots.

A challenge in determining the locations of parking hubs is
the presence of uncertainty in parking demand. We thus denote
the parking hub demand at grid cell i by δi , and consider
three different cases: i) A deterministic set-up where δi is
assumed to be known; ii) A worst-case set-up where δi is
assumed to take all possible values within an interval �i ,
and we seek to robustify our allocation with respect to that
set; iii) A data-driven approach, where we consider a finite
set of scenarios δi,s , where s ∈ S, that the uncertain demand
may take. We then enforce constraints only on those scenarios,
giving rise to a scenario program.
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A. Deterministic Approach

We consider first the deterministic case. Each cell in Fig. 3 is
considered to be a potential location for a parking hub. Since
the area under study contains multiple grid cells where the
demand for bikes is 0, as shown in Fig. 4, we filter out grid
cells with average departure rate less than 1. The adjusted
set can then be defined as G = {i |i ∈ Ḡ and Di ≥ 1},
while cell i and adjacent cells to each cell i are defined
in G(i). Also, we assume that only one parking hub can
be placed in each cell with variable capacity ui . The binary
variable xi is used to determine whether cell i has a parking
hub, and yi j is the number of bikes to be moved from cell
i to j . The number of bikes that will stay at cell i is given
by yii . Note that the actual number of parking hubs in a grid
cell may be more than one, depending on the topographical
constraints within the area. To determine the exact number of
parking hubs, the selected grid cell i must be studied by using
geographic information system (GIS) software to allocate the
parking spots. The study in [23] showed that customers are
not willing to walk over 1000 m. Since each grid cell is
500 m × 500 m in this study, we assume bikes can only
be moved to an adjacent cell; i. e., users are willing to walk
to adjacent locations to park their bikes. Let x, u, and y
be stacked vectors containing variables xi , ui , and yi j , where
j ∈ G(i), i ∈ G. We aim at determining x, u, and y by means
of the following deterministic optimization problem.

PD : min
x,u,y

∑
i∈G

Ch xi +
∑
i∈G

Cbui (10)

subject to: Ci xi ≤ ui ≤ C̄i xi , (11)∑
i∈G

ui ≥ B, (12)

xi = 1, i ∈ I G , (13)∑
j∈G(i)

x j ≥ 1, i ∈ G, (14)

∑
j∈G(i)

yi j ≥ δi , i ∈ G, (15)

∑
j∈G(i)

y j i ≤ ui , i ∈ G, (16)

∑
i∈G

∑
j∈G(i)

i �= j

yi j ≤ Y, (17)

xi ∈ {0, 1}, yi j ≥ 0, j ∈ G(i), i ∈ G. (18)

The objective of the optimization model comprises two
terms: the cost of establishing a parking hub and the cost of
each parking space. The cost coefficient Ch is a fixed cost of
$50/parking hub for establishing a parking hub, and the cost
coefficient Cb is assumed to be $4/parking space. Limits on the
capacity are imposed in (11), with a lower limit Ci of 5 and an
upper limit C̄i of 400 parking spaces [14] (the parking spaces
can be distributed in the selected area/cell). Also, the total
number of parking spaces should be greater than or equal
to the total number of bikes B , which is imposed by (12).
Constraint (13) states that a parking hub must be installed for
grid cells with POIs and high daily departure rate. The set
of grid cells with POIs and sufficiently large daily departures

is defined by I G = {i ∈ G|∑l∈I Lil ≥ 1 and Di ≥ 30},
where 30 is the 0.75 quantile of the average daily departures
for the dataset under study. Constraint (14) enforces that each
grid cell in G should be connected to at least one parking
hub. Constraint (15) states that all parking demand must be
met, however, it must be within the capacity of the assigned
parking hub as defined in (16). Note that since we are solving a
minimization problem, constraint (15) is binding. The number
of bikes to be transferred from their preferred location is
limited to Y (see (17)), where we have considered Y = 0.1 B .
Finally, (18) defines the binary variable xi and the continuous
variable yi j .

B. Worst-Case Approach

Let �i be a set that contains all possible realizations, such
that δi ∈ �i , for all i ∈ G. The robust counterpart of PD can
then be formulated as follows:

PR : min
x,u,y

max{δi∈�i }i∈G

∑
i∈G

Ch xi +
∑
i∈G

Cbui

subject to: (11)-(18). (19)

Assume that for all i ∈ G, �i is an interval �i = [δi , δ̄i ],
thus giving rise to “box” uncertainty. We determine δi and δ̄i

from the minimum and maximum value the demand takes in
the available dataset. The uncertain parameter is only present
in constraint (15), linking δi with yi j . Since we are solving
a minimization problem, the worst-case occurs when δi = δ̄i .
PR then takes the following form:

PR : min
x,u,y

∑
i∈G

Ch xi +
∑
i∈G

Cbui

subject to:
∑

j∈G(i)

yi j = δ̄i ,∀i ∈ G,

(11)-(14), (16)-(18). (20)

Problem PR is a deterministic integer linear program, which
can be solved using standard algorithms (e.g., branch and
bound [24]). Note that (20) is enforced with equality and not
inequality as in (15), as in any case this constraint would be
binding. The “box” uncertainty set contains the full range
of realizations for the parking demand as observed in the
data. Therefore, it offers a robust choice that guarantees
feasibility for the worst case scenario in the data. However,
the solution can be too conservative as the probability with
which uncertainty takes a specific value is not taken into
account.

C. Data-Driven Approach

To mitigate the conservatism associated with a robust
approach, we next consider a data-driven paradigm by adopt-
ing the so called scenario approach [25]. The scenario
approach involves enforcing constraints on a finite number
of uncertainty samples/scenarios that could be available in
the form of a dataset. The optimal decision of the associated
scenario program is then robust with respect to these scenarios,
however, it is inherently a random quantity as repeating the
problem with the same number but different scenarios would
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yield a different solution. The theoretical analysis of [25]
allows to accompany the resulting solution with a probabilistic
generalization certificate on its feasibility properties, i.e., how
likely it is that the resulting solution remains feasible when
it comes to a new realization of the uncertainty that is not
included in the scenarios used for optimization. An appealing
feature of this approach is the fact that there is no need
for prior knowledge of the underlying probability distribution
of the uncertainty, nor a necessity to assign a probability
of occurrence to each scenario (thus implicitly assuming a
discrete distribution); on the contrary the resulting certificate
is distribution free and the only requirement is that scenar-
ios are independent and identically distributed. Therefore,
the scenario approach adopted here is not directly related to
scenario based stochastic programming (SP). The latter would
involve optimizing the expected value of a given objective
criterion, and would require knowledge of at least an empir-
ical frequency/probability per scenario. Moreover, SP is not
concerned with the generalization properties of the resulting
solution when it comes to new realizations of the uncertain
parameters.

Define S as the index set of independent and identically
distributed (i.i.d.) extractions/scenarios of the uncertain para-
meter, and denote the corresponding scenarios for each cell i ,
by δi,s , s ∈ S. We can then formulate the scenario program as
follows:
PS : f (x, u, S)

= min
x,u,ys

∑
i∈G

Ch xi +
∑
i∈G

Cbui (21)

subject to: (11)-(14),∑
j∈G(i)

yi j,s = δi,s , i ∈ G, s ∈ S, (22)

∑
j∈G(i)

y j i,s ≤ ui , i ∈ G, s ∈ S, (23)

∑
i∈G

∑
j∈G(i)

i �= j

yi j,s ≤ Y, s ∈ S, (24)

xi ∈ {0, 1}, yi j,s ≥ 0, j ∈ G(i), i ∈ G, s ∈ S.

(25)

The objective value and the deterministic
constraints (11)-(14) remain the same. Constraints (15)-(17)
are scenario dependent, therefore, they are converted
to (22)-(24). Notice that the subscript s is now introduced to
yi j,s to indicate that these are scenario dependent variables,
and hence different for each scenario s ∈ S. The resulting
scenario program leads to a less conservative solution,
however, the size of the associated problem grows with
scenarios, thus becoming prohibitive to solve for a realistic
number of scenarios. To alleviate the latter, we propose
a scenario decomposition method to solve PS in the next
section.

IV. DECOMPOSITION METHODOLOGY

To solve large scale instances of the data-driven parking
hub optimization problem in PS , we rely on decomposition

techniques based on ADMM. ADMM solves optimization
problems by decomposing them into smaller subproblems,
combining the principles of dual decomposition and aug-
mented Lagrangian. Many variants have been developed for
ADMM, we focus here on Consensus ADMM, and refer to
it hereinafter as ADMM. For detailed information on ADMM
and its convergence, the reader is referred to [17].

Since convergence results related to ADMM rely on the
underlying optimization problem being convex, prior to solv-
ing PS , we determine the locations of the parking hubs, thus
fixing the binary variable xi for each cell. To achieve this,
we first solve the worst case problem in PR and denote the
returned solution by x∗i . PR has fewer constraints compared to
PS , as the worst case problem does not grow with the number
of scenarios. Once these variables are fixed, ADMM is then
used to determine the number of parking spaces. Therefore,
ADMM determines a suboptimal solution for the parking hub
allocation problem.

A. Consensus ADMM

The idea of ADMM is to decompose the presented problem
into several subproblems, and then coordinate the solutions by
solving each subproblem separately. PS is decomposed across
the scenarios, where the common variable is ui , and xi is fixed.
We duplicate the variable ui , so that each scenario will have its
own local capacity variable uis . Let zi be the global variable
representing the capacities of the cells, while we enforce the
so called consistency constraints zi − uis = 0. We can then
define λis as the dual variable associated with the constraint
zi−uis = 0. Using ρ as a penalty parameter (step size), we can
denote the augmented Lagrangian associated with PS as:

Lρ(u, z,λ) =
∑
s∈S

(∑
i∈G

Ch x∗i +
∑
i∈G

Cbuis

+
∑
i∈G

λis (zi − uis )+ ρ

2

∑
i∈G

(zi − uis )
2). (26)

At each iteration k, the ADMM algorithm consists of three
steps, update uis , zi , then λis . The pseudocode for ADMM is
given in Algorithm 1.

Algorithm 1 starts by sampling the scenarios. In step 2,
we initialize the variables and parameters. The variable xi is
then found in step 3 by solving PR . The ADMM algorithm
starts at step 4. In step 5, the minimization is performed with
respect to us = {u1s, . . . , u|G|s} and ys , where Cs encodes
the set of constraints for scenario s coupling these variables;
i.e., (11)-(14) and (22)-(25). This step is separable across
scenarios, with zi and λis fixed to their values at iteration k of
the algorithm. Variable zi is updated by solving the augmented
Lagrangian as follows:

zi = argmin
z

∑
s∈S

∑
i∈G

(
λis zi + ρ

2
(zi − uis )

2). (31)

This is an unconstrained quadratic minimization problem
which can be performed analytically, yielding the update
in (28). The dual variable λis is updated by means of a
gradient ascent update in step 7. The steps are repeated until
a stopping criterion is reached. In this study we use a combi-
nation of three different criteria: 1) Time limit T ; 2) Iteration
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Algorithm 1 ADMM
1: Sample S scenarios from the dataset
2: Initialize k, uis , zi , λis , ρ
3: Solve PR to find x∗i
4: while k ≤ K and time elapsed ≤ T do
5: For s ∈ S, update uis by

uis = argmin
(us ,ys )∈Cs

∑
i∈G

Ch x∗i +
∑
i∈G

Cbuis

−
∑
i∈G

λis uis + ρ

2

∑
i∈G

(zi − uis)
2 (27)

6: For i ∈ G, update zi by

zi = 1

|S|
∑
s∈S

uis − 1

ρ|S|
∑
s∈S

λis (28)

7: For i ∈ G, s ∈ S, update λis by

λis = λis + ρ(zi − uis ) (29)

8: if ||zi − uis ||∞ ≤ �tol then
9: break (ADMM converged)

10: end if
11: Update the iteration number k = k + 1
12: end while
13: Set the value of u∗i using:

u∗i = 	max{zi , max
s∈S

uis}
, i ∈ G (30)

limit K ; and 3) Stopping tolerance �tol on the residual error;
i.e., ||zi − uis ||∞ ≤ �tol. Upon convergence, (30) takes the
maximum value between the global and local variables to
ensure feasibility. The variable is also rounded up to the
nearest integer (	·
 denotes the nearest integer greater than
its argument), as parking spaces should be integer. We denote
the resulting solution by u∗, and by y∗ the associated scenario
dependent decision vector returned by the ADMM algorithm.

Despite being convergent, the convergence rate of ADMM
might be slow for a large number of scenarios. To speed-up
convergence, we propose in the next subsection a modification
of the ADMM algorithm, combining it with principles from
Constraint-and-Column Generation.

B. CC-ADMM

In scenario optimization problems, it is often not necessary
to include all scenarios to obtain the optimal solution. Let
S be the sampled scenarios and N ⊂ S. If we solve
PS with N scenarios and the resulting solution is feasible
for the remaining scenarios S\N , then the solution is also
optimal for S. Let f (x∗, u, S) and f (x∗, u,N ) denote the
objective functions for the scenario optimization problem PS

with scenario sets S and N , respectively, once the binary
variables are fixed. Since N ⊂ S, if the optimal solution1

u∗i (N ) = argmin ( f (x∗, u,N )) is feasible for S\N , then

1We assume for simplicity that for any set of scenarios S, the optimal
solution of PS is unique. In the opposite case a tie-break rule can be employed
to single-out one out of the possibly multiple minimizers of PS .

Algorithm 2 CC-ADMM
1: Sample S scenarios
2: Initialize k, uis , zi , λis , ρ
3: Solve PR to find x∗i
4: N ← sample a single scenario from S
5: Set flag = 0
6: while flag = 0 and time elapsed ≤ T do
7: while k ≤ K do (Master Problem)
8: For s ∈ N , update uis using (27)
9: For i ∈ G, update zi by

zi = 1

|N |
∑
s∈N

uis − 1

ρ|N |
∑
s∈N

λis (32)

10: For i ∈ G, s ∈ N , update λis using (29)
11: if ||zi − uis ||∞ ≤ �tol then
12: Set flag = 1 and break (go to step 16)
13: end if
14: Update the iteration number k = k + 1
15: end while
16: Set the value of u∗i using (30)
17: Define S = S\N
18: while |S| > 0 do (Slave Problem)
19: Let n← sample a single scenario from S
20: Let S ← S\{n}
21: Check the feasibility of (22)-(24)

min
y
{0 : s.t. (22)-(24), ui = u∗i , δi = δi,n, ∀i} (33)

22: if infeasible then
23: Set N ← N ∪ {n} (update support set)
24: Let k = 1 (reset iteration number)
25: Set flag = 0 and break (return to step 7)
26: end if
27: end while
28: end while

f (x∗, u∗,N ) = f (x∗, u∗, S) and N is called a support
scenario set, as solving the problem only with these scenarios
leads to the same solution with the one that would have been
obtained if all scenarios were employed. Notice that u∗i (N ) has
N as an argument to emphasize the dependency on particular
set of scenarios.

CC-ADMM uses a cutting plane procedure with the aim
of determining a support scenario set N . In the proposed
CC-ADMM algorithm, instead of solving ADMM for all
scenarios, we iteratively increase the number of scenarios and
solve the problem using ADMM. The obtained solution is then
checked against the remaining scenarios at each iteration of the
algorithm. CC-ADMM contains a master and a slave problem.
The master problem solves PS , using N rather than S scenar-
ios using ADMM, while the slave problem checks feasibility
of the resulting solution with respect to constraints (22)-(24)
for each scenario separately. The slave problem generates
new constraints in (22)-(24) and variables/columns (yi j,s ) for
the master problem if the slave problem is infeasible. The
CC-ADMM algorithm is summarized in Algorithm 2.
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Steps 1-5 in Algorithm 2 are initialization steps. The algo-
rithm starts by sampling S scenarios in step 1. Step 2 defines
the initial values of the ADMM parameters. Step 3 solves PR

to determine x∗i , which is fixed for the rest of the algorithm.
In step 4, we randomly select a scenario from S and assign
it to N . Step 5 initializes flag, which will indicate the end
of the algorithm if flag = 1. Steps 6-16 solve the master
problem PS using ADMM, as explained in Section IV-A. The
value of u∗i is set in step 16 using (30). Steps 17-26 solve
the slave problem, where for each scenario, the feasibility
of u∗ is checked with respect to all scenarios not included
in N . We randomly sample a scenario from S = S\N and
solve a feasibility problem in step 21 to decide on whether u∗
satisfies the constraints corresponding to the scenario indexed
by n. If this problem is infeasible, we add the corresponding
scenario to N and return to step 8. If all scenarios are feasible,
then the solution is optimal and flag = 1, which terminates the
algorithm. CC-ADMM not only improves the computational
performance of ADMM, but allows determining |N |; i.e., the
cardinality of a support set. It is shown in Section V that
this quantity is crucial in accompanying (x∗, u∗) with a
certificate on the probability that it remains feasible when a
new realization of the uncertainty is encountered.

V. ROBUSTNESS AND CONSTRAINT VIOLATION

Denote by (x∗, u∗) the optimal solution of PS as this
is returned by the CC-ADMM algorithm. As mentioned in
footnote 1, we assume for simplicity that PS admits a unique
solution for any S; our analysis remains valid even in the
case where multiple solutions exist, however, it would require
then to adopt a tie-break rule to select one solution among the
possibly many minimizers. The optimal solution depends on
the |S| scenarios δ1, . . . , δ|S|, where δ|S| = δ1|S|, . . . , δ|G||S|
employed, hence, it is itself a random quantity.

We aim at quantifying the probability with which this solu-
tion violates at least one of the constraints in (11)-(18) when
a new realization of the uncertainty is encountered. In our
context, constraint violation indicates insufficient capacity
(parking spots) for the bikes. To address this problem we rely
on results based on the so called scenario approach [25], and
in particular build on the recent developments in [26], [27].
To this end, for any fixed β ∈ (0, 1), let ε : S → [0, 1] be a
function that satisfies

ε(|S|) = 1, and
|S|−1∑
k=0

(|S|
k

)
(1− ε(k))|S|−k = β. (34)

We then have the following proposition, which is shown
without proof as it follows by a direct application of Theo-
rem 1 in [26], since (x∗, u∗) is by construction feasible for the
constraints in PS for all uncertainty scenarios in {δ1, . . . , δ|S|}.

Proposition 1: Fix β ∈ (0, 1), and consider �(·) satisfy-
ing (34). Let |N | denote the number of support scenarios
retuned by Algorithm 2. We then have that

P
|S|{δ1, . . . , δ|S| : P{δ̄ ∈ � : for all y,

× (x∗, u∗, y) is not feasible for (11)-(18) with δ = δ̄}
≤ ε(|N |)} ≥ 1− β. (35)

The inner probability in (35) encodes the probability of
constraint violation, i.e., the probability of the event that a
new realization of the parking demand δ̄ is encountered and for
all y, (x∗, u∗, y) violates at least one constraint in (11)-(18).
Proposition 1 implies then that the probability of constraint
violation is at most equal to a given threshold ε(|N |), with
confidence at least equal to 1−β. Note that y is a second-stage
decision vector that depends on the uncertainty realization; we
have constraint satisfaction if at least one choice for y exists,
such that together with (x∗, u∗), (x∗, u∗, y) is feasible for
(11)-(18). It should be noted that the probabilistic statement
of Proposition 1 quantifies the feasibility properties of the first
stage variables x∗* and u∗ that are scenario independent; this
is due to the fact that second stage decisions act as certificates
and a solution tuple would be considered as feasible if one
such decision exists so that (11)-(18) are satisfied, without
being interested in the exact value of that decision.

Typically, one sets β to very small numerical values (1− β
becomes high), so that constraint violation lower than a given
threshold occurs with very high confidence. In this case,
the quality of (35) depends on ε(|N |). The lower ε(|N |),
the lower the probability that at least one constraint is violated
when a new δ̄ is encountered. By (34), it follows that ε(·) is
a non-decreasing function of each argument, hence the lower
|N | the more informative the result of Proposition 1 becomes.
This highlights the importance of the cardinality of the support
scenario set in accompanying the resulting solution with
probabilistic feasibility certificates.

Calculating the cardinality of the support set (without resort-
ing to conservative upper bounds) is in general difficult. In [26]
a greedy algorithm is proposed which is, however, sensitive to
numerical errors and in our context would require solving the
iterative algorithm selected to solve PS a total of |S| times.
However, CC-ADMM offers directly an estimate of ε(|N |),
preventing the excessive computational burden of employing
the greedy algorithm. Moreover, note that if the problem under
study is non-degenerate (see [27] for a definition), a condition
which is, however, hard to verify, (34) could be directly
replaced by another expression which leads to tighter values
of ε(|N |) (see Theorem 2 in [27]).

By splitting β equally to the |S| terms for the summation
in (34), we can obtain an explicit expression for ε(k), which
is sufficient for the satisfaction of (34). This is given by

ε(k) =

⎧⎪⎨
⎪⎩

1, k = |S|
1− |S|−k

√
β

|S|(|S|k ) , k < |S|. (36)

It is apparent from (36) that the smaller N , the lower ε(|N |)
becomes.

VI. SIMULATION RESULTS

We illustrate the developed methodologies to allocate
parking hubs in Beijing for Mobike’s FFBS. The parking
demand fit , for each grid cell i and for all time instances t ,
as estimated in Section II-C, is randomly sampled to generate
the parking demand scenarios. The available data allow for
4032 scenarios; we denote this set of scenarios by S̄, with
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TABLE I

PARKING ALLOCATION RESULTS USING “BOX” UNCERTAINTY

|S̄| = 4032. Denote by (x∗, u∗) the optimal solution of the
scenario program PS , as this is returned by the methodologies
outlined in the previous section, when a scenario set S ⊂ S̄
is employed. We calculate the out-of-sample violation prob-
ability of (x∗, u∗) by checking its feasibility with respect to
scenarios that are not included in S, i.e., for scenarios s ∈ S̄\S.
The optimization problem is modelled using AMPL [21] and
solved using GUROBI 9.0 [22]. The problem is solved on a
PC with Intel Core i7-8550U 1.8 GHz CPU and 16 GB RAM.

A. “Box” Uncertainty

We determine the bounds of the parking demand δi ∈
[δi , δ̄i ] by computing the maximum and minimum among
the scenarios included in our data set, as also performed
in [28]. Different sample sizes of scenarios |S| are selected,
ranging from 200 to 2000. The simulation results are shown
in Table I. Solutions for the different samples are all obtained
in less than 2 minutes. The objective value represents the
total cost (in dollars) of establishing the parking spots. Fig. 8
shows the locations and sizes of the selected parking hubs.
The results of the “box” uncertainty methodology to solve
PR leads to a conservative performance. The out-of-sample
violation probability is low even with 200 scenarios, while
the parking spots in Table I are more than 22% higher than
the total number of bikes. In the next subsection, employing
CC-ADMM to obtain a solution of the data-driven problem
PS shows that the number of parking spots, i.e., the capacity
of the parking hubs as dictated by u∗, do not have to be much
higher than the number of bikes to achieve a less conservative
solution with higher but moderate out-of-sample probability
of constraint violation.

B. Data-Driven Approach

We solve the scenario problem PS using ADMM and
CC-ADMM, with design parameters set to ρ = 10 and
�tol = 0.5. We impose an 8-hour time limit, and the maximum
number of iterations is 100. The results for CC-ADMM with
200 to 2,000 scenarios are shown in Table II. The number of
parking hubs are the same as Table I. To obtain the optimal
solution, CC-ADMM did not require more than 31 support
scenarios in the presented cases, and the highest computation
time is 194 min. Compared to “box” uncertainty, the objective
value is improved by approximately 16%, while the out-
of-sample probability of violation is less than 1% when the

Fig. 8. Allocated parking hubs using robust optimization with “box”
uncertainty and 2000 uncertainty scenarios. Colorcode represents the number
of parking spots.

TABLE II

PARKING ALLOCATION RESULTS USING CC-ADMM

Fig. 9. Percentage of out-of-sample probability of constraint violation for
ADMM, “box” uncertainty, and CC-ADMM with |S| = 30, . . . , 1000.

scenarios employed for optimization purposes (|S|) are more
than 400. The last column in Table II shows the potential
travel time that the consumers will incur due to parking
space unavailability. We estimate this value by calculating
the distance between the desired destination and the closest
location with an open parking space in the violated scenarios,
while assuming the walking speed is 5 km/hr. Notice that even
though the number of parking spots is higher with |S| ≤ 600,
the additional travel times are higher than the other solutions,
which indicates a poor distribution of parking spaces.

The out-of-sample probability of constraint violation for
the three methods of Section IV are compared in Fig. 9.
As expected, the worst-case approach based on “box” uncer-
tainty is more conservative and as a result exhibits a lower
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Fig. 10. Percentage of out-of-sample probability of constraint violation and
the theoretical bound as obtained from Proposition 1.

Fig. 11. Allocated parking hubs using CC-ADMM and 2000 uncertainty
scenarios. Colorcode represents the number of parking spots.

violations. However, for |S| ≥ 400, the out-of-sample
violations are mostly comparable among the three methods.
Using (34) with β = 10−6, we calculate an a posteriori
bound �(|N |) on the probability of constraint violation, which
can be interpreted as the probability of overcapacity (or lack
of parking spot). When |S| = 2000, �(|N |) = 8.7% (see
also second last column in Table II). The obtained theoretical
bounds for different values of |S| are also contrasted with
the out-of-sample ones in Fig. 10. When the number of
scenarios employed for optimization purposes is less than 600,
the theoretical bound is high, exceeding 20% thus rendering
the result of Proposition 1 not of practical use for such cases;
however, this becomes relevant once the number of scenarios
increases. Fig. 11 illustrates the allocated parking hubs using
CC-ADMM for the case where 2000 scenarios are employed.

Fig. 12 compares the objective value of PR using “box”
uncertainty, with the one of PS as returned by the ADMM
and the CC-ADMM algorithm. It can be observed that robust
optimization with “box” uncertainty is more conservative,
leading consistently to a higher objective value compared
to the one achieved by ADMM and the CC-ADMM for
the data driven problem. Note that CC-ADMM and ADMM
converge to the same solution since they solve the same
problem (26). However, this is not apparent from Fig. 12,
as the solution of each algorithm depends on the stopping
criteria. When a stopping criterion is reached, the algorithms
terminate, at which point the solution obtained might be
different among the two algorithmic alternatives. In terms
of computation times, we compare CC-ADMM and ADMM

Fig. 12. The optimal objective value achieved by ADMM and CC-ADMM
to solve PS , and by the solution of PR when “box” uncertainty is considered,
with respect to the number of samples |S| = 30, . . . , 1000.

Fig. 13. A comparison between the computation time of ADMM and
CC-ADMM with respect to the number of samples |S| = 30, . . . , 1000.

in Fig. 13. For CC-ADMM, the GUROBI solver is used in
step 3 and within each iteration for steps 8 and 21, where
the average computation times are 64 s, 0.86 s, and 0.47 s,
respectively. The computation times shown in Fig. 13 are
the accumulation of the GUROBI runs. When the number
of scenarios is low, ADMM is faster than CC-ADMM, since
the latter iteratively increases the number of scenarios to
approach the optimal solution. On the other hand, for a large
number of scenarios, the imposed time limit stopping criterion
is reached prior to ADMM convergence, while CC-ADMM
converges in less than 4 hours. This behaviour stems from
the fact that, in contrast to ADMM, CC-ADMM only requires
considering up to 31 scenarios (see N column in Table II). The
reported computation times for CC-ADMM and ADMM can
be further improved by solving (27) in parallel across different
processors.

Next, we perform a sensitivity analysis on CC-ADMM over
the value of ρ. The results of six CC-ADMM simulations with
different values of ρ are shown in Table III. Increasing the
parameter leads to a decrease in computation time. However,
notice that the objective value decreases when ρ is increased,
and then increases again with larger values of ρ. Therefore,
we must select a value that balances the computation time
and quality of the solution. With small values of ρ, the com-
putation time is high and the master problem (steps 7-15 in
Algorithm 2) may not converge, which can lead to conservative
values for ui . For large values of ρ, the algorithm converges
too fast to a conservative solution. The empirical results

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on August 11,2022 at 20:53:42 UTC from IEEE Xplore.  Restrictions apply. 



ARIF AND MARGELLOS: LOCATING PARKING HUBS IN FREE-FLOATING RIDE SHARE SYSTEMS 11631

TABLE III

ALLOCATION RESULTS USING CC-ADMM WITH
DIFFERENT VALUES OF ρ

indicate that a value around ρ = 10 achieves a good tradeoff
between solution time and quality.

In summary, the solution of the data driven problem PS

returned by the CC-ADMM algorithm, is less conservative
compared to the one of PR using “box” uncertainty, thus
leading to a lower objective value. It is worth mentioning
that even when only 30 scenarios are used to formulate
the uncertainty “box”, the resulting cost is still significantly
higher compared to the one achieved by CC-ADMM using
2000 uncertainty scenarios. Moreover, we can accompany the
solution returned by CC-ADMM with probabilistic feasibility
certificates; using 2000 scenarios the probability of constraint
violation for a new unseen uncertainty realization is, with high
confidence, at most 9%. At the same time, the computational
time requirements of CC-ADMM are much lower compared
to ADMM, thus highlighting its appealing features. Note that
solving the scenario program P S directly using GUROBI does
not yield a solution due to the scale of the system and the
complicated nature of the facility location problem, even with
a small number of scenarios.

VII. CONCLUSION

We proposed a scenario optimization method for solving the
parking allocation problem in free-floating bike-share systems.
We modelled the problem using integer programming with
uncertain parking demand, and designed an algorithm that
combines Constraint-and-Column Generation with ADMM.
The algorithm determines a subset of scenarios that is suf-
ficient for achieving the same optimal value with the one that
would be obtained if all scenarios were utilized. Our method
allows solving large-scale scenario optimization problems
with many uncertain parameters using a moderate number
of scenarios, while also providing probabilistic guarantees
on the probability that the resulting solution violates a new,
yet unseen, realization of the uncertainty. Numerical results
showed that the proposed method outperforms robust opti-
mization with box uncertainty in terms of conservatism of
the solution, and the classical ADMM method in terms of
computational time.
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