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a b s t r a c t 

The task assignment problem is fundamental in combinatorial optimisation, aiming at allocating one or 

more tasks to a number of agents while minimizing the total cost or maximizing the overall assignment 

benefit. This problem is known to be computationally hard since it is usually formulated as a mixed- 

integer programming problem. In this paper, we consider a novel Time-Triggered Dimension Reduction 

Algorithm (TTDRA). We propose convexification approaches to convexify both the constraints and the 

cost function for the general non-convex assignment problem. The computational speed is accelerated 

via our time-triggered dimension reduction scheme, where the triggering condition is designed based on 

the optimality tolerance and the convexity of the cost function. Optimality and computational efficiency 

are verified via numerical simulations on benchmark examples. 
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. Introduction 

The Task Assignment Problem (TAP) is of great importance in 

ombinatorial optimisation [24] . The formulation of this problem 

s that, given a set of agents and a set of tasks, each agent can

elect a task from its admissible task set, while pairing between 

asks and agents is one-to-one. The goal is to minimize the total 

ost or maximize the global utility. 

Typical types of TAPs are the Linear Assignment Problem (LAP) 

nd the Quadratic Assignment Problem (QAP). The LAP has a lin- 

ar cost function and binary decision variables, i.e., 1 means a se- 

ection and 0 means a rejection. There are many real-world appli- 

ations that can be formulated as a LAP, ranging from robot for- 

ation control [20,22,23] to facilities allocation [12] . The LAP has 

een well investigated with many different methods in both cen- 

ralized and decentralized ways. Centralized algorithms include the 

ungarian algorithm [18] , and its extensions involves iterative al- 

orithms [4,13] . These methods have high computational efficiency 

or small-scale problems, but they cannot be easily implemented 

n parallel, limiting their usage to large-scale instances. To address 

his limitation, another class of algorithms called auction algorithms 

5,7,19,28] provide an improved solution, imitating bidding in an 
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uction. For a comprehensive literature review of this area, readers 

re referred to the survey paper [15] . 

Another type of TAP is the QAP, which was firstly proposed in 

17] aiming at solving resource allocation problems. The QAP has 

 similar structure to the LAP, except for the quadratic cost func- 

ion. QAPs are widely used in many applications, e.g. the travel- 

ing salesman problem [2] , graph matching [8,25,30] , etc. Unlike 

he LAP, which allows finding a global optimum in polynomial time 

ith multiple heuristic algorithms, the QAP is provably NP-hard in 

eneral [24] , which makes it hard to design efficient heuristic al- 

orithms. Relaxation algorithms have been proposed to overcome 

his limitation. The original mixed-integer programming problem 

s relaxed into a continuous optimisation problem [29] . This idea is 

erived from the fact that permutation matrices are at the vertices 

f Birkhoff polytopes, i.e., the class of doubly stochastic matrices. 

hus, several efforts have been made to find good solutions over 

oubly stochastic matrices, followed by a projection of the solution 

o the set of permutation matrices. A penalty term can be added 

o the original quadratic cost function to convexify the nonconvex 

uadratic cost function [11] . Tighter convex underapproximations 

ere proposed to improve the optimality of the solution [3,9] . 

The projection on the space of permutation matrices is real- 

zed with a convex-to-concave method [26] , which incrementally 

unes the penalty quantity to change the convexity of the quadratic 
l Association. This is an open access article under the CC BY-NC-ND license 
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ost from convex to concave. The solution is a permutation matrix 

ince the minimizer lies on the vertices of the convex constraint 

ull while minimizing a concave cost function [6] . This algorithm 

nds a solution path of a family of convex to concave minimization 

roblems, obtained by linearly interpolating between the convex 

nd concave relaxations. The interpolation procedure requires solv- 

ng additional n problems, which makes it computationally expen- 

ive. Besides, the sub-problems in the procedure are nonconvex. 

Motivated by the above limitations, in this paper, we propose a 

ast relaxation-based iterative algorithm for the TAP, especially for 

he nonconvex QAP. Our contributions are twofold: 

• A convex relaxation-based framework is proposed. The non- 

convex permutation set is relaxed to a polyhedral doubly 

stochastic set. The nonconvex quadratic cost function is convex- 

ified to be σ -strongly convex. 

• Computational speed acceleration is realized through a time- 

triggered dimension reduction approach: we reduce the dimen- 

sion of the decision matrix incrementally by removing columns 

and rows. Compared to the convex-to-concave method, our 

method only solves the optimisation problem once, and the di- 

mension of the problem is incrementally decreased. In addi- 

tion, the convexity of the convexified cost function is preserved 

across iterations. 

The remainder of the paper is organized as follows. In 

ection 2 we define the notations used in this paper and intro- 

uce the formulation of TAP, including LAP and QAP. The convex 

elaxation is presented in Section 3 . Section 4 details our time- 

riggered dimension reduction algorithm, followed by the simula- 

ions in Section 5 . Section 6 concludes the paper. 

. Problem formulation 

.1. Preliminaries 

We use I N to denote the N × N identity matrix, and 1 N to de- 

ote the N-dimensional vector whose entries are all equal to one. 

hen it is obvious from the context, we omit the subscripts and 

se I and 1 instead, respectively. R represents the set of real num- 

ers and || · || F denotes the Frobenius norm. We let vec (X ) denote 

he vectorizartion operation for a matrix X , and vec −1 (x ) the in- 

erse operation that takes as input a column vector and returns 

 matrix for a vector x . A � B represents the Kronecker product of 

atrix A and B . X ≥ 0 denotes point-wise non-negativity of the el- 

ments of matrix X . X � 0 means that matrix X is positive semi- 

efinite. Let DS N denote the set of N × N doubly stochastic matri- 

es, i.e. DS N = { X : X ≥ 0 , 1 T X = 1 T , X 1 = 1 } , �N denote the set of

 × N permutation matrices, i.e. �N = { X ∈ { 0 , 1 } N×N : X T X = I N } .
r (X ) denotes the trace of matrix X . th ≥0 (X ) sets the negative ele-

ents of X to zero. 

efinition 1. A differentiable function f (·) is called σ -strongly 

onvex with σ > 0 on a domain D if the following inequality holds 

or all x, y ∈ D: 

f (y ) ≥ f (x ) + ∇ f (x ) T (y − x ) + 

σ

2 

|| y − x | | 2 2 . 

We now discuss the LAP and QAP. Although the LAP can be re- 

arded as a special case of QAP, we still want to briefly introduce 

t for its importance in applications. 

.2. Linear assignment problem 

The LAP describes a scenario in which every agent i is capable 

f choosing one particular task j from the tasks pool. After that, 

 specific predefined work cost or award is added. Each agent can 

nly select a single task, and every task can only be allocated to 
2 
ne agent. Our goal is to find an optimal assignment strategy for 

ach task/agent pair, to realize a maximum reward or minimum 

ost. 

In considering such a problem of pairing agents with tasks, a 

inear programming formulation can be derived 

min 

X 
F (X ) = 

N ∑ 

i =1 

(
N ∑ 

j=1 

X i, j βi, j 

)
subject to X ∈ �N , 

(1) 

here βi, j ∈ R is the predefined cost for agent i to select task j. 

ecision variable X should be within the N-dimensional permuta- 

ion set. The LAP is a tractable P-problem, which has an efficient 

olution without additional constraints. 

.3. Quadratic assignment problem 

The quadratic assignment problem originates from facility- 

ocation allocation problems. Suppose there are n facilities and n 

ocations, and assume that the distances between locations and 

ows of facilities are known. The problem is to assign the facili- 

ies to different locations resulting in a minimum sum of the prod- 

cts of the distances and flows. Intuitively, pairwise facilities which 

ave higher flows are encouraged to be placed at nearer locations. 

nlike the linear assignment problem, the cost function of this 

roblem is expressed in terms of a quadratic function. 

The classic Koopman-Beckmann formulation of the QAP is as 

ollows 

min 

X 
Tr (AX B X 

T ) 

subject to X ∈ �N , 
(2) 

here A ∈ R 

N×N is the flows matrix and B ∈ R 

N×N is the distance

atrix. Making use of the cyclic properties of the Tr (·) , we can 

ewrite the objective function in (2) as follows 

r (X B X 

T A ) = Tr ( X 

T AX B ) 

= vec (X ) T vec (AX B ) 

= vec (X ) T (B � A ) vec (X ) 

= x T W x, (3) 

here x = vec (X ) is the vectorization of the permutation matrix 

, W ∈ R 

N 2 ×N 2 = (B � A ) . In this paper we consider a more general

orm of (3) , where a linear term is added: 

min 

x 
f (x ) = xW x T + c T x 

subject to vec −1 (x ) ∈ �N , 
(QAP) 

here W ∈ R 

N 2 ×N 2 , c ∈ R 

N 2 . It should be noted that the LAP is a

pecial case of the QAP with zero quadratic matrix W . In the sequel 

e just consider the QAP as it covers the LAP as a special case. 

ere we denote this problem as the original QAP. 

Existing results point out that it is hard to solve (QAP) pre- 

isely because it is NP-hard [24] . Possible additional constraints 

an also increase the complexity, even when the constraints are 

ffine. This motivates us to develop an efficient algorithm to find 

 sub-optimal solution for problem (QAP), as well as address the 

hallenge of additional constraints. 

. Convex relaxation 

To efficiently solve (QAP), an intuitive idea is to use constrained 

uadratic programming tools. However, (QAP) is generally non- 

onvex for two reasons: i) the constraint is nonconvex; ii) the 

ost function is nonconvex when W is not necessarily positive 

emi-definite. In this section we present results with respect to 

he convexification, including the convexification of the constraints 

ec −1 (x ) ∈ �N and the cost function f (x ) . We begin this sec- 

ion with the convexification of the constraint set, i.e. the set of 

ermutation matrices. 
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.1. Convexifying the constraints 

The original problem (QAP) is a mixed-integer programming 

roblem over permutation matrices. X i j = 1 implies that a specific 

ask is chosen by a corresponding agent, and vice-versa . Intuitively, 

he resulting minimizer of such problems is a deterministic distri- 

ution, which is a special case of a stochastic distribution. This mo- 

ivates us to consider solving a relaxed version of the original as- 

ignment problem over the set of doubly stochastic matrices , which 

enders the optimisation problem continuous. 

The constrained relaxed QAP (CRQAP) is described as: 

min 

x 
f (x ) 

subject to vec −1 (x ) ∈ DS N . 
(CRQAP) 

.2. Convexifying the cost 

Convexifying the nonconvex quadratic cost function has been 

ell studied in quadratically constrained quadratic programming 

QCQP) over the past decades [1] . Existing QAP papers [3,9–

1] proposed a series of convexification tools which can be 

ummarized into two categories, αBB convexification 

̂ QAP , and 

emidefinite programming (SDP) convexification 

˜ QAP . The first one 

s defined as follows: 

x T (W + diag (α)) x + (c − α) T x, ( ̂  QAP ) 

here α ∈ R 

N + is chosen so that W + diag (α) is positive semi- 

efinite. [11] selected α = −μmin 1 , where μmin denotes the min- 

mum eigenvalue of W ; ( ̂  QAP ) is therefore convex over R 

N . [3] fur-

her proposed a tighter convexification by restricting the variable 

o an affine space X = X 0 + F z, where F ∈ R 

N 2 ×(N−1) 2 denotes the

ull space of DS N . 

The SDP convexification 

˜ QAP comes from an observation that 

he cost function in (3) could be rewritten as: 

r ((B � A ) vec (X ) vec (X ) T ) . 

ubstituting Q = vec (X ) vec (X ) T , (QAP) becomes: 

min 

Q,x 
Tr (W Q ) 

subject to Q = x x T . 

ote that the cost function above is linear, the only nonconvex part 

s the constraint on Q . Such constraint can be relaxed to Q − xx T �
 , and by some means of the Schur complement this is equivalent 

o: 

Q x 

x T 1 

]
� 0 . 

ubstituting the quadratic constraint Q = xx T with the above posi- 

ive semi-definite constraint, the SDP convexification is formulated 

s: 

min 

Q,x 
W Q 

subject to 

[
Q x 

x T 1 

]
� 0 , 

x ≥ 0 . 

( ̃  QAP ) 

heorem 1. [1] Let ˆ z and ˜ z denote the optimal values of the problems ̂ AP and ˜ QAP , respectively. Then ˆ z ≤ ˜ z . 

Theorem 1 shows that ˜ QAP gives a tighter underestimation than 

hat of ̂ QAP at the price of lifting the variable dimension, as well 

s solving a more complex SDP rather than a simpler QP. 

In this paper, we convexify the cost function based on 

̂ QAP to 

each a trade-off between computational efficiency and tight un- 

erestimation. To obtain a better convergence rate, we convexify 

he cost function to be σ -strongly convex. 
3 
emma 1. The cost function f is σ -convex if and only if W − σ
2 I � 0 .

roof. From the definition of σ -strong convexity we obtain, ∀ x, y , 

ec −1 (x ) ∈ DS N , vec −1 (y ) ∈ DS N : 

f (αx + (1 − α) y ) ≤ α f (x ) + (1 − α) f (y ) − α(1 − α) σ

2 

|| x − y | | 2 2 , 

(4) 

or any α ∈ [0 , 1] , which implies that: 

α(1 − α) x T W x + α(1 − α) y T W y − α(1 − α) x T W y 

− α(1 − α) y T W x − α(1 − α) σ

2 

|| x − y || 2 2 ≥ 0 

⇔ (x − y ) T W (x − y ) − σ

2 

(x − y ) T (x − y ) ≥ 0 

⇔ (x − y ) T (W − σ

2 

I)(x − y ) ≥ 0 . (5) 

he reverse is similar. Thus, W − σ
2 I � 0 ⇔ f (x ) is σ -strongly 

onvex. �

Following the results of Lemma 1 , the relaxed QAP (RQAP) for- 

ulation is: 

min 

x 
˜ f (x ) = x T (W + ( 

σ

2 

− μmin ) I N ) x + c T x + 

− σ
2 

+ μmin 

N 

subject to vec −1 (x ) ∈ DS N . (RQAP)

It can be seen that ˜ f (x ) ≤ f (x ) , since ∀ x ∈ DS N , ( 
σ
2 −

min ) x 
T I N x ≤ ( σ2 − μmin ) /N. The equality is fulfilled only when 

 ∈ �N . In the sequel we use ˜ W = W + ( σ2 − μmin ) I N for brevity. 

After presenting the convexification for both the constraint and 

he cost function, the comparison between the optimal values of 

he original problem (QAP) and the relaxed problem (RQAP) is 

iven by the following lemma. 

emma 2. The optimal values of the relaxed problem (RQAP) and the 

riginal problem (QAP) satisfy: 

min 

ec −1 (x ) ∈ DS N 
˜ f (x ) ≤ min 

vec −1 (x ) ∈ �N 

f (x ) . 

roof. According to the Birkhoffvon Neumann theorem, the set of 

 × N doubly stochastic matrices DS N is the convex hull of the 

et of N × N permutation matrices �N , i.e. �N ⊂ DS N . Besides, we 

ave ˜ f (x ) ≤ f (x ) according to the previous discussion. Thus, the 

ptimal value over the set of doubly stochastic matrices is no big- 

er than that over the set of permutation matrices. �

Lemma 2 reveals that the minimum of the relaxed problem 

RQAP) is a lower bound of the minimum of the original problem 

QAP). This immediately implies the following proposition about 

hen a zero gap is realized. 

roposition 1. Let x ∗ be the minimizer of (RQAP). Then x ∗ is the 

lobal minimizer of (QAP) if and only if vec −1 (x ∗) ∈ �N . 

Proposition 1 shows that if the optimal solution of (RQAP) lies 

n the permutation set, we can conclude that we have found the 

lobal minimizer of the original QAP (QAP). 

. Dimension reduction algorithm 

The relaxed problem (RQAP) is a smooth continuous optimisa- 

ion problem, which can be solved with multiple numerical solvers, 

.g. Ipopt, Sequential Quadratic Programming. However, when the 

roblem’s dimension becomes exceptionally high, such a prob- 

em is hard to solve in real time. More specifically, consider the 

uadratic assignment problem: the dimension of variable x is N 

2 , 

here N is system size. 
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Fig. 1. Deleting the rth row and the cth column from X (k ) , where X (k ) r,c is the 

largest element of X(k ) . 
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.1. Time triggered dimension reduction 

Here we notice that the permutation matrix has a sparsity 

tructure, where only N entries are non-zero out of N 

2 elements. 

his motivates us to propose a dimension reduction scheme to ac- 

elerate the solution. For example, when one element increases 

aster than others, we can binarize it into one and then ground the 

lements which lie within the same column or row to zero. This 

lso enables us to transform the decision variable from a doubly 

tochastic matrix to a permutation matrix. Our method is based on 

he steepest projection gradient method; we chose such a method 

ompared to other first-order optimisation methods because the 

riginal problem has an explicit gradient expression at every itera- 

ion. Besides, with our alternating directional projection algorithm, 

he projection can be realized within a few steps. 

The time-triggered dimension reduction algorithm is described 

n Algorithm 1 . 

lgorithm 1 Time-Triggered Dimension Reduction Algorithm 

TTDRA). 

Input: parameters ε ∈ R 

+ , { αk } ⊆ (0 , + ∞ ) 

Initialize : x (0) ∈ R 

N 2 , ˜ W (0) = 

˜ W , l = 0 , count = 0 , n iter , P = 0 , η
Output: resulting permutation matrix P 

1: while P / ∈ �N do 

2: x (k + 1) ← P roj DS (x (k ) − αk ∇ ̃

 f (x (k ))) 

3: if count ≥ n iter then 

4: count ← 1 

5: X(k + 1) ← vec −1 (x (k + 1)) 

6: find index { c, r} of the maximum element from X(k + 1) 

7: delete column c and row r from X(k + 1) 

8: ˜ W (l + 1) ← delete columns and rows from 

˜ W (l) 

9: find real original row and column index ˜ c , ̃  r 

0: P ˜ c , ̃ r ← 1 

11: n iter ← min 

{ ⌈ 

log 
(

1 
ε

)
2 log 

(
μmax + μmin 
μmax −μmin 

)
⌉ 

, η

} 

2: else 

3: count ← count + 1 

14: end if 

5: end while 

Line 2 is the steepest projection gradient descent opera- 

ion, where ∇ ̃

 f (x (k )) denotes the gradient of ˜ f along x (k ) , i.e.

 ̃

 f (x (k )) = ( ̃  W + 

˜ W 

T ) x (k ) + c. As for the choice of time-varying

radient step size αk , we use the steepest descent algorithm in 

his paper, for it shows great convergence results for QP. In this 

lgorithm the step size αk is determined by means of optimal line 

earch as αk = arg min 

α
{ ̃  f (x (k )) − α∇ ̃

 f } , and for our quadratic cost

unction αk has an explicit form solution αk = 

∇ ̃

 f T ( x k ) ∇ ̃

 f ( x k ) 

∇ ̃

 f T ( x k ) ̃
 W ∇ ̃

 f ( x k ) 
. Line 

 indicates time-triggering and we find the maximum elements of 

ariable X(k + 1) in Line 6, indicated by column index c and row 

ndex r. In Line 7, the corresponding rows and columns and deleted 

rom the decision variable X(k + 1) (see Figure. 1 ). By using I to

enote the index set of elements X (k ) r, 1: N , X (k ) 1: N,c in x (k ) , then
˜ 
 (l) 1:(N−l) 2 ×(N−l) 2 ,i and 

˜ W (l) i, 1:(N−l) 2 ×(N−l) 2 with i ∈ I are deleted 
4 
rom the cost matrix ˜ W (l) in Line 8 (see Fig. 2 ). The new cost ma-

rix ˜ W (l + 1) has dimension of (N − l − 1) 2 × (N − l − 1) 2 . 

After that, Line 9 aims at finding the original row and column 

ndex ˜ c , ̃  r , which are different from c, r. The reason is that c, r be-

ongs to the index set of the reduced matrix X(k ) , with lower di-

ension compared with X(0) . Then, Line 10 sets element P ˜ c , ̃ r = 1 

or the resulting permutation matrix P . Finally, Line 11 calculates 

he time coefficient for the next dimension reduction process de- 

ending on the predefined tolerance ε, and a predefined positive 

nteger η. Here, the formulation is derived from the linear con- 

ergence speed for steepest descent algorithms over quadratic cost 

21] . The exponential decay term is 

(
μmax −μmin 
μmax + μmin 

)2 

, where μmax and 

min denote the maximum and minimum eigenvalues of the cost 

atrix ˜ W (l) , respectively. η is used as a truncation to avoid n iter 

ecoming unacceptable large. 

.2. Projection onto DS N 

In Algorithm 1 , the projection function P roj DS N is defined as: 

P roj DS N (X ) = arg min 

Y ∈ DS N 
1 
2 
|| X − Y | | 2 F , (6) 

hich yields the closest matrix in the set of doubly stochas- 

ic matrices based on Euclidean distance. Here we note that we 

mit an inverse vectorization operation in line 2 of Algorithm 1 . 

he authors of [27] proposed an iterative algorithm for perform- 

ng the projection onto doubly stochastic spaces, but only lim- 

ted that to symmetric matrices. In most cases, the cost matrix 

an be symmetrized with no influence on the optimum. However, 

ome special structure properties like sparsity may be changed. 

o here we give a more general alternating directional projection 

lgorithm for random input matrix, where the doubly stochas- 

ic matrix Y is not necessarily symmetric. This is summarized in 

lgorithm 2 . 

lgorithm 2 Alternating Directional Projection Algorithm. 

Input: matrix X 

Output: doubly stochastic matrix Y 

1: while Y / ∈ DS N do 

2: λ ← (AA 

T ) −1 (1 − AX ) 

3: X ← X + A 

T λ/ 2 

4: X ← th ≥0 (X ) 

5: end while 

6: Y ← X 

heorem 2. The input matrix X converges to the closest doubly 

tochastic approximation P with Algorithm 2 . 

roof. We split the projection problem (6) into two sub- 

roblems, where one is with an inequality constraint, and the 

ther one is with an equality constraint. The advantage is that 
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ach of the sub-problems has an analytical solution. There- 

ore, the solution of (6) is at the intersection of the two 

ub-problems. 

Consider the sub-problem with an affine equality constraint: 

arg min 

Y 

|| X − Y || 2 F 

subject to AY = 1 , 
( P 1 ) 

here A = 

[
I N � 1 T 

1 T � I N 

]
. Note that the equality constraint for 

ec −1 (Y ) ∈ DS N is: 

ec −1 (Y ) 1 = 1 , 1 

T vec −1 (Y ) = 1 

T . 

Reformulating the above two equality constraints leads to AY = 

 . The corresponding Lagrangian is 

 (Y, λ) = Tr ( Y T Y − 2 X 

T Y ) − 2 λT (AY − 1 ) , (7)

here λ is not constrained. The first order condition over the pri- 

al variable Y of L (Y, λ) results in: 

 = X + A 

T λ. (8) 

ultiplying (8) on both sides by A : 

AY = AX + A A 

T λ, (9) 

mplies that λ = (AA 

T ) −1 (1 − AX ) . Combined with (8) , we get the

xplicit solution as: 

 + A 

T (A A 

T ) −1 (1 − AX ) . (10) 

The second subproblem with affine inequality constraint is: 

arg min 

Y 

|| X − Y || 2 F 

subject to Y ≥ 0 . 
( P 2 ) 

ts solution is 

h ≥0 (X ) . (11) 

Then, with the iterative projection onto the two sets, 

lgorithm 2 leads to the convergence of X to the projection onto 

he intersection, DS N . �

.3. Complexity analysis 

This subsection presents the results of the complexity analy- 

is of our algorithm, including two parts: the number of iterations 

equired for convergence onto a permutation matrix and floating- 

oint operations required. 

heorem 3. The number of iterations required for the resulting ma- 

rix P ∈ �N of Algorithm 2 is O(N) , and the number of floating point

perations is O(N 

3 ) . 

roof. One column and one row of X are reduced every 

N n iter ≤ N 

⌈ 

log 
(

1 
ε

)
2 log 

(
μmax + μmin 
μmax −μmin 

)
⌉ 

iterations, while the element of P 

ith the same corresponding column index ˜ c and row index ˜ r is 

et to 1. The two indices, ˜ c and ˜ r , are then deleted from the col-

mn index set 1 , . . . , N and row index set 1 , . . . , N. This guarantees

o repetition of a non-zero entry over every column and row of 

atrix P and the existence of such entry. Besides, although n iter 

hanges across iterations, it is irrelevant to the dimension N. Thus, 

ith O(N) iterations, the resulting matrix P ∈ �N . 

The floating-point operations mainly lie in line 2 of 

lgorithm 1 . The total complexity of lines 3–13 can be omit- 

ed as it scales as O(N 

2 ) . We first analyze the complexity of

radient descent. The floating point operations required for N 

2 di- 

ensional x (k ) − αk ∇ f (x (k )) is O(N 

2 ) , this operation repeats for

a

5 
n iter times, therefore the total cost is n iter 

∑ N 
n =1 n 

2 = O(n iter N 

3 ) . 

he floating-point operations required in Algorithm 2 mainly come 

rom matrix multiplication, since the inverse calculation over AA 

T 

nly needs to be done once. Thus, with O(N 

2 ) time floating-point 

perations in a loop, the total amount of computation is O(N 

3 ) . 

ombining the complexity of gradient descent and projection, the 

esulting time complexity is O(N 

3 ) , as n iter is a constant. �

emark 1. The choice of n iter depends on the accuracy and com- 

utational speed requirement. With larger n iter , the accuracy will 

e higher because of more gradient descent steps, whereas the 

omputational speed will be lower. 

Compared to existing results on the convex-to-concave method 

3,9,11,14] , our method does not require to incrementally tune 

he penalty term to guarantee the solution to be a permuta- 

ion matrix. In their formulations, the penalties often depend on 

he maximum and minimum eigenvalues of matrix ˜ W , which 

rings extra difficulties on computation for a large scale sys- 

em. Besides, in our dimension reduction algorithm the accu- 

ulated time consumption of the multiplication is lower com- 

ared with the convex-to-concave method because of dimension 

eduction. 

.4. A note on convexity 

It is proved that the relaxed QAP (RQAP) is convex if and only 

f ˜ W is positive semi-definite, and strictly convex if and only if ˜ W 

s positive definite. The following two problems are of interest: 

roblem 1. Can Algorithm 1 preserve the convexity of QAP in each 

teration if it is convex initially? 

roblem 2. Can Algorithm 1 preserve the σ -convexity of QAP in 

ach iteration if it is σ -strongly convex initially? 

Note that Problem 1 is a special case of Problem 2 . We prove

he statements of Problem 2 , which then directly extends to Prob- 

em 1 . 

heorem 4. ˜ f l (x ) is σ -strongly convex for all l ∈ [1 , . . . , N − 1] if
˜ f 0 (x ) is σ -strongly convex. 

roof. Let ˜ W (l) denote the lth cost matrix corresponding to ˜ f l (x ) , 

hen we have ˜ W (l) ∈ R 

(N−l) 2 ×(N−l) 2 . We use r l = { r 1 
l 
, . . . , r 2(N−l) −1 

l 
}

o represent the index set of reduced columns and rows from 

˜ W (l) , 

 l = { 1 , . . . , N − l}\ r l to denote the indices set of residue elements. 

hen, we select x (l) ∈ R 

(N−l) 2 of which the m -th element x (l) m 

=
 , ∀ m ∈ r l . We assume that ˜ W (l) is σ -strongly convex. Then the

ollowing holds 

x (l) 
T 
( ˜ W (l) − σ

2 

I N−l ) x (l) ≥ 0 , 

⇒ 

∑ 

i ∈ h l 

∑ 

j∈ h l 
x (l) i x (l) j ˜ W (l) i, j −

∑ 

i ∈ h l 

σ x (l) i 
2 

2 

≥ 0 . (12) 

et x (l + 1) denote the dimension reduced vector of x (l) , then

12) implies: 

 (l + 1) 
T 
( ˜ W (l + 1) − σ

2 

I N−l−1 ) x (l + 1) ≥ 0 . (13) 

herefore, since x (l) is defined randomly over indicies h l , 

13) proves that ˜ W (l + 1) is σ -strongly convex. In addition, it is 

ssumed that ˜ W (0) is σ -strongly convex, it follows that ˜ W (l) −
σ
2 I N−l is positive semi-definite for all l ∈ [1 , . . . , N] , which is equiv-
lent to f l (x ) is σ -strongly convex for all l ∈ [1 , . . . , N] . �



H. Wang, K. Margellos and A. Papachristodoulou European Journal of Control 68 (2022) 100692 

Fig. 3. Comparison between TTDRA, PATH, and C-SDP. 
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Fig. 4. Comparison between TTDRA, PATH, and C-SDP. 
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. Simulation 

We tested our algorithm on a variety of QAP instances, all 

he experimental data comes from QAPlib 1 which includes Bur, 

hr, Els, Esc, Had, Kra, Lipa, Nug, Rou, Scr, Sko, Ste, Tai, Tho, and

il. We compare our results against two other algorithms, the 

DP relaxation (C-SDP) [10] , and the doubly stochastic relaxation 

11] with convex-to-concave [26] algorithm (PATH). These two al- 

orithms stand for two kinds of convexfication algorithms shown 

n Section 3 . The former one belongs to SDP convexification al- 

orithm (5) and the later one belongs to the doubly stochastic 

onvexification algorithm (CRQAP). The comparison includes two 

arts, i.e., the final value of cost and computing time. The dimen- 

ion of data set varies from 10 to 256. It should be noted that the

lass of SDP relaxation algorithms [10,16,29] is not able to produce 

ermutation matrices. To illustrate the comparison, we utilize the 

ungarian algorithm for projection onto permutation matrices, as 

ntroduced in the last paper. All the experiments are performed on 

 PC with 32GB RAM, 3.8GHz Intel i7-10700KF CPU. 

.1. Computing time 

We first show the optimality comparison among C-SDP, TTDRA, 

ATH. For C-SDP, we select n = 4 graph nodes per variable, for 

ATH we chose n = 10 iterations for convex-to-concave sampling, 

TDRA we set the tolerance to be 0.5, and the convexity to be 

0 6 . The first column of Fig. 3 shows the computation time used 

y TTDRA, PATH, and C-SDP. TTDRA is shown to be 10 − 10 4 faster 

han PATH and 10 4 − 10 6 faster than C-SDP; the C-SDP is the slow- 

st algorithm since it lifts the dimension of the decision vector and 

equires solving an SDP, which is known to be computationally ex- 

ensive. For some examples belonging to esc class, the computing 

peed of TTDRA is slower than PATH ( Fig. 3 e). This phenomenon 

s raised because of redundant iterations used for TTDRA, i.e. the 

inimum has been reached before the time condition is triggered. 

.2. Optimality 

We then show the optimality comparison among C-SDP, PATH, 

nd TTDRA. The second column of Fig. 3 shows the optimal values 

btained by TTDRA, PATH, and C-SDP. We can see that the value 

btained by TTDRA is competitive compared with other methods. 

n the other hand, the optimal value of TTDRA and C-SDP are close 

n most instances, and PATH acquired a better solution for more 

ases. The reason behind this results is that, PATH used the results 

rom the last iteration. 

. Conclusion 

We have presented a time triggered dimension reduction algo- 

ithm for efficiently solving the task assignment problem. The non- 

onvex optimisation problem is convexified to be σ -strongly con- 

ex. The output of the algorithm is guaranteed to be a permutation 

atrix. We further showed that the convexity is preserved across 

he iterations. We also gave an upper bound of the computational 

omplexity. The computational speed and optimality of our algo- 

ithm are verified on benchmark examples. In the future we aim 

t investigating stochastic variants of the proposed scheme, as well 

s parallelizable algorithms. 
1 https://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and- 

olutions/ 
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