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1. Introduction

The Task Assignment Problem (TAP) is of great importance in
combinatorial optimisation [24]. The formulation of this problem
is that, given a set of agents and a set of tasks, each agent can
select a task from its admissible task set, while pairing between
tasks and agents is one-to-one. The goal is to minimize the total
cost or maximize the global utility.

Typical types of TAPs are the Linear Assignment Problem (LAP)
and the Quadratic Assignment Problem (QAP). The LAP has a lin-
ear cost function and binary decision variables, i.e.,, 1 means a se-
lection and 0 means a rejection. There are many real-world appli-
cations that can be formulated as a LAP, ranging from robot for-
mation control [20,22,23] to facilities allocation [12]. The LAP has
been well investigated with many different methods in both cen-
tralized and decentralized ways. Centralized algorithms include the
Hungarian algorithm [18], and its extensions involves iterative al-
gorithms [4,13]. These methods have high computational efficiency
for small-scale problems, but they cannot be easily implemented
in parallel, limiting their usage to large-scale instances. To address
this limitation, another class of algorithms called auction algorithms
[5,7,19,28] provide an improved solution, imitating bidding in an
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auction. For a comprehensive literature review of this area, readers
are referred to the survey paper [15].

Another type of TAP is the QAP, which was firstly proposed in
[17] aiming at solving resource allocation problems. The QAP has
a similar structure to the LAP, except for the quadratic cost func-
tion. QAPs are widely used in many applications, e.g. the travel-
ling salesman problem [2], graph matching [8,25,30], etc. Unlike
the LAP, which allows finding a global optimum in polynomial time
with multiple heuristic algorithms, the QAP is provably NP-hard in
general [24], which makes it hard to design efficient heuristic al-
gorithms. Relaxation algorithms have been proposed to overcome
this limitation. The original mixed-integer programming problem
is relaxed into a continuous optimisation problem [29]. This idea is
derived from the fact that permutation matrices are at the vertices
of Birkhoff polytopes, i.e., the class of doubly stochastic matrices.
Thus, several efforts have been made to find good solutions over
doubly stochastic matrices, followed by a projection of the solution
to the set of permutation matrices. A penalty term can be added
to the original quadratic cost function to convexify the nonconvex
quadratic cost function [11]. Tighter convex underapproximations
were proposed to improve the optimality of the solution [3,9].

The projection on the space of permutation matrices is real-
ized with a convex-to-concave method [26], which incrementally
tunes the penalty quantity to change the convexity of the quadratic
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cost from convex to concave. The solution is a permutation matrix
since the minimizer lies on the vertices of the convex constraint
hull while minimizing a concave cost function [6]. This algorithm
finds a solution path of a family of convex to concave minimization
problems, obtained by linearly interpolating between the convex
and concave relaxations. The interpolation procedure requires solv-
ing additional n problems, which makes it computationally expen-
sive. Besides, the sub-problems in the procedure are nonconvex.

Motivated by the above limitations, in this paper, we propose a
fast relaxation-based iterative algorithm for the TAP, especially for
the nonconvex QAP. Our contributions are twofold:

« A convex relaxation-based framework is proposed. The non-
convex permutation set is relaxed to a polyhedral doubly
stochastic set. The nonconvex quadratic cost function is convex-
ified to be o-strongly convex.

Computational speed acceleration is realized through a time-
triggered dimension reduction approach: we reduce the dimen-
sion of the decision matrix incrementally by removing columns
and rows. Compared to the convex-to-concave method, our
method only solves the optimisation problem once, and the di-
mension of the problem is incrementally decreased. In addi-
tion, the convexity of the convexified cost function is preserved
across iterations.

The remainder of the paper is organized as follows. In
Section 2 we define the notations used in this paper and intro-
duce the formulation of TAP, including LAP and QAP. The convex
relaxation is presented in Section 3. Section 4 details our time-
triggered dimension reduction algorithm, followed by the simula-
tions in Section 5. Section 6 concludes the paper.

2. Problem formulation
2.1. Preliminaries

We use Iy to denote the N x N identity matrix, and 1y to de-
note the N-dimensional vector whose entries are all equal to one.
When it is obvious from the context, we omit the subscripts and
use I and 1 instead, respectively. R represents the set of real num-
bers and || - ||r denotes the Frobenius norm. We let vec(X) denote
the vectorizartion operation for a matrix X, and vec~!(x) the in-
verse operation that takes as input a column vector and returns
a matrix for a vector x. A® B represents the Kronecker product of
matrix A and B. X > 0 denotes point-wise non-negativity of the el-
ements of matrix X. X > 0 means that matrix X is positive semi-
definite. Let DSy denote the set of N x N doubly stochastic matri-
ces, ie. DSy = {X : X > 0,17X =17, X1 =1}, Iy denote the set of
N x N permutation matrices, i.e. Iy = {X € {0, 1}VN : XTX = Iy}.
Tr(X) denotes the trace of matrix X. th.o(X) sets the negative ele-
ments of X to zero.

Definition 1. A differentiable function f(-) is called o-strongly
convex with & > 0 on a domain D if the following inequality holds
for all x,y € D:

F0) = F0) + VIR G0+ Z1ly = xl[3,

We now discuss the LAP and QAP. Although the LAP can be re-
garded as a special case of QAP, we still want to briefly introduce
it for its importance in applications.

2.2. Linear assignment problem

The LAP describes a scenario in which every agent i is capable
of choosing one particular task j from the tasks pool. After that,
a specific predefined work cost or award is added. Each agent can
only select a single task, and every task can only be allocated to

European Journal of Control 68 (2022) 100692

one agent. Our goal is to find an optimal assignment strategy for
each task/agent pair, to realize a maximum reward or minimum
cost.

In considering such a problem of pairing agents with tasks, a
linear programming formulation can be derived

N /N

rr}}n F(X) = g (j lxl.j,3u> (1)
Xe HN,

where B;; € R is the predefined cost for agent i to select task j.
Decision variable X should be within the N-dimensional permuta-
tion set. The LAP is a tractable P-problem, which has an efficient
solution without additional constraints.

subject to

2.3. Quadratic assignment problem

The quadratic assignment problem originates from facility-
location allocation problems. Suppose there are n facilities and n
locations, and assume that the distances between locations and
flows of facilities are known. The problem is to assign the facili-
ties to different locations resulting in a minimum sum of the prod-
ucts of the distances and flows. Intuitively, pairwise facilities which
have higher flows are encouraged to be placed at nearer locations.
Unlike the linear assignment problem, the cost function of this
problem is expressed in terms of a quadratic function.

The classic Koopman-Beckmann formulation of the QAP is as
follows

n}(inTr(AXBXT)

. (2)
subject to X e Iy,

where A € RV*N js the flows matrix and B € RN*N s the distance
matrix. Making use of the cyclic properties of the Tr(-), we can
rewrite the objective function in (2) as follows

Tr(XBXTA) = Tr(X"AXB)

vec(X)Tvec(AXB)

= vec(X)T (B ® A)vec(X)

= xTWx, (3)

where x:zveg(X) is the vectorization of the permutation matrix
X, W e RN"*N° = (B® A). In this paper we consider a more general
form of (3), where a linear term is added:

min f(x) = xWxT + cTx
X
subject to

vec 1(x) e Iy, (QAP)
where W e RV*N ¢ ¢ RV 1t should be noted that the LAP is a
special case of the QAP with zero quadratic matrix W. In the sequel
we just consider the QAP as it covers the LAP as a special case.
Here we denote this problem as the original QAP.

Existing results point out that it is hard to solve (QAP) pre-
cisely because it is NP-hard [24]. Possible additional constraints
can also increase the complexity, even when the constraints are
affine. This motivates us to develop an efficient algorithm to find
a sub-optimal solution for problem (QAP), as well as address the
challenge of additional constraints.

3. Convex relaxation

To efficiently solve (QAP), an intuitive idea is to use constrained
quadratic programming tools. However, (QAP) is generally non-
convex for two reasons: i) the constraint is nonconvex; ii) the
cost function is nonconvex when W is not necessarily positive
semi-definite. In this section we present results with respect to
the convexification, including the convexification of the constraints
vec 1(x) e [Ty and the cost function f(x). We begin this sec-
tion with the convexification of the constraint set, i.e. the set of
permutation matrices.
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3.1. Convexifying the constraints

The original problem (QAP) is a mixed-integer programming
problem over permutation matrices. X;; = 1 implies that a specific
task is chosen by a corresponding agent, and vice-versa. Intuitively,
the resulting minimizer of such problems is a deterministic distri-
bution, which is a special case of a stochastic distribution. This mo-
tivates us to consider solving a relaxed version of the original as-
signment problem over the set of doubly stochastic matrices, which
renders the optimisation problem continuous.

The constrained relaxed QAP (CRQAP) is described as:
min X

i Je0 (CRQAP)
subject to vec~1(x) e DSy.

3.2. Convexifying the cost

Convexifying the nonconvex quadratic cost function has been
well studied in quadratically constrained quadratic programming
(QCQP) over the past decades [1]. Existing QAP papers [3,9-
11] proposed a series of convexification tools which can be
summarized into two categories, «BB convexiﬁggtion Q//ﬁ’ and
semidefinite programming (SDP) convexification QAP. The first one
is defined as follows:

XT(W + diag(a))x + (c — a)Tx, (QAP)

where o e RY is chosen so that W + diag(er) is positive semi-
definite. [11] selected & = —tmin1, Where p,;, denotes the min-
imum eigenvalue of W; (@’) is therefore convex over RN, [3] fur-
ther proposed a tighter convexification by restricting the variable
to an affine space X = X, + Fz, where F ¢ RV*(-D” denotes the
null space of DSy. .

The SDP convexification QAP comes from an observation that
the cost function in (3) could be rewritten as:

Tr((B @ A)vec(X)vec(X)T).
Substituting Q = vec(X)vec(X)T, (QAP) becomes:
min Tr(WQ)
Q.x
subject to Q =xxT.

Note that the cost function above is linear, the only nonconvex part
is the constraint on Q. Such constraint can be relaxed to Q — xxT >
0, and by some means of the Schur complement this is equivalent
to:

[% ’1‘}0.

Substituting the quadratic constraint Q = xx” with the above posi-
tive semi-definite constraint, the SDP convexification is formulated
as:

min waQ

Q.x

subject to |: )?T )16 ] >0, (QAP)
x> 0.

Theorem 1. [1] Let Z and Z denote the optimal values of the problems
QAP and QAP, respectively. Then Z < Z.

Theorem 1 shows that QZP gives a tighter underestimation than
that of QAP at the price of lifting the variable dimension, as well
as solving a more complex SDP rather than a simpler QP.

In this paper, we convexify the cost function based on QAP to
reach a trade-off between computational efficiency and tight un-
derestimation. To obtain a better convergence rate, we convexify
the cost function to be o-strongly convex.
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Lemma 1. The cost function f is o-convex if and only if W — 1 = 0.

Proof. From the definition of o-strong convexity we obtain, Vx, y,
vec~1(x) € DSy, vec~1(y) e DSy:

flex+ (1 - o) < af) + (1 -a)fiy) - Y0247

lIx = ylI3.
(4)

for any « € [0, 1], which implies that:

a(l—a)x™Wx+a(l-—a)y'Wy —a(1 —a)x"Wy

a1 —aywx- LDy -0
& x-NWx-y) - %(X—y)T(X—y) =0
& (=)W= TD(x-y)=0. (5)

The reverse is similar. Thus, W - $I1>=0<« f(x) is o-strongly
convex. [J

Following the results of Lemma 1, the relaxed QAP (RQAP) for-
mulation is:

(o3
o= —Z 4 Ui
min f(x) =x"(W + (% — Wmin) )X+ €TX + ZTM“““

subject to  vec™'(x) € DSy. (RQAP)

It can be seen that f(x) < f(x), since Vx e DSy, (5 -
Mmin) X Inx < (% — Mmin)/N. The equality is fulfilled only when
x € Ty. In the sequel we use W =W + (% — Umin)Iy for brevity.

After presenting the convexification for both the constraint and
the cost function, the comparison between the optimal values of
the original problem (QAP) and the relaxed problem (RQAP) is
given by the following lemma.

Lemma 2. The optimal values of the relaxed problem (RQAP) and the
original problem (QAP) satisfy:

f®).

min f (x) < min

vec-1(x)eDSy vec—1(x)elly
Proof. According to the Birkhoffvon Neumann theorem, the set of
N x N doubly stochastic matrices DSy is the convex hull of the
set of N x N permutation matrices Iy, i.e. [Ty c DSy. Besides, we
have f(x) < f(x) according to the previous discussion. Thus, the
optimal value over the set of doubly stochastic matrices is no big-
ger than that over the set of permutation matrices. O

Lemma 2 reveals that the minimum of the relaxed problem
(RQAP) is a lower bound of the minimum of the original problem
(QAP). This immediately implies the following proposition about
when a zero gap is realized.

Proposition 1. Let x* be the minimizer of (RQAP). Then x* is the
global minimizer of (QAP) if and only if vec™! (x*) € Iy.

Proposition 1 shows that if the optimal solution of (RQAP) lies
in the permutation set, we can conclude that we have found the
global minimizer of the original QAP (QAP).

4. Dimension reduction algorithm

The relaxed problem (RQAP) is a smooth continuous optimisa-
tion problem, which can be solved with multiple numerical solvers,
e.g. Ipopt, Sequential Quadratic Programming. However, when the
problem’s dimension becomes exceptionally high, such a prob-
lem is hard to solve in real time. More specifically, consider the
quadratic assignment problem: the dimension of variable x is N2,
where N is system size.
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I ={12358}

Fig. 1. Deleting the rth row and the cth column from X(k), where X (k). is the
largest element of X (k).

4.1. Time triggered dimension reduction

Here we notice that the permutation matrix has a sparsity
structure, where only N entries are non-zero out of N2 elements.
This motivates us to propose a dimension reduction scheme to ac-
celerate the solution. For example, when one element increases
faster than others, we can binarize it into one and then ground the
elements which lie within the same column or row to zero. This
also enables us to transform the decision variable from a doubly
stochastic matrix to a permutation matrix. Our method is based on
the steepest projection gradient method; we chose such a method
compared to other first-order optimisation methods because the
original problem has an explicit gradient expression at every itera-
tion. Besides, with our alternating directional projection algorithm,
the projection can be realized within a few steps.

The time-triggered dimension reduction algorithm is described
in Algorithm 1.

Algorithm 1
(TTDRA).
Input: parameters € € R*, {o,} < (0, +00)
Initialize: x(0) € RN W (0) =W, [ = 0, count = 0, nje, P =0, 1
Output: resulting permutation matrix P
1: while P ¢ 1y do

Time-Triggered Dimension Reduction Algorithm

2 x(k+1) < Projos(x(k) — .V f(x(K)))

3 if count > n;,; then

4 count « 1

5 X(k+1) < vec1(x(k+1))

6: find index {c, r} of the maximum element from X (k + 1)
7 delete column ¢ and row r from X(k+1)

8 W(l +1) «<delete columns and rows from W (I)
9 find real original row and column index ¢,

10: PE,F <~ ]

11: Njter < Min % N

2log (e tymin )

12: else

13: count « count + 1

14:  end if

15: end while

Line 2 is the steepest projection gradient descent opera-
tion, where Vf(x(k)) denotes the gradient of f along x(k), ie.
VF(x(k)) = W +WT)x(k) +c. As for the choice of time-varying
gradient step size oy, we use the steepest descent algorithm in
this paper, for it shows great convergence results for QP. In this
algorithm the step size ¢, is determined by means of optimal line
search as o = argmin {f(x(k)) — @V f}, and for our quadratic cost

o

V~f7(xk)Vf~(~xk)
VfT (xk)WVf(xk) ’
3 indicates time-triggering and we find the maximum elements of
variable X(k + 1) in Line 6, indicated by column index ¢ and row
index r. In Line 7, the corresponding rows and columns and deleted
from the decision variable X(k + 1) (see Figure. 1). By using I to
denote the index set of elements X (k) 1.y, X(k)1:n¢ in x(k), then
W) 1. (vopy2xnenz.i and WD, 1. vz, v_py2 With i eI are deleted

function ¢, has an explicit form solution ¢, = Line
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Wr(N—I)’x(N—I)’,i
W1,1 I’71,2 W1,3 W1,4 Wl,s W1,6 W1,7 W1,s I’71,9
W2,1 Wz,z Wz,s Wz,a, Wz,s Wz,e Wz,7 Wz,e Wz,9
Wa, Ws,z Wiz W3,4 Was| Wae Wiy (Wag W3,9
Wz,l;(N—[)zx(Nfl)z W4,1 W4,2 W4,3 VT/4,4 W4,5 Wa,,e W4,7 W4,8 W4,9
l/T/5,1 Ws,z W5,3 W5,4 Ws,s Ws,s W5,7 Ws,s W5,9|
Ws,1 Ws,z We,a Wm Ws,s Ws,a We,7 We,s Weo
N7,1 VT/7,2 W7,3 VT/7,4 W7,5 W7,6 VT/7,7 W7,8 W79
Ws,1 Ws,z We,s Ws,4 Wa,s WS,6 Wa,7 Ws,a Ws,9l
Woi Wop Wz W9,4 E,s_ We,a W9,7 %,8_ Woo

Fig. 2. Deleting the ith columns and rows from W (I), where i € I.

from the cost matrix W (!) in Line 8 (see Fig. 2). The new cost ma-
trix W (I + 1) has dimension of (N—1—-1)2 x (N—=1—1)2,

After that, Line 9 aims at finding the original row and column
index ¢, 7, which are different from c, r. The reason is that c, r be-
longs to the index set of the reduced matrix X (k), with lower di-
mension compared with X(0). Then, Line 10 sets element P:; = 1
for the resulting permutation matrix P. Finally, Line 11 calculates
the time coefficient for the next dimension reduction process de-
pending on the predefined tolerance €, and a predefined positive
integer 1. Here, the formulation is derived from the linear con-
vergence speed for steepest descent algorithms over quadratic cost

2
[21]. The exponential decay term is (%) , where fimax and

MUmin denote the maximum and minimum eigenvalues of the cost
matrix W(I), respectively. n is used as a truncation to avoid nje,
becoming unacceptable large.

4.2. Projection onto DSy

In Algorithm 1, the projection function Projps, is defined as:

Projos, (X) = argmin J||X — Y||2, (6)
YeDSy

which yields the closest matrix in the set of doubly stochas-
tic matrices based on Euclidean distance. Here we note that we
omit an inverse vectorization operation in line 2 of Algorithm 1.
The authors of [27] proposed an iterative algorithm for perform-
ing the projection onto doubly stochastic spaces, but only lim-
ited that to symmetric matrices. In most cases, the cost matrix
can be symmetrized with no influence on the optimum. However,
some special structure properties like sparsity may be changed.
So here we give a more general alternating directional projection
algorithm for random input matrix, where the doubly stochas-
tic matrix Y is not necessarily symmetric. This is summarized in
Algorithm 2.

Algorithm 2 Alternating Directional Projection Algorithm.
Input: matrix X
Output: doubly stochastic matrix Y
1: while Y ¢ DSy do
2 A< (AAT)-1(1 - AX)
3 X < X+ATA2
4 X < thyo(X)
5
6

: end while
Y <« X

Theorem 2. The input matrix X converges to the closest doubly
stochastic approximation P with Algorithm 2.

Proof. We split the projection problem (6) into two sub-
problems, where one is with an inequality constraint, and the
other one is with an equality constraint. The advantage is that
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each of the sub-problems has an analytical solution. There-
fore, the solution of (6) is at the intersection of the two
sub-problems.

Consider the sub-problem with an affine equality constraint:
argmin  [|X —Y[|2

Y

4 (Py)
subject to AY =1,

Iyo1T
1T ®IN
vec~1(Y) e DSy is:

vec '(Y)1=1,1Tvec 1 (Y) = 17.

Reformulating the above two equality constraints leads to AY =
1. The corresponding Lagrangian is

L(Y, L) = Tr(YTY — 2XTY) — 2T (AY — 1), (7)

where A is not constrained. The first order condition over the pri-
mal variable Y of L(Y, A) results in:

where A:[ ] Note that the equality constraint for

Y=X+ATA (8)
Multiplying (8) on both sides by A:
AY = AX +AATA, 9

implies that A = (AAT)~1(1 — AX). Combined with (8), we get the
explicit solution as:

X +AT(AAT)1(1 - AX). (10)
The second subproblem with affine inequality constraint is:
argmin  [|X - Y[|2
y (P2)

subject to Y > 0.
Its solution is
thoo(X). (11)

Then, with the iterative projection onto the two sets,
Algorithm 2 leads to the convergence of X to the projection onto
the intersection, DSy. O

4.3. Complexity analysis

This subsection presents the results of the complexity analy-
sis of our algorithm, including two parts: the number of iterations
required for convergence onto a permutation matrix and floating-
point operations required.

Theorem 3. The number of iterations required for the resulting ma-
trix P € Iy of Algorithm 2 is O(N), and the number of floating point
operations is O(N3).

Proof. One column and one row of X are reduced every

Nitjer < N| —28()

N I
with the same corresponding column index ¢ and row index f is
set to 1. The two indices, ¢ and 7, are then deleted from the col-
umn index set 1,..., N and row index set 1, ..., N. This guarantees
no repetition of a non-zero entry over every column and row of
matrix P and the existence of such entry. Besides, although nj,
changes across iterations, it is irrelevant to the dimension N. Thus,
with O(N) iterations, the resulting matrix P € I1y.

The floating-point operations mainly lie in line 2 of
Algorithm 1. The total complexity of lines 3-13 can be omit-
ted as it scales as O(N2). We first analyze the complexity of
gradient descent. The floating point operations required for N2 di-
mensional x(k) — o, Vf(x(k)) is @(N?), this operation repeats for

—‘ iterations, while the element of P
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Nnjer times, therefore the total cost is njer Y N_; n? = O(NjgerN3).
The floating-point operations required in Algorithm 2 mainly come
from matrix multiplication, since the inverse calculation over AAT
only needs to be done once. Thus, with O(N2) time floating-point
operations in a loop, the total amount of computation is O(N3).
Combining the complexity of gradient descent and projection, the
resulting time complexity is O(N3), as Ny, is a constant. [

Remark 1. The choice of nj,, depends on the accuracy and com-
putational speed requirement. With larger njy.,, the accuracy will
be higher because of more gradient descent steps, whereas the
computational speed will be lower.

Compared to existing results on the convex-to-concave method
[3,9,11,14], our method does not require to incrementally tune
the penalty term to guarantee the solution to be a permuta-
tion matrix. In their formulations, the penalties often depend on
the maximum and minimum eigenvalues of matrix W, which
brings extra difficulties on computation for a large scale sys-
tem. Besides, in our dimension reduction algorithm the accu-
mulated time consumption of the multiplication is lower com-
pared with the convex-to-concave method because of dimension
reduction.

4.4. A note on convexity

It is proved that the relaxed QAP (RQAP) is convex if and only
if W is positive semi-definite, and strictly convex if and only if W
is positive definite. The following two problems are of interest:

Problem 1. Can Algorithm 1 preserve the convexity of QAP in each
iteration if it is convex initially?

Problem 2. Can Algorithm 1 preserve the o-convexity of QAP in
each iteration if it is o -strongly convex initially?

Note that Problem 1 is a special case of Problem 2. We prove
the statements of Problem 2, which then directly extends to Prob-
lem 1.

Theorem 4. fi(x) is o-strongly convex for all 1 e[1,....N—1] if
fo(x) is o-strongly convex.

Proof. Let W (I) denote the Ith cost matrix corresponding to f,(x),
then we have W (l) e RIN-D*x(N-D? 'We use r, = {rl..... r2(N=D-1y
to represent the index set of reduced columns and rows from W (l),
h; = {1,...,N —I}\r; to denote the indices set of residue elements.
Then, we select x(I) € R(N*’>2~of which the m-th element x(I), =
0,Vm e r;. We assume that W(l) is o-strongly convex. Then the
following holds

x0T (W (1) ~ Sy )x(D) = 0.

2
= 2 YWy, - 3 X~ o (12)

ich; jeh ieh;

Let x(I+1) denote the dimension reduced vector of x(I), then
(12) implies:

x(+ DT WI+1) - %I,V,,,l)x(wr 1) =0. (13)

Therefore, since x(I) is defined randomly over indicies h,,
(13) proves that W(l + 1) is o-strongly convex. In addition, it is
assumed that W(0) is o-strongly convex, it follows that W(l) —
%Iy_ is positive semi-definite for all [ € [1,..., N], which is equiv-
alent to fj(x) is o-strongly convex for all I € [1,...,N]. O
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5. Simulation

We tested our algorithm on a variety of QAP instances, all
the experimental data comes from QAPlib! which includes Bur,
Chr, Els, Esc, Had, Kra, Lipa, Nug, Rou, Scr, Sko, Ste, Tai, Tho, and
Wil. We compare our results against two other algorithms, the
SDP relaxation (C-SDP) [10], and the doubly stochastic relaxation
[11] with convex-to-concave [26] algorithm (PATH). These two al-
gorithms stand for two kinds of convexfication algorithms shown
in Section 3. The former one belongs to SDP convexification al-
gorithm (5) and the later one belongs to the doubly stochastic
convexification algorithm (CRQAP). The comparison includes two
parts, i.e., the final value of cost and computing time. The dimen-
sion of data set varies from 10 to 256. It should be noted that the
class of SDP relaxation algorithms [10,16,29] is not able to produce
permutation matrices. To illustrate the comparison, we utilize the
Hungarian algorithm for projection onto permutation matrices, as
introduced in the last paper. All the experiments are performed on
a PC with 32GB RAM, 3.8GHz Intel i7-10700KF CPU.

5.1. Computing time

We first show the optimality comparison among C-SDP, TTDRA,
PATH. For C-SDP, we select n =4 graph nodes per variable, for
PATH we chose n = 10 iterations for convex-to-concave sampling,
TTDRA we set the tolerance to be 0.5, and the convexity to be
106. The first column of Fig. 3 shows the computation time used
by TTDRA, PATH, and C-SDP. TTDRA is shown to be 10 — 10* faster
than PATH and 10% — 10 faster than C-SDP; the C-SDP is the slow-
est algorithm since it lifts the dimension of the decision vector and
requires solving an SDP, which is known to be computationally ex-
pensive. For some examples belonging to esc class, the computing
speed of TTDRA is slower than PATH (Fig. 3 e). This phenomenon
is raised because of redundant iterations used for TTDRA, i.e. the
minimum has been reached before the time condition is triggered.

5.2. Optimality

We then show the optimality comparison among C-SDP, PATH,
and TTDRA. The second column of Fig. 3 shows the optimal values
obtained by TTDRA, PATH, and C-SDP. We can see that the value
obtained by TTDRA is competitive compared with other methods.
On the other hand, the optimal value of TTDRA and C-SDP are close
in most instances, and PATH acquired a better solution for more
cases. The reason behind this results is that, PATH used the results
from the last iteration.

6. Conclusion

We have presented a time triggered dimension reduction algo-
rithm for efficiently solving the task assignment problem. The non-
convex optimisation problem is convexified to be o-strongly con-
vex. The output of the algorithm is guaranteed to be a permutation
matrix. We further showed that the convexity is preserved across
the iterations. We also gave an upper bound of the computational
complexity. The computational speed and optimality of our algo-
rithm are verified on benchmark examples. In the future we aim
at investigating stochastic variants of the proposed scheme, as well
as parallelizable algorithms.

1 https://coral.ise.lehigh.edu/data-sets/qaplib/qaplib- problem-instances-and-
solutions/
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