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Distributed Momentum Based Multi-Agent
Optimization with Different Constraint Sets

Xu Zhou, Zhongjing Ma, Suli Zou∗, and Kostas Margellos

Abstract— This paper considers a class of consensus
optimization problems over a time-varying communication
network wherein each agent can only interact with its
neighbours. The target is to minimize the summation of all
local and possibly non-smooth objectives in the presence
of different constraint sets per agent. To achieve this goal,
we propose a novel distributed heavy-ball algorithm that
combines the subgradient tracking technique with a mo-
mentum term related to history information. This algorithm
promotes the distributed application of existing central-
ized accelerated momentum methods, especially for con-
strained non-smooth problems. Under certain assumptions
and conditions on the step-size and momentum coefficient,
the convergence and optimality of the proposed algorithm
can be guaranteed through a rigorous theoretical analysis,
and a convergence rate of O(lnk/

√
k) in objective value is

also established. Simulations on an ℓ1-regularized logistic-
regression problem show that the proposed algorithm can
achieve faster convergence than existing related distribut-
ed algorithms, while a case study involving a building ener-
gy management problem further demonstrates its efficacy.

Index Terms— Distributed optimization, multi-agent net-
works, heavy-ball momentum, sub-gradient averaging con-
sensus.

I. INTRODUCTION

GRADIENT descent algorithms have been extensively
employed in the distributed optimization and machine

learning [1], [2] literature, with numerous applications in
different complex systems such as wireless networks [3],
robotics [4] and multi-energy systems [5]. To accelerate the
convergence of gradient descent methods, a momentum term
involving the information of previous iterates has been in-
troduced in the literature. The concept of momentum comes
from physics which describes a moving object that still
keeps moving without the intervention of out-side forces.
The algorithms with momentum could move more quickly
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when the plateaus in the error surface exist. One of the
typical momentum methods is heavy-ball momentum which
has been extensively used to train deep network models and
has made remarkable progress in various applications [6].
When the objective function is twice continuously differen-
tiable and strongly convex, the heavy-ball method has a linear
convergence rate and a better convergence factor than both
gradient descent and Nesterov’s accelerated gradient method-
s [7]. However, the theoretical analysis about the optimality
and convergence of heavy-ball methods is still challenging,
especially for non-smooth convex problems. Although [8] and
recently [9] provide a convergence analysis of the heavy-ball
method for non-smooth problems, they are both centralized
and do not involve local objectives.

Only a few papers have studied the distributed heavy-
ball optimization, and most of these papers such as [10]–
[14] require smoothness and strong-convexity of the objective
functions. Specifically, the authors in [10] proposed a dis-
tributed heavy-ball method, denoted as the ABm algorithm
to solve an optimization problem which aims to minimize
the summation of local objectives in a multi-agent setting
with gradient tracking. The algorithm had a global R-linear
rate under certain conditions. Papers [11] and [14] developed
the Nesterov’s gradient and heavy-ball double accelerated
distributed algorithms for strongly convex objective functions,
which could achieve linear convergence. A family of para-
metric distributed momentum methods was proposed in [12]
for the smooth and strongly convex functions, which included
the results in [10]. With different choices of the momentum
parameter, it could obtain different distributed momentum
methods. Reference [13] extended the ABm algorithm pro-
posed in [10] to time-varying directed networks leveraging a
gradient-tracking technique with linear convergence still being
achieved.

However, these distributed heavy-ball methods only study
unconstrained optimization problems, i.e., minx∈Rn f(x) =∑N

i=1 fi(x), where fi denotes the objective function of agent
i, i = 1, . . . , N . They could not be directly applied to solve
the constrained case, since simply introducing constraints into
the objective such as via an indicator function could lead to
non-smoothness and violate the boundedness assumption of
subgradients. So far, there are only few results on distributed
heavy-ball for non-smooth constrained problems. Hence, this
paper is motivated to fill this gap and exploit the potential
strength of heavy-ball momentum for accelerated convergence.
More specifically, we focus on a general class of convex opti-
mization problems with a separable objective function where
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TABLE I: Comparison between the proposed method and related distributed methods. Legend: Strongly stands for strongly convex objective
functions.

Convex Non-smooth Heterogeneous
constraints

Time-
varying

(Sub)-gradient
averaging

Momentum
acceleration

[10]–[12] Strongly × × × X X
[13], [14] Strongly × × X X X

[15] X X × X × ×
[16], [17] X X × × X ×

[18] X × X X × ×
[19] X × X × × ×

[20], [21] X X X × X ×
[22] Strongly X X X × ×

[23]–[27] X X X X × ×
[28] X X X X X ×

Our work X X X X X X

all agents have a common decision vector, considering hetero-
geneous constraints as well as a time-varying communication
network, allowing for a broader class of applications. The
problem is formulated as minx∈∩N

i=1Xi
f(x) =

∑N
i=1 fi(x),

where Xi denotes the constraint set of agent i = 1, · · · , N .
This paper aims at solving this class of problems by applying
a heavy-ball momentum algorithm which performs better than
the ones proposed in the literature.

For the aforementioned constrained and possibly non-
smooth convex problems, existing results on distributed opti-
mization such as [15]–[17], [29], [30] considered cases where
all agents had the same local constraints. Under heterogeneous
constraints, the converged fixed points obtained via the meth-
ods in [15]–[17], [29], [30] might be local optimal solutions for
the local objective functions, rather than the global consensus
solution. The distributed algorithms proposed in [18], [19]
could handle heterogeneous constraints, but they required dif-
ferentiability of the objective functions. Reference [24] is the
first distributed work considering heterogeneous constraints
and without assuming differentiability of local objective func-
tions. There have also been other distributed methods such
as [20], [21] which can deal with this set-up. Reference [21]
introduced a proximal-tracking distributed algorithm for this
non-smooth problem with heterogeneous constraints by inte-
grating the dynamic average consensus and adopting a con-
stant step-size, which exhibited faster convergence than the P-
EXTRA algorithm in [31]. Differently from [21], the methods
proposed in [20] only require a row stochastic weight matrix,
and the analysis of convergence rate considers a diminishing
step-size. However, the algorithms designed in [20], [21] were
implemented under a time-invariant network.

Only a few papers solve optimization problems like the
one proposed in this paper over a time-varying network.
Specifically, [25] proposed a distributed projected subgradi-
ent method to minimize the local objective function where
the decisions of each agent are subject to different convex
sets. Reference [26] extended the algorithm in [25] to the
case of switched graphs and communication delays. In [23],
a push-sum based constrained optimization algorithm was
designed and a convergence rate of O( lnk√

k
) was achieved

over time-varying unbalanced directed topologies, which was
different from the Fenchel dual gradient methods in [22]

that required strong convexity of all local objective func-
tions. Reference [27] designed a distributed scheme based
on a proximal minimization perspective which could handle
different sets of uncertainty scenarios. In [28], a distributed
algorithm was developed by applying the same subgradient
averaging technique as [16], [20], which could achieve a
better convergence rate than [25], [27]. Our work extends the
results in [28] by introducing a subgradient tracking step and
a momentum term, which avoids the sequential update step
considered in [28], while maintaining the same theoretical
convergence rate and exhibiting significantly faster behaviour
numerically. For a quick overview, we compare our algorithm
with the most closely related distributed methods in Table I.

To the best of our knowledge, this is the first implementa-
tion of heavy-ball momentum in general convex constrained
distributed optimization, which can provide certain insights
and reference for the development of distributed momentum
methods. The main contributions of this paper are summarized
as follows:

1) We propose a novel distributed heavy-ball algorithm by
introducing the momentum term and subgradient tracking
for a class of convex optimization over a time-varying
communication network. Differently from other distribut-
ed heavy-ball algorithms [10]–[14], our method avoids
the requirement of smoothness and strong-convexity of
the objective functions, and can handle heterogeneous
constraints per agent. The application of subgradient
tracking technique enables fewer communication rounds
compared with [28]. The introduction of momentum term
in a distributed setting is a generalization of centralized
momentum methods, which exhibits a faster convergence
compared with other algorithms numerically.

2) A convergence rate of O( lnk√
k
) in objective value can be

obtained by applying the proposed distributed algorithm.
A rigorous analysis of the convergence and optimality of
the algorithm is provided. Even though several lemmas
are motivated by [27], [28], our main theoretical analysis
is substantially different, constituting a nontrivial exten-
sion.

3) We demonstrate the implementation of the proposed dis-
tributed algorithm on a case study that involves an energy
management model for a building district cooling system
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with a shared cooling storage network, which constitutes
the first such implementation and is interesting per se.
Moreover, we perform a thorough numerical investigation
and sensitivity analysis on a benchmark example that
involves a logistic regression problem.

The rest of the paper is structured as follows. In Section II,
we formalize the constrained optimization problem and intro-
duce the heavy-ball method. In Section III, we propose the
accelerated distributed heavy-ball algorithm and relate it to
existing results. The theoretical analysis of convergence and
optimality of the proposed algorithm is shown in Section IV.
In Section V, we present simulation results to verify the
efficacy of our algorithm, and a case study on building energy
management. Section VI concludes this paper and provides
some directions for future work.

Notation: R and N denote the sets of real numbers and
natural numbers (excluding zero), respectively. Rn denotes
the n-dimensional Euclidean space. Let ∥ · ∥p denote the lp-
norm operator. A sequence of elements in Rn is represented
by (x(k))k∈N. For a set X ⊂ Rn, denote its convex hull by
conv(X). The subdifferential (i.e., the set of all subgradients)
of function f at x ∈ Rn is denoted by ∂f(x). If f is
differentiable, then its gradient is denoted by ∇f(x). For a
matrix A, Aij denotes its (ij)-th element. Denote by dist(y,X )
the Euclidean distance of a vector y from a set X , i.e.,
dist(y,X ) = infx∈X ∥y − x∥.

II. CONSTRAINED OPTIMIZATION

In this section, we formulate a constrained optimization
problem and specify some assumptions adopted throughout
this paper. We next review heavy-ball methods from a central-
ized point of view.

A. Problem Set-Up

Consider the following optimization problem of multiple
agents N ≡ {1, · · · , N}:

Problem 1:

min
x

f(x) =
∑
i∈N

fi(x)

subject to x ∈ ∩Ni=1Xi,

(1)

where x ∈ Rn represents the global decision variable and each
Xi ⊂ Rn is the local constraint set of agent i, i ∈ N . Each
objective function fi : Rn → R is convex, and only known
to agent i ∈ N . Note that we do not assume differentiability
of fi which is allowed to be non-smooth. All agents aim to
collaboratively minimize the summation of all local objective
functions while agreeing on a common value denoted by x∗

for the decision vector x ∈ Rn, where x∗ denotes an optimal
solution of Problem 1 such that f(x∗) ≤ f(x) for all x ∈
∩Ni=1Xi.

We impose the following assumption throughout the paper.
Assumption 2.1: We assume that:

(i) The set Xi is compact and convex, for all i ∈ N , and
∩Ni=1Xi has a non-empty interior.
(ii) For all i ∈ N , the subgradient gi(x) ∈ ∂fi(x) of fi is

bounded on conv(∪Ni=1Xi), i.e, there exists L ∈ (0,∞) such
that

∥gi(x)∥2 ≤ L, ∀i ∈ N . (2)
In Assumption 2.1, item (i) ensures that the optimal solution

set of Problem 1 is non-empty. Item (ii) is common in the
literature and is satisfied by many functions such as piecewise-
linear functions, quadratic functions and logistic-regression
functions [16], [17], [20], [28]. In [28], the authors provided
a technical condition on the domain of functions fi, i ∈ N ,
whose satisfaction acts as a sufficient condition for item (ii).

B. The Heavy-Ball Method
This subsection reviews the heavy-ball method, on which

the proposed algorithm is based. We firstly consider the
unconstrained optimization problem minx∈Rn f(x) which is
µ-strongly convex. The heavy-ball method [32] is an iterative
scheme that involves the following update rule

x(k + 1) = x(k)− α∇f(x(k)) + β
(
x(k)− x(k − 1)

)
, (3)

where k denotes the iteration index. The last term β
(
x(k) −

x(k − 1)
)

is the momentum term, which is related to the
past iterate information with momentum parameter β ∈ [0, 1)
and x(0) = x(1). Under a proper choice of step-size α and
parameter β, the heavy-ball method could achieve a local
accelerated convergence of O

(
(
√
L−√

µ√
L+

√
µ
)k
)

which is faster
than the gradient descent method (β = 0) with convergence
rate O

(
(L−µ
L+µ )

k
)
, where L denotes the Lipschitz continuity

constant of f . The global linear convergence of this method
is developed in [7], [33], [34].

Recently, several papers have studied the heavy-ball method
to solve the constrained non-smooth optimization problem
minx∈X f(x). In [9], this method is naturally encoded by the
following update rule

x(k + 1) = PX
[
x(k)− α(k)g(k) + β(k)

(
x(k)− x(k − 1)

)]
,

(4)

where PX [·] represents the projection on the constraint set
X , and g(k) is any subgradient of f evaluated at x(k). Note
that the momentum parameter β(k) ∈ [0, 1) is iteration-
varying. In [9], the authors explore the effects of the heavy-
ball momentum on acceleration of convergence. Under certain
conditions of α(k) and β(k), the iteration above can achieve
an optimal convergence rate O( 1√

k
) for non-smooth problems.

Note that the above heavy-ball methods are centralized.
In the next section we will extend them to achieve a novel
distributed heavy-ball algorithm to solve Problem 1. Unlike
existing distributed heavy-ball methods in [10]–[13], we con-
sider different constraint sets per agent over a time-varying
communication network.

III. DISTRIBUTED HEAVY-BALL ALGORITHM

A. Distributed Computation Framework
In this paper, we aim at solving Problem 1 over a time-

varying communication network wherein each agent can only
exchange its private information such as the current estimate
for the optimal solution xi(k), i ∈ N , with its neighbours
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at a given iteration k. The communication topology of the
multi-agent system could be described by an undirected graph
denoted by G(k) , ⟨N , E(k)⟩, where N and E(k) denote the
set of agents (vertex set) and the edge set at iteration k, respec-
tively. Each edge (i, j) ∈ E(k) represents the communication
between node i and node j. The weight matrix is denoted by
A(k) with Aij(k) > 0 when (i, j) ∈ E(k) and Aij(k) = 0
otherwise. Furthermore, we define G(∞) , ⟨N , E(∞)⟩ with
(i, j) ∈ E(∞) representing that node i could communicate
with its neighbour j infinitely often. We have the following
assumption on A(k), which has been widely considered in the
distributed optimization literature, e.g., [1], [16], [27], [28].

Assumption 3.1: We assume that:
(i) The graph (N , E∞) is connected. There exists T ≥ 1 such
that agent i receives the information sent by j at least once in
every consecutive T iterations.
(ii) There exists η ∈ (0, 1) such that Aii(k) ≥ η for all k ∈ N,
i, j ∈ N , and if Aij(k) > 0 we then have Aij(k) ≥ η.
(iii) Matrix A(k) is doubly stochastic for each k, i.e.,∑N

i=1 Aij(k) = 1 for all j ∈ N , and
∑N

j=1 Aij(k) = 1,
for all i ∈ N .

B. Proposed Algorithm
In this section, we present a distributed heavy-ball method

such that each agent could update its own decision vector
copy simultaneously. In fact, each agent has a local copy
for the global variable and a corresponding subgradient to
cooperate with its neighbours at each iteration step, and then
all agents eventually agree on a common decision variable.
The main steps of the proposed algorithm are summarized in
Algorithm 1.

Algorithm 1 Distributed heavy-ball algorithm.

1: Initialization xi(0) ∈ Rn, gi(0) ∈ ∂fi(xi(0)), si(0) =

gi(0), i ∈ N ;

For each i ∈ N , repeat until convergence

2: gi(k) ∈ ∂fi(xi(k));

3: si(k) =
∑N

j=1 Aij(k − 1)sj(k − 1) + gi(k)− gi(k − 1);

4: zi(k) =
∑N

j=1 Aij(k)xj(k);

5: xi(k+1) = PXi

[
zi(k)−α(k)si(k)+β(xi(k)−xi(k−1))

]
;

6: k ← k + 1.

end

We first initialize the decision vector xi(0), for all i ∈ N
which can be chosen arbitrarily, and calculate the correspond-
ing subgradient gi(0) evaluated at xi(0). Note that si(0) =
gi(0) is a necessary condition to show the convergence of
Algorithm 1, and has been widely considered in consensus-
based algorithms, e.g., [11], [14], [17], [35]. For notation
simplicity, we use gi(k) to represent subgradient gi(xi(k)) ∈
∂fi(xi(k)) evaluated at xi(k) throughout this paper.

At iteration step k, since each agent is merely able to calcu-
late its own local subgradient gi(k) rather than the global sub-
gradient

∑N
i=1 gi(x(k)) of Problem 1, we introduce a variable

si(k) that constitutes a weighted subgradient in Step 3 to track
the average subgradient 1

N

∑N
i=1 gi(k). The value of si(k)

is calculated according to a subgradient tracking technique
involving the local information and an average consensus
mechanism related to its neighbours’ gradient information
at previous iteration step. This technique has been widely
adopted in the literature [17], [36]–[38]. Meanwhile, agent
i receives information of tentative decision variables from
its neighbours and averages them through the weight matrix
A(k) such that the auxiliary variable zi(k),∀i ∈ N could
be obtained (Step 4). Finally, motivated by aforementioned
heavy-ball methods in (3) and (4), we update the primal
variable xi(k), ∀i ∈ N through the gradient projection on
local constraint Xi in Step 5, which includes the momentum
term β

(
xi(k)− xi(k− 1)

)
using the past iterate information.

In this iteration step, β and α(k) are the fixed momentum pa-
rameter and time-varying step-size, respectively. Under certain
conditions, Algorithm 1 converges to a global optimum; this
is shown in Section IV.

Remark 1: The distributed algorithms for constrained
strongly convex optimization have been extensively researched
in the literature [22], [23]. Differently from these distribut-
ed momentum-based algorithms in [10]–[14] also requiring
strong-convexity of the objective functions, Algorithm 1 aims
to solve more general convex optimization problems which can
be linear or non-smooth. Furthermore, a diverse range of real-
world problems are usually not strongly convex, and can be
approximated and formulated as linear problems such as the
plug-in electric vehicles optimal charging schedule problem
in [35] and the smart grid applications in [39].

C. Relation to Existing Results
The existing distributed methods to solve the consensus

optimization problems mainly involve the update of local
estimates for the global variable and a local gradient update.
These two points are also the primary distinctions between
the existing methods. If we do not consider the momentum
term, i.e. set β = 0, Algorithm 1 can be roughly simplified to
several existing methods that employ gradient averaging, such
as these in [21], [28], [37].

Specifically, [37] proposed a gradient-tracking based
scheme known as DIGing algorithm to solve Problem 1
without constraints. The updates of the local gradient si(k)
and estimate xi(k + 1) are the same as Step 3 and Step
5 in Algorithm 1 without projection and momentum term,
respectively. Furthermore, the authors in [21] extend the results
in [37] to constrained cases. A distributed proximal-tracking
algorithm is proposed to solve Problem 1 by combining the
DIGing algorithm with a proximal-minimization algorithm,
which is written compactly as

xi(k + 1) =
∑N

j=1
Aijxj(k)− αsi(k + 1),

si(k + 1) =
∑N

j=1
Aijsj(k) + vi(xi(k + 1))− vi(xi(k)),

where the update of local gradient si is the same as Step 3
in Algorithm 1 and vi is the subgradient of the summation
of local objective function fi and the corresponding indicator
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function of the local constraint set. Note that the local estimate
xi(k + 1) is obtained based on the subgradient calculated at
xi(k + 1) rather than xi(k). This update makes it possible to
adopt a constant step-size when solving a constrained non-
smooth problem. In order to make it implementable, several
auxiliary variables are introduced in [21] such that each agent
can make decisions locally. However, [21] does not consider
a time-varying communication network.

The algorithm proposed in [28], similarly to Algorithm 1,
involves both subgradient averaging and projection, and can
handle a time-varying communication network. Its main up-
date steps are:

zi(k) =
∑N

j=1
Aij(k)xj(k), (6a)

si(k) =
∑N

j=1
Aij(k)gj(zj(k)),

where gi(zi(k)) ∈ ∂fi(zi(k)) (6b)

xi(k + 1) = PXi

[
zi(k)− α(k)si(k)

]
. (6c)

Note that even without the momentum term in Algorithm 1,
our algorithm with subgradient tracking mechanism is still
different from [28] (see (6)). More specifically, the weighted
subgradient si(k) in (6b) can only be calculated after weight-
ing the decision variables xj(k) obtained from all its neigh-
bours by Step (6a). These two steps cannot be implemented
in parallel, thus leading to two communication rounds at each
iteration and an n-dimensional vector exchanged between each
other per communication round. While in Algorithm 1, si(k)
is calculated using only local information at iteration k and
pre-known history information, which enables the parallel
implementation of si(k) and zi(k). Therefore, Algorithm 1
only needs one round of communication with 2n-dimensional
vector exchanged at each iteration. Our algorithm involves
fewer communication rounds and can hence reduce the total
convergence time, especially over a time-varying communica-
tion network encountered in the real applications.

Remark 2: It should be noted that the subgradient track-
ing technique for si(k) in Algorithm 1 utilizes the history
information about gi(xi) at all previous times in order to get
an estimation of average subgradient, and thus the update of
xi(k+1) takes a step in the global descent direction. In [38],
it presented that this idea of using history information could
exhibit faster convergence. While in [28], the subgradient
descent direction is obtained just based on the current sub-
gradient information from its neighbours, as shown in (6). In
the numerical investigations of Section V, we can observe that
this subgradient tracking technique improves the convergence
performance, while the introduction of a momentum term in
Algorithm 1 further enhances this.

IV. CONVERGENCE ANALYSIS

This section provides a convergence and optimality analysis
for Algorithm 1. We start by summarizing the main results,
and then provide some fundamental auxiliary lemmas which
are instrumental for the convergence proof. Finally, we provide
the proofs of the main results.

A. Statement of Main Results

We impose the following assumption on the step-size α(k).
Assumption 4.1: Suppose that the sequence (α(k))k∈N

adopted in Algorithm 1 satisfies the following properties:
(i) α(k) is non-negative and non-increasing;
(ii)

∑∞
k=1 α(k) =∞, and

∑∞
k=1 α(k)

2 <∞.
Theorem 4.1: Let (xi(k))k∈N, ∀i ∈ N be the sequences

generated by Algorithm 1. Under Assumptions 2.1, 3.1 and
4.1, there exists η1 ∈ (0,∞) such that for any β ∈ (0, 1

18η1+9 ),
there exists an optimal solution x∗ of Problem 1 such that,

lim
k→∞

∥xi(k)− x∗∥2 = 0, ∀i ∈ N . (7)

Remark 3: The value of momentum parameter β has an upper
bound less than 1. The above range is just a sufficient condition
for convergence. The algorithm may still converge with β out-
side this range, which is verified in simulations of Section V.
The exact value of parameter η1 > 0 is related to the total
number of agents, the properties of the underlying optimization
problem and the connectivity of the communication network.
We provide its value after (21) in Lemma 4.4, once some
mathematical preliminaries are provided.

Before stating the convergence rate, we first define an
averaged sequence:

x̂i(k) =
1

S(k)

k∑
r=1

α(r)xi(r) (8)

where S(k) =
∑k

r=1 α(r), and (xi(k))k∈N, ∀i ∈ N are the
sequences obtained from Algorithm 1 with x̂i(0) = xi(0).

Theorem 4.2: Under Assumptions 2.1 and 3.1, for any β ∈
(0, 1

18η1+9 ) and for α(k) = σ√
k+1

with σ > 0, we have that
(i) The sequence

(
∥x̂i(k)− x̂j(k)∥2

)
k∈N converges to zero at

rate O( lnk√
k
) for all i, j ∈ N ;

(ii) The sequence
(
|
∑N

i=1 fi(x̂i(k)) − f(x∗)|
)
k∈N converges

to zero at rate O( lnk√
k
).

Theorem 4.2 establishes a convergence rate in objective
value along the weighted running average x̂i(k). Such an
auxiliary variable computed in a recursive fashion has been
widely introduced in the literature [24], [28], [40], which
exhibits superior convergence properties than xi(k), especially
in some cases like dual subgradient schemes, e.g., in [40], the
local primal vector xi(k) does not converge to the optimal
solution, while x̂i(k) can converge. Note that the similar
convergence rates can also be derived under more general step-
size choices, e.g., α(k) = 1

ka with a ∈ [0.5, 1).
Remark 4: For general non-smooth convex optimization,

the best known optimal convergence rate is O(1/
√
k). In

a distributed setting, the convergence rate can be slower
than that and influenced by the constraints, network topology
and potential communication delays, etc. Obtaining a better
convergence rate for this class of problem in (1) is challeng-
ing. Most of distributed algorithms designed in the literature
like [28] exhibit a convergence rate of O( lnk√

k
). Even though

in theory we achieve the same convergence rate as others, our
algorithm with a momentum term can indeed achieve a faster
convergence than other algorithms as witnessed numerically
through a sensitivity analysis and on a case study.
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B. Mathematical Preliminaries

We define the following variables for each i ∈ N :

v(k) =
1

N

N∑
i=1

xi(k), s̄(k) =
1

N

N∑
i=1

si(k), (9)

v̄(k) =
ρ

ϵ(k) + ρ
v(k) +

ϵ(k)

ϵ(k) + ρ
x̄, (10)

ei(k + 1) = xi(k + 1)− zi(k), ∀k ≥ 0 (11)

where v(k) and s̄(k) represent the average of agents’ estimates
and the average of their weighted subgradients at time k,
respectively. The point x̄ is in the interior of the feasible set
∩Ni=1Xi (which is non-empty under Assumption 2.1), with the
2-norm ball of centre x̄ and radius ρ > 0 contained in ∩Ni=1Xi,
and ϵ(k) =

∑N
i=1 dist(v(k),Xi). As shown in [28], even

though xi(k) and v(k) do not necessarily belong to ∩Ni=1Xi,
we always have that v̄(k) ∈ ∩Ni=1Xi. The error ei(k + 1)
denotes the difference of the local estimate xi(k+1) from its
weighted value zi(k) computed at k by agent i.

Lemma 4.1: Consider Algorithm 1 and Assumption 3.1. If
si(0) = gi(0), i ∈ N , then

∑N
i=1 si(k) =

∑N
i=1 gi(k), for all

k ∈ N.

Proof: It can be immediately obtained by summing the
equality shown in Step 3 of Algorithm 1 for all i ∈ N , k =
1, 2, · · · and applying the doubly stochastic property of A(k)
due to Assumption 3.1 and the fact si(0) = gi(0).

Lemma 4.2: Under Assumptions 2.1 and 3.1, the weighted
subgradient si(k) of function fi(x) is bounded for all k ∈ N,
such that

∥si(k)∥2 ≤ L̂, ∀i ∈ N , (12)

where L̂ ≡ λNL + 2λNL
1−q + 5L with λ =

2
(
1 + η−(N−1)T

)
/
(
1− η(N−1)T

)
∈ R+ and

q =
(
1− η(N−1)T

) 1
(N−1)T ∈ (0, 1).

Proof: We first define the subgradient error Ei(k+1) ,
gi(k+1)− gi(k), and recall the update of si in Algorithm 1,
for all i ∈ N . Then,

si(k + 1) =
N∑
j=1

Aij(k)sj(k) + Ei(k + 1). (13)

Consider Assumption 3.1 and (s̄(k))k∈N defined in (9). By
Lemma 2 of [27], we directly obtain the following inequality

∥si(k + 1)− s̄(k + 1)∥2 ≤ λqk
N∑
j=1

∥sj(0)∥2 + ∥Ei(k + 1)∥2

+
k−1∑
r=0

λqk−r−1
N∑
j=1

∥Ej(r + 1)∥2 +
1

N

N∑
j=1

∥Ej(k + 1)∥2 .

(14)

By Assumption 2.1, it can be obtained that ∥si(0)∥2 =
∥gi(0)∥2 ≤ L, and ∥Ei(k + 1)∥2 ≤ 2L due to the triangle

inequality. Therefore, based on (14), we have

∥si(k + 1)− s̄(k + 1)∥2 ≤ λNL+ 2λNL

k−1∑
r=0

qk−r−1 + 4L

≤ λNL+
2λNL

1− q
+ 4L, (15)

where the second inequality holds due to the relation∑k−1
r=0 q

k−r−1 <
∑∞

r=0 q
r = 1

1−q .

Furthermore, ∥s̄(k + 1)∥2 = 1
N ∥

∑N
i=1 gi(k + 1)∥2 holds

by Lemma 4.1. Since we have ∥gi(k + 1)∥2 ≤ L by As-
sumption 2.1 and the relation ∥a+ b∥2 ≤ ∥a∥2 + ∥b∥2, it can
be obtained that ∥s̄(k + 1)∥2 ≤ L. Hence we can derive the
following inequality by (15):

∥si(k + 1)∥2 ≤ ∥si(k + 1)− s̄(k + 1)∥2 + ∥s̄(k + 1)∥2

≤ λNL+
2λNL

1− q
+ 5L,

for all k ∈ N. Setting L̂ = λNL+ 2λNL
1−q + 5L leads to (12),

thus concluding the proof.

Lemma 4.3: Consider any scalar sequences (p(r))r∈N
and non-negative parameter sequences (θ(r))r∈R with∑k

r=1 θ(r) ≤ 1. For any k ≥ 1 we have the following relation:

( k∑
r=1

θ(r)p(r)
)2 ≤ k∑

r=1

θ(r)p(r)2. (16)

Proof: When
∑k

r=1 θ(r) = 1, the above in-
equality holds due to the convexity of function (·)2.
When

∑k
r=1 θ(r) < 1, calculating the derivative of(∑k

r=1 θ(r)p(r)
)2 −∑k

r=1 θ(r)p(r)
2 with respect to p, we

get that its maximum value is equal to zero and is achieved
at p(r) = 0, r = 1, . . . , k. Hence,

(∑k
r=1 θ(r)p(r)

)2 −∑k
r=1 θ(r)p(r)

2 ≤ 0, thus concluding the proof.

The relation established in Lemma 4.3 is crucial for the
proof of Lemma 4.4 below.

Lemma 4.4: Consider Assumptions 2.1 and 3.1 and let
(xi(k))k∈N, ∀i ∈ N be the sequences generated by Algorith-
m 1. We have that
(i)

N∑
i=1

∥xi(k)− v̄(k)∥2 ≤ µ
N∑
i=1

∥xi(k)− v(k)∥2 , (17)

N∑
i=1

∥xi(k)− v̄(k)∥22 ≤ Nµ2
N∑
i=1

∥xi(k)− v(k)∥22 (18)

where µ = 2
ρND+1, and D is the diameter of the set ∪Ni=1Xi.
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(ii) for any L̄, L̃ > 0 and any ξ1, ξ̂1 ∈ (0, 1
2 ),

2L̄

K∑
k=1

α(k)

N∑
i=1

∥xi(k + 1)− v̄(k + 1)∥2

< ξ1

K∑
k=1

N∑
i=1

∥ei(k + 1)∥22 + ξ2

K∑
k=1

α(k)2 + ξ3, (19)

2L̃
K∑

k=1

α(k)
N∑
i=1

∥xi(k)− v̄(k)∥2

< ξ̂1

K∑
k=1

N∑
i=1

∥ei(k)∥22 + ξ̂2

K∑
k=1

α(k)2 + ξ̂3, (20)

K∑
k=1

N∑
i=1

∥xi(k)− v̄(k)∥22 < η1

K∑
k=1

N∑
i=1

∥ei(k)∥22 + η2, (21)

where ξ2, ξ̂2 and ξ3, ξ̂3 are positive constants, and η1 =
4N3µ2λ2

(1−q)2 + 8Nµ2, η2 = 4N4D2µ2λ2

1−q2 with λ and q defined in
Lemma 4.2.

Proof: The derivation of (17)-(20) follows directly from
Lemmas 2, 3 of [27], and is omitted in the interest of space.

Establishing (21) offers a relationship between ∥xi(k) −
v̄(k)∥22 and ∥ei(k)∥22, which is typically instrumental in con-
vergence analyses for similar algorithms. However, this is
challenging in our context. To this end, we provide a novel
proof-line to establish (21), which extends the results in [27],
[28].

We first consider Assumption 3.1, (v(k))k∈N defined in (9),
and xi(k+1) =

∑N
j=1 Aij(k)xj(k)+ ei(k+1) in (11). Then

by Lemma 2 of [27], we have the following inequality

∥xi(k + 1)− v(k + 1)∥2 ≤ λqk
N∑
j=1

∥xj(0)∥2 + ∥ei(k + 1)∥2

+

k−1∑
r=0

λqk−r−1
N∑
j=1

∥ej(r + 1)∥2 +
1

N

N∑
j=1

∥ej(k + 1)∥2 ,

(22)

which is similar with (14).
Then the following relation could be obtained by squaring

both sides of (22) and applying Jensen’s inequality:

∥xi(k + 1)− v(k + 1)∥22

≤ 4Nλ2
N∑
j=1

[ k−1∑
r=0

qk−r−1 ∥ej(r + 1)∥2
]2

+ 4 ∥ei(k + 1)∥22

+ 4Nλ2q2k
N∑
j=1

∥xj(0)∥22 +
4

N

N∑
j=1

∥ej(k + 1)∥22 . (23)

Note that if we adopt Jensen’s inequality to bound the first
term on the right-hand side of (23), giving rise to ∥ej(r+1)∥22,
then its upper bound will relate to iteration step k. As the
algorithm proceeds, i.e., k → ∞, the calculated upper bound
of ∥xi(k + 1) − v(k + 1)∥22 will also tend to infinity, thus
not being useful to establish our claim. Therefore, we take
advantage of the fact that q ∈ (0, 1) to handle this square
term. It is known that (1 − q)

∑k−1
r=0 q

k−r−1 = 1 − qk ≤ 1.

Then by applying Lemma 4.3, we can obtain that( k−1∑
r=0

qk−r−1 ∥ej(r + 1)∥2
)2

≤ 1

1− q

k−1∑
r=0

qk−r−1 ∥ej(r + 1)∥22 .

Combining it with (23) and (18) leads to the following
inequality:

K∑
k=1

N∑
i=1

∥xi(k)− v̄(k)∥22

≤ 4N3µ2λ2
K∑

k=1

q2(k−1)
N∑
i=1

∥xi(0)∥22

+ 8Nµ2
K∑

k=1

N∑
i=1

∥ei(k)∥22

+
4N3µ2λ2

1− q

N∑
i=1

K∑
k=1

k−2∑
r=0

qk−r−2 ∥ei(r + 1)∥22 . (24)

Next we will analyze the first term and last term on the right-
hand side of (24) separately. Under Assumption 2.1, we know
that ∥xi(0)∥22 ≤ D2, ∀i ∈ N . Hence,

∑N
i=1 ∥xi(0)∥22 ≤ ND2

which gives

4N3µ2λ2
K∑

k=1

q2(k−1)
N∑
i=1

∥xi(0)∥22

≤ 4N4D2µ2λ2
K∑

k=1

q2(k−1)

<
4N4D2µ2λ2

1− q2

(25)

where the last inequality holds due to
∑∞

k=1 q
2(k−1) = 1

1−q2 .

In terms of the last term of (24), we have

4N3µ2λ2

1− q

N∑
i=1

K∑
k=1

k−2∑
r=0

qk−r−2 ∥ei(r + 1)∥22

=
4N3µ2λ2

1− q

N∑
i=1

K−2∑
r=0

∥ei(r + 1)∥22
K−r−2∑

t=0

qt

<
4N3µ2λ2

1− q

N∑
i=1

K−2∑
r=0

∥ei(r + 1)∥22
∞∑
t=0

qt

<
4N3µ2λ2

(1− q)2

N∑
i=1

K∑
k=1

∥ei(k)∥22

(26)

where the first equality follows from the series convolution,
and the last inequality holds due to

∑∞
t=0 q

t = 1
1−q and a

summation index change from r to k.

Substituting (25) and (26) into (24) leads to (21), thus
concluding the proof.

Lemma 4.5: Consider Assumptions 2.1 and 3.1 and let
(xi(k))k∈N, ∀i ∈ N be the sequences generated by Algorith-
m 1, and x∗ be an optimal solution of Problem 1. We have
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that for any parameter γ ∈ (0, 1),
N∑
i=1

[
∥xi(k + 1)− x∗∥22 − β∥xi(k)− x∗∥22

]
≤

N∑
i=1

[
∥xi(k)− x∗∥22 − β∥xi(k − 1)− x∗∥22

]
+ 2(L+ L̂)α(k)

N∑
i=1

∥xi(k + 1)− v̄(k + 1)∥2

+ 6Lα(k)

N∑
i=1

∥xi(k)− v̄(k)∥2 + 6β

N∑
i=1

∥xi(k)− v̄(k)∥22

+ 12β
N∑
i=1

∥xi(k − 1)− v̄(k − 1)∥22 + 6β
N∑
i=1

∥ei(k)∥22

+
NL2

γ
α(k)2 − 2α(k)

N∑
i=1

(
fi(v̄(k))− fi(x

∗)
)

− (1− γ − 3β)
N∑
i=1

∥ei(k + 1)∥22. (27)

Proof: The proof is provided in the Appendix.
The relation established in Lemma 4.5 can be used to prove

the following lemma which reveals the link between xi(k), its
weighted value zi(k − 1) and the averaged value v(k).

Lemma 4.6: Consider Assumptions 2.1, 3.1 and 4.1. For
any β ∈ (0, 1

18η1+9 ), we have the following statements:

(i)
∑K

k=1

∑N
i=1 ∥ei(k)∥

2
2 <∞;

(ii) limk→∞ ∥ei(k)∥2 = 0, ∀i ∈ N ;
(iii) limk→∞ ∥xi(k)− v(k)∥2 = 0, ∀i ∈ N .

Proof: Summing (27) in Lemma 4.5 from k = 1 to
k = K, and applying item (ii) of Lemma 4.4 with L̄ = L+ L̂
in (19), and L̃ = 3L in (20), we obtain

(
1− γ − ξ1 − 3β

) K∑
k=1

N∑
i=1

∥ei(k + 1)∥22

− (ξ̂1 + 6βη1 + 6β)
K∑

k=1

N∑
i=1

∥ei(k)∥22

− 12βη1

K∑
k=1

N∑
i=1

∥ei(k − 1)∥22 −
K∑

k=1

(NL2

γ
+ ξ2 + ξ̂2

)
α(k)2

− (ξ3 + ξ̂3 + 18βη2) + 2
K∑

k=1

α(k)
N∑
i=1

(
fi(v̄(k))− fi(x

∗)
)

+
K∑

k=1

N∑
i=1

[
∥xi(k + 1)− x∗∥22 − β∥xi(k)− x∗∥22

]
≤

K∑
k=1

N∑
i=1

[
∥xi(k)− x∗∥22 − β∥xi(k − 1)− x∗∥22

]
. (28)

Since the two terms
∑K

k=1

∑N
i=1 ∥xi(k + 1)− x∗∥22 and∑K

k=1

∑N
i=1 ∥xi(k)− x∗∥22 in (28) form telescopic series,

they could be replaced by
∑N

i=1 ∥xi(K + 1)− x∗∥22 and∑N
i=1 ∥xi(1)− x∗∥22, respectively. We drop all the non-

negative square terms on the left-hand side of (28), which

gives

(
1− γ − ξ1 − ξ̂1 − 18βη1 − 9β

) K∑
k=1

N∑
i=1

∥ei(k)∥22

+ 2
K∑

k=1

α(k)
N∑
i=1

(
fi(v̄(k))− fi(x

∗)
)

≤
(
1− γ − ξ1 − 3β

) N∑
i=1

∥ei(1)∥22 + 12βη1

N∑
i=1

∥ei(0)∥22

+
K∑

k=1

(NL2

γ
+ ξ2 + ξ̂2

)
α(k)2 + (ξ3 + ξ̂3 + 18βη2)

+
N∑
i=1

[
∥xi(1)− x∗∥22 + β∥xi(K)− x∗∥22

]
. (29)

Note that
∑N

i=1

(
fi(v̄(k)) − fi(x

∗)
)
≥ 0 due to the

optimality of x∗. Therefore, the second term in (29) can
also be dropped. If we choose β ∈ (0, 1

18η1+9 ) such that
1−γ− ξ1− ξ̂1−18βη1−9β > 0, then

∑∞
k=1

∑N
i=1 ∥ei(k)∥

2
2

with K → ∞ is finite due to (α(k))k∈N being square-
summable by Assumption 4.1 and due to the compactness of
the feasible set. This yields item (i). The proof of items (ii) and
(iii) follows directly from item (i), and is omitted for brevity
(see Proposition 3 in [27] for similar developments).

Note that for any β ∈ (0, 1
18η1+9 ), the parameters γ ∈ (0, 1),

ξ1, ξ̂1 ∈ (0, 1
2 ) can be chosen to satisfy the relation 1−γ−ξ1−

ξ̂1 − 18βη1 − 9β > 0 where constant η1 = 4N3µ2λ2

(1−q)2 + 8Nµ2

introduced in (21). For example, one particular choice is that
γ = ξ1 = ξ̂1 with γ satisfying 1− 3γ − β(18η1 + 9) > 0.

C. Proof of Main Results

The proofs of Theorem 4.1 and Theorem 4.2 are based
on the auxiliary results presented in above Section IV-B.
Theorem 4.1 extends the results in [28] by allowing less
information exchange and fewer communication rounds, and
introducing the momentum term to accelerate the convergence
of iterations, which brings challenges to the convergence proof
of the algorithm. The proof of Theorem 4.2 is inspired by [28]
which also involves the convergence of a running average
sequence.

1) Proof of Theorem 4.1: From the proof of Lemma 4.6, we
know that 1−γ−3β ∈ (0, 1) for any β ∈ (0, 1

18η1+9 ). There-
fore we could drop the last term (1−γ−3β)

∑N
i=1 ∥ei(k+1)∥22

in (27), which leads to the following inequality

ϖ(k + 1) ≤ ϖ(k)− ϱ(k) + φ(k),

where

ϖ(k) =
N∑
i=1

[
∥xi(k)− x∗∥22 − β∥xi(k − 1)− x∗∥22

]
;

ϱ(k) = 2α(k)

N∑
i=1

(
fi(v̄(k))− fi(x

∗)
)
;
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φ(k) = 8Lα(k)
N∑
i=1

∥xi(k + 1)− v̄(k + 1)∥2 +
NL2

γ
α(k)2

+ 6Lα(k)

N∑
i=1

∥xi(k)− v̄(k)∥2 + 6β

N∑
i=1

∥xi(k)− v̄(k)∥22

+ 6β
N∑
i=1

∥ei(k)∥22 + 12β
N∑
i=1

∥xi(k − 1)− v̄(k − 1)∥22.

The sequences (ϱ(k))k∈N and (φ(k))k∈N are nonnegative, and
ϖ(k) is bounded for all k due to Assumption 2.1. By applying
item (ii) in Lemma 4.4 and item (i) in Lemma 4.6, under
Assumption 4.1 it follows that

∑∞
k=1 φ(k) < ∞. Therefore,

by Lemma 3.4 in [41], we could obtain that the sequence
(ϖ(k))k∈N converges to a finite value and

∑∞
k=1 ϱ(k) <∞.

The fact that
∑∞

k=1 ϱ(k) < ∞ implies that there exists
a subsequence of

(
f(v̄(k)) − f(x∗)

)
k∈N that converges to

zero. Since f(x) is continuous, there also exists a subse-
quence of

(
∥v̄(k)−x∗∥2

)
k∈N converges to zero. Furthermore,

we have
∑N

i=1 ∥xi(k) − x∗∥2 ≤
∑N

i=1 ∥v̄(k) − x∗∥2 +∑N
i=1 ∥xi(k)− v̄(k)∥2 which together with item (i) of Lem-

ma 4.4 and item (iii) of Lemma 4.6, imply that there exists a
subsequence of

(∑N
i=1 ∥xi(k) − x∗∥2

)
k∈N that converges to

zero.

Hence, we can find a subsequence of(∑N
i=1

[
∥xi(k)− x∗∥22−β∥xi(k− 1)−x∗∥22

])
k∈N that con-

verges to zero. Since the sequence
(∑N

i=1

[
∥xi(k)− x∗∥22 −

β∥xi(k − 1) − x∗∥22
])

k∈N is convergent, it has a
unique limit point, which must thus be zero, i.e.
limk→∞

∑N
i=1

[
∥xi(k)− x∗∥22 − β∥xi(k − 1) − x∗∥22

]
= 0.

Since limk→∞
∑N

i=1 ∥xi(k)−x∗∥22 = limk→∞
∑N

i=1 ∥xi(k−
1)−x∗∥22, we have limk→∞(1−β)

∑N
i=1 ∥xi(k)−x∗∥22 = 0,

which gives limk→∞
∑N

i=1 ∥xi(k) − x∗∥22 = 0 where
β ∈ (0, 1). Finally, we conclude that the sequences(
∥xj(k)−x∗∥2

)
k∈N for j = 1, . . . , N, converge to zero since

∥xj(k) − x∗∥2 ≤
∑N

i=1 ∥xi(k) − x∗∥2. This concludes the
proof.

2) Proof of Theorem 4.2: Let v̂(k) = 1
S(k)

∑k
r=1 α(r)v̄(r)

which is similar to the definition of x̂i(k) in (8), where v̄(r)
is introduced in (10). Since v̄(k) ∈ ∩Ni=1Xi (see discussion
below (10)), we have that v̂(k) for all k ∈ N is feasible.

Under Assumption 2.1, it can be obtained that the function
fi is Lipschitz continuous over Xi, i.e., |fi(x) − fi(y)| ≤
L∥x−y∥2 for all x, y ∈ Xi, ∀i ∈ N [42]. Therefore, by using
the triangle inequality we have that

∣∣ N∑
i=1

fi(x̂i(k + 1))− f(x∗)
∣∣ (30)

≤ f(v̂(k + 1))− f(x∗) + L
N∑
i=1

∥x̂i(k + 1)− v̂(k + 1)∥2,

where f(v̂(k + 1)) ≥ f(x∗) since x∗ is an optimal solution.

Next, we analyze the two terms on the right-hand side

of (30). As for the first term, we have

f(v̂(k + 1))− f(x∗) ≤
k+1∑
r=1

α(r)

S(k + 1)
f(v̄(r))− f(x∗),

(31)

where the inequality follows by the definition of v̂(k+1) and
due to convexity of f .

For any β ∈ (0, 1
18η1+9 ), we can always find proper

parameters γ ∈ (0, 1), ξ1, ξ̂1 ∈ (0, 1
2 ) satisfying 1− γ − ξ1 −

ξ̂1 − 18βη1 − 9β > 0. Therefore, the first term on the left-
hand side of (29) can be dropped, which leads to the following
inequality by replacing k by r, and K by k:

2
k∑

r=1

α(r)
N∑
i=1

(
fi(v̄(r))− fi(x

∗)
)

≤
(
1− γ − ξ1 − 3β

) N∑
i=1

∥ei(1)∥22 + 12βη1

N∑
i=1

∥ei(0)∥22

+

k∑
r=1

(NL2

γ
+ ξ2 + ξ̂2

)
α(r)2 + (ξ3 + ξ̂3 + 18βη2)

+
N∑
i=1

[
∥xi(1)− x∗∥22 + β∥xi(k)− x∗∥22

]
≤ d1 + d2

k∑
r=1

α(r)2, (32)

where d2 = NL2

γ + ξ2 + ξ̂2 and d1 = 4ND2(2 − γ − ξ1 −
2β +12βη1) + ξ3 + ξ̂3 +18βη2 due to ∥xi(k)− x∗∥22 ≤ 4D2

and ∥ei(k)∥22 ≤ 4D2 for all k ∈ N, i ∈ N , with D defined in
Lemma 4.4.

Substituting (32) into (31) gives

f(v̂(k + 1))− f(x∗) ≤ d1
2S(k + 1)

+ d2

∑k+1
r=1 α(r)

2

2S(k + 1)
. (33)

Considering now the second term on the right-hand side
of (30), we have

L
N∑
i=1

∥x̂i(k + 1)− v̂(k + 1)∥2

≤ L

S(k + 1)

k+1∑
r=1

α(r)

N∑
i=1

∥xi(r)− v̄(r)∥2

≤ 1

S(k + 1)

[
ξ̂1

k+1∑
r=1

N∑
i=1

∥ei(r)∥22 + ξ̂2

k+1∑
r=1

α(r)2 + ξ̂3
]

(34)

where the first inequality holds due to convexity of ∥ · ∥, and
the second inequality follows by (20) in Lemma 4.4 with L̃ =
L/2.

Similarly to the derivation of (32), we drop the second term
(non-negative) on the left-hand side of (29), and obtain

d
k∑

r=1

N∑
i=1

∥ei(r)∥22 ≤ d1 + d2

k∑
r=1

α(r)2, (35)

where d = 1 − γ − ξ1 − ξ̂1 − 18βη1 − 9β. Substituting (35)
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into (34) leads to

L
N∑
i=1

∥x̂i(k + 1)− v̂(k + 1)∥2

≤ d3
S(k + 1)

+ d4

∑k+1
r=1 α(r)

2

S(k + 1)

(36)

where d3 = ξ̂3 + ξ̂1d1/d and d4 = ξ̂2 + ξ̂1d2/d.
Note that S(k + 1) can be lower-bounded as

S(k + 1) =

k+1∑
r=1

σ√
r + 1

≥
∫ k+3

2

σ√
x
dx

= 2σ(
√
k + 3−

√
2) ≥ d5

√
k + 1,

(37)

where d5 = σ(2−
√
2). We also have that

k+1∑
r=1

α(r)2 = σ2
k+1∑
r=1

1

r + 1
≤ σ2

k+1∑
r=1

1

r

≤ σ2(

∫ k+1

1

1

x
dx+ 1) = σ2ln(k + 1) + σ2.

(38)

Item (ii) in Theorem 4.2 follows then by substituting (33),
(36)-(38) into (30). Since ∥x̂i(k)− x̂j(k)∥2 ≤

∑N
i=1 ∥x̂i(k)−

v̂(k)∥2+
∑N

i=1 ∥x̂j(k)− v̂(k)∥2 by using the triangle inequal-
ity, we can obtain that the sequence

(
∥x̂i(k) − x̂j(k)∥2

)
k∈N

converges to zero at a rate O( lnk√
k
) by substituting (37) and (38)

into (36). This concludes the proof of item (i) in Theorem 4.2.

V. CASE STUDIES

A. Numerical Example and Comparative Study
In this section, we consider a binary-classification logistic-

regression problem with ℓ1-regularization to demonstrate the
performance of our proposed distributed heavy-ball algorithm,
i.e.,

min
x∈X

N∑
i=1

Mi∑
j=1

ln
[
1 + exp(−bij(a⊤ijw + v))

]
+ λ∥w∥1, (39)

where the optimization vector is defined as x = [w⊤, v]⊤

with w ∈ Rp and v ∈ R. Here, λ > 0 is a regularization
parameter to avoid over-fitting, aij ∈ Rp is a feature vector
and bij ∈ {−1, 1} is the corresponding binary label. Suppose
the variable satisfies the constraint Xi = X = {x ∈ Rp+1 :
∥x∥2 ≤ c} with parameter c > 0.

In our setting, we consider N = 30 agents and each agent
has Mi = 20 training examples with p = 20 features. For each
curve in the figures below, we consider datasets for feature
vectors with 30 samples which are independently drawn from
a standard normal distribution. The values of bij and λ are
obtained based on the criteria in [43]. The average convergence
rate is plotted as a solid line, and the shaded region represents
the family of iterate trajectories that are within two standard
deviations from the average. The agents’ individual functions
can be represented as

fi(x) =

Mi∑
j=1

ln
(
1 + e−bij(a

⊤
ijw+v)

)
+

λ

N
∥w∥1 (40)

with local constraint sets Xi = {x ∈ Rp+1 : ∥x∥2 ≤ 6} for
i = 1, · · · , N . It can be observed that the constraint sets Xi

and local functions fi, i = 1, · · · , N satisfy Assumption 2.1.
Therefore, we apply Algorithm 1 to obtain an optimal solution
of problem (39) in a fully-distributed manner under the step-
size choice α(k) = 1

k+1 .
Consider first a time-varying communication network with

independent random sparsity degree d ∈ (0, 1) at each iter-
ation, in which the number of connections among all agents
(nodes) is given by dN2. For a complete network graph, the
number of connections is N2. Fig. 1 shows the evolution of
|
∑30

i=1 fi(xi(k))−f⋆|
f⋆ for Algorithm 1, where f⋆ denotes the op-

timal value computed for the sake of our numerical analysis by
means of solving (39) in a centralized manner. Normalization
by f⋆ is commonly used in the literature [35], as it allows for a
fair comparative analysis between different parameter settings.
It can be observed that the proposed algorithm converges to
the optimal value, meeting a 10−4 optimality tolerance for
β = 0.3. Note that Theorem 4.1 guarantees the existence
of a small enough β such that convergence is guaranteed
theoretically; in practice, higher values of β may also lead to
a convergent behavior. For this particular example, numerical
investigation witnessed that this is the case for β ≤ 0.5, but
the algorithm fails to converge for higher values of β.

0 100 200 300 400 500 600 700 800 900 1000

Iteration (k)

10-4

10-3

10-2

10-1

100

 = 0
 = 0.01
 = 0.1
 = 0.2
 = 0.3

Fig. 1: Evolution of |
∑30

i=1 fi(xi(k))−f⋆|
f⋆ for Algorithm 1 under

different momentum parameter values β over the considered time-
varying communication network.

We also compare our algorithm with the following distribut-
ed methods in Fig. 2 over a time-invariant communication
network: (i) Algorithm 1 in [20] which is a modified ver-
sion of the projected subgradient method proposed in [25];
(ii) subgradient averaging algorithm in [28]; (iii) subgradient
algorithm with double averaging in [17]; (iv) dual averaging
algorithm in [16]. They are implemented under four different
network connectivity structures: (a) complete network graph;
(b) sparse network graph with sparsity degree d = 0.6; (c)
sparse network graph with d = 0.3; (d) line network graph.
All settings in these algorithms, such as the step-size, are
kept the same as outlined above for a fair comparison. It
can be observed from Fig. 2 that our algorithm outperforms
all other ones for β = 0.3, while in sufficiently sparse net-
work graphs it outperforms others even when the momentum
parameter is β = 0. For the case of a complete network
graph, our algorithm may not be the fastest; in this specific
case (that in practice may not occur due to communication
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failures), the algorithm in [20] (black line) leads to a faster
behaviour. However, it should be mentioned that the algorithm
of [20] is supported theoretically only for the case where
the communication network is time-invariant, and could not
be directly applied to handle the time-varying network that
requires different analysis arguments as the ones presented
in this work. Moreover, for the case where d = 0.6 the
algorithm in [28] after a certain number of iterations (600)
appears slightly better than our proposed scheme for β = 0
(this appears to be case specific and we did not encounter
similar trends in other examples). However, as we increase
β, which offers an additional degree of freedom in our
algorithm, we obtain a faster convergence behaviour. Note that
performing more iterations does not affect the general trend
(already the time required to perform 2000 iterations exceeds
reasonable computation times). In practice, the algorithm will
terminate once a desired tolerance threshold or the maximum
computational time is reached; for all such cases Algorithm 1
outperforms others as during the transient phase the relative
performance merits are even more pronounced.

Fig. 3 displays the evolution of |
∑30

i=1 fi(x̂i(k))−f⋆|
f⋆ related

to the iterates x̂i(k) for Algorithm 1 and the algorithm in [28]
with a step-size α(k) = 0.5√

k+1
over a time-varying com-

munication network, demonstrating numerically Theorem 4.2.
Compared to xi(k), convergence of x̂i(k) is slower as the latter
constitutes a weighted running average sequence of iterates;
however, comparison with [28] demonstrates the effect of our
algorithm on exhibiting a faster convergence behaviour.

We have also performed a sensitivity analysis for the step-
size parameter α(k) and tested algorithms over a sparse
network with d = 0.6. The results show that a larger step-
size than 1

k+1 in algorithm of [28] instead leads to a slower
convergence, while in Algorithm 1 the convergence rate in-
creases first and then slows down as the step-size increases.
Typically, in practical applications, it is challenging to choose
the step-size that leads to faster convergence; hence we focus
on our paper on integrating the momentum term that boosts
convergence.

B. Energy Management for a Building District Cooling
System

1) Simulation set-up: In this section, we demonstrate the ef-
ficacy of the proposed algorithm on a building district cooling
system which is composed of multiple buildings and a cooling
storage network. Each building is equipped with a chiller
plant that can convert electricity into cooling energy. The
indoor temperatures of each building could be set within an
appropriate range by operating its own chiller. Each building
can exchange energy with the cooling storage network which
is shared among all buildings in the district, such that the
energy utilization efficiency could be improved. In Fig. 4,
we show a simple cooling system wherein each building can
only exchange information with its neighbours. We aim at
coordinating the district cooling energy with individual cooling
loads satisfied by minimizing the system total cost over a finite
time horizon T = {1, . . . , T̂}.

Consider a district cooling system involving N buildings.
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Iteration (k)
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100
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Algorithm 1 with  = 0
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(a) Complete network graph.
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Liu et al. [17]
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Duchi et al. [16]
Algorithm 1 with  = 0
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(b) Sparse network with d = 0.6.
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(c) Sparse network with d = 0.3.
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(d) Line network graph.

Fig. 2: Evolution of |
∑30

i=1 fi(xi(k))−f∗|
f∗ for Algorithm 1 and other

related algorithms under different network graphs.
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Fig. 3: Evolution of |
∑30

i=1 fi(x̂i(k))− f⋆|/f⋆ for Algorithm 1 and
algorithm in [28] over the considered time-varying communication
network.

Storage 

Network

Fig. 4: The structure of a building district cooling system with 6
buildings (chillers), in which dashed lines represent information flows
and solid lines represent energy flows.

Denote by EB
it ∈ R the cooling energy request of building i =

1, · · · , N at t ∈ T for temperature regulation. Let θinit and θoutit

denote the indoor temperature and the outdoor temperature at
t, respectively. We adopt the following simplified model to
describe the temperature dynamics, which has been widely
used in the literature [44], [45]

−EB
it = cairi (θinit − θini,t−1)/τ̂ − (θoutit − θinit )/Ri, (41)

where parameters cairi , Ri and τ̂ represent the air specific
heat capacity (kWh/◦C), the thermal resistance of building
i (◦C/kW) and the duration of each period (h), respectively.
From (41), we can obtain the indoor temperature at t as

θinit = (1− ai)
tθini,0 +

t∑
τ=1

(1− ai)
t−τ

(
aiθ

out
iτ − biE

B
iτ

)
(42)

where ai =
1

cairi Ri/τ̂+1
, bi = Ri

cairi Ri/τ̂+1
, and θini,0 is the initial

indoor temperature. We could observe from above models that
the current temperature is related to the history temperatures,
the current cooling draw, and the outdoor temperature.

Denote by Ech
it ∈ R the cooling energy exchange between

building i and the energy storage network at t, and Ech
it > 0 if

building i draws energy from the storage network and Ech
it < 0

if i inputs energy to it. The amount of cooling energy stored
can be described by a first-order dynamical model [46],

Estored
t+1 = aEstored

t −
∑N

i=1
Ech

it , (43)

where coefficient a ∈ (0, 1) is used to describe energy losses.
Based on the energy balance, the total amount of cooling

generation of the chiller in building i at t can be given as:

Echiller
it,c = EB

it − Ech
it . (44)

Let Echiller
it,e represent the electricity needed to produce a

certain amount of cooling energy Echiller
it,c . Following [46], we

model Echiller
it,e as a biquadratic convex approximation:

Echiller
it,e = c2,iE

chiller
it,c

4
+ c1,iE

chiller
it,c

2
+ c0,i, (45)

where parameters c0,i, c1,i, c2,i relate to individual conditions.
The resulting optimization problem is formulated as follows:

min
{{θin

it ,E
ch
it ∈R}N

i=1}T̂
t=1

T̂∑
t=1

N∑
i=1

pitE
chiller
it,e

subject to (42)− (45), (47)− (51)

(46)

where pit ∈ R is the electricity price for building i at t. For
each building i = 1, . . . , N at t ∈ T , the constraints in (47)-
(51) are detailed below.

(1) Electricity limits: Due to the chiller size and maximum
capability, the electricity drawn from the distribution network
is limited which satisfies the following constraint:

Echiller
it,e ≤ Ei,max, (47)

where Ei,max denotes its upper bound.
(2) Cooling energy limits: The cooling energy request EB

it

is non-negative, i.e.,

EB
it ≥ 0. (48)

(3) Comfort constraints: The individual indoor temperature
is within a certain comfort range, i.e.,

θmin
it ≤ θinit ≤ θmax

it , (49)

where θmin
it and θmax

it denote minimal and maximal tempera-
ture limits, respectively.

(4) Storage energy limits: The amount of cooling energy
stored at any time t ∈ T should within an energy storage
limit (capacity) Estored

max , i.e.,

Estored
t ∈ [0, Estored

max ]. (50)

(5) Energy exchange limits: The energy exchanged with the
storage network for each building i at t needs to satisfy the
following constraint:

−Ech
i,max ≤ Ech

it ≤ Ech
i,max, (51)

where Ech
i,max ∈ R is the maximal energy that can be

exchanged with the storage network for building i.
Define vectors ui = (θinit ; t ∈ T ) and x =

[Ech
1 ;Ech

2 ; · · · ;Ech
N ] with Ech

i = (Ech
it ; t ∈ T ). Then ui can be

viewed as a local decision vector related to individual comfort,
and x is a global decision vector related to the energy exchange
of buildings with the sharing storage network. All constraints
above can be treated as local constraints. Therefore, the energy
management problem (46) could be viewed as an instance of
Problem 1 such that our proposed algorithm can be applied to
solve it in a distributed way.

2) Simulation results: In our simulation, we consider the
cooling system shown in Fig. 4. The edges of the time-varying



ZHOU et al.: SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL (NOVEMBER 2022) 13

communication network are divided into two groups, i.e., the
red and blue ones, which are activated alternatively with link
weights equal to 1/2. This setting satisfies Assumption 3.1
with a period of T = 2. The parameters of biquadratic
approximations and electricity limits of the chillers are taken
from [46]. The energy coordination interval is from 20:00 P.M.
on one day to 20:00 P.M., and the length of each interval is 1 h.
The indoor temperature constraints are set to θmax = 25◦C
for buildings 1, 2, 3 and θmax = 26◦C for buildings 4,
5, 6 during working hours (8:00 A.M. to 17:00 P.M.), and
θmax = 27◦C for all buildings at other times. We assume
that θmin = 24◦C for all buildings at all periods and indoor
initial temperatures are all set to be 26◦C. The capacity of the
storage unit is Estored

max = 15 (kWh) and the maximal exchange
energy Ech

i,max = 2 (kW) for all i = 1, · · · , N . At the initial
time, the cooling energy stored in this unit is assumed to be
0. The constant values cairi and Ri in equation (41) are taken
from [44] with τ̂ = 1 h. Fig. 5 shows hourly electricity prices
and the outdoor temperature data for one summer day.
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Fig. 5: Hourly energy prices and the outdoor temperature data for
one summer day.

We apply Algorithm 1 to solve the underlying optimiza-
tion problem over the time-varying communication network
for the optimal solution. Fig. 6 displays the optimal indoor
temperature profiles for the buildings returned by Algorithm 1
upon convergence. As we can see, all the temperature values
are within the feasible range. In order to reduce the total
system cost, it is preferable for each building to use less
energy to meet their cooling demand. Therefore, the acceptable
temperature profiles during working hours are the maximal
comfort temperature limits θmax. At other times, the user’s
tolerance for temperature is much higher with the limit 27◦C.

Fig. 7 shows the stored energy and the energy exchange
profiles of buildings computed by building 1 when Algorithm 1
converges. The profiles computed by other buildings are the
same as building 1 due to the proposed consensus mechanism,
hence we do not show them in Fig. 7 for simplicity. It can be
observed that most buildings at night discharge (Ech

it < 0 ) to
the storage network due to the lower electricity prices shown
in Fig. 5 and less cooling demand. From 8:00 A.M., as the
demand increases, all buildings start to draw energy from the
storage network. By the energy coordination, the differences in
chiller sizes can be compensated through the sharing storage
network, and the total system cost could also be minimized.

VI. CONCLUSION

In this paper, we proposed a novel fully-distributed heavy-
ball algorithm for a class of consensus optimization problems
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Fig. 6: The indoor buildings’ temperatures returned by Algorithm 1.
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Fig. 7: The stored energy and the energy exchange of the buildings
with the storage network.

with non-smooth objective functions and heterogenous con-
straints per agent over a time-varying communication network
where each agent could only interact with its neighbours.
In this algorithm, we combined a momentum term with
the gradient tracking technique to accelerate its convergence.
Under certain assumptions on the connectivity of the network
and the agent weights, we proved that the estimates of each
agent could converge to a common limit point, i.e., the global
optimal solution with proper step-size and momentum parame-
ters. We also showed a convergence rate of O( lnk√

k
) in objective

value for a particular step-size choice. The performance of the
proposed algorithm was illustrated by the simulation results on
an example involving ℓ1-regularized logistic regression, quan-
tifying also numerically the improvement in the convergence
rate relative to other distributed algorithms. The case study
of energy management for building district cooling systems
further demonstrates its efficacy.

The algorithm studied in this paper provides advanced guid-
ance to the distributed application of accelerated momentum
methods, especially for non-smooth constrained optimization
problems. Future work concentrates on removing the double
stochasticity assumptions and on considering a directed com-
munication network.

APPENDIX

Proof of Lemma 4.5
In Algorithm 1, the projection operation of xi(k + 1) is

equivalent to

xi(k + 1) = argmin
x∈Xi

{
si(k)

⊤
x

+
1

2α(k)

∥∥x− zi(k)− β(xi(k)− xi(k − 1))
∥∥2
2

}
.

(52)
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By optimality of xi(k + 1), we have

si(k)
⊤
xi(k + 1) +

1

α(k)

(
xi(k + 1)− zi(k)

− β(xi(k)− xi(k − 1)
)⊤

xi(k + 1)

≤ si(k)
⊤
x∗ +

1

α(k)

(
xi(k + 1)− zi(k)

− β(xi(k)− xi(k − 1)
)⊤

x∗, (53)

where si(k)+
1

α(k)

(
xi(k+1)− zi(k)− β(xi(k)−xi(k− 1)

)
is the gradient of the objective function in (52), evaluated at
xi(k + 1). Then consider the following equality

1

α(k)
(xi(k + 1)− zi(k))

⊤
(xi(k + 1)− x∗)

=
1

2α(k)
∥xi(k + 1)− zi(k)∥22 +

1

2α(k)
∥xi(k + 1)− x∗∥22

− 1

2α(k)
∥zi(k)− x∗∥22 . (54)

Combining (53) and (54) gives

si(k)
⊤
xi(k + 1) +

1

2α(k)
∥xi(k + 1)− zi(k)∥22

+
1

2α(k)
∥xi(k + 1)− x∗∥22

≤ si(k)
⊤
x∗ +

1

2α(k)

∑N

j=1
Aij(k) ∥xj(k)− x∗∥22

+
β

α(k)
(xi(k)− xi(k − 1))⊤(xi(k + 1)− x∗),

(55)

that considers ∥zi(k)− x∗∥22 ≤
∑N

j=1 Aij(k) ∥xj(k)− x∗∥22
due to the convexity of ∥ · ∥22.

By multiplying both sides of (55) by 2α(k) and summing
it for all i ∈ N , it can be obtained that:

2α(k)
∑N

i=1
si(k)

⊤
xi(k + 1) +

∑N

i=1
∥xi(k + 1)− zi(k)∥22

+
∑N

i=1
∥xi(k + 1)− x∗∥22

≤ 2α(k)
∑N

i=1
si(k)

⊤
x∗ +

∑N

i=1
∥xi(k)− x∗∥22

+ 2β
∑N

i=1
(xi(k)− xi(k − 1))⊤(xi(k + 1)− x∗) (56)

where the equality
∑N

i=1

∑N
j=1 Aij(k) ∥xj(k)− x∗∥22 =∑N

i=1 ∥xi(k)− x∗∥22 holds due to the double stochasticity of
A(k).

Consider ei(k + 1) ≡ xi(k + 1)− zi(k) and the following
relations:

2(xi(k)− xi(k − 1))⊤(xi(k + 1)− x∗)

= ∥xi(k + 1)− xi(k − 1)∥22 − ∥xi(k + 1)− xi(k)∥22
+ ∥xi(k)− x∗∥22 − ∥xi(k − 1)− x∗∥22

≤ ∥xi(k + 1)− xi(k)∥22 + 2∥xi(k)− xi(k − 1)∥22
+ ∥xi(k)− x∗∥22 − ∥xi(k − 1)− x∗∥22,

(57)

where the inequality holds by adding and subtracting xi(k)
in the first term of right-hand side and applying the relation
∥a+ b∥22 ≤ 2∥a∥2 + 2∥b∥22.

Substituting (57) into (56) gives:

2α(k)
N∑
i=1

si(k)
⊤(

xi(k + 1)− x∗)+ N∑
i=1

∥ei(k + 1)∥22

+
∑N

i=1

[
∥xi(k + 1)− x∗∥22 − β∥xi(k)− x∗∥22

]
≤

∑N

i=1

[
∥xi(k)− x∗∥22 − β∥xi(k − 1)− x∗∥22

]
+ β

N∑
i=1

(
∥xi(k + 1)− xi(k)∥22 + 2∥xi(k)− xi(k − 1)∥22

)
.

(58)

Consider the first term of (58). By adding and subtracting
v̄(k + 1), we have

2α(k)
∑N

i=1
si(k)

⊤ (xi(k + 1)− x∗)

= 2α(k)
∑N

i=1
si(k)

⊤ (xi(k + 1)− v̄(k + 1))

+ 2α(k)
∑N

i=1
si(k)

⊤ (v̄(k + 1)− x∗)

≥ − 2L̂α(k)
∑N

i=1
∥xi(k + 1)− v̄(k + 1)∥2

+ 2α(k)
∑N

i=1
si(k)

⊤ (v̄(k + 1)− x∗)

(59)

where the inequality holds by the Cauchy-Schwartz inequality
and Lemma 4.2. In terms of the last term on the right-hand
side of above (59), we have∑N

i=1
si(k)

⊤ (v̄(k + 1)− x∗)

=
∑N

i=1
gi(k)

⊤(v̄(k + 1)− xi(k + 1) + xi(k + 1)

− xi(k) + xi(k)− x∗) (60)

≥− L
∑N

i=1
∥v̄(k + 1)− xi(k + 1)∥2

− L
N∑
i=1

∥xi(k + 1)− xi(k)∥2 +
N∑
i=1

gi(k)
⊤ (xi(k)− x∗)

where the equality holds by using Lemma 4.1 and adding
and subtracting xi(k) and xi(k + 1) for all i ∈ N , and the
inequality follows from the Cauchy-Schwartz inequality and
item (ii) of Assumption 2.1.

Consider the last term on the right-hand side of (60),
and based on the subgradient property for a convex function
(gi(k) ∈ ∂fi(xi(k))) we obtain that:∑N

i=1
gi(k)

⊤ (xi(k)− x∗)

≥
∑N

i=1

(
fi(xi(k))− fi(x

∗)
)

(61)

=
N∑
i=1

(
fi(xi(k))− fi(v̄(k))

)
+

N∑
i=1

(
fi(v̄(k))− fi(x

∗)
)

≥ − L
N∑
i=1

∥xi(k)− v̄(k)∥2 +
N∑
i=1

(
fi(v̄(k))− fi(x

∗)
)
,

where the equality follows by adding and subtracting fi(v̄(k)).
The last inequality holds since the function fi is Lipschitz
continuous over Xi such that |fi(x) − fi(y)| ≤ L∥x −
y∥2,∀x, y ∈ Xi under Assumption 2.1, where constant L is



ZHOU et al.: SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL (NOVEMBER 2022) 15

defined in (2) [42].
Substituting (59), (60) and (61) into (58) gives

− 2(L+ L̂)α(k)

N∑
i=1

∥xi(k + 1)− v̄(k + 1)∥2

− 2Lα(k)

N∑
i=1

(
∥xi(k)− v̄(k)∥2 + ∥xi(k + 1)− xi(k)∥2

)
− β

N∑
i=1

∥xi(k + 1)− xi(k)∥22 − 2β
N∑
i=1

∥xi(k)− xi(k − 1)∥22

+ 2α(k)

N∑
i=1

(
fi(v̄(k))− fi(x

∗)
)
+

N∑
i=1

∥ei(k + 1)∥22

+
∑N

i=1

[ ∥∥xi(k + 1)− x∗
∥∥2
2
− β∥xi(k)− x∗∥22

]
≤

∑N

i=1

[ ∥∥xi(k)− x∗
∥∥2
2
− β∥xi(k − 1)− x∗∥22

]
. (62)

In terms of the third term on the left-hand side of (62), by
adding and subtracting v̄(k) and xi(k+1) = zi(k)+ei(k+1),
we obtain

2Lα(k)
∑N

i=1
∥xi(k + 1)− xi(k)∥2

= 2Lα(k)

N∑
i=1

∥zi(k)− v̄(k) + ei(k + 1) + v̄(k)− xi(k)∥2

≤ 2Lα(k)

N∑
i=1

N∑
j=1

Aij(k)∥xj(k)− v̄(k)∥2 (63)

+ 2Lα(k)

N∑
i=1

∥ei(k + 1)∥2 + 2Lα(k)

N∑
i=1

∥v̄(k)− xi(k)∥2

= 4Lα(k)

N∑
i=1

∥xi(k)− v̄(k)∥2 + 2Lα(k)

N∑
i=1

∥ei(k + 1)∥2

≤ 4Lα(k)

N∑
i=1

∥xi(k)− v̄(k)∥2 + γ

N∑
i=1

∥ei(k + 1)∥22 +
NL2

γ
α(k)2

where the first inequality follows from the triangle inequality,
the second equality holds by exchanging the order of summa-
tion and using the double stochasticity of A(k), and the last
inequality holds due to 2xy ≤ x2 + y2 with x = L√

γα(k) and
y =
√
γ∥ei(k+1)∥2 for some γ ∈ (0, 1). Similarly, regarding

the fourth term on the left-hand side of (62), we have

β
N∑
i=1

∥xi(k + 1)− xi(k)∥22

= β

N∑
i=1

∥zi(k)− v̄(k) + ei(k + 1) + v̄(k)− xi(k)∥22

≤ 3β
N∑
i=1

∥zi(k)− v̄(k)∥22

+ 3β

N∑
i=1

∥ei(k + 1)∥22 + 3β

N∑
i=1

∥v̄(k)− xi(k)∥22

≤ 3β
N∑
i=1

∥ei(k + 1)∥22 + 6β
N∑
i=1

∥xi(k)− v̄(k)∥22

(64)

where the first inequality holds due to ∥a+b+c∥22 ≤ 3∥a∥22+

3∥b∥22 + 3∥c∥22, and the second inequality holds by applying
the double stochasticity of A(k) and convexity of ∥ · ∥22.

Therefore, (27) in Lemma 4.5 could be obtained by substi-
tuting (63) and (64) into (62), thus concluding the proof.
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